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Chapter 1

Introduction to Molecular

Rheology

1.1 Overview

Polymer is a very large molecule which consists of many identical repeating units

called segments, which are joined together by very strong covalent bonds. The

degree of polymerization is the number of monomers, N, that constitutes the

polymer. It is usually a large number, ranging from 102 to 106 (or even more

in some natural polymers). The polymer architecture refers to the topology of the

branching structure of the macromolecule. There are many possible types, such

as linear, ring, star, comb, dendrimer and randomly branched. A polymer whose

repeating units are all the same is called a homopolymer. If there are different

types of monomers in the same chain, then it is called heteropolymer. The config-

uration of a polymer refers to its chemistry, architecture, degree of polymerization

and chemical composition in the case of a heteropolymers. It is fixed by chemical

reaction and usually cannot change afterwards. The conformation of a polymer

refers to the relative location of all its monomers. In this thesis, we concentrate

only on linear polymers.

1
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Figure 1.1: Linear chain confor-
mation.

Figure 1.2: Microscopic definition
of the stress.

The conformation of a linear chain is fully determined if we provide the set of

position vectors of all the monomers(Fig.1.1).

{Ri} = (R0,R1, . . . ,RN)

Alternatively, we can provide the set of bond vectors ri = Ri −Ri−1:

{ri} = (r1, r2, . . . , rN)

The end-to-end vector is the sum of all N bond vectors in the chain:

Re =
N∑
i=1

ri (1.1)

And the mean-square end-to-end distance is

〈R2
e〉 =

〈( N∑
i=1

ri

)
·

(
N∑
j=1

rj

)〉

=
N∑
i=1

N∑
j=1

〈ri · rj〉 (1.2)

which is a normal measure of the linear chain size.
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1.2 Microscopic definition of stress

As we known, force can be exerted externally on a body in two particular ways.

The gravity and inertia can be thought of as body forces since they act directly

on all individual particles in the body. The other type are surface forces which

act only on the surface of a body, but their effect is transmitted to the particles

inside the body through the atomic and molecular bonds. In order to define the

state of stress at a point within the body we consider the surface forces acting

on a small cube of material around that point. We define the stress as the ratio

of the force and the cross-sectional area. Both the force and the cross-sectional

area have direction and magnitude(the direction of the cross-sectional area being

described by its normal unit vector), which make the stress a tensor. The αβ-

component of the stress tensor is the force applied in the β direction per unit

of the cross-sectional area of a network perpendicular to the α axis from outside.

In most material the stress tensor is symmetric. We will only consider symmetric

stress tensors in this thesis.

σ =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (1.3)

In the consideration of the mechanical properties of the polymers, it is useful

to divide the stress tensor into its hydrostatic and deviatoric components. The

hydrostatic pressure p is given by

p =
1

3
(σxx + σyy + σzz) (1.4)

and the deviatoric stress tensor σ′ is found by subtracting the hydrostatic stress

components from the overall tensor such that

σ′ =


(σxx − p) σxy σxz

σxy (σyy − p) σyz

σxz σyz (σzz − p)

 (1.5)



Chapter 1. Introduction to Molecular Rheology 4

The rheological constitutive equations make the predictions of the stress tensor

σ. Now we would like to know how to derive the stress of the system from the

microscopic point of view. In Fig.1.2, several dumbbells are placed in a cube of

side length L. We can define the component αβ of the stress tensor as

σαβ = − 1

V

∑
i

fαi R
β
i = − 1

2V

∑
i

∑
j 6=i

fαijr
β
ij.

where V is the volume of the simulation box, f i and Ri are the force and the

position vector of bead i, f ij and rij = Ri−Rj are the force and the bond vector

from bead j to bead i.

1.3 Strain

When an external force is applied to a material, the atoms change their positions

in response to the force and this change is known as strain. A simple example is

that of a thin rod of material of length l, which is extended a small amount ∆l by

an externally applied stress. In this case, the strain e could be represented by

e =
∆l

l
(1.6)

For a general type of deformation consisting of shear, extension and compression

in different directions, the situation becomes more complicated. Namely the strain

tensor is defined as

Eαβ =
1

2

(∂uα
∂xβ

+
∂uβ
∂xα

)
(1.7)

where α, β are the Cartesian coordinates and u is the displacement vector. The

shear rate tensor κ is defined as

καβ =
1

2

(∂vα
∂xβ

+
∂vβ
∂xα

)
(1.8)

where v is the velocity of moving plates.
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1.4 Orientation

During the deformation of the material, chain bonds may orient themselves in the

draw direction. The degree of the orientation is often difficult to measure and

the distribution of the orientation is usually impossible to determine in experi-

ments. The orientation can be measured by the velocity of the sound, infrared

dichroism, X-ray wide angle measurements, or optical birefringence. The uniaxial

order parameter qorient = (3〈cos2 β〉 − 1)/2 is calculated from the orientation

angle β, which is defined as the angle between the draw direction and the main

optical axis. The order parameter becomes unity for a complete orientation in the

draw direction (β = 0◦), −1
2

for a complete orientation perpendicular to the draw

direction (β = 90◦), and zero corresponds to a completely random or isotropic

distribution of molecular orientation.

The orientation in transparent materials can also be characterized by optical

birefringence. A transparent material exhibits refractive indices nx, ny and nz

along the three main axes x, y and z. At least two of these refractive indices

are different for optical anisotropic materials. The difference between any two of

these refractive indices is called the birefringence ∆n. The polymer solutions

or melts are isotropic at equilibrium. Once an external field is applied to the

system, the statistical distribution of the polymers deviates from isotropic, and the

optical properties of the material become anisotropic. The birefringence of polymer

solutions has two origins. First, orientation of bond vectors of the main chain

causes birefringence, called intrinsic birefringence. Second, the anisotropy of

the shape of the polymer coil creates an anisotropic internal field, which is called

form birefringence[1].

1.5 Viscoelasticity

A distinctive feature of mechanical behaviour of polymers is the way in which their

response to an applied stress or strain depends upon the deformation rate and the
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history. This dependence is in remarkable contrast to the behaviour of elastic

solids such as metals and ceramics which, at least at low strains, obey the Hooke’s

Law: σ = GE meaning the stress is proportional to the strain and independent

of the loading rate, where E is the deformation gradient tensor. On the other

hand, the mechanical behaviour of viscous liquids is time-dependent. It is possible

to represent their behaviour at low rates of strain by Newton’s Law whereby the

stress is proportional to the strain rate and independent of the strain σ = ηκ.

The behaviour of most polymers is in between that of elastic solids and viscous

liquids, and the polymer response to the deformation can be divided into elastic

and viscous contributions.

1.5.1 Linear Viscoelasticity

Consider the deformation geometry of simple shear where material is sandwiched

between two plates perpendicular to y direction. The adhesion between the ma-

terial and the surfaces is assumed to be strong enough so that there is no slippage

at either surface. The bottom surface is held so that it does not move, and the

upper surface is free to move in x direction, apart from the fact that the material

between the surfaces may resist that motion. The shear stress σxy in this simple

shear is defined as the ratio of the applied force fx and the cross-sectional area of

the surface Ay, which is also the area of any plane perpendicular to the y direc-

tion within the material being sheared:σxy = fx/Ay. The shear strain γ is defined

as the displacement of the top plate ∆x relative to the thickness of the sample

h: γ = ∆x/h. If the material between the surfaces is a perfectly elastic solid,

the shear stress σxy and strain γ are proportional. The ratio is defined as shear

modulus G = σxy/γ. On the other hand, if the material between the surfaces is

a simple liquid, the stress is identically zero at any constant strain γ. In liquids,

the stress is determined by the deformation rate γ̇ = dγ/dt. For simple liquids,

the shear stress σxy is linearly proportional to shear rate γ̇. The shear viscosity

is defined as

η =
σxy
γ̇

(1.9)
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The simplest model of viscoelasticity is the Maxwell model[1], which com-

bines a perfectly elastic element with a perfectly viscous element in series. Since the

elements are in series, the total shear strain γ is the sum of the shear strain in each

element γ=γe+γv, both of the elements must bear the same stress σ=Gγe=η dγv

dt
.

The ratio of the viscosity η and the modulus G defines characteristic time scale,

called the relaxation time τ=η/G.

1.5.2 Stress relaxation after a step strain

When a step strain was applied at time t = 0, the stress relaxation modulus G(t) is

defined as the ratio of the stress remaining at time t and the magnitude of this step

strain γ: G(t) = σ(t)/γ. For viscoelastic solids, G(t) relaxes to a finite value, called

the equilibrium shear modulus Geq = limt→∞G(t). For viscoelastic liquids, the

Maxwell model can be used to understand the stress relaxation modulus. After

solving a first order differential equation of the time-dependent strain in the viscous

element, the stress relaxation modulus in this case has a simple exponential decay:

G(t) =
σ(t)

γ
= G0 exp(−t/τ) (1.10)

The relaxation time τ is a fundamental dynamic property of all viscoelastic liquids.

Polymer liquids normally have multiple relaxation modes, each with its own relax-

ation time. Any stress relaxation modulus can be described by a combination of

serial Maxwell elements. Most materials have a region of linear response at suffi-

ciently small values of applied strain, where the relaxation modulus is independent

of strain.

1.5.3 The Boltzmann superposition principle

The Boltzmann superposition principle states that the stress from any combination

of small step strains is simply the linear combination of stresses resulting from each
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individual step δγi applied at time ti.

σ(t) =
∑
i

G(t− ti)δγi ≈
∑
i

G(t− ti)γ̇iδti (1.11)

where γ̇i is constant. In other words, the system remembers the deformations that

were imposed on it earlier, and continues to relax from each earlier deformation

as the new ones are applied. The stress from any smooth strain history can be

written as an integral over the strain history.

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (1.12)

The stress in viscoelastic material is the result of all past deformations. The

memory of each past deformation only decays as the relaxation modulus decays

over the elapsed time t− t′ from the application of that deformation.

1.5.4 Steady shear

In steady shear, the shear rate γ̇ is a time-independent constant that can be taken

out of the Boltzmann superposition integral:

σ(t) = γ̇

∫ t

0

G(t− t′)dt′ = γ̇

∫ t

0

G(s)ds (1.13)

σss = lim
t→+∞

σ(t) (1.14)

where σss is the steady state stress. The relaxation modulus G(t) eventually decays

to zero fast enough that the integral is finite for any liquid. Thus the stress at long

times in steady shear is constant, and proportional to the shear rate γ̇. Newton’s

law of viscosity(Eq.1.9) defined the viscosity in steady shear as the ratio of shear

stress and shear rate. Therefore, the viscosity of any liquid in the linear regime is

the integral of its stress relaxation modulus:

η =

∫ ∞
0

G(t)dt. (1.15)
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If the applied shear rate is too large for linear response, Boltzmann super-

position no longer holds. Most polymeric liquids exhibit shear thinning of the

apparent viscosity at large shear rates, which means that the viscosity decreases

with increasing the shear rate. The apparent viscosity has also been observed to

increase with the shear rate increase for some materials, which is called shear

thickening.

1.5.5 Oscillatory shear

In practice, the simplest linear viscoelastic measurement is oscillatory shear[2].

A harmonic oscillation of strain with angular frequency ω is applied to a sample

in simple shear: γ(t) = γ0 cos(ωt). The principal advantage of this technique is

that the viscoelastic response of any material can be probed directly on different

time scale of interest t ≈ 1/ω by varying the angular frequency ω. If the material

studied is a perfectly elastic solid, then the stress in the sample will be related to

the strain through Hooke’s law:

σ(t) = G0γ0 cos(ωt). (1.16)

The stress in this case is perfectly in-phase with the strain. On the other hand, if

the material is a Newtonian liquid, the stress in the liquid will be related to the

shear rate through Newton’s law:

σ(t) = η
dγ(t)

dt
= −ηγ0ω sin(ωt) = ηγ0ω cos(ωt+

π

2
). (1.17)

More generally, the linear response of a viscoelastic material consists of the stress

oscillations at the same frequency as the applied strain, but the stress leads the

strain by a phase angle δ

σ(ω, t) = σ0(ω) cos(ωt+ δ).
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By using Boltzmann superposition integral(Eq.1.12),

σ(ω, t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′

= −
∫ t

−∞
G(t− t′)γ0ω sin(ωt′)dt′

= Re

[∫ t

−∞
G(t− t′)γ0iω exp(iωt′)dt′

]
= Re [γ0G

∗(ω) exp(iωt)] (1.18)

where the complex modulus G∗(ω) is defined by:

G∗(ω) = iω

∫ ∞
0

G(t) exp(−iωt)dt (1.19)

The form of Eq.(1.18) means that the stress will also be oscillatory at frequency

ω, but not in phase with the strain. If we write G∗(ω) = G′(ω) + iG′′(ω), then we

can identify the real part G′, called the storage modulus, as the in-phase part of

the modulus and the imaginary part G′′, called loss modulus, as the out-of-phase

part. Assume G(t)→ 0 as t→ +∞.

G′(ω) = ω

∫ ∞
0

G(t) sin(ωt)dt (1.20)

G′′(ω) = ω

∫ ∞
0

G(t) cos(ωt)dt (1.21)

In general both will be frequency-dependent, crossing over from viscous behav-

ior at low frequencies to elastic behavior at high frequencies. Then Eq.(1.18) can

be written as following:

σ(ω, t) = Re [γ0G
∗(ω) exp(iωt)]

= Re [γ0(G
′(ω) + iG′′(ω)) (cos(ωt) + i sin(ωt))]

= γ0(G
′(ω) cos(ωt)−G′′(ω) sin(ωt)) (1.22)
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According to Eq.(1.17) and Eq.(1.22), the ideal Newtonian fluids have a shear

stress that is simply proportional to the current shear rate.

σ(t) = η
∂γ

∂t
= Re [ηiωγ0 exp(iωt)]⇒

G
′(ω) = 0

G′′(ω) = ηω

(1.23)

At the opposite material extreme, the ideal elastic solids have a shear stress

that is simply proportional to the current shear strain.

σ(t) = G0γ = G0γ0Re [exp(iωt)]⇒

G
′(ω) = G0

G′′(ω) = 0

(1.24)

For the single Maxwell model of a viscoelastic fluid G(t) = G0 exp(−t/τ), the

integral over G(t) can be done exactly to obtain

G′(ω) = G0
ω2τ 2

1 + ω2τ 2

G′′(ω) = G0
ωτ

1 + ω2τ 2

Until now we introduced some macroscopic variables in polymer physics ac-

cording to experimental measurements. Later we would like to introduce some

microscopic variables which give rise to those macroscopic phenomenons.

1.6 Brownian motion

Originally, Brownian motion term was used to describe the random motion of

particles suspended in a fluid. It was first observed by Robert Brown in 1827, while

studying the motion of pollen particles floating in water under the microscope. The

particles in suspension are much bigger than the molecules of the fluid. The small

molecules hit the Brownian particles at different times in all possible directions

with different forces, resulting in a random motion of the particles. The dynamics
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of the Brownian particles are governed by Newton’s law: f=ma =mr̈, where a

is the acceleration vector of the particle. f represents the forces acting on the

particle, which can be divided in random force fR and friction force fF . Note

that now the Brownian motion term is used to describe the random motion of

molecules and atoms as well.

1.6.1 Random force

The random force fR acting on a particle is due to many collisions with the other

molecules surrounding it. The collisions take place very fast and are unpredictable

in nature, so we will consider each of them, fRi, to take place in a random direction

and with a random amplitude. We are interested in the accumulated effect of these

collisions, so that fR =
∑Ni

i=1 fRi, where Ni is the number of collisions related to

a particle i. If fRi are independent of each other, by the central limit theorem

the probability distribution of fR must be Gaussian. By symmetry, 〈fR〉 = 0.

We assume that the distribution has a variance σ2, and the random forces fR at

different moments of time t and t′ are uncorrelated. The diffusion of a particle

caused by random force can be modelled by Wiener process

fRdt = σdW (1.25)

where dW is differential of a Wiener process[3].

1.6.2 Friction force

The friction forces are due to the resistance felt by the Brownian particle in its

motion through the sea of small molecules. This friction is also produced by the

continuous collisions between the particle and the small molecules, so it has a

similar origin as the random forces. The friction force can be considered to be

proportional to the velocity vector v of the particle. The amplitude of the friction

force divided by velocity is referred to as the friction coefficient ξ. Therefore, we
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have

fF = −ξv = −ξ dr
dt

(1.26)

1.6.3 Fluctuation-dissipation theorem

Consider a time-dependent external field h(t) is applied to a system in equilib-

rium. A physical observable A is called conjugate to the field h if the change of

Hamiltonian due to the field h can be written as ∆H = hA. If the field is weak,

the change in physical quantity A(t) conjugate to the field h(t) is a linear function

of the field.

〈A(t)〉h − 〈A0〉 =

∫ t

−∞
µ(t− t′)h(t′)dt′ (1.27)

where 〈A(t)〉h is the value of A at time t when the field is applied, 〈A0〉 is the equi-

librium value of A without the field and µ(t) is called the response function. This

is a more general statement of the Boltzmann superposition principle(Eq.1.12).

The response function is related to the time correlation function of A(t) by

µ(t) = − 1

kBT

d

dt
CAA(t) (1.28)

which is called the fluctuation-dissipation theorem, where T is the temperature,

kB is the Boltzmann constant and CAA(t) = 〈A(t + t′)A(t′)〉 averaged over t′ and

over ensemble without any external field.

If we consider the situation that a constant field h is applied for a long time

until the system reaches steady state and then the field is switched off at t = 0,

Eq.(1.27) turns into

〈A(t)〉h − 〈A0〉 = h

∫ +∞

t

µ(t′)dt′ (1.29)

From Eqs.(1.28) and (1.29), we can derive

〈A(t)〉h − 〈A0〉 = h
1

kBT
(CAA(t)− CAA(+∞)) (1.30)
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On the other hand, if we apply a sudden step field on an equilibrium system

at t=0, Eq.(1.27) turns into

〈A(t)〉h − 〈A0〉 = h

∫ t

0

µ(t′)dt′ (1.31)

From Eqs.(1.28) and (1.31), we can derive

〈A(t)〉h − 〈A0〉 =
h

kBT
(CAA(0)− CAA(t)) (1.32)

=
h

2kBT
〈(A(t)− A(0))2〉 (1.33)

The fluctuation-dissipation theorem connects the relaxation from a non-equilibrium

state, which is not far from the equilibrium state, i.e. in linear regime, with the

spontaneous microscopic dynamics in the equilibrium system.

So far, we have the following expression for the forces acting on the Brownian

particles:

f(t)dt = (fR(t) + fF (t))dt = σdW − ξdr (1.34)

It is usual to work in the limit of strong friction where inertia term mr̈ can be

neglected, and therefore the above equation can be simplified to

ξdr = σdW (1.35)

The fluctuation-dissipation theorem establishes a relationship between the ran-

dom forces and the friction forces so that the right distribution is recovered when

a dynamic system is governed by Brownian motion. It provides a direct relation

between the amplitude of the random force σ and the amplitude of the friction

force ξ. If the particle is stationary in space in average(Fig.1.3 left), the probabil-

ity of collision with small molecules is the same from all directions. However, if

the particle moves to the right(Fig.1.3 right), the probability of random collisions

with molecules coming from the right is higher, and this gives rise to a higher

friction force which opposes the motion of the particle. Because the two types of

the forces have the same origin, there must be a relationship between them.
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Figure 1.3: Relationship between friction and random forces

From Eq.(1.33) and the property of Wiener process in one-dimension 〈(dr)2〉=

2D dt where dr is the displacement of the particle during dt and D is the diffusion

coefficient, the following equation can be derived using h = f and A = r

〈dr〉 =
f

2kBT
〈(dr)2〉 =

vξ

2kBT
2D dt (1.36)

⇒ D =
kBT

ξ
. (1.37)

Eq.(1.37) is called the Einstein formula. Then the amplitudes σ and ξ have the

following temperature dependent relationship given by the fluctuation-dissipation

theorem:

σ2 = 2kBTξ (1.38)

Following from Eq.(1.35) we obtain the evolution equation for the Brownian par-

ticles:

ξdr =
√

2kBTξdW (1.39)

1.6.4 Langevin equation

The simplest polymer model is a single chain model, where Newton’s equation

of motion for each monomer include regular forces due to interaction with other

monomers of the same chain, as well as random and friction forces due to interac-

tion with the surrounding media:

m
d2Ri

dt2
dt = −∂U({Ri})

∂Ri

dt− ξ dRi +
√

2kBTξ dW i (1.40)
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where ξ is the friction coefficient, m is the monomer mass, U({Ri}) is the intra-

chain interaction potential, and W i is a Wiener process for particle i.

1.7 Gaussian chains

1.7.1 Gaussian chain model

In the Gaussian chain model, we forget about the local details of the chain, and

assume that every bond ri is actually the sum of many bond vectors, so that the

probability distribution of ri is Gaussian. The assumption is that the different

bonds along the chain are independent of each other, 〈ri · rj〉 = 〈ri〉 · 〈rj〉 if i 6= j.

The bond length is not constant. Each bond is flexible and follows a Gaussian

distribution:

p(r) =

(
3

2πb2

) 3
2

exp

(
−3r2

2b2

)
(1.41)

with 〈r〉= 0 and 〈r2〉= b2. The probability distribution of a given conformation

{ri} = {r1, . . . , rN} is:

Ψ({ri}) =
N∏
i=1

p(ri) =

(
3

2πb2

) 3N
2

exp

(
− 3

2b2

N∑
i=1

r2
i

)
(1.42)

It has an important property that the distribution function of the vector be-

tween any two beads of the Gaussian chain is also Gaussian with 〈Ri −Rj〉 = 0

and 〈(Ri −Rj)
2〉 = |i− j|b2.

p(Ri −Rj) =

(
3

2πb2|i− j|

) 3
2

exp

(
−3(Ri −Rj)

2

2|i− j|b2

)
(1.43)

In Eq.(1.43), if we set i = N and j = 0, the equation turns into

p(RN −R0) = p(Re) =

(
3

2πNb2

) 3
2

exp

(
− 3R2

e

2Nb2

)
(1.44)
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Figure 1.4: Gaussian chain model. The dashed line is bond vectors with unit
length.

The Gaussian chain model does not describe the local structure of the polymer

correctly. However, it does correctly describe the properties on large length-scales

if the excluded volume and other non-bonded interactions can be neglected. The

advantage of the Gaussian chain model is that it is mathematically much easier

to handle than any other models. However, the Gaussian chain model has no

mechanism to prevent monomers from passing through each other.

1.7.2 Continuous limit

Sometimes it is more convenient to describe a chain contour by using continuous

variables instead of using a set of discrete variables. When describing a Rouse

chain by a set of N beads, the system should be independent of the number of

beads. Here are notations used in discrete and continuous formats respectively:

Discrete Continuous
Rn ⇒ R(n)

Rn −Rn−1 ⇒ ∂R
∂n

Rn+1 +Rn−1 − 2Rn ⇒ ∂2R
∂n2

δnm ⇒ δ(n−m)∑m′

n=m ⇒
∫ m′

m
dn

Table 1.1: Summary of the transformation from a discrete system to a con-
tinuous variable.
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Figure 1.5: Rouse model for polymers.

1.7.3 Rouse model

Rouse model, which is a cornerstone of polymer dynamics, was originally proposed

by Rouse[4] in 1953. The model is treated as a collection of N+1 beads connected

by harmonic springs(Fig.1.5), which is defined by the equation of motion Eq.(1.40)

without inertia with the simplest possible potential

U({Ri}) =
3kBT

2b2

N−1∑
i=0

(Ri+1 −Ri) (1.45)

Each bead is characterized by its own independent friction force with the fric-

tion coefficient ξ. The total friction coefficient of the whole Rouse chain is the sum

of the contributions of each of the N + 1 beads: ξchain = (N + 1)ξ. We can write

the stochastic differential equation for each bead along the chain:

ξdR0 =
3kBT

b2
(R1 −R0)dt+

√
2kBTξ dW t0 (1.46)

... =
...

ξdRi =
3kBT

b2
(Ri+1 +Ri−1 − 2Ri)dt+

√
2kBTξ dW ti (1.47)

... =
...

ξdRN =
3kBT

b2
(RN−1 −RN)dt+

√
2kBTξ dW tN (1.48)
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where W ti is a vector Wiener processes in terms of the bead number i:

〈W ti〉 = 0

〈WtiαWt′jβ〉 = δijδαβ min(t, t′)

〈W ti ·W t′j〉 = 3δij min(t, t′)

In the continuous limit, the above equations can be rewritten as following:

ξ
∂R(n)

∂t
= k

∂2R(n)

∂n2
+ fn (1.49)

∂R(n)

∂n

∣∣∣∣
n=0

= 0,
∂R(n)

∂n

∣∣∣∣
n=N

= 0 (1.50)

where k = 3kBT/b
2 and fn is a random force obeying 〈fn〉=0, 〈fn(t) · fn′(t′)〉 =

δ(n− n′)δ(t− t′)6kBTξ. More details about Rouse modes are given in Appendix

A.

1.8 Doi-Edwards model of entangled polymers

The viscosity of various linear polymer melts as a function of molecular weight

were measured by Berry et al.[5] and Colby et al.[6]. A transition behaviour

of viscosity was found at some critical molecular weight Mc. The viscosity is a

linear function of the molecular weight with the slope = 1 below Mc. Above the

threshold, the slope increases to approximately 3.4. The tube model, which was

proposed and developed by de Gennes[7], Doi and Edwards[8], is usually used to

describe polymer dynamics of chains longer than Mc in concentrated solutions

and melts. The observed change in scaling behaviour is due to the surrounding

chains around the probe single chain, which prevent the probe chain to cross other

surrounding chains. Instead of solving a many-body problem of the entangled

system, the tube model adopts a mean-field method and reduces the problem to a

single chain model. The topological interactions are modelled as a set of obstacles

that confine the probe chain in a tube-like region. This tube allows the probe
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Figure 1.6: The tube model

chain to move freely along its own contour length but not perpendicular to its

contour(Fig.1.6). A piece of chain which escaped from the tube is assumed to

adopt a random orientation independent of surrounding chains. Merrill et al.[9]

demonstrated that if this assumption is violated, the relaxation will be slower than

expected from the tube theory.

The primitive path was defined as the center line of the confining tube(thick

solid line in Fig.1.6). In order to quantify this idea, we need to make some assump-

tions about the single chain which is surrounded by other chains. Displacement of

the monomers in the direction of perpendicular to the primitive path is confined

by the surrounding chains to an average distance a, which is called the tube di-

ameter. Tube theory assumes that in equilibrium the primitive path is a random

walk of step length a, which has the same end-to-end vector as the original chain.

This leads to the following relationship:

Nb2 = Za2. (1.51)

where Z is the number of the entanglement segments. If we define the number of

monomers in an entanglement strand as Ne = N/Z, the following relation can be

obtained from Eq.(1.51):

Ne =
a2

b2
. (1.52)
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1.8.1 Primitive chain

If we are interested in large scale dynamics of the polymer chains, the small scale

fluctuation can be disregarded. We only need to use the motion of the primitive

path to describe the dynamics of the original chain. The term “primitive chain”

is used to represent the dynamic properties of the primitive path. The contour

length s, which is measured from one chain end, is used to represent a point on

the primitive chain and called the primitive chain segment s. R(s, t) is its position

at time t, the vector

u(s, t) =
∂

∂s
R(s, t) (1.53)

is the unit vector tangent to the primitive chain. In the original pure reptation

model, the dynamics of the primitive chain has the following assumptions and

predictions:

• The primitive chain has constant contour length L.

• The primitive chain can only move along the contour length with a certain

diffusion constant Dc.

• The correlation of u(s, t) and u(s′, t) decreases quickly with increasing |s−s′|.

Based on the third feature, the primitive chain becomes Gaussian on a large

length scale. The parameter Dc is assumed to be equal to the diffusion coefficient

of the Rouse model

Dc =
kBT

Nξ
. (1.54)

And since the mean square distance between the two points on the Gaussian chain

is proportional to the contour length between these to points, we can have

〈(R(s, t)−R(s′, t))2〉 = a|s− s′| for |s− s′| � a. (1.55)
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Figure 1.7: The relaxation of the primitive chain.

1.8.2 Reptation

Now we can study the dynamics of the primitive chain. In the beginning, the

original primitive chain is trapped in a tube like region(Fig.1.7(a)). After the

primitive chain moves along the contour length back and forward, which is called

reptation, one end of the chain escapes from the original tube and can adopt

any directions, the other end of the tube disappears as it is evacuated (dashed

line in Fig.1.7(b)). As the chain moves back and forward on both directions, the

tube is destroyed from both ends(Fig.1.7(c)). The time correlation function of the

end-to-end vector Re(t) = R(L, t)−R(0, t) is given by

〈Re(t) ·Re(0)〉 = Nb2
∑
p=odd

8

p2π2
exp(−p

2t

τd
) (1.56)

The time τd is known as the reptation time and is related to the molecular param-

eters by

τd =
ξN3b4

π2kBTa2
= 3ZτR. (1.57)

From Eq.(1.56), we can see that the time correlation function of the end-to-end

vector is dominated by the first term with p = 1.

We can introduce a mathematical equation for reptation dynamics:

R(s, t+ ∆t) = R(s+ ∆s(t), t) (1.58)
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where ∆s(t) is the distance that the primitive chain moves in a time interval ∆t

and it is a Gaussian random variable with

〈∆s(t)〉 = 0 (1.59)

〈∆s(t)2〉 = 2Dc∆t (1.60)

But if s + ∆s(t) is not between 0 and L, R(s, t + ∆t) should be on a new tube

segment.

Now we can calculate the mean-square displacement 〈(R(s, t) −R(s, 0))2〉 of

the primitive chain segment s. The function ϕ(s, s′, t) is defined as following:

ϕ(s, s′; t) = 〈(R(s, t)−R(s′, 0))2〉 (1.61)

The time evolution equation of ϕ(s, s′; t) is

ϕ(s, s′; t+ ∆t) = 〈(R(s, t+ ∆t)−R(s′, 0))2〉

= 〈(R(s+ ∆s(t), t)−R(s′, 0))2〉 (1.62)

= 〈ϕ(s+ ∆s(t), s′; t)〉 (1.63)

=

〈(
1 + ∆s

∂

∂s
+

∆s2

2

∂2

∂s2

)
ϕ(s, s′; t)

〉
(1.64)

=

(
1 + 〈∆s〉 ∂

∂s
+
〈∆s2〉

2

∂2

∂s2

)
ϕ(s, s′; t) (1.65)

And then we can get the equation

∂

∂t
ϕ(s, s′; t) = Dc

∂2

∂s2
ϕ(s, s′; t) (1.66)

The initial condition is

ϕ(s, s′; t)|t=0 = |s− s′|a. (1.67)

The boundary conditions are

∂ϕ(s, s′; t)

∂s

∣∣∣∣
s=0

= −a, ∂ϕ(s, s′; t)

∂s

∣∣∣∣
s=L

= a. (1.68)
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From the calculation of Doi et al.[1], the solution of Eq.(1.66) is

ϕ(s, s′; t) = |s− s′|a+
2aDct

L
+
∞∑
p=1

4La

p2π2
cos
(pπs
L

)
cos

(
pπs′

L

)
(1− exp(−tp2/τd))

(1.69)

For t� τd, ϕ(s, s, t) is dominated by the terms with large p.

ϕ(s, s, t) ≈ 2a
√
Dct/π (1.70)

For t > τd, ϕ(s, s, t) is dominated by the terms with p = 1.

ϕ(s, s, t) ≈ 2Dct/Z (1.71)

1.8.3 Contour length fluctuation(CLF)

In previous sections, the primitive chain was regarded as an inextensible string

of contour length L. In reality, the contour length of the primitive path ought

to be continually fluctuating around its equilibrium length under the influence of

thermal fluctuations, and fluctuations sometimes play an important role in various

dynamical properties. Since the primitive chain represents a set of conformations

of the Rouse chain, the probability of a certain conformation of the primitive chain

is proportional to the number of the conformation of the Rouse chain which can

be represented by that primitive chain. If we set the polymer as a random walk

confined in a tube, the entropy of the primitive chain was calculated as following[1]:

S(L) = S0 − kB
(

3L2

2Nb2
+ α0

Nb2

a2

)
(1.72)

where S0 is the entropy of the primitive chain in free space, a is the diameter of

the tube and α0 is a numerical factor. At the first sight, the entropy increases

with decreasing the contour length L, but in a melt the equilibrium length does

not shrink to zero. The dynamics of the contour length of the primitive chain

are described by the Langevin equation for the Rouse model. The only difference
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between the primitive chain and a free Rouse chain is that the equilibrium average

of the contour length is α1Nb2

3a
, where α1 is a numerical factor, while the end-to-end

vector is zero in Rouse dynamics. This can be achieved by adding a tensile force

applied to the chain ends[10].

These fluctuations of the chain ends will accelerate the rate at which the tube

segments are visited by these ends. The longest characteristic time of the contour

length fluctuation is τR, the Rouse relaxation time. The effect of the contour

length fluctuation can be neglected in the limit Z → +∞ but not for the usual

values of Z ≈ 1, · · · , 100 , where Z is the number of the tube segments.

1.8.4 Constraint release(CR)

So far it has been assumed that the tube is fixed in the material and its confor-

mational change happens only at the ends. But the conformational change can

also happen in the middle of the tube. The topological constraints for a polymer

chain can be released or created by the movement of the surrounding chains. The

number of constraints fluctuates in time keeping the time-average total number

of constraints on a given chain constant. The exchange of topological constraints

on a probe chain leads to a modification of the tube that the probe chain was

confined in. This process can be modelled by a local jump of the tube, which will

lead to Rouse dynamics of the tube. This mechanism is especially important in

binary blends.

1.9 Microscopic molecular dynamics simulation

The molecular dynamics simulations are normally used as an experimental tool

to investigate dynamic properties of the polymer, which are based on numerical

integration of Newton’s equations of motion for a system of particles. Each particle

has a well-defined set of interaction potentials with its surrounding particles. In
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simulations of polymer melts, one has to minimize the finite size effects by using

periodic boundary condition.

1.9.1 Periodic boundary condition

Todd and Daivis[11] indicated the effects of periodic boundary condition on the

calculation of the stress tensor of the system. If the number of the particles in the

system and the volume are finite, the stress tensor can be calculated as following:

σαβ(t) = − 1

V

N∑
i=1

Rα
i (t)fβi (t) (1.73)

or

σαβ(t) = − 1

2V

N∑
i=1

N∑
j 6=i

rαijf
β
ij (1.74)

where α, β are Cartesian coordinates, V is the volume of the system, N is the

number of particles in the system, Ri is the position vector of particle i, f i is

the force on particle i, rij and f ij are the distance vector and force from particle

j to i respectively. However the volume of the system is infinite under periodic

boundary condition. If we map all the particles into a periodic box, the volume is

finite. But Eq.(1.73) does not work anymore, and Eq.(1.74) only works if we give

a special definition of rij which is the minimum image distance between particle

i and j. Suppose we set the center of the initial box as origin and 6 surfaces are

on the planes x = −L/2, x = L/2, y = −L/2, y = L/2, z = −L/2, z = L/2, the

minimum image distance between particle i and j is

rminij = (Ri −Rj)− L
[Ri −Rj

L

]
(1.75)

where [ ] is round up operator. Once the initial positions and momenta have been

allocated, each particle that is not in the original box can be treated as a copy of

a particle in the original box. The periodic boundary conditions of 2D is shown

in Fig.1.8. The solid circle is the real position of the particle and the open ones of
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Figure 1.8: Periodic boundary condition.

the same colour are the copies of these particles in each image of the simulation

box.

1.9.2 Pair interactions

In this thesis the polymer chains are represented by the bead-spring chain model

introduced by Kremer and Grest[12][13] in their simulations of monodisperse lin-

ear polymer melts. In this model, all monomers interact via a truncated-shifted

Lennard-Jones(LJ) potential

ULJ(r) =

 4ε
[(

σ
r

)12 −
(
σ
r

)6
+ 1

4

]
; r < rc

0; r ≥ rc
(1.76)

where σ is the length unit, r is the distance between the centers of two monomers,

and the cut-off radius rc is taken to be 21/6σ, yielding purely repulsive interactions

between the monomers. The LJ parameter ε is the basic energy unit in which all

other energies and temperature are expressed. The monomers of the same chain

are connected to their sequential neighbours by the finite extensible nonlinear

elastic(FENE) potential

UFENE(r) = −1

2
kR2

max ln(1− r2

R2
max

), (1.77)
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where the spring constant k = 30ε/σ2 and the maximum bond length Rmax = 1.5σ,

at which the elastic energy of the bond becomes infinite. The combination of

ULJ and UFENE leads to an average bond length 〈l2〉1/2 ≈ 0.97σ. In addition, a

harmonic bending potential is used to introduce some stiffness into the polymer

chain.

Ubend =
kb
2

N−1∑
i=1

(Ri+1 − 2Ri +Ri−1)
2 (1.78)

where Ri is the position vector of ith monomer in the chain. In this way the forces

are pairwise and the bending force on the monomer i is

f ibend = 4kb(Ri+1 +Ri−1 − 2Ri)− kb(Ri+2 +Ri−2 − 2Ri)

Thus, our bending potential corresponds to an attractive harmonic spring 4kb

between the neighbouring monomers and a repulsive harmonic spring kb between

monomers with chemical distance 2.

1.9.3 Equations of motion

The velocity Verlet algorithm is used to integrate the equations of motion of the

monomers. The system is coupled to a Langevin thermostat by the standard

equation,

mr̈i = −∇iU({ri})− ξṙi + f i, (1.79)

wherem is the monomers mass and ξ is the friction coefficient set to be 0.5(mkBT )1/2/σ.

The stochastic force f i is given by a δ-correlated Gaussian noise source. The fric-

tion constant ξ and Langevin noise term f i are introduced to control the temper-

ature and to stabilize the system. They are related by the fluctuation-dissipation

theorem as 〈f i(t) · f i(t′)〉 = 6kBTξδ(t− t′).
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1.9.4 Other parameters

The simulations are performed with periodic boundary conditions applied in all

three dimensions of the cubic simulation box. The time step ∆t = 0.012τ is used

in all simulation runs, where τ = (mσ2/kBT )1/2 is the LJ time unit. The usual

simulations of melts are carried out at a temperature T = ε/kB and monomer

number density ρ = 0.85σ−3.

1.10 Motivation

The rheology of linear monodisperse polymers in equilibrium is the fundamental

problem which has received the most attention in the field. Several theories[14][1]

were proposed to describe the dynamic properties of the melts. Then several addi-

tional dynamic mechanisms such as CLF[10][15] and CR[16] were introduced to the

original theory, which brought the theories in better agreement with experiments.

In recent years, the most complete model was formulated[17] and accurate ana-

lytical and numerical solutions of the model became available. However, polymers

in real world are never perfectly monodisperse. The interplay between different

components affects the dynamics of the sample dramatically. These effects stimu-

late the scientists to further investigate polydisperse melts, and the binary blend

is the simplest case. In Chapter 2 we will concentrate on dynamical properties of

unentangled and entangled binary blends, and propose some universal properties

which allow us to bridge between monodisperse and bidisperse melts.

Although the linear rheology of linear and some branched polymers can be

described by the tube theory, there is still no successful model to describe the non-

linear rheology due to the lack of an equation of motion for the tube. Recently

an alternative model[18] was developed, which consists of a well defined single

chain equation of motion. This model is supposed to allow us to investigate the

properties of polymers in flow. However, several parameters corresponding to the

flow need to be chosen carefully, i.e. the number of entanglements and the methods
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of their creation and destruction. Microscopic molecular dynamics simulations

are a feasible way to derive these parameters. The shear simulation is also an

intermediate step between the experiments and the simple models. We will discuss

the non-equilibrium study in Chapter 3, developing basic methods to produce non-

linear rheology data from MD simulations.

As discussed before the molecular dynamics simulations are used as an exper-

imental tool to understand the behaviour of polymer melts. Due to the limit of

computer power and the large number of particles, we can not simulate a real sam-

ple at the molecular level. This encourages us to use different models at different

scaling levels, which is also called coarse-grained simulations. The advantage of

this method is that if we are only interested in the macroscopic properties of the

polymer, the same result can be derived by using corresponding coarse-grained sim-

ulations correctly with less variables of the system and shorter simulation times. In

chapter 4, we aim to derive coarse-grained variables from microscopic simulations

in a systematic way and reproduce some quantities in microscopic simulations by

using these variables.



Chapter 2

Orientational relaxation and

coupling in equilibrium polymer

melts

2.1 Overview

Slow relaxation in polymer melts has attracted constant attention of theoreti-

cians for the last 40 years, perhaps partly because it is still lacking a general

framework description. Indeed, melts of short chains are called unentangled and

described by the Rouse theory[4]. Relaxation in melts of longer chains is believed

to be dominated by entanglements, and is consequently described by the tube

theory[14][1], which is a mean field description of an entangled system. Based

on the tube theory, the terminal relaxation time τd and the zero shear viscos-

ity η0 are proportional to the cube of the molecular weight Mw in monodisperse

melts. Although experimental data show a slightly larger exponent around 3.4,

the tube theory has been regarded as a theoretical triumph. Many modifications

like contour length fluctuation(CLF)[10][15] and constraint release(CR)[16] have

been introduced to bring the original theory into better agreement with experi-

ments. The effect of CLF can be neglected for Z�1, where Z is the number of

31
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the entanglement segments. Likhtman and McLeish[17] improved the treatment

of contour length fluctuations using a combined theoretical and stochastic simu-

lation approach which allows them to obtain an expression for the single chain

relaxation function µ(t) without any adjustable parameters and approximations.

They then used the scheme proposed by Rubinstein and Colby[16], which pro-

vides an algorithm for calculating the full relaxation function G(t) from the single

chain relaxation µ(t), to include the constraint release mechanism. They pro-

duced excellent agreement between theory and experiment in the linear regime.

All these mechanisms from monodisperse melts should be involved in the study of

polydisperse melts, which would include several other mechanisms.

In order to understand the rheology of polydisperse melts, a simple case of

mixtures of long and short chains should be investigated first. The concept of

CR becomes very useful and important for binary blends. After the terminal

relaxation time of the short component, short chains move away and release their

constraint on the long probe chain. The entanglements left in the system are the

ones between the long chains. Then a dilated tube constructed by other long chains

can be introduced. However, the tube dilation was not found useful in entangled

linear monodisperse melts although it was applied to describe the dynamics of

branched polymers successfully[19][20]. Following the initial idea of Marrucci[21],

Doi et al.[22] derived the condition under which the long component in a binary

blend would reptate in a dilated tube. They concluded that the relaxation of a

long chain in binary blend would not be faster than the relaxation in the pure long

chain melt if the Struglinski-Graessley parameter rSG = NlN
2
e /N

3
s is smaller than

one. When rSG > 1, Doi et al. suggested that the long chain would reptate in the

diluted tube and the terminal relaxation time of the long chain, which depends

on the composition of the blend, would not depend on the short chain length.

Struglinski and Graessley[23] also concluded that the terminal relaxation time of

the long chain in binary blends at different compositions was almost the same as

the terminal time in the pure long chain melts if rSG < 1.

Wang’s group[24][25] did experimental studies of mixtures of long and short

chains which were of different chemistry. The lengths of short chains Ns were
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chosen to be smaller than the entangled length Ne to avoid the complication

associated with the entanglements between long and short chains. They also

studied the homo-mixture of long and short chains of polybutadiene, in which the

short chains were longer than the entangled length Ne[26]. In binary blends with a

Struglinski-Graessley parameter smaller than one, they saw a discernable shift of

the terminal relaxation time with the composition, which contradicts the previous

theories of Viovy et al.[27] and Doi et al.[22].

Wang et al.[28] presented extensive molecular dynamics simulations of the dy-

namics of diluted long probe chains entangled with a matrix of short chains. The

constraint release effect in the binary blends was investigated by systematically

reducing the short chain length Ns from the monodisperse case of Ns = Nl to

slightly above one entanglement length. The diffusion of the long chains, mea-

sured by the mean square displacements of the monomers and the centers of mass

of the chains, demonstrated a systematic speed-up relative to the pure reptation

behavior expected for monodisperse melts of sufficiently long polymers. On the

other hand, the diffusion of the matrix chains was only weakly perturbed by the

diluted long probe chains.

The aim of this chapter is to investigate the stress and orientation relaxation

of monodisperse and bidisperse melts in both unentangled and mildly entangled

systems, and to find out how the dynamics of each component are affected by the

composition of the system. In section 2.2, we will introduce the definition of stress

and orientation relaxation functions and cross-correlation functions used in this

thesis. In section 2.3, the stress-optical rule in MD simulations is established. In

sections 2.4 and 2.5, the stress and orientational relaxation of monodisperse and

bidisperse melts are investigated respectively. In section 2.6, we will propose a

universal time-dependent orientational coupling parameter for both monodisperse

and bidisperse melts. Using this universal coupling parameter, the total relaxation

function of binary blends can be obtained from the auto-relaxation function of each

component.
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2.2 Definition of the orientational correlation func-

tion

Based on the fluctuation-dissipation theorem stated in section 1.6.3, we can derive

the orientation relaxation function by calculating the time correlation functions.

An efficient method to calculate the time correlation function on the fly was de-

veloped by Ramirez et al.[29].

χj(t
′) is set as the notation of orientation tensor of chain j at time t′:

χαβj (t′) =
N∑
i=1

uαji(t
′)uβji(t

′) (2.1)

uαji(t
′) = Rα

j,i(t
′)−Rα

j,i−1(t
′) (2.2)

where α, β are Cartesian coordinates, i and N are the monomer index and the

number of bonds in the chain respectively. For any time-dependent tensor T (t′)

the correlation function of this tensor F is defined as:

Fxy(T, t) =
〈
Txy(t+ t′)Txy(t

′)
〉

(2.3)

where 〈〉 is averaging over t′ and F(T, t) averages over all possible selection of

xy axis. Then in monodisperse melts the auto-correlation function of the chain

orientation A(t) and the correlation function of the orientation of the whole system

S(t) are defined as following:

A(t) =
1

NcN

Nc∑
j=1

F(χj, t) (2.4)

S(t) =
1

NcN
F

(
Nc∑
j=1

χj, t

)
(2.5)

whereNc is the number of chains in the system. And the difference C(t) = S(t)−A(t)

is called the orientation cross-correlation function. After comparing Eq.(2.4) with

Eq.(2.5), we can see that C(t) is nothing but the cross-correlation function of
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different chain tensors

C(t) =
1

NcN

Nc∑
m=1

Nc∑
n=1;n6=m

〈
χm(t+ t′)χn(t′)

〉
(2.6)

Similar notations are defined in bidisperse melts:

As(t) =
1

Nc1N1

Nc1∑
j=1

F(χj, t) (2.7)

Al(t) =
1

Nc2N2

Nc1+Nc2∑
j=Nc1+1

F(χj, t) (2.8)

Ss(t) =
1

Nc1N1

F

(
Nc1∑
j=1

χj, t

)
(2.9)

Sl(t) =
1

Nc2N2

F

(
Nc1+Nc2∑
j=Nc1+1

χj, t

)
(2.10)

Stot(t) =
1

Nc1N1 +Nc2N2

F

(
Nc∑
j=1

χj, t

)
(2.11)

where s, l indicate the short and long component of the binary blend. Nc1, Nc2 are

the number of the chains of short and long components. N1, N2 are the number

of bonds in short and long chains. The cross-correlation functions in the binary

blend are defined as following:

Css(t) =
Ss(t)− As(t)

ϕs
(2.12)

Cll(t) =
Sl(t)− Al(t)

ϕl
(2.13)

Csl(t) =
Stot(t)− ϕsSs(t)− ϕlSl(t)

2ϕsϕl
(2.14)

where Css(t) is the cross-correlation function of one short chain and all other

surrounding short chains(similar for Cll(t), Csl(t)), ϕs = N1Nc1

N1Nc1+N2Nc2
and ϕl =

N2Nc2

N1Nc1+N2Nc2
are the bonds fractions of short and long components. As we can

see the orientation is calculated by summing over all the bond vectors.

From Eqs.(2.12), (2.13) and (2.14), the total orientation relaxation function can

be described by the sum of the self- and cross-correlation orientation relaxation
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Figure 2.1: Stress (lines) and ori-
entation (open symbols) relaxation
functions in monodisperse melts
and their binary blends. The reason
of the oscillations of stress relax-
ation at short times is bond length

relaxation.
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Figure 2.2: Stress-optical coeffi-
cient α times density ρ as a function
of density in flexible(square) and
semi-flexible(circle) systems. The
results from flexible system are
shifted upward by 10 to compare
with counterpart of semi-flexible

system.

functions of each component:

Stot(t) = ϕsAs(t) + ϕlAl(t) + ϕ2
sCss(t) + ϕ2

lCll(t) + 2ϕsϕlCsl(t) (2.15)

2.3 Stress optical law

Before doing the orientation analysis, let us check if the stress optical law works

in our equilibrium simulations. The stress optical law states that the orientation

relaxation function should be proportional to the stress relaxation function:

G(t) =
V

kBT
F(σ, t) (2.16)

G(t) =
1

α
S(t) (2.17)

where G(t) is the usual stress relaxation function, σ is the stress tensor and α is

the stress-optical coefficient. More details of stress relaxation function of monodis-

perse melts were described by Likhtman et al.[30]. Fig.2.1 shows stress relaxation
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functions of two monodisperse melts and of their 50% blend, together with ori-

entation relaxation, multiplied by 1/α. We found that α=0.0885 and 1.28 for

flexible and semi-flexible Kremer-Grest model at monomer density ρ=0.85σ−3 re-

spectively. Three important observations are due: (i) indeed the two relaxation

functions become proportional to each other after about 30 Lennard-Jones time

units, and remain proportional to each other with accuracy better than 1%; (ii)

The stress-optical coefficient does not depend on chain lengths and (iii) it remains

the same for binary blends, in accordance with experiment. In Fig.2.2 we plot

the stress-optical coefficient times density as a function of density in both flexible

and semi-flexible systems. The curve from flexible system is shifted upward by a

factor of 10 to compare with the ones from semi-flexible system. We can see that

the results behave differently in two systems. Thus, studying orientation coupling

should provide useful information for the stress relaxation and rheology.

2.4 Monodisperse melts

2.4.1 Monomer mean-square displacement

A quantity traditionally measured in molecular dynamics is the monomer mean-

square displacement g1(t). Doi and Edwards[1] anticipated that this curve should

show four different power laws on different regimes. However, we find it very

difficult to see clear power-laws in our simulations. We calculate the mean-square

displacement of monomers in the chain ends and middle and average the results

over groups of five monomers along the chain. We divide the averaged results by

the Rouse power-law, t1/2, and then present the results in Fig.2.3 and Fig.2.4 for

monodisperse flexible and semi-flexible chains respectively.

We find that the pictures are very rich and full of features. First of all, at short

times as chain ends have more mobility than the middle section, the mean-square

displacement of chain ends is higher than the one of middle monomers. The figures

first show a positive slope around 0.5 which indicates that the monomers follow
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Figure 2.4: Mean-square dis-
placement of chain ends and middle

for semi-flexible chains.

the random walk in the space and do not feel the connectivity at these short times.

Then the plateaus come out for both middle and end monomers which indicates

that the chains are in Rouse regime. After comparing the maximum for middle

and end monomers, we can see that the mean-square displacement of chain ends

is exactly twice of counterpart of middle section, which can be explained by that

the chain ends only feel the connectivity from one side comparing to from both

sides for middle monomers. Now the curves of entangled systems deviate from

the ones of unentangled systems. A negative slope around −1/4 comes out in

entangled systems which indicates that the chain is trapped in a constraint tube

and reptation and CLF are the only mechanisms in this regime. After the time

when chains are totally relaxed, two curves of middle and ends monomers join

each other and have a positive slope around 0.5 which can be interpreted as the

escape time from the tube.

2.4.2 Storage and loss moduli

We first present the storage and loss moduli in flexible and semi-flexible monodis-

perse melts with different chain lengths in Fig.2.5-2.8. The terminal time and

zero-shear viscosity of different chain lengths and stiffnesses are listed in Table.2.1.

The entanglement lengths Ne of flexible and semi-flexible chains are around 50 and

15 respectively[30]. From Fig.2.5 and Fig.2.7, G′(ω) starts to show a plateau with
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Figure 2.7: G′ of monodisperse
melts of semi-flexible chains.

1 E - 6 1 E - 5 1 E - 4 1 E - 3 0 . 0 1 0 . 1

0 . 0 1

0 . 1
G’’

(ω)

ω

 N = 1 5
 N = 3 0
 N = 5 0
 N = 7 5
 N = 9 3
 N = 1 5 0

Figure 2.8: G′′ of monodisperse
melts of semi-flexible chains.

increasing chain length. After comparing these two figures, G′(ω) behaves similar

if two chains with different stiffnesses have the same number of entanglements. i.e.

flexible chain with N=256 and semi-flexible chain with N=75 both have around

5 entanglements. However, G′′(ω) have different features with different stiffness

even if both chains have same number of entanglements. The modulus Gc at the

crossing point is defined as

Gc = G′(ωc) = G′′(ωc) ≈ G′′max.

In the semi-flexible systems, the amplitude of G′′max is almost the same for different

chain lengths which is not true in flexible systems.
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2.4.3 Orientational relaxation

In order to investigate relaxation coupling between different chains, the total and

self orientational relaxation functions of monodisperse melts are measured in flex-

ible and semi-flexible systems. The lines and open symbols in Fig.2.9 and Fig.2.10

are the total relaxation functions S(t) and the self relaxation functions A(t) re-

spectively. We use several Maxwell modes to fit the self relaxation functions A(t)

A(t) =
∑
i

Gi exp(−t/τi) (2.18)

where Gi and τi are the plateau modulus and relaxation time of mode i. The

terminal relaxation time τd is the largest τi among all the modes. We can see

that the terminal time τd becomes larger with increasing chain length(Table.2.1).

The ratio of τd and the square of molecular weight are shown in Fig.2.11. As

the molecular weight of one entanglement strand Ne in flexible and semi-flexible

systems are 50 and 15 respectively, we can see that the data for flexible chains in

Fig.2.11 remains constant when N<100 which obey the Rouse theory(τd∼N2) and

then a slope of 1 comes out when N=256. The semi-flexible data points presented

well entangled systems which obey the reptation theory(τd ∼ N3). However, it

seems that the last points in both systems did not follow the reptation theory.

We suppose the reason is that the simulation time is not long enough to obtain

accurate data for such long chains.

Flexible(kb=0) Semi-flexible(kb=3)
N Nc τd[τ ] η0[ετσ

−3] τrun[τ ] N Nc τd[τ ] η0[ετσ
−3] τrun[τ ]

10 100 85 8.5 9E6 15 200 490 30 2.3E6
20 50 320 15 2.8E7 30 100 2700 120 2.3E6
50 50 1900 45 2.9E7 50 100 9100 350 2.4E7
100 50 8200 120 1.3E7 75 200 29000 880 9.6E6
128 70 10400 180 1E6 93 100 91200 2500 2.1E6
256 100 107000 950 1.6E7 150 100 270000 7600 9.1E6
512 150 264000 3600 4.3E6

Table 2.1: Terminal time τd of different chain lengths of flexible and semi-
flexible chains.
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Figure 2.12: Cross-correlation
functions of flexible chains N=100

at different densities.

The difference between the total and the self relaxation functions is defined

as the cross-correlation function(dashed lines in Fig.2.9 and 2.10). All cross-

correlations start at the same point at t = 0 and remain constant until t ≈ 0.5τ ,

and then increase a little (15%) before starting to relax with a slope of approxi-

mately −0.5, similar to the self relaxations. However, there is no overshoot in the

cross-correlation functions in the semi-flexible systems.

The cross-correlation functions of flexible chains at different densities are shown

in Fig.2.12. The amplitude of the overshoot around t ≈ τ becomes larger with

increasing density. For high densities, the time of the overshoot shifts to the

right. For example, this overshoot appears around t ≈ 10τ in the system with
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ρ = 1.05σ−3. This is because the monomers are trapped in “cages” created by

other surrounding monomers and spend more times in them before escape, and

the bonds are affected in a similar way. Now we are going to ask what will

happen if two components with different chain lengths are mixed. Ylitalo et al.[31]

have shown that the concentration of the short component will strongly affect the

relaxation of the long component. Now we would like to investigate how the

composition of binary blends affect the dynamics of each component.

2.5 Bidisperse melts

2.5.1 Monomer mean-square displacement

In this section, we will investigate the mean-square displacement of monomers

of each component in semi-flexible binary blends. In Fig.2.13, short and long

components have chain lengths N1=30, N2=150 which are shown by lines and

symbols respectively. Different colours indicate different composition of binary

blends. Similar features are observed comparing to the mean-square displacement

of monodisperse melts(Fig.2.4). The dynamics of short chains feels little effect

from the composition of the blend. However, the long chains’ properties change

significantly with increasing their volume fraction. Especially in the binary blend

with ϕl=10%, the mean-square displacement of the middle monomers does not

show a negative slope after the terminal time of short component(square symbols

in Fig,2.13). This can be explained by that the effective entanglement length

Ne on long chains at this composition is ten times larger than the Ne in the

monodisperse melt of long chains by double reptation theory and there is few

entanglements between different long chains, which makes long chains obey Rouse

dynamics.

We also investigate the mean-square displacement of long component in binary

blends with the same ϕl but different short chains. We find that if the volume

fraction of long component is large enough, the short component does not affect
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Figure 2.13: Mean-square dis-
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Figure 2.14: Mean-square dis-
placement of long chains in semi-
flexible binary blends with N2 =

150, ϕl=90%.

the g1(t) of long component. In Fig.2.14, the length of long component is N2=150,

the lengths of short component are chosen as 30 and 75. The volume fraction of

long chains ϕl is set to 90%. We can see that the mean-square displacement of

middle and end section of long component overlap with each other.

2.5.2 Storage and loss moduli of semi-flexible chains

In this section we will concentrate on the relaxation functions of binary blends.

Because the entanglement length Ne is much larger in flexible system than in the

semi-flexible system, the chain length would be much longer in flexible system if

the same number of entanglements is required. So we will only investigate the

semi-flexible binary blends in this section. N1=3, 15, 30, 75 and N2=150 are chosen

for the short and long components respectively.

First the binary blend of N1=30, N2=150 will be investigated, whose compo-

nents have big difference of terminal relaxation time. G′ and G′′ of the binary

blends with different compositions are shown in Fig.2.15 and Fig.2.16 together

with monodisperse melts of each component. In Fig.2.15, G′ has two clear relax-

ation steps in the blends with ϕl=10%, 30%. G′′ in Fig.2.16 shows more interesting
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Figure 2.15: G′ of binary blends
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Figure 2.16: G′′ of binary blends
of semi-flexible chains with N1 =
30, N2 = 150 where τds and τdl are
terminal time of short and long

components respectively.

features. If we decrease the volume fraction of the long chains, the stress relax-

ation around short chain’s terminal relaxation time is dominated by the relaxation

of short chains and the segments between two entanglements on the long chains,

and the long chains are trapped in dilated tubes constructed by other long chains,

which can explain why G′′ around ω=2 × 10−4 in the systems with ϕl=10%, 30%

overlap with the one from monodisperse melt of N=30.

We also investigate the binary blends with N1 = 75, N2 = 150. G′ and G′′

with different compositions are shown in Fig.2.17 and Fig.2.18 together with the

monodisperse melts of each component. We can only observe one relaxation step

of G′ even at small ϕl. The twin peak characteristics of G′′can be observed in

Fig.2.18. Zero-shear viscosity is derived from the time integral of G(t) and is

shown in Fig.2.19. Fig.2.20 shows terminal time τd as functions of concentration

ϕl for different short chain lengths. As the signal of stress relaxation is very

noisy at longer times, we use the auto-correlation function of long component’s

orientation to derive the terminal time of the whole system. The aim of the theory

is to describe these results. But in order to do this, we need to understand the

coupling between relaxation of different components.
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Figure 2.20: Terminal relaxation
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2.5.3 Orientational relaxation

The total orientation relaxation functions with different concentrations of the long

chains are shown in Fig.2.21 and Fig.2.22 for flexible and semi-flexible chains re-

spectively. It is clear that these figures exhibit certain general features; namely,

as the concentration of the long chains increases, the total relaxation is retarded.

In the flexible systems, the short chains only contain 10 monomers, which is much

smaller than the entanglement length Ne≈50. So total relaxation at short times

is only due to short chains relaxation but not constraint release induced by short
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Figure 2.22: Total orientational
relaxation function in binary blends
of semi-flexible chains for different

compositions.

chain. However, at longer times total relaxation is governed only by the long

chains’ relaxation as indicated by the shape of the relaxation functions. The termi-

nal relaxation of the whole system is controlled by the slowest relaxing component

in the blends.

Now we turn our attention to different contributions to the total relaxation

function. All six terms in Eq.(2.15) of flexible and semi-flexible systems are shown

in Fig.2.23 and Fig.2.24 respectively. Surprisingly, the cross-correlation function

between short and long components does not relax until the relaxation time of the

long chains, which indicates that the coupling is an important relaxation mech-

anism at all times. We can also see that Css(t) is not totally relaxed after the

terminal relaxation time of the short component. It is possibly a result of two

short chains being coupled with long chains at the same time, which makes both

short chains affected by the orientation of the long chain.

We would like to introduce a definition of the total relaxation function of each

componentE(t) in the binary blend, which is normally measured in experiments[31].

Es(t) and El(t) are the orientation relaxation af short and long chains after a step

deformation of the whole sample. Ramirez et al.[32] demonstrated that in order to

calculate E(t) in equilibrium simulations, one has to include the cross-correlation
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terms:

Es(t) = As(t) + ϕsCss(t) + ϕlCsl(t) (2.19)

El(t) = Al(t) + ϕlCll(t) + ϕsCsl(t) (2.20)

Summing up these two equations we can see that Stot(t) = ϕsEs(t) + ϕlEl(t).

Relaxation functions of short component in flexible systems are presented in

Fig.2.25 together with its auto-correlation function. In these figures, the effect of

long chains in the system is surprisingly strong, producing a dramatic retardation

in the short component relaxation with increasing concentration of long chains.

After comparing Fig.2.21 and Fig.2.25, we can see that the terminal relaxation
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time of short chains measured in Es(t) are equal to the terminal relaxation time of

the whole system, which suggest that short component’s orientation relaxes with

the orientation of the surrounding environment.

Relaxation functions of long chain in flexible systems are presented in Fig.2.26.

The long chain terminal relaxation time is reduced if short chains’ concentration

increases. For a given blend, the total relaxation of longer component is higher

than its self relaxation. The coupling between different chains is one of the reasons.

However, they have the same terminal time as the longer component relaxation

determines the long-time relaxation.

Based on the Rouse theory, auto-correlation functions of the same unentangled

component in different systems should not be affected by surrounded environment.

However, we get a slightly different result from the simulations. In Fig.2.25, the

terminal times of the auto-correlation functions of short component are different.

We suppose that these differences are due to the chain ends effect. In the simula-

tions, the chain ends are moving faster than the middle part of the chain, which

means that the effective friction of all monomers will be smaller if the proportion

of the chain ends in the system increases. So before comparing the self relaxation

functions from different systems, we need to shift the data to avoid these chain

ends effect. The expression of the shift factor is found to be

λshift = 1 + C (
ϕs
N1

+
ϕl
N2

) (2.21)

where C = 3.2 in flexible systems and 7.53 in semi-flexible systems.

2.5.4 End-to-end vector relaxation

In this section we will investigate the end-to-end relaxation functions of each

component in binary blends. The end-to-end vector relaxations of short chains

in binary blends of N1 =30, N2 =150 with different compositions are shown in

Fig.2.27(lines). As we discussed in previous section, the dynamics of short com-

ponent is highly affected by the fraction of chain ends in the system. In order
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to eliminate this chain ends effect, we need to shift the data by using Eq.(2.21).

The shifted results are shown in the inset of Fig.2.27. We can see that all figures

collapse onto a master curve.

The end-to-end vector relaxations of long chains in binary blends with different

compositions are shown in Fig.2.28. In previous section we already know that the

terminal relaxation times of binary blends depend on the fraction of long chains in

the system. As the statistics of long chain’s orientation auto-correlation function

is much better than the stress relaxation, we use the long chain’s orientation auto-

correlation function to obtain the terminal time of the whole system.

2.6 Orientational coupling

Both Rouse and tube theories rely on a very simple assumption, namely that all

chains move independently from each other, i.e. the effect of all other chains on a

probe chain can be described by random δ-correlated forces and by the static tube

constraints for longer chains. The reasoning behind such an assumption is based on

the Flory theorem, which states that the excluded volume interaction in polymer

melts is screened. This makes the chains obey Gaussian random walk statistics
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on large scales, making single chain dynamics Rouse-like at large scales. However,

the fact that each individual chain obeys Rouse dynamics does not mean that

the total stress relaxation is also known: this will only be true if cross-correlation

between the chains are negligible, which as we showed in Figs.2.21-2.24 is clearly

not the case.

The tube theory uses an assumption of chain independence twice: each chain

reptates in its tube independently, and the piece of chain which escaped from

the tube is assumed to adopt a random orientation independent on surrounding

chains. Merrill et al.[9] demonstrated a long time ago that if the second assumption

is violated, the relaxation will be slower than expected from the tube theory. Thus,

the validity of both Rouse and tube theories clearly depends on the coupling and

cross-correlations between orientation relaxation of different chains in the melt.

Various experiments suggested that there is a specific interaction in polymer

melts called nematic interaction, which orient the surrounding polymer segments

toward the same direction. Doi et al.[33][34] introduced models which account

for the nematic interaction for reptation and Rouse dynamics. In monodisperse

melts, they found that the stress-optical law was valid in this model, and the

stress-optical coefficient became larger with increasing strength of the nematic

field. The theory was also generalized for binary blends, which showed that the

relaxation of the short chains were not independent of the long chains relaxation

due to the nematic interaction.

Experimentally, orientation coupling was investigated by a combination of di-

electric dichroism and birefringence by Ylitalo et al.[31], and by NMR by Graf et

al.[35]. In the first group of experiments, one of the components in binary mix-

ture was labeled and its orientation relaxation was measured after a step-strain

experiment. The labeling was achieved by replacing a portion of hydrogens on

the polymer backbone with deuterium and then performing the measurements at

the infra-red wavelength of the carbon-deuterium vibrational absorption. It was

shown that the short component orientation is not fully relaxed until the longest

relaxation time of the long component, and that the relaxation of short component
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becomes proportional to the total relaxation after the expected reptation time of

the short component:

Es(t)/Es(0) = εStot(t)/Stot(0) (2.22)

where Es(t) is short component orientation relaxation function , Stot(t) is the

total orientation relaxation function. The coupling parameter ε defined through

this relationship was found to be ε ≈ 0.45 ± 0.05. It was also shown that in

order to describe the relaxation with the tube theory, the coupling effects must

be taken into account. However, this coupling coefficient ε can only be measured

after relaxation of the short component. Also, this definition is not applicable to

monodisperse melts.

In 1H Double quantum NMR experiments Graf et al. measured the chain

dynamics of a polybutadiene melt well above the glass transition and confirmed

significant residual bond orientation after elementary entanglement time τe. They

concluded that restrictions by entanglements can not be the only source of ori-

entation coupling. A possible reason for this strongly anisotropic orientational

dynamics may be the intermolecular orientational correlations. Our molecular

dynamics simulations discussed below support this conclusion.

Orientation coupling effects were also investigated in molecular dynamics sim-

ulations by Baljon et al.[36], whose protocol was similar to the experimental one.

They simulated one very long chain (N = 5000) in the sea of small chains after the

step deformation and looked at the order parameter qαβ = (3/2)1/2(uαuβ − 1
3
δαβ)

of each component and the bulk, where u is the unit bond vector and δαβ is a

unit tensor. Similarly to the experiment of Ylitalo et al, they found that the short

chains order parameter does not relax to zero after the relaxation time of short

chains, but instead becomes proportional to the order parameter of the long chain,

with the somewhat smaller proportionality coefficient ε ≈ 0.28. Baljon et al. also

attempted to calculate ε from the static properties of the melt, namely from the

orientation distribution function around each bond. The long chain bonds were

oriented by using an explicit nematic field instead of stretching. However, smaller
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coefficient ε ≈ 0.18 was found. They argued that the difference can be explained

by positional anisotropy of chain bonds belonging to other chains. By following the

same procedure, we are able to reproduce similar results. However, this coupling

parameter ε is only available in binary blends which have wide separation of chain

lengths. And we believe that the coupling is also very important in monodisperse

melts, which means that a more universal measure of coupling is desirable.

In section 2.6.1, the coupling effect in the system of dumbbells at different

densities is investigated. In section 2.6.2, the short-range coupling parameter pro-

posed by Doi et al. is measured in our simulations of binary blends. From section

2.6.3 to 2.6.8, a universal time-dependent coupling parameter κ(t) is introduced

in both monodisperse and bidisperse melts. We then demonstrate that we can

predict the total relaxation in binary blends by using the self relaxation of each

component and this universal coupling parameter. In unentangled melts, we can

predict all blend relaxation functions from the monodisperse relaxation functions.

2.6.1 Dumbbell

For simplicity, we first simulate a melt of dumbbells, i.e. N = 2. The radial

distribution function, g(r), is a measure of correlations between the particles in

a system. It is a measure of probability to find a particle at a distance r away

from a given reference particle. In this paragraph, we will measure g(r) for the

dumbbells. The distance between two dumbbells is defined as the distance between

the center-of-mass of these two dumbbells. And instead of calculating the distance

between each pair of the dumbbells only, the angle θ between the bond vectors of

these two dumbbells is measured as well

θij = arccos

(
|ri · rj|
|ri| |rj|

)
(2.23)

rij =
∣∣∣Ri1 +Ri2

2
− Rj1 +Rj2

2

∣∣∣ (2.24)

where i, j are the indexes of the dumbbells, ri =Ri2 −Ri1 is the bond vector of

dumbbell i and rij is the distance between dumbbells i and j.
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Figure 2.29: g(r, θ) of the system
with ρ=0.6σ−3.
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Figure 2.30: g(r, θ) of the system
with ρ=0.85σ−3.
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with ρ = 1.15σ−3.

g(r, θ) was calculated in the systems with different densities(Fig.2.29 and Fig.2.30)

and g(r) =
∫ π/2

0
g(r, θ)dθ. From these two figures, we can see the following general

features:

• If the distance between two dumbbells is around σ, there is higher probability

that two dumbbells are parallel to each other.

• If two dumbbells’ distance is around 1.5σ, there is higher probability that

two dumbbells are perpendicular to each other.

• If the density is high enough, there are also some peaks at θ = 60o.

In these results, the excluded volume effect is the only source of the orien-

tational coupling. If the density of the system increases, the probed dumbbell
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would be trapped by the surrounding dumbbells and feel difficult to jump out the

“cage”. The coupling effect between two dumbbells at short distance becomes

larger with increasing density. The system crystallized if we increase density to

1.15σ−3 (Fig.2.32), with dominant orientation being θ = 60o, which due to the

spheres are close packed. Now we turn our attention to the same effect in polymer

chains.

2.6.2 Short-range orientational coupling

Orientational cooperativity in polymer melts can arise due to short-range forces

acting on the segmental level. It was discussed by Doi et al.[33] that the strength

of this interaction can be measured by using the bulk and shorter component

relaxations after short chain’s relaxation time(Eq.2.22).

In our notations, this coupling parameter ε can be expressed as following:

ε(t) =
Es(t)

Stot(t)

Stot(0)

Es(0)
=

Es(t)

Stot(t)
=
As(t) + Css(t)ϕs + Csl(t)ϕl

Stot(t)
(2.25)

It is shown in Fig.2.33 and Fig.2.34 for different composition of the binary blends of

flexible and semi-flexible systems. In flexible systems, short and long components

have chain lengths N1=10 and N2=100 respectively and all ε equal to 0.28 after

short component relaxed. However, this coupling parameters are different in the

particular semi-flexible systems with N1= 5, N2=100 in Fig.2.34. The range of ε is

from 0.28 to 0.35 depending on the concentration of the short component, which is

caused by the dynamics of the chain ends. If we use longer short chains(N1=30), ε

are the same at different compositions(≈ 0.35). The results from our simulations

are consistent with Baljon’s results[36].

However, Eq.2.25 does not include the cross-correlation function between the

long chains Cll(t), which is an important contribution to the relaxation function

at longer times. This exclusion indicates that ε is not an appropriate parameter

to present coupling effect at longer times. And this coupling parameter can only

be measured after short chains were relaxed. If the lengths of short and long
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Figure 2.33: Coupling parameter
ε in binary blends of flexible chains.
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Figure 2.34: Coupling parameter
ε in binary blends of semi-flexible

chains.

components are not very different, it is extremely difficult to obtain this coupling

parameter, and impossible in monodisperse melts. We would like to have a more

universal coupling parameter to express the coupling effect, which is independent

of the chain lengths and the composition of the melts. In the next section we will

introduce another time-dependent parameter κ(t) which measures how important

the orientation cross-correlation function is in the total relaxation function.

2.6.3 Time-dependent coupling parameter in flexible sys-

tems

We would like to describe orientational coupling with one universal function, which

captures the behaviour of both monodisperse melts and their mixtures. In par-

ticular, it should allow prediction of all cross-correlation curves in Fig.2.23 from

monodisperse behaviour. We find these requirements are met by the function we

call a time-dependent coupling parameter κ(t):

κ(t) =

∑
i

∑
j ϕiϕjCij(t)

Stot(t)
(2.26)

where i, j are the component indexes, ϕi is the volume fraction of component i,

Cij(t) is the cross-correlations between components i and j in the system. Clearly
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Figure 2.35: Coupling parameter
κ(t) in monodisperse melts.
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Figure 2.36: Coupling parameter
κ(t) in bidisperse melts.

κ(t) has a simple physical interpretation of relative importance of cross-correlations

at different times.

κ(t) of monodisperse melts of different chain lengths ranging from N=20 to N=

350 which have approximately 0.5 to 7 entanglements are shown in Fig.2.35. κ(t) of

binary blends of N1=10, N2=100 with different compositions are shown in Fig.2.36.

These results demonstrate that κ(t) has a universal behavior, which is independent

on molecular weight and blends composition. Indeed, all plots collapse onto the

same master curve for several bidisperse melts and for different chain lengths.

These two figures illustrate that the role of cross-correlations increase with time,

rising from 12.9% at t = 0 to about 50% at later time until the chain is totally

relaxed. We also observe that the κ(t) of N=350 in Fig.2.35 is slightly smaller

than the ones from other systems. Insufficient simulation box size or incomplete

relaxation are suspected to be the reason.

2.6.4 Coupling effects in monodisperse melts at different

densities

In this section we will show the relaxation and the coupling effect of monodisperse

melts at different densities. Total orientation relaxation function S(t) and the one

multiplied by t1/2 are shown in Fig.2.37 and Fig.2.38 respectively. In the systems

with low densities ρ<0.4σ−3, S(t) has two relaxation processes separated by about
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Figure 2.37: Total orientation re-
laxation function S(t) in monodis-
perse melts with different densities.
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Figure 2.38: Total orientation re-
laxation function S(t) in monodis-
perse melts with different densities.
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Figure 2.39: Coupling parameter
κ(t) in monodisperse melts with dif-

ferent densities.

t = 5τ(Fig.2.37). Short time process is associated with bond length relaxation,

whereas long time is Rouse-like chain orientation relaxation. In the systems with

higher densities, the total orientation only have one relaxation procedure and keep

as constant until t ≈ 10τ , and then relaxes with the slope equal to −0.5.

The time-dependent coupling parameter κ(t) at different densities is shown in

Fig.2.39. The static coupling κ(0) is a monotonically increasing function of density.

The more molecules there are in the same volume, the more collisions will happen,

which will enhance the coupling between different molecules. At the extremely

small density(ρ = 0.01σ−3), κ(t) increases with time but not significantly. At

higher densities, κ(t) keeps constant until t ≈ 0.5τ , and then increases until the

polymer chain is totally relaxed. After comparing κ(t) from the systems with

densities ρ = 0.85, 1.05, 1.10, 1.15σ−3, we can observe that all S(t) and all
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κ(t) curves can be superimposed to each other by shifting the time axis. This

is a manifestation of time-density superposition, similar to the time-temperature

superposition.

2.6.5 Coupling effects by entanglements

In order to find out whether entanglements play any role in the observed coupling,

we simulated a system with softer non-bonded and bonded potentials

Unb(r) =
3

4
u0(r

2 − r2
nb)

2; r < rnb (2.27)

Ub(r) =
kr
2

(r − rb)2 (2.28)

where rnb=1.6, rb=1.222, u0 =2.2, and kr=20 in flexible system. This system has

approximately the same structural properties of the chains with “harder” system

at long distances (i.e. it has exactly the same average squared internal distances

〈R2
ij〉 and thus the same C∞)(Fig.2.40), but allows easy chain crossing. We found

that κ(t) reached the same plateau(around 50%) as the original “hard” system

(Fig.2.41). The only difference is that the terminal relaxation time is smaller than

before since the chains obeyed Rouse-like dynamics(Fig.2.42). Indeed we observed

that the mean-squared displacements of the middle and end beads were in perfect

agreement with the Rouse model(Fig.2.43). The results of the original entangled

and soft potential simulations show that the role of entanglements in orientational

coupling is negligible in this particular system, contrary to the recent argument of

Deutsch and Pixley[37].

To further probe the role of entanglements we computed κ(t) for slightly semi-

flexible chains with stiffness parameter kb = 3. These systems have significantly

smaller Ne ≈ 15 and thus more entanglements. κ(t) are shown in Fig.2.44 for

both entangled and soft systems. In this case the coupling at time zero is higher

since the semi-flexible chains have more contacts with other chains than their

fully flexible counterpart. At later times κ(t) increases above 60%. This is again

compared with the corresponding softer system with parameters u0 =2.1, kr=34 in
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Figure 2.41: Coupling parameter
κ(t) of soft potential in monodis-

perse melts.
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Figure 2.43: Mean-square dis-
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Eq.(2.27) and Eq.(2.28) adjusted to match the internal distances 〈R2
ij〉 in Fig.2.44.

The results are again very close, although some difference shows up at late time.

The coupling parameter for soft systems seems to reach a plateau, whereas it

continues to increase slowly for the Lennard-Jones chains. This can be interpreted

as the influence of entanglements. Alternatively, one can say that in entangled

system chains spend more time in contact with the same other chains, and thus

become more coupled to each other. In any case, the role of entanglements seem

to be minor and indirect. In entangled systems, the single chain models like the

tube or slip-links models aim to predict the auto-correlation relaxation function

in blends. Observed orientation relaxation of short chains will be affected by the

long chains via orientation coupling and the tube or slip-links models predictions
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Figure 2.44: Coupling parameter
κ(t) of soft potential in monodis-
perse melts of semi-flexible chains.
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Figure 2.45: Prediction from
Eq.(2.30)(lines) and the measured
total relaxation(symbols) of binary

blend of flexible systems.

must be modified accordingly.

2.6.6 Universality of our coupling parameter

The universality of time-dependent coupling parameter κ(t) has non-trivial con-

sequences for polymer blends. Indeed, a requirement that κ(t) is the same in

monodisperse melts and in their blends can be written as

1− κ(t) =
As(t)ϕs + Al(t)ϕl

Stot(t)
=

Amonos (t)

Smonos (t)
=
Amonol (t)

Smonol (t)

⇒ As(t)ϕs + Al(t)ϕl
Stot(t)

=
ϕsA

mono
s (t) + ϕlA

mono
l (t)

ϕsSmonos (t) + ϕlSmonol (t)
(2.29)

It immediately follows from here that if the auto-correlation functions are the

same in the mixtures as in the monodisperse systems (As(t) = Amonos (t) which

is true for unentangled systems), the simple mixing rule for the total orientation

relaxation

Stot(t) = ϕsS
mono
s (t) + ϕlS

mono
l (t) (2.30)
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is not spoiled by the orientation coupling. The total relaxation function of flexible

chains and the predictions from Eq.(2.30) are shown in Fig.2.45. Slight disagree-

ment is observed at late times. We suppose the reason is that the concentration

of the short component affects the self-relaxation function of the long component

which make Al(t) different from the one in monodisperse melt Amonol (t)(Fig.2.46).

The more short chains the system has, the more chain ends in the melt which will

change the dynamics of the system.

Universality of κ(t) also means that one can relate different components of

cross-correlation to the auto-correlation functions. In unentangled systems, it is

reasonable to believe that the cross-correlation function between different short

chains Css(t) in binary blends has the same physical meaning as the one in the

monodisperse melt of short chains. The only difference of Css(t) between these two

systems is that the probability of two short chains meeting each other in binary

blends is ϕ2
s of the probability of two chains meeting each other in short chain

monodisperse melt. Thus we can claim that

Css(t) ≈ Cmono
ss (t) = Smonos (t)κ(t) (2.31)
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The same is true for the cross-correlation function between the long chains

Cll(t) ≈ Cmono
ll (t) = Smonol (t)κ(t) (2.32)

From the definition of κ(t) we can derive

2ϕsϕlCsl(t) + ϕ2
sCss(t) + ϕ2

lCll(t) = Stot(t)κ(t) (2.33)

Substituting Eqs.(2.31), (2.32) and (2.30) into Eq.(2.33), we obtain

2Csl(t) ≈ (Smonos (t) + Smonol (t))κ(t) (2.34)

Predictions given by these expressions are shown by open symbols in Fig.2.47.

They are in perfect agreement with the curves measured in binary blends apart

from the long time behavior of Css(t), which is affected by the secondary coupling

of the two short chains via an intermediate long chain. Eqs.2.31-2.33 in turn

provide the response of the short and long component relaxation Es(t), El(t)

Es(t) = As(t) + Css(t)ϕs + Csl(t)ϕl

= As(t)
(

1 +
κ(t)

1− κ(t)

1 + ϕs
2

)
+ Al(t)

( κ(t)

1− κ(t)

ϕl
2

)
≈ Amonos (t)

(
1 +

κ(t)

1− κ(t)

1 + ϕs
2

)
+ Amonol (t)

( κ(t)

1− κ(t)

ϕl
2

)
= Smonos (t) +

κ(t)

2
ϕl[S

mono
l (t)− Smonos (t)] (2.35)

El(t) = Al(t) + Cll(t)ϕl + Csl(t)ϕs

= Al(t)
(

1 +
κ(t)

1− κ(t)

1 + ϕl
2

)
+ As(t)

( κ(t)

1− κ(t)

ϕs
2

)
≈ Amonol (t)

(
1 +

κ(t)

1− κ(t)

1 + ϕl
2

)
+ Amonos (t)

( κ(t)

1− κ(t)

ϕs
2

)
= Smonol (t) +

κ(t)

2
ϕs[S

mono
s (t)− Smonol (t)] (2.36)

For the times longer than the relaxation time of the short component τs these
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Figure 2.49: Total relaxation
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tion(lines) of flexible chains from

Eq.2.38.
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from Eq.2.38.

equations provide a simple relation of our coupling parameter with the Doi’s pa-

rameter:

ε(t) =
Es(t)

Stot(t)

=
Smonos (t) + κ(t)

2
ϕl[S

mono
l (t)− Smonos (t)]

ϕsSmonos (t) + ϕlSmonol (t)

≈ 1

2
κ(t) (t > τs). (2.37)
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2.6.7 Usage of the universal coupling parameter in monodis-

perse melts

In this section, we aim to predict the total orientation relaxation function by

using the auto-correlation functions of the chains and the universal coupling pa-

rameter κ(t). According to the universality of κ(t) in monodisperse and bidisperse

melts, we can obtain an accurate κ(t) by running a monodisperse simulation with

sufficiently long chains. κ(t) of flexible and semi-flexible chains used in all the cal-

culations in this section are shown in Fig.2.48. The prediction of total relaxation

function S(t) is

S(t) =
A(t)

1− κ(t)
(2.38)

where A(t) is the auto-correlation function of the chain. The total relaxation

function and the predicted ones are shown in Fig.2.49 and Fig.2.50 for flexible and

semi-flexible chains respectively. The predictions have a good agreement with the

desired total relaxation functions in both flexible and semi-flexible chains except

the semi-flexible chains with chain length N = 30(black lines and symbols in

Fig.2.50). It shows that our prediction slightly underestimates the coupling effect

for this short semi-flexible chains.

2.6.8 Usage of the universal coupling parameter in binary

blends

Now we would like to use the same strategy to predict the total orientation re-

laxation function of binary blend by using the auto-correlation function of each

component in the blend and the universal coupling parameter κ(t). The prediction

of the total orientation relaxation function of binary blend Stot(t) is

Stot(t) =
ϕsAs(t) + ϕlAl(t)

1− κ(t)
(2.39)

As the statistics of auto-correlation functions are much better than the total re-

laxation function because it is an average over many correlation functions(see
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Figure 2.52: Total relaxation
functions(symbols) and the predic-
tion(lines) of semi-flexible chains

from Eq.2.39.

Eqs.(2.7) and (2.11)), we can obtain an accurate estimation of the total relaxation

function by using Eq.(2.39). Chain lengths N1 =10, N2 =100 are chosen for the

binary blends of flexible chains, and N1=30, N2=150 for the semi-flexible systems.

The predictions are plotted together with the total relaxation functions of binary

blends for different compositions in Fig.2.51 and Fig.2.52. We see that Eq.(2.39)

gives a stable method to obtain the total orientation relaxation function of binary

blends, especially the ones which have low concentration of the longer component.

In the systems with a low concentration of the long chains, it is very difficult to

obtain an accurate total relaxation function through direct calculations. However,

the prediction from Eq.(2.39) can give much smoother curves and the agreement

is quite good.

Furthermore, suppose the auto-correlation functions of each component in

monodisperse and bidisperse melts are the same, which is true in unentangled

systems, then we can use the auto-correlation functions of monodisperse melts

instead of the ones in bidisperse melts. The comparisons are shown in Fig.2.53

and Fig.2.54. The predictions are in good agreement with the measured ones at

short times but not at long times, which is caused by the difference between the

auto-correlation functions of long component in monodisperse melt and the one in

bidiperse melts

Amonol (t) 6= Al(t) (2.40)
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Figure 2.53: Total relaxation
functions(symbols) and the predic-

tion(lines) of flexible chains.
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Figure 2.54: Total relaxation
functions(symbols) and the predic-
tion(lines) of semi-flexible chains.

However, if the long and short chains have widely separated molecular weights

Ms and Ml, the slow relaxation behaviour of the long chain in the blend is similar

to that in a solution having the same volume fraction ϕl of these chains[38]. The

molecular weight of solvent is well below the entanglement molecular weight and

the relaxation of the long chain in the solution is only affected by their mutual

entanglements. In the binary blends, the short chains are in a slightly entangled

state, and the relaxation of the long chains is affected by the entanglements with

the short chains. According to constraint release mechanism, the relaxation of

the long chains is dominated by the CR mechanism if the Struglinski-Graessley

parameter rSG = MlM
2
e /M

3
s is larger than a threshold value of about 0.5. In our

simulations of entangled binary blends, the SG parameters is 1.25 for semi-flexible

chains, which is larger than the threshold value.

Now we are going to check whether the length of the short chain affects the

relaxation of the long chain or not in the flexible systems. N=100 is chosen for

the long chains as in previous runs, and the dumbbells are chosen for representing

the solvent. Auto-correlation function Al(t) of long chains are in good agreement

in these two systems(Fig.2.55). Now we can use the auto-correlation function of

long chain in the solvent to predict the total relaxation function of binary blends.

The predictions and the target relaxation functions are both shown in Fig.2.56.

Thus a qualitative agreement between the solutions and the blends suggest

that in this case the short chains in the blends behave as a solvent in the terminal
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Figure 2.55: Auto-correlation
function Al(t) of long chains in
binary blends(symbols) and solu-

tions(lines).
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Figure 2.56: Total relaxation
functions(symbols) and the predic-

tion(lines) of flexible chains.
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Figure 2.58: Coupling parameter
κ(t) of semi-flexible chains at differ-

ent coarse-graining levels.

regime of the blend. Then the auto-correlation function of the long chains in

binary blends can be obtained by measuring the auto-correlation function of the

long chains in solution which has the same volume fraction of long chain as the

binary blends. Then we can use this auto-correlation functions from solution to

predict the total orientation relaxation functions in binary blends. However, this

is expected to break for smaller values of Struglinski-Graessley parameter.
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2.6.9 Coupling between the coarse-grained blobs

In this section, we investigate the coupling effect in coarse-grained polymer chains.

m monomers on the chain in sequence are coarse-grained into one “blob” whose

position is defined as the center-of-mass of these monomers, where m is called

the coarse-graining level. We define the coarse-grained orientation tensor in terms

of “blob” positions. We show the coupling parameter κ(t) at different coarse-

graining level for flexible chain with N=100 in Fig.2.57 and for the semi-flexible

chains with N = 150 in Fig.2.58. We can see that the coupling effect reduces

significantly as the coarse-graining level m increases, which means that for large

m the total orientation relaxation function of the coarse-grained system is almost

the same as the sum of auto-correlation functions. In other words, the coupling

effect is negligible at large coarse-graining level. At every coarse-graining level, the

coupling parameter κ(t) stays constant at short times, and then increases. The

larger the coarse-graining number is, the longer this time of keeping constant is.

More investigation is needed along these lines.

2.7 Conclusions

In this chapter we investigated the stress and orientational relaxation in monodis-

perse and bidisperse melts. In monodisperse melts, the terminal relaxation time

is proportional to the square and cubic of the molecular weight if the chain length

is smaller or longer than the entanglement length respectively. In binary blends,

the terminal relaxation time τd depends on the composition of the mixture. Cross-

correlations between orientation tensors of different chains in polymer melt reveal

a rich and fascinating picture. Molecular dynamics simulations show that the

role of cross-correlations in total orientational relaxation function increases with

time, reaching the same amplitude as the auto-correlations. We introduced a

time-dependent coupling parameter κ(t) and found that it provides a universal

description of coupling effects independent of chain length and blend composition.

Instead of using static Doi’s coupling parameter ε, which is valid only after short
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chain relaxation time in binary blends, we can use κ(t) to quantify coupling ef-

fects at any times in both monodisperse and bidisperse melts. Universality of κ(t)

means that we can predict any correlation function in binary blends for unentan-

gled chains providing one knows relaxation functions in monodisperse melts and

κ(t) (also measured from monodisperse melts). In binary blends with low con-

centration of long component, it is extremely difficult to obtain reliable data for

the total relaxation of the system. However, now we can use universal κ(t) and

self-relaxation functions As(t) and Al(t) to predict the total relaxation function

Stot(t) with much better accuracy.

One of the main conclusions of this chapter is that the orientation coupling is

time-dependent, with the relative role of cross-correlations increasing by a factor of

about 4 towards longer times. This means that any static calculations will only be

able to provide a small value κ(0), whereas the important long-time coupling can

be only obtained by dynamics calculations. This probably explains the discrepancy

observed by Baljon et al.[36]. This also suggests that recent static calculations by

Semenov[39] will not be able to provide κ(t) at long times.



Chapter 3

Microscopic simulations of melts

in start-up shear

3.1 Overview

In real world, a rheological measurement tells one how “hard” or “soft” the ma-

terial is, which depends on the time scale at which the material is probed. A

rheometer is normally used to measure rheological properties of a complex fluid as

a function of rate or frequency of deformation. There are two widely used methods

to obtain rheological property of the complex fluid. One is applying a shear flow

on the material and measuring the resulting stress, the other is applying a shear

stress and measuring the resulting shear strain. As mentioned before, the shear

stress σ is the force that a flowing liquid exerts on a unit surface in the direction

parallel to the flow. The shear viscosity η is then defined as

η =
σ

γ̇
(3.1)

where γ̇ is the shear rate applied to the system. Nowadays the experimental

equipments are improved dramatically comparing to several decades ago. However,

these experiments still suffer from complications such as wall slip[40][41], edge

70
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fracture[42] and shear banding[43][44]. As a result, very few experimental data

have been published that can be used by the theoreticians.

The Doi-Edwards tube theory[1] is successful in predicting qualitative proper-

ties of entangled polymer fluids. However, the original theory can not fit linear

relaxation spectra(G′ and G′′) as it misses several important physical processes:

contour length fluctuations, constraint release, and longitudinal stress relaxation

along the tube. All of these processes use either uncontrolled approximations or

fail to include all of them at the same time. Likhtman and McLeish[17] combined

self-consistent theories for contour length fluctuations and constraint release with

reptation theory, and produced excellent agreement between theory and experi-

ment in the linear regime. However, there is no definitive theory to describe the

features for non-linear flows. The assumptions of Doi-Edwards theory suggest

that it is possible to apply the parameters fitting the linear data to the non-linear

data. However, it has been proven that the theory fails in this case. If steady

state shear stress σxy is plotted as a function of shear rate γ̇, the model predicts

a shear stress maximum when the shear rate goes beyond the reciprocal of the

reptation time(γ̇ > 1/τd). However, experimental data showed that steady state

shear stress is a monotonically increasing function of shear rate. Two possible

mechanisms to rectify this problem are constraint release and chain stretch. Con-

straint release is an additional relaxation mechanism that states that whenever

a chain end passes through a tube segment the constraint imposed by this chain

on the confined chain is lost. Hence the confined chain is free to move a distance

of order of tube diameter perpendicular to its contour. Constraint release is a

self consistent closure of the mean field approximation of the tube model. In the

linear regime constraint release is caused by the reptation of the chains. Likhtman

and McLeish[17] demonstrated that constraint release had significant effects near

the terminal time. In non-linear regime, constraint release becomes more impor-

tant. Marrucci[45] and Marrucci and Ianniruberto[46] have pointed out that fast

flows convect away the polymer molecules surrounding a given polymer chain, and

therefore destroy the tube constraining the chain, faster than the chain reptates

out of the tube itself. They demonstrated that in non-linear flow chain retraction
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is the dominant contribution to the constraint release. Chain stretching describes

a mechanism that the length of the occupied tube exceeds its equilibrium value. In

the Doi-Edwards model the orientation of the chain relaxes at the reptation time

τd while the chain stretch occurs at a rate determined by the Rouse time τR. These

two time scales are well separated in entangled systems. The effect of chain stretch

becomes significant when γ̇τR ≥ 1. The Doi-Edwards-Marrucci-Grizzuti(DEMG)

theory[47][48][49] adds stretch to the basic DE model. The new theory improves

the transient predictions in start-up of shear. The DEMG model predicts that the

transient overshoots in shear stress and normal stress grow in size with shear rate

and the strain at maximal stress at overshoots grows with shear rate, which were

observed experimentally. However, The DEMG theory is less successful in steady

state of shear. It still predicts a maximum of shear stress.

In this chapter, steady shear is applied to our molecular dynamics simulations

and the properties of the material in both transient and steady states are inves-

tigated. Surprisingly, we observe a shear stress maximum at steady state around

γ̇ ≈ 1/τd in a sufficiently long chain system, which indicates that a shear banding

instability might occur in non-linear flows. Comparison between our results and

the existing shear data from the literature is performed. All artifacts from exper-

iments, like the wall slip, edge fracture and shear banding, can be excluded in our

simulations. We will introduce the model and the analytic algorithms in section

3.2. Monodisperse melts at different shear rates are investigated and compared

with experimental data in section 3.3.

3.2 Model and algorithms

3.2.1 Periodic boundary conditions and equation of mo-

tion

The problem of simulating homogeneous flows driven by boundaries is that a

microscopic simulation with walls will introduce inhomogeneity into the fluid. This
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is an acceptable method if one is interested in nano-confined flows, where the

spacial inhomogeneity is important in the simulations. However, if one is concerned

with bulk properties far away from the surface, the explicit use of the boundary

is inappropriate. An alternative to using “solid” wall boundaries is to drive a flow

via a suitable implementation of periodic boundary conditions. The most useful

method is using Lees-Edwards boundary conditions[50] for planar shear flow. The

original simulation box is replicated in all directions by periodic images. Monomers

interact via their pair-potential forces under Newton’s second law. The difference

between the periodic boundary condition in equilibrium simulations and the one

in non-equilibrium simulations is that the periodic image boxes in different layers

have strain difference NLLyγ̇t in shear direction, where NL is the number difference

of the layers, Ly is the length of the simulation box in y-direction, γ̇ is the shear

rate and t is the shear time.

However, this boundary condition has a serious disadvantage that it takes

time for the effects of translation of atoms between boundaries to communicate

throughout the fluid, which means a linear velocity profile will not be imposed

immediately, but will evolve only after a sufficiently long time. The first homoge-

neous NEMD algorithms was proposed by Hoover et al.[51] which was based on

DOLLS Hamiltonian. The effect of the boundary that drives the flow is replaced

by a fictitious external field, which guarantees that the required linear velocity

profile is maintained. The DOLLS Hamiltonian is written as

Hdolls({ri}, {pi}, t) = φ({ri}) +
∑
i

p2
i

2mi

+
∑
i

ri · ∇v · piΘ(t) (3.2)

where φ({ri}) is the system potential energy due to interactions between all N

atoms, ri and pi are the laboratory position and peculiar momentum of atom i,

∇v is the gradient of the streaming velocity v, and Θ(t) is the Heaviside step func-

tion. The peculiar momentum is the thermal momentum relative to the streaming

momentum of the fluid. This Hamiltonian generates the DOLLS equations of
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motion for the system,

ṙi =
pi
mi

+ ri · ∇v (3.3)

ṗi = fφi −∇v · pi (3.4)

where fφi is the interatomic force on atom i due to other atoms. But soon after

the DOLLS equations of motion were proposed, it was demonstrated by Evans

and Morriss[52][53] that, while suitable for simulating flows in the linear regime,

they were unsuitable for generating physically realistic shear flow in the non-linear

regime. Evans and Morriss performed theoretical and simulation studies to prove

that equations of motion called SLLOD did give the correct non-linear response

for shear flow[54]. The equations of motion of SLLOD could be written down as

ṙi =
pi
mi

+ ri · ∇v (3.5)

ṗi = fφi − pi · ∇v (3.6)

where the only difference between DOLLS and SLLOD is that the last term in the

force equation is transposed, i.e. ∇v ·pi → pi ·∇v. The term “SLLOD” indicates

the transpose of “DOLLS”. In “DOLLS” equations of motion, a correction force

due to x-component of the momentum is added to y-component of the force. The

other way round in “SLLOD” equations of motion.

The flow generated by the SLLOD algorithm is not driven by the boundaries

of the simulation box. The equations of motion and momentum conservation are

sufficient to generate correct velocity gradient. However the SLLOD equation

of motion must be used with proper periodic boundary conditions which can be

prevented from interfering with the particle trajectories. For the planar Couette

flow, Lees-Edwards boundary condition[50] can be used. A so-called Kraynik-

Reinelt(KR) boundary condition[55] can be used in planar elongational flows. The

compatibility between equations of motion and boundary conditions is essential

to ensure that the boundaries do not perturb the system. Otherwise the use of

response theory will be invalid.
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Figure 3.1: 2-dimensional representation of simulation box vectors. As t→∞,
θ(t)→ 0 and |L2| → ∞, whereas |L1| remains the same.

Now we will discuss the implementation of the suitable periodic boundary

condition that are compatible with the SLLOD equations of motion for planar

Couette flows in which the fuild flows in the x-direction with a velocity gradient γ̇

in the y-direction. As boundaries must be compatible with the imposed streaming

velocity profile, we first calculate the strain rate tensor:

∇v =


∂vx

∂x

∂vy

∂x
∂vz

∂x

∂vx

∂y

∂vy

∂y
∂vz

∂y

∂vx

∂z

∂vy

∂z
∂vz

∂z

 =


0 0 0

γ̇ 0 0

0 0 0

 (3.7)

The evolution of the boundaries is applied by the same equation of motion.

However, the movement of the boundaries have no effect on a thermal velocity.

L̇k(t) = Lk(t) ·∇v (3.8)

where Lk(t) = (Lkx(t), Lky(t), Lkz(t)) are the initial set of simulation box vectors

that define the axes of the boundaries for k = 1, 2, 3, which is shown in Fig.3.1.
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Figure 3.2: Lagrangian-Rhomboid and Sliding-Brick periodic boundary con-
ditions.

From Eq.(3.8), we can get

dLkx(t) = Lky(t)γ̇dt

dLky(t) = 0 (3.9)

dLkz(t) = 0

Eq.(3.9) implies that the box vectors in y and z-directions are not changed during

the shear. However, for a simulation of length t the vector of the simulation box

in x-direction grows linearly in time as

Lkx(t) = Lkyγ̇t+ Lkx(0) (3.10)

If atoms move through the top/bottom faces of the box, they are returned to

the bottom/top faces with displacement ∓L2yγ̇t in the x-direction, where t is the

shear time. As θ(t) is the angle between L1 and L2, then θ(t) = arctan(1/γ̇t),
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which creates a problem. If t → ∞, then θ(t) → 0 and |L2| → ∞, which is not

practical. Two equivalent algorithms were introduced to fix this situation. The

first of these is to deform the simulation box until it reaches a preset angle θp, at

which time the box is changed back to the original cubic shape. In this method,

the transformations do not happen very frequently and box sides lengths do not

get too large. The second method is to use Lees-Edwards “sliding-brick” periodic

boundary condition. As discussed above, image boxes above and below the original

simulation box are displaced relative to it by ∓L2yγ̇t. Both methods are illustrated

in Fig.3.2. The red boxes are the deformed boxes in the first method, which is

also called Lagrangian-Rhomboid periodic boundary conditions. The blue boxes

are the Sliding-Brick periodic boundary conditions. Sliding-Brick boundaries are

constructed from Lagrangian-Rhomboid boundaries by transmitting the triangular

region to create cubes. The relative distances between all particles remain the same

in both systems and hence all physical properties are equivalent in both systems.

The Sliding-Brick boundary conditions are used in our simulations.

3.2.2 Thermostat methods

In molecular dynamics simulations, small system undergoing large fluctuations

can lead to much larger fluctuations in kinetic energy than appropriate for a given

temperature. In the microcanonical ensemble(NVE), the system will have a drift

in a long run due to computing error. The systems are more easier to simulate

in canonical ensemble, which means the number of particles, the volume and the

temperature of the system are conserved. In this ensemble, the energy is exchanged

with a thermostat.

A variety of thermostat methods is available to add and remove energy from

the system, approximating the canonical ensemble. Popular techniques to control

temperature include velocity rescaling(constraint method), the Nosé-Hoover ther-

mostat, the Berendsen thermostat and Langevin dynamics. Now we are going to

introduce these methods.
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3.2.2.1 Andersen method

Andersen method mimics random collisions with an imaginary heat bath parti-

cles. At intervals, the velocity of a randomly selected molecule is chosen afresh

from the Maxwell-Boltzmann distribution[56]. Time intervals between collisions

with the bath are chosen from Poisson distribution, with a specified mean colli-

sion time. If the collisions take place infrequently, energy fluctuations will occur

slowly, but kinetic energy fluctuation will occur much as in conventional MD. If

the collisions occur very frequently, kinetic energy fluctuations are dominated by

collisions rather than by the systematic dynamics. The choice of this interval is an

important parameter. The disadvantage of Andersen method is that it will change

the dynamics of the system drastically.

3.2.2.2 Constraint method

A simple method of fixing the temperature of a system is to rescale the velocity of

each molecule at each time step by a factor of (T/TC)1/2 where TC is the current

temperature and T is the desired thermodynamic temperature. Velocity rescaling

is a crude method of solving a set of equations of motion that differ from the

Newtonian’s. The modified equation of motion is

ṙ(t+ δt) =

√
T

TC

(
ṙ(t) +

f(t)

m
δt

)
(3.11)

A disadvantage of constraint method is that it leads to discontinuities in the

momentum part of the phase space trajectory due to the rescaling procedure at

each time step. And it does not allow temperature fluctuations which are present

in the canonical ensemble.
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3.2.2.3 Nosé-Hoover thermostat

At each time-step, the velocities of all particles are rescaled by an additional

dynamic variable ξ

ṙ(t+ δt) = ξ

(
ṙ(t) +

f(t)

m
δt

)
(3.12)

ξ̇ = C(T − TC) (3.13)

where C is a constant parameter that can be set for optimal results. This method

modifies the velocities “gently”.

3.2.2.4 Berendsen thermostat

Comparing to the constraint method, Berendsen thermostat is trying to correct the

deviations of the actual temperature TC from the prescribed one T by multiplying

the velocities by a certain factor in order to move the system dynamics towards

the one corresponding to T . At each time step, the velocities of each particle is

rescaled so as to bring TC closer to T .

ṙ(t+ δt) =

√
1 +

δt

τB
(
T

TC
− 1)

(
ṙ(t) +

f(t)

m
δt

)
(3.14)

where τB is a timescale for coupling to the thermal bath.

3.2.2.5 Dissipative particle dynamics (DPD) method

DPD was originally developed in order to simulate fluids on a mesoscopic scale

with correct hydrodynamic interactions. However, DPD can also be viewed as a

thermostat to molecular dynamics. The DPD algorithm is similar to Stochastic

dynamics (section 1.9.3) in that there is local friction and noise such that the

stabilizing features are retained. We can run the DPD-thermostat system with the

same time step as Stochastic Dynamics. However, the friction does not depend
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on the absolute velocities but rather on the relative velocities with respect to

surrounding particles. And the stochastic forces act on pairs of nearby particles.

The DPD equations of motion are given by

ṙi =
ṗi
mi

ṗi = f i + fDi + fRi (3.15)

where i is the particle index, fDi is the friction force on particle i, and fRi is the

corresponding random force. These two forces are both based on particle pairs,

fDi =
∑
j 6=i

fDij

fRi =
∑
j 6=i

fRij (3.16)

The dissipative force between particle i and j is given by

fDij = −ξwD(|rij|)(r̂ij · vij)r̂ij (3.17)

and the random force by

fRij = λwR(|rij|)θij r̂ij (3.18)

where vij = vi − vj is the relative velocity between particles i and j, r̂ij denotes

the unit vector of the interatomic vector rij = ri − rj, ξ is the friction coefficient

and λ is the random force amplitude. wD and wR are r-dependent weight functions

vanishing for r ≥ rc. θij is a Gaussian white noise variable with θij = θji and first

and second moments

〈θij(t)〉 = 0 (3.19)

〈θij(t)θkl(t′)〉 = (δikδjl + δilδjk)δ(t− t′) (3.20)

The angular momentum is conserved as FD
ij and FR

ij act along rij. There is

an independent random process for each pair of particles. In order to satisfy the
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fluctuation-dissipation theorem, the relations

λ2 = 2kBTξ (3.21)

and

wR(|r|) =
√
wD(|r|) (3.22)

must hold[57]. The usual choice is

wR(r) =
√
wD(r) =

 1− r/rc; r < rc

0; r ≥ rc
(3.23)

Another choice, which is computationally more efficient, is

wR(r) = wD(r) =

 1; r < rc

0; r ≥ rc
(3.24)

We use Eq.(3.23) in most of our simulations except when a large shear rate

γ̇ >0.1τ−1 was applied on the system, in which case Eq.(3.24) was used.

3.2.3 Steady-state properties from the test run

In this section, we will show some steady-state properties of the system under

shear, in particular velocity and temperature profiles. All equations of motion

in this section are Langevin dynamics but not with DPD thermostat. First, we

run the simulations with different chain lengths but fixed number of particles in

the system under the same shear rate. The velocity used in the friction term is

the real velocity of each particle. The velocity profiles are shown in Fig.3.3. The

velocity profile of the dumbbell(N = 2) is in good agreement with the desired

linear velocity profile, but if we increases the chain length, it starts to deviate

from the desired one. The reason of this phenomenon is probably that the longer

the chain length is, the more difficult for the momentum to be transmitted from

the boundary to the center of the box. We also observe that the longer the chain
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Figure 3.3: Velocity profile of dif-
ferent chain lengths. np is the num-
ber of the particles in the system.
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Figure 3.4: Temperature profile
of different chain lengths.
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Figure 3.5: Velocity profile of dif-
ferent number of chains.
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Figure 3.6: Temperature profile
of different number of chains.
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Figure 3.7: Velocity profile of dif-
ferent shear rate.
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Figure 3.8: Temperature profile
of different shear rate.

length is, the slower the particle is than it should be, which means the friction term

is overestimated. The temperature profiles are shown in Fig.3.4. The temperature

near the boundaries is higher than the one in the center, which can be explained

by the shear heating as the momentum exchanged around the boundaries.

We also run simulations with the same chain lengths and shear rates but with
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Figure 3.9: Velocity profile of dif-
ferent inertial terms.
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Figure 3.10: Temperature profile
of different inertial terms.
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different equations of motion.
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of different equations of motion.

different system sizes. The larger the system is, the more difficult for the momen-

tum to be transmitted from the boundary to the center of the box(Fig.3.5 and

3.6). Same quantities are measured in the systems at different shear rates(Fig.3.7

and 3.8). The velocity profile is closer to the desired linear one if the shear rate is

smaller.

Figs.3.3-3.8 show that both measurements depend on the system size, shear

rate, chain length, etc, which should not be the case. To fix these problems, we

introduce peculiar velocity in the inertial term, which makes sense that the friction

should depend on the relative velocity between the particle and the background

but not on the real velocity. Now the velocity profile is in good agreement with

the desired ones(Fig.3.9 and 3.10). However, the temperature is still higher than

the target T =1.

We applied SLLOD equation of motion to our model and observed the same
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results as in the previous case (square symbol in Fig.3.11 and 3.12). Constraint

thermostat method is used to keep the temperature to the desired one (star sym-

bols in Figs.3.11 and 3.12). All the results discussed later are obtained from this

combination of Langevin, SLLOD and constraint thermostat method.

As we know, polymer chains will be stretched and oriented under shear, the

size of the long chains will be larger than the length of the simulation box and

the chains will interact with themselves through the periodic boundaries. In order

to eliminate this defect, we need to use non-cubic simulation box. Suppose the

shear direction is along the x-axis, the direction of velocity gradient is along the

y-axis. The first method we used is putting all chains into a reshaped box which

has the length ratio on x, y, z equal to 2 : 1 : 1. The simulations run for a long

time around several terminal relaxation time τd of the longest component to make

sure the system is in equilibrium, and then we start to shear the material. The

second method we used is that the configuration of the chains is obtained from the

previous simulations in equilibrium which has a cubic simulation box. Another

copy of this configuration is made. And we put this copy next to the original one

along the x-axis to make the simulation box with the aspect ratio of 2 : 1 : 1.

As the two parts of the box contain exactly the same conformations, we run the

simulations for one terminal relaxation time τd of the longest component to let

chains forget about the initial configuration. The second method can save the

simulation times for equilibration significantly. Now we would like to show the

difference among these methods. Stress tensor components σxy and two normal

stress difference σxx−σyy, σzz−σyy are shown in Fig.3.13. The black lines are derived

from the cubic simulation box. The red and blue lines are from the methods one

and two, respectively. We can see that the first normal stress σxx−σyy in the cubic

box does deviate from that obtained from the other two methods. All the results

from shear are obtained by using the configuration copy method.
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3.2.4 Averaging methods

As we know the number of particles involved in the MD simulations is ranging from

several hundred to several hundred thousand, which is a small number comparing

to the number of molecules used in experiments. So a careful averaging method is

essential in the simulations. Logarithmic bins in time are introduced. Suppose a

quantity C(t) of the system is measured at time t since the start of shear. A series

of averaging time internals t′i, i ∈ Z+ where Z+ is the set of non-negative integer

numbers, is introduced as following:

t′0 = D (3.25)

t′i = D M i (3.26)

where D is a constant standing for the first time interval, and M is a multiplication

factor. In our simulations, D and M are set to 8dt and 1.1 respectively, where dt

is the simulation time step. Suppose the shear starts from t0, ti = t0 +
∑i−1

k=0 t
′
k,

then

C(ti +
t′i
2

) =
1

t′i

∫ ti+t
′
i

ti

C(t)dt (3.27)

With this algorithm we obtain around 25 data points in each decade of time(black

symbols in Fig.3.14). As the system size is quite small(9000 particles), the signal

is not very good in just one single run. We run 10 simulations with the same

parameters except the seed of random force generator, and then average over all

these data(red symbols in Fig.3.14). The curve is much smoother and more reliable
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than the data from the single run. However, the signal is still noisy at short times

as the averaging intervals t′i at short times are much smaller comparing to the ones

at longer times. Note however that the early time behaviour can be obtained from

the G(t) data as demonstrated later, so these data are not essential.

3.3 Monodisperse melts under shear

In this section we will investigate both static and dynamic properties of the ma-

terial in entangled systems. As discussed before, the entanglement lengths Ne

in flexible and semi-flexible systems are around 50 and 15 respectively. If the

same number of entanglements is required, the chain lengths in flexible systems is

more than three times larger than the one in semi-flexible systems, which makes

the simulation times much longer in the former case. So we only concentrate on

semi-flexible chains at this stage.

3.3.1 Simulation results

We first show the transient shear viscosity η as a function of time t at different

shear rates γ̇ for different chain lengths in Fig.3.15 and Fig.3.16. The dashed line is

obtained from the stress relaxation function G(t) in the linear viscoelastic regime:

η(t) =

∫ t

0

G(t′)dt′ (3.28)

We will use this curve as an additional validation of our procedure. At small

strains the respective shear viscosity curves superpose for all applied shear rates

with the linear viscoelastic curve. If the shear rate γ̇ is faster than the reciprocal

of the terminal time τd of the system, the viscosity η(t) passes through a maximum

and then decreases until it reaches the steady-state. The terminal time τd of the

monodisperse melts with chain length N = 150 and N = 30 with bending energy

kb = 3 are around 2.58×105τ and 2.5×103τ respectively, where τ is the Lennard-

Jones time unit. However, there is no clear “yielding point” of the viscosity at
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the shear rate γ̇ slower than the reciprocal of the terminal time τd. The stress

maximum can be taken as the steady-state stress in these cases and its value

increases linearly with the shear rates. The viscosity has a smooth transition from

the transient-state to the steady-state(pink line in Fig.3.15 and Fig.3.16). It is in

good agreement with the result from the stress relaxation function G(t) in linear

viscoelastic regime(dashed line in Fig.3.15 and Fig.3.16). At the higher shear rate,

which is faster than the reciprocal of the terminal time τe of an entangled strain,

an undershoot can be observed before the system reaches the steady-state.

As we discussed in Chapter 1, the average of the diagonal elements of the stress

tensor is the pressure of the system, which is constant in steady-state. Because

the system is only sheared in x-axis, the symmetry in respect to the z-axis is still

conserved. Thus, the whole stress tensor has only three degree of freedom, which

are σxy, σxx−σyy and σzz−σyy. The last two stress differences are called the first

and the second normal stress. First and second normal stresses divided by the

square of the shear rate γ̇ are plotted in Fig.3.17-3.20. Again at small strains

all the curves collapse onto a master curve. At a shear rate γ̇ faster than the

reciprocal of the terminal time τd, we can also observe an overshoot in the second

normal stress. The overshoot in the first normal stress appears at higher rates,

presumably larger than τ−1
R .

It is interesting to analyze the position and the magnitude of the stress max-

imum for different chain lengths and shear rates. For monodisperse melts, the

Doi-Edwards model predicts that the shear-stress maximum should occur at a

shear strain γmax = γ̇tmax of about 2, independently of the shear rate γ̇. For

small shear rates, the experimental maximum is indeed around 2, but it shifts to

higher strain values for large shear rates[58]. We observed similar behaviour in our

simulations(black square symbols in Fig.3.22). In the system with chain length

N=30, the shear strain at maximal stress is around 2 for all shear rates. However,

the shear strain at maximal stress is around 3.5 if γ̇τd = 300 for the system with

chain length N=150, which was also observed in experiments. The maximal stress

σmax as a function of shear rates are plotted in Fig.3.21. The power-law exponents
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are approximately 0.3 and 0.9 in the systems with chain length N=150 and N=7

respectively.
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of γ̇N2.

The shear stress σxy, first and second normal stresses and the ratio of these

two normal stresses in the steady state are shown as a function of shear rate γ̇ in
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Fig.3.23-Fig.3.26. The first and second normal stresses increase as the shear rate

increases in all systems. Surprisingly if the first and second normal stresses are

plotted as a function of γ̇N2, all curves pass through a particular point. The ratio

of the second and the first normal stresses is about 1/7 at small molecular weight,

which is in good agreement with the Doi-Edwards theory and the experimental

results from Schweizer et al.[59][42]. With increasing the chain length, a negative

slope comes out. More interesting parts are the behaviours of the steady-state

shear stresses. An ideal unentangled Rouse chain shows no shear thinning and

therefore it can be represented by the line σ = ηγ̇ at all shear rates(dashed line

in Fig.3.23). In a slightly entangled system(N=30), the steady-state shear stress

increases with the slope smaller than 1 with increasing shear rate. However, in

our most entangled system for N=150(Z=10) it increases first, passes through a

maximum around γ̇τd = 2 and then decreases by about 5% until γ̇τd = 200 and

then increases again(black squares in Fig.3.23). The shear stress σxy as function

of simulation time of chain length N = 150 at different shear rates is shown in

Fig.3.27. Theoretically, non-monotonic steady state stress means that the system

must show shear banding if we relax the condition of linear velocity profile.

3.3.2 Cox-Merz rule

Cox-Merz rule states that the steady state shear viscosity at a given shear rate is

equal to the dynamic viscosity at the same frequency

η(γ̇) = η∗(ω) at γ̇ = ω (3.29)

where

η∗(ω) =

√
G′(ω)2 +G′′(ω)2

ω
(3.30)

This rule is more or less empirical - it works for many common polymers but there

is no theoretical background that it should work for all polymers and it certainly

does not. Cox-Merz rule was checked in our simulations(Fig.3.28). They show
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that the Cox-Merz rule works for the short chain systems, but not for the longer

chains.

3.3.3 Stress-optical law in monodisperse melts

Before doing other analysis, let us check if the stress optical law works in our

shear simulations. Chain lengths N = 30, 150 are chosen for the monodisperse

melt. First, the stress and orientation relaxation functions in the equilibrium

state are shown in Fig.3.29. The stress-optical law works for the time scale larger

than 500τ . Now we would like to see whether the stress-optical law works in the

shear situation. The stress and the orientation of the systems divided by the shear

rates are shown in Fig.3.30. In the transient state, both stress and orientation

collapse onto their respective master curves. The power law exponent of stress

is around 0.5. However, the power law exponent of orientation is around 0.8. It

looks like the stress-optical rule does not work at short times. As we know, the

viscosity in shear can be expressed by the integral of the stress relaxation function

G(t) in equilibrium(Eq.3.28). The orientation in shear can also be expressed by the

integral of the orientation relaxation function in equilibrium. As shown in Fig.3.29

stress and orientation behave differently at short times. There are oscillations in

the stress relaxation function due to bond fluctuations, and it is almost constant
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Figure 3.31: Instantaneous posi-
tion(a) and mean path(b) of a poly-
mer chain with chain length equal
to 150 and bending energy equal to

3.
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for orientation relaxation function, which explains why the slope of orientation

in shear is closer to 1. After the overshoot, the stress and the orientation are in

qualitative agreement(Fig.3.30). In conclusion, the stress-optical law works quite

well at small shear rates γ̇ <1/500 and at long time t>500.
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3.3.4 Orientation from mean path

We introduce a notion of the mean path which is a collection of the bead coordinates

ri averaged over the time interval τav

r̂i(t) =
1

τav

∫ t

t−τav

ri(t
′)dt′ (3.31)

Both instantaneous configuration and the mean path of a polymer chain with chain

length N=150 are shown in Fig.3.31. These configurations show that the mean

paths are smoother than the chains and the short time fast fluctuations are sup-

pressed by the averaging procedure. The averaging time interval should be chosen

with care. In Fig.3.31, the averaging time was chosen to be τav=1200τ . Now we

would like to check whether the mean path will keep the property of the orienta-

tion of the original chains or not. The orientation obtained from the instantaneous

positions and the mean paths are both shown in Fig.3.32. The monodisperse melt

with chain length N=93 and bending energy kb=3 was chosen. The result from the

mean paths is in good agreement with the one from the instantaneous positions,

so we can claim that mean paths contains all information about the orientation of

the polymer chains. In the future, we will analyse our system by using mean path

instead of instantaneous positions, which can erase faster fluctuation effects. We

note that orient function S(t) obtained from instantaneous positions stored every

1200τ is much noisier than the one shown in Fig.3.32.

3.3.5 Configuration of polymer chain in transient state and

steady state

DNA tumbling has previously been observed in dilute unentangled solutions[60]

and in entangled solutions[61]. We would like to investigate the tumbling in poly-

mer melts for the first time in our simulations.

In Fig.3.33, we can see the evolution of the single chain conformation in a

monodisperse melt. The sample has the chain length N=93 with bending energy
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kb = 3 and density ρ= 0.85σ−3. Before the shear starts(t= 0τ), the chain is a

random walk in 3D-space. After shearing starts, the chain is stretched in shear

direction(x-axis).

Beyond the stress overshoot, we observed that the chain also spends a small

fraction of the time to tumble as shown in Fig.3.34. In Fig.3.35, we show each

component of the end-to-end vector Re of the chain which was plotted in Fig.3.34.

The black symbols are the orientation of the system. y and z components of Re

are not strongly affected by the shear. They both fluctuate around the average

of the end-to-end vector in equilibrium. However, x-component of Re is tumbling

around the average. The configuration of the chain in Fig.3.34 is the one during

the first tumbling after the overshoot. The observed tumbling means that decou-

pling approximations used by the tube theory[62] might not work for these shear
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rates. In future we plan to investigate these approximations using our mean path

trajectories.

3.3.6 Comparing semi-flexible chain with the experiments

Experiments(-35◦C) Simulations

sample
Mw Z η0 τd τR kb N Z η0 τd τR

[kg/mol] [-] [Pa s] [s] [s] [ετσ−3] [τ ]

PI-2k 2.4 0.5 73 0.0012 0.0047
3 7

0.5
9.4 84 150

0 20 15 550 -

PI-4k 5.1 1.1 1.9E4 0.033 0.045
3 15

1.1
30 490 670

0 40 34 930 -

PI-14k 13.5 2.8 3.3E5 0.56 0.48
3 38

2.8
190 3700 4300

0 -

PI-30k 33.6 7.0 1E7 17.2 3.5
3 93

7.0
2500 9.1E4 2.6E4

0 -

Table 3.1: Mapping between the experiments and the simulations.

Now we investigate whether we can map our simulation results onto the real

experiments. The experimental sample is polyisoprene(PI) from Auhl et al.[63]

with a large range of molecular weights(2kg/mol-1000kg/mol) and narrow molec-

ular weight distribution. The storage moduli G′ and loss moduli G′′ are used

for mapping the PI sample onto the semi-flexible Kremer-Grest model. All the

experimental data are shifted to temperature of −35◦C by time-temperature su-

perposition. G′ and G′′ of sample PI-30k are in good agreement with simulation

data from the chain length N = 93(Fig.3.36). The ratio of the loss and storage

moduli is the tangent of the phase angle, called the loss tangent

tan δ =
G′′

G′
(3.32)

which is shown in Fig.3.37. The shift factors of frequency and stress from the

simulations to the experiments were obtained by comparing the crossing point of
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simulation.

G′ and G′′ at low frequencies,

1s ⇒ 8300τ (3.33)

1Pa ⇒ 1.48× 10−7ε/σ3 (3.34)

where τ , ε and σ are the units of time, energy and length in the simulations.

The mapping coefficient between PI molecular weight in the experiment and

number of beads of semi-flexible chains in the simulations is

M exp
e

Ne

= 0.36kg/mol (3.35)

All the parameters of the simulations will be calculated from these three map-

ping coefficients.

The shear viscosity from the experiments and our simulations are shown in

Fig.3.38-Fig.3.41. The Weissenberg numbers used in PI-2k and PI-4k samples are

Wi = γ̇τR, and the ones used in PI-14k and PI-30k are determined by both τR

and τd. The experiments of PI-2k(Fig.3.38) were taken at a different temperature

(T = −60oC) from the others, as the glass transition temperature Tg of PI-2k is

higher than Tg of the longer molecules. Thus, a different mapping coefficient is

used for this particular sample. The results show that the shear viscosity from
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simulations is in qualitative agreement with the viscosity from the experiments.

We suppose the reason for some disagreement is that the local structures of PI

and the semi-flexible Kremer-Grest model are different from each other. The semi-

flexible KG model is more stiff than polyisoprene. We believe the results from

flexible systems can be in better agreement with experiments which is a subject of

future study. Another reason might be inaccurate mapping parameters. We note

that for every new set of parameters new simulations must be performed, which

makes it a very expensive procedure.
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3.4 Conclusions

In this chapter we applied start-up shear in MD simulations by using Lees-Edwards

boundary conditions. Comparing to the experiments, we did not suffer from the

artefacts like wall slip, edge fracture and non-linear velocity profiles. Several ther-

mostat methods were tested and constraint thermostat method was chosen to keep

the temperature of the system consistent with the desired one. We covered the

chain lengths from unentangled(Z=0.5) system to mildly entangled(Z=10). The

properties of the material in both the transient and steady states were investigated.

A careful averaging method was introduced for transient stresses to obtain reli-

able and accurate results. The shear stress, first and second normal stresses were

measured as functions of time. As we know the first and second normal stresses

are very difficult to measure in experiments. However, we can obtain accurate and

reliable data by using these averaging methods. The results from linear regime in

Chapter 2 were consistent with the shear data. Surprisingly, if we plot the shear

stress σxy at steady state as a function of shear rate γ̇, a maximum was observed

at γ̇ ≈ 1/τd for sufficiently long chains with Z=10, which probably means that

the system is suspectable to shear banding. Cox-Merz rule was checked in our

simulations. However, we found that it only works accurately for small molecular

weights. Stress-optical law was also checked and it works at small shear rates and

long times. A definition of mean path was introduced as an effective way to store

trajectories. We will use these mean paths to analyze the dynamics of entangle-

ments in shear in the future. We visualized the configurations of the chains in

both the transient and steady states and chain tumbling was observed.

Then we tried to compare our rheological results with the experimental data

from the literature. Although the chemical structures of the experimental sample

and our simulation model are very different, we can relate these two by using

mesoscopic variables, i.e. entanglement length or number of entanglements. The

mapping coefficients between the experiments on polyisoprene and the simulations

of semi-flexible chains were chosen carefully by comparing the storage and loss

modulus of the samples. A qualitative agreement between the simulations and
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experiments was obtained. We suppose the quantitative disagreement is due to

different stiffness of PI sample and semi-flexible KG model. In order to obtain

a quantitative agreement with the experiments, we will study the simulations of

more flexible chains and improve our mapping procedures.



Chapter 4

Coarse-grained simulation of

polymer melts

4.1 Overview

As we explained in chapter 1, the molecular dynamics(MD) simulations are not

suited to the study of phenomena which occur on time and length scales that are

far beyond the molecular scales due to the limit of computer power and the large

number of particles. Normally we have to reduce the number of degrees of freedom

of the system. In MD simulations, we need positions and velocities of all particles

which makes the number of degrees of freedom of the system equal to 6Np, where

Np is the number of the particles in the system. However, if one is only interested

in the long time diffusive motion of one polymer chain in a melt, it is sufficient to

know the position and the velocity of the center-of-mass of the chain instead of all

particles of the chain. The reduction of the number of degrees of freedom is called

coarse-graining in which a bead-spring chain is represented by a set of mesoscopic

“blobs”. The aim of coarse-graining is to derive a reduced equation of motion that

only needs the mesoscopic variables which describe the position and velocity of

the coarse-grained “blobs”. Normally there are three contributions to the total

force on the mesoscopic “blobs”. The first one is the thermodynamic force which

100
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is the gradient of the free energy of the configuration of the mesoscopic “blobs”.

Second is the dissipative force which indicates that the motion of the mesoscopic

“blobs” is retarded by friction. The last is the thermal force due to the continual

collision effect on the mesoscopic “blobs”. The dissipative and thermal forces must

be related to each other to ensure that both forces do not alter the equilibrium

ensemble distribution, which is stated by the fluctuation-dissipation theorem.

As far as static properties are concerned, the determination of effective in-

teractions from microscopic models is one of the main challenges in this subject.

In general one starts from experimental observables or quantities calculated from

microscopic simulations and tries to reproduce these quantities by using some effec-

tive interactions. One such property is the radial distribution function g(r), which

can always be reproduced by a pair potential regardless of the actual potential from

which it comes. Español et al.[64] studied the free energy of two predefined clusters

in a simple liquid as a function of their separation which can be used as an effective

pair interaction potential between these clusters if higher order correlations are ig-

nored. Many algorithms have been proposed to obtain effective potentials from

distribution functions. The simplest method is to use the effective interaction in

the limit of low density where many-body effects can be neglected. A simulation

with this effective potential can be used as the starting point of a series of itera-

tions. In each iteration i, the difference between the objective interaction potential

(kBT ln g0(r)) and the one obtained from the i-th simulation(kBT ln gi(r)) is used

to predict a new potential ui+1(r) = ui(r)−kBT ln(g0(r)/gi(r)). Soper[65] applied

this method to the radial distribution function of water from neutron scattering

experiments and obtained consistent results with the experiment data. A modi-

fied hypernetted chain approximation was used by Reatto et al.[66] to obtain the

potential of mean force of a hard-sphere system which involved many-body correla-

tions. Van Gunsteren, Müller-Plathe et al.[67] developed an automatic adjustment

of force field parameters during molecular dynamics simulations. Akkermans and

Briels[68] investigated the effective Gaussian pair interactions between two blobs

each being a coarse-grained polymer chain in the melt, which reproduces the radial
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distribution function of the microscopic system. They introduced fitting parame-

ters λ, and minimized a field φλ with respect to λ.

On the other hand, we need information about the dissipative and thermal

forces for the dynamic properties. Normally the dissipative force is taken as a

linear function of momenta for the microscopic particles. However, the friction

coefficient of mesoscopic particles also depends on the configuration of particles,

and it is important to account for both time and spatial dependency. Akkermans

and Briels[69] coarse-grained one polymer chain in a melt to a single dimer of

mesoscopic particles, called blobs. By using the projection operator formalism

they separated the total force on the chain into the thermodynamic mean force,

dissipative force and fluctuation force, and derived the equations of motion for the

dimer. Dimer properties of the microscopic and the coarse-grained model were

shown to be in reasonable agreement.

In this chapter, we only concentrate on the static properties of the polymer

chains, so we make the dissipative and thermal forces of mesoscopic “blobs” in-

dependent of time and space. The whole chain was coarse-grained into a single

“blob”, and we aim to study the interaction forces between the blobs rather than

interaction potentials. In section 4.2, we introduce a method to derive the inter-

action force between two blobs called force projection method. In section 4.3 and

4.4, we will apply the force projection method between a single chain and a wall

to derive the effective force on the blob from the wall. The distribution function of

the blobs from a coarse-grained simulation is in good agreement with the one from

the original microscopic simulation. Then we start to investigate the pairwise force

and many-body effects between blobs. In section 4.5 and 4.6, the Kremer-Grest

chains are investigated in vacuum and melts, respectively.

4.2 Force Projection Method

In the microscopic simulation, we project the force between two monomers belong-

ing to different molecules onto the vector connecting the centers-of-mass of these
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two molecules.

Suppose monomers i, j are two monomers which belong to two different molecules

a, b respectively. f ij is the force between monomers i and j. Ra,Rb are the coor-

dinates of the center-of-mass of chains a and b. We then define a projection force

fab between blobs a and b as

fab(|Dab|) =
∑
i,j

f ij ·Dab

|Dab|2
Dab; ∀i ∈ a,∀j ∈ b (4.1)

Dab = Ra −Rb (4.2)

where Dab is the distance vector between blobs a and b. fab and Dab have the

same direction.

In this definition, we do not include the case when two monomers are in the

same blob, which means the forces inside the blobs are not considered for this

projection procedure. If we divide the molecules into several subchains and coarse-

grain the monomers in one subchain into a blob, the projection force between these

blobs of subchains will be very different from non-bonded one due to connectivity.

In this work, we will study the projection force between non-bonded blobs first.

Bonded blobs are left for the future study. Before using the projection procedure in

Kremer-Grest microscopic simulation, we should assess if this method is reasonable

or not. A Rouse chain is replaced by a blob between two walls and the distribution

function of the center-of-mass of the Rouse chain between the walls in microscopic

simulation is compared to the one from the coarse-grained simulation.

4.3 Rouse model between two walls

In the Rouse model, the excluded volume interaction and the hydrodynamic in-

teraction are disregarded and the interaction potential is written as:

U({Ri}) =
3kBT

2b2

N−1∑
i=0

(Ri+1 −Ri)
2 (4.3)
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where b is the effective bond length, kB is the Boltzmann constant and T is the

temperature. In this model the Langevin equation becomes a linear equation for

Rn(Eqs.1.46-1.48).

4.3.1 Microscopic simulation

In this simulation, two solid walls are placed at x = −rc and x = 3
√
Nb2 + rc

to make sure that the chain rarely is affected by two walls at the same time. A

Rouse chain is placed randomly between the walls. The pure repulsive Lennard-

Jones potential with cut-off radius rc=21/6σ is applied between the walls and the

beads, but not between different beads like in Kremer-Grest model. The potential

expressions on the walls are

Uwall1 =


4ε

[(
σ

Rx + rc

)12

−
(

σ
Rx + rc

)6

+ 1
4

]
; Rx < 0.

0; Rx > 0.

(4.4)

Uwall2 =


4ε

[(
σ

Rx − 3
√
Nb2 − rc

)12

−
(

σ
Rx − 3

√
Nb2 − rc

)6

+ 1
4

]
; Rx > 3

√
Nb2.

0; Rx < 3
√
Nb2.

(4.5)

where Rx is the x-component of the position R of the bead in the Rouse chain.

During this microscopic simulation, we measured the distribution function of

the center-of-mass of the Rouse chain. The effective force between the chain and

the walls is derived by using projection force method introduced in the previous

section. As only one Rouse chain was involved, the forces between the beads of

the Rouse chain and the walls are projected on the distance vectors D, where D

is just the shortest distance from the center-of-mass to a wall.

Chain length N=10 was chosen for the first microscopic test run. The blob

distribution function is shown by the red line in Fig.4.1. We can see that the

distribution function increases with increasing distance from the wall until d ≈
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Figure 4.1: The center-of-mass
distribution function of the Rouse
chain between two walls in mi-
croscopic(red line) and coarse-
grained(open symbols) simulation.
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Figure 4.2: Projection force func-
tion f(r) of Rouse chain from solid
wall in log-linear(left) and linear-
linear(right) plots. The line is the
best fit data which has the expres-

sion as Eq.(4.6).

0.5
√
Nb2 and then reaches a plateau, which is reasonable because the size of the

Gaussian chain is around
√
Nb2. Then the radius of the Gaussian chain is around

0.5
√
Nb2, which means that if the distance between the center-of-mass of the Rouse

chain and the wall is larger than 0.5
√
Nb2, the chain will rarely touch the wall.

The effect from the wall should be negligible beyond this threshold.

The projection force function f(x) on the Rouse chain from the wall is shown

in log-linear and linear-linear plots in Fig.4.2 for different chain lengths N=10, 20

and 50. After scaling by the size of the chain, all three force functions collapse

onto the same master curve. The green line is the best numerical fit which has

the expression

ffit(x) =



exp(−16.537 x√
Nb2

+ 4.1007); 0 < x√
Nb2

< 0.13

exp(−8.7758 x√
Nb2

+ 3.1228); 0.13 < x√
Nb2

< 1.5

0; x√
Nb2

> 1.5

(4.6)
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Figure 4.3: The center-of-mass
distribution function of a Kremer-
Grest chain between two walls
from microscopic simulation(red
line) and from coarse-grained sim-

ulation(open symbols).
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best fit data which has the expres-

sion as Eq.(4.8).

4.3.2 Coarse-grained simulation

Now we can use this best fit projection force ffit(x) in the coarse-grained simu-

lation. A single particle is placed between the two walls. The potential from the

wall was changed from Lennard-Jones potential to

U(x) =

∫ x

0

ffit(x
′)dx′. (4.7)

The obtained distribution function(open squares in Fig.4.1) is in excellent agree-

ment with the one obtained from the original microscopic simulation. However,

a Rouse chain is a random walk in space and there is no long range interaction

between the beads which have large chemical distance. In next section we would

like to ask whether this projection procedure is also valid for the Kremer-Grest

model.

4.4 Single Kremer-Grest chain between two walls

Similar to the previous section, we place one Kremer-Grest chain with length

N=10 instead of a Rouse chain between two walls separated by a distance of 16σ.

The chain is not Gaussian in vacuum due to excluded volume effects, and the size



Chapter 4. Coarse-grained simulation of polymer melts 107

of the chain is larger than
√
Nb2. As the beads repel each other and the bonds

can not cross each other, the dynamics of Kremer-Grest model are different from

the Rouse chain.

The distribution function was measured and is shown by red line in Fig.4.3.

The force on the KG chain from the walls(symbols in Fig.4.4) was also measured

by using projection force method. The best fit is shown by red line in Fig.4.4,

where the numerical expressions are

ffit(x) =



exp(−3.2473x+ 7.3307); 0 < x ≤ 1.9

exp(−2.0149x+ 5.0317); 1.9 < x ≤ 4.05

exp(−7.0604x+ 25.329); 4.05 < x ≤ 5.0

0; x > 5.0

(4.8)

Then we applied this best fit projection force ffit(x) to the coarse-grained sim-

ulation. The obtained distribution function(open squares in Fig.4.3) is in excellent

agreement with the one from the original microscopic simulation.

From the previous two sections, we conclude that the local structure of the

polymer chain does not affect the validity of this procedure, which indicates that

the force projection method might be useful for reducing the number of degrees-

of-freedom of the system.

4.5 Kremer-Grest model in vacuum

In the previous sections, we were using the force projection method to measure

the force on the chain from the walls. Now we would like to study this method

for pairs of Kremer-Grest chains in vacuum. The pure repulsive Lennard-Jones

potential is chosen for the simulations.

Normally, the mean square internal distance function and the radius of gyration

are the two common objective functions which describe the structure of the chains.

The mean square internal distance function 〈R2(n)〉/n of chain length N =100
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averaged over all segments of size n = |i− j| along the chains is shown in Fig.4.5,

where i and j are the indexes of two monomers. The figure starts from 0.93 which

is the average of the square bond length, and then reaches a maximum around 3.6.

It shows that the chain is not Gaussian in vacuum due to the excluded volume

effect. The radius of gyration Rg(N) of chains with different lengths in vacuum are

shown in Fig.4.6. It has consistent results with the mean square internal distance

function. We will use this for normalization in section 4.5.1.

First, we will measure the projection force function between two KG chains

in section 4.5.1. Then many-body effects from other surrounding chains will be

investigated in section 4.5.2.

4.5.1 Two chains model

We put two chains of the same length in the simulation box and fix the distance

between the centers-of-mass of these two chains during the simulations by calcu-

lating the force between the two chains, then applying forces on each monomer

whose sum has the same modulus but in opposite direction to make the total force

on the whole chain to be zero. The average force between these two chains at

each fixed distance was calculated over millions of time steps is called vacuum

projection force(VPF). These vacuum projection forces for different chain lengths

are shown in Fig.4.7. The results have several general features. The force becomes
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larger if the distance increases, reaches a maximal value around r=0.5
√
N and

then decreases to zero. We normalized the amplitude of VPF by the number of

beads in the chain and the domain of VPF by the radius of gyration Rg of the

chain in vacuum. The normalized forces are shown in Fig.4.8. The plots collapse

onto a master curve for the length N = 20, 50, 100. The disagreement between

N=10 and the master curve means that the chain is too short to follow a universal

behaviour.

The numerical expression of vacuum proejction force fVPF can be fit as

fVPF (x) =
x√
N

4∑
i=1

Ai exp

[
−
( x√

N
−Bi

Ci

)2
]

(4.9)

where parameters Ai, Bi and Ci are listed in Table.4.1.

N=10 N=20
i Ai Bi Ci Ai Bi Ci
1 9.4379 0 0.5989 3.2497 0 0.69241
2 4.6107 -0.026868 0.21659 0.55126 0.47303 0.23352
3 0.66398 0.50909 0.16858 - - -
4 0.058232 1.1547 0.34168 - - -

Table 4.1: Fitting parameter of vacuum projection force for chain lengthN=10
and N=20.

In section 4.7.2, we will show the radial distribution function of the blobs in

the coarse-grained simulations by using this vacuum projection force, which is in
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Figure 4.9: Three chains model.

good agreement with the original microscopic simulations at low densities but not

in the system with high densities. The reason is that many-body effects play a

significant role at high densities. Thus we would like to investigate the many-body

effects starting from the three body effects.

4.5.2 Three chains model

In this section, we investigate how the force between two chains is affected by

the presence of a third chain. Three chains are placed in the simulation box and

the centers-of-mass of these chains are fixed. The projection force fvac(r12;x3, y3)

between first two chains is measured as a function of the position of the third chain

, where r12 is the distance between first two chains, x3, y3 are the coordinates of the

center-of-mass of the third chain in the plane going through these three centers-of-

mass measured from the first two chains(Fig.4.9). After subtracting the vacuum

projection force fVPF (r12) of the two chains model from the one in the three chains

model, we can obtain how much a third chain affects the force between the pair

of chains.

∆fvac(r12;x3, y3) = fvac(r12;x3, y3)− fVPF (r12) (4.10)

In Fig.[4.10-4.17], we show the difference function ∆fvac(r12;x3, y3) between

these two models. Chains 1 and 2 are both located on the x-axis and have the

same distance away from the origin. These figures show several general features:
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Figure 4.10: ∆fvac(r12;x3, y3)
where r12=0.2σ.
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Figure 4.11: ∆fvac(r12;x3, y3) in
contour where r12=0.2σ.

• If the third chain is located between chains 1 and 2, the force between chains

1 and 2 becomes smaller. It can be explained by the fact that the third chain

pushes chains 1 and 2 away from each other, which is called screening.

• If chains 1 and 2 are both on the same side of third chain, the force between

chains 1 and 2 increases. It can be explained by the fact that the third chain

pushes one chain towards the other and more collisions happen between

monomers of chains 1 and 2.

• If the third chain is far away from these two chains, there is no effect from

the third chain.

• In Fig.4.16, if the third chain is located at x=±3.0σ on x-axis, although

two chains are on the same side of the third chain, the force difference is

negative, which is in contradiction to the second feature above. We suppose

that if we put the third chain at x=3.0σ, the shape of the chain at x=1.5σ

is more like an ellipse instead of a sphere as the center-of-mass of the chain

is fixed. So the contacts between chains 1 and 2 decrease. Same arguments

also applies to other r12.

Based on all these figures, we conclude that three-body effect plays an impor-

tant role in vacuum. Then we would like to ask a question, will the many-body

effects act in a different way in the melt compared to the vacuum? In order to

get the answers, we use the same strategy to calculate the projection forces in the

melt.
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Figure 4.12: ∆fvac(r12;x3, y3)
where r12=1.0σ.
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Figure 4.13: ∆fvac(r12;x3, y3) in
contour where r12=1.0σ.
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Figure 4.14: ∆fvac(r12;x3, y3)
where r12=2.0σ.
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Figure 4.15: ∆fvac(r12;x3, y3) in
contour where r12=2.0σ.
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Figure 4.16: ∆fvac(r12;x3, y3)
where r12=3.0σ.
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Figure 4.17: ∆fvac(r12;x3, y3) in
contour where r12=3.0σ.

4.6 Kremer-Grest model in the melt

4.6.1 Radius of gyration of chains in systems with different

densities

First, we investigate some static properties of the polymer chains in the melts, like

the radius of gyration and pressure at different densities. The values of Rg(N)/
√
N
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Figure 4.19: Radius gyration as a
function of density of the system.

of different chain lengths are shown in Fig.4.18. Rg(N)/
√
N increases with increas-

ing chain length, and then reaches a plateau where the chain is long enough to

follow Gaussian statistics which is contrast with the one in vacuum. This normal-

ized radius of gyration decreases with increasing density. The radius of gyration at

different densities will be used later to normalize the projection force obtained from

the microscopic simulations. The pressure of the system is calculated by adding

kinetic pressure and hydrostatic pressure together and is shown in Fig.4.25.

4.6.2 Projection force in the systems with different densi-

ties

We run microscopic simulations of Kremer-Grest model with chain length N =

10(Fig.4.20) and N = 20(Fig.4.22) in melts to obtain projection force between

pairs of chains at different densities. Figs.4.20 and 4.22 show that the maximum

of the projection force increases rapidly with increasing density as summarized

in Fig.4.25. In order to find the relationship between the maximal force and

the density of the system, the best fit data fmax(ρ,N=10), fmax(ρ,N=20) are

derived by using the least square polynomial curve-fitting in these two cases(Lines

in Fig.4.25). The expressions are

fmax(ρ,N=10) = 34.0708ρ3 − 10.1408ρ2 + 4.0553ρ+ 2.6342 (4.11)

fmax(ρ,N=20) = 35.3427ρ3 − 10.9962ρ2 + 4.7349ρ+ 1.1279 (4.12)
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Figure 4.21: Normalized projec-
tion force of N=10 at different den-

sities.
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Figure 4.22: Projection force of
N=20 at different densities.
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Figure 4.23: Normalized projec-
tion force of N=20 at different den-

sities.

After normalizing these projection forces by their maximum in the system

with chain length N=10(Fig.4.21), we can see that all results overlap with each

other more or less at large distances. We suppose that the disagreement at short

distances is due to the irregular shapes of two chains which are close to each other

at low densities. It is clear that the force at density ρ = 0.05σ−3(red circles in

Fig.4.21) is consistent with the vacuum projection force(black line in Fig.4.21). We

can also see that the original projection force converges to the vacuum projection

force FVPF (x) with decreasing density of the system(Fig.4.20). However, there

is a small disagreement around r = 1.3
√
Nσ in normalized forces. We suppose

this disagreement is because the chain size is slightly smaller at high densities

as compared with that at lower densities due to screening of excluded volume

interactions at high densities.
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In the system with N=20, we can see that the normalized projection forces at

low densities are exactly the same as the effective force in the vacuum, but it is

not true at higher densities(Fig.4.23). We suppose that the disagreement is due

to the difference of the chain size at different densities. After multiplying a shift

factor to the x-axis, we can overlap all these forces onto the vacuum projection

force(Fig.4.24). The shifting factors are 1.157 and 1.09 for ρ = 0.85σ−3, 0.6σ−3

respectively, which are consistent with the radius of gyration of the chain at differ-

ent densities(Fig.4.19). We can see in Fig.4.25 that the projection force maximum

is proportional to the pressure at large densities. Because the chain size of N=10

does not heavily depend on the density of the system as the other large chain

lengths, it is chosen for all the simulations in the later sections.

4.6.3 Three-body effects in the melt

In the next two sections we investigate many-body effects in melts. The density

of the system is set to 0.85σ−3 unless stated otherwise. First of all, three-body

effects are investigated. All chains move freely in the simulation box and none of

the centers-of-mass are fixed as in the previous three chains model. Every triplet

of chains was chosen to measure the force fmel(r12;x3, y3) between the two chains
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Figure 4.26: ∆fmel(r12;x3, y3)
where r12=0.75σ.
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Figure 4.27: ∆fmel(r12;x3, y3) in
contour where r12=0.75σ.
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Figure 4.28: ∆fmel(r12;x3, y3)
where r12=1.75σ.
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Figure 4.29: ∆fmel(r12;x3, y3) in
contour where r12=1.75σ.

where r12 is the distance between the two chains and (x3, y3) is the relative coor-

dinates of the third chain with respect to the center of the other two chains. The

difference function ∆fmel(r12;x3, y3) between fmel(r12;x3, y3) and the one obtained

from force projection method in the melt (dark blue line in Fig.4.20 and Fig.4.22)

is shown in Figs.[4.26-4.35].

Comparing Fig.4.14 with Fig.4.28, we can see that the shapes of these two

functions are similar, but the amplitude of the minimum in the melt(≈ 7) is much

larger than the one in vacuum(≈ 0.6). This can be explained by the fact that

polymer chains have more collisions and the pressure is higher in the melts than

in vacuum, so the probe chain will be affected more by surrounding chains in

the melt. And the affected range is more or less the same in both vacuum and

melts(≈ 4.0σ).

Correction forces in the melt ∆fmel(r12;x3, 0) are compared with the one from

vacuum in Fig.4.36-4.39. The same r12 is chosen for each comparison and the

data are scaled by making ∆fmel(r12; 0, 0) and ∆fvac(r12; 0, 0) both equal to −1. If
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Figure 4.30: ∆fmel(r12;x3, y3)
where r12=2.75σ.
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Figure 4.31: ∆fmel(r12;x3, y3) in
contour where r12=2.75σ.
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Figure 4.32: ∆fmel(r12;x3, y3)
where r12=3.75σ.
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Figure 4.33: ∆fmel(r12;x3, y3) in
contour where r12=3.75σ.
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Figure 4.34: ∆fmel(r12;x3, y3)
where r12=4.75σ.
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Figure 4.35: ∆fmel(r12;x3, y3) in
contour where r12=4.75σ.

r12=1.75σ in Fig.4.36, ∆fmel(1.75;x3, 0) has no maximum although there is a clear

maximum in vacuum, which can be explained by the “screening” in the melts. We

can also see that for large r12 the rescaled correction forces in the melts are quite

similar to the one in vacuum.
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Figure 4.37: Three-body correc-
tion forces ∆f(2.75;x, 0) in vacuum

and the melts.
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Figure 4.38: Three-body correc-
tion forces ∆f(3.75;x, 0) in vacuum

and the melts.
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Figure 4.39: Three-body correc-
tion forces ∆f(4.75;x, 0) in vacuum

and the melts.

4.6.4 Four-body effects

As there are more relative configurations of four bodies as compared with three

bodies, we will only concentrate on one case of four-body effect in polymer melts

in this section. We consider a case where chains 1 and 2 are fixed on the x-axis

in the simulation box, whose centers-of-mass are 2.0σ away from each other and

have the same distance from the point of origin, which means one is located at

(−1, 0, 0), and the other is located at (1, 0, 0). Then we put both chains 3 and 4 on

the x-axis too. The distance between the centers-of-mass of chains 3 and 4 is set

to 2.5σ. During the simulation, we move chains 3 and 4 along the x-axis, which

means the coordinates of the centers-of-mass of chains 3 and 4 are (x′−1.25, 0, 0)

and (x′+1.25, 0, 0), where x′ is the middle point between chains 3 and 4. Other

chains move freely around these four chains. The force f4b(r12;x3, y3, z3, x4, y4, z4)
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between chains 1 and 2 will be affected by the positions of chains 3 and 4 which

is called the four-body effect. As all these four chain are on the x-axis, and the

distance between chains 3 and 4 is fixed, the correction force function can be

simplified to ∆f4b(r12;x
′−1.25, 0, 0, x′+1.25, 0, 0). As the distance between chains

1 and 2 r12 is also fixed to 2σ, the force function depends only on one variable

x′. We compare this result to the sum of two three-body effects which has the

expression as following:(Fig.4.40)

∆fmel(r12;x3, 0) + ∆fmel(r12;x4, 0)

= ∆fmel(r12;x
′−1.25, 0) + ∆fmel(r12;x

′+1.25, 0)

These two curves overlap with each other quite well, which means that we can use

three-body effects to approximate many-body effects in the melts. Now we have

the effective interactions between two polymer chains from microscopic simula-

tions. The question is can we apply these forces or potentials to the coarse-grained

simulations to get a similar objective function g(r) which is consistent with the

one from the microscopic simulations.
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4.7 Coarse-Grained Simulations in Melts

In this section, we will test different pairwise interactions between blobs and then

add three-body effects into the coarse-grained simulations. The comparison of the

radial distribution function of the blobs between original microscopic simulations

and the coarse-grained simulations will be performed. In sections 4.7.1, 4.7.2 and

4.7.3, only pairwise interactions are studied. In section 4.7.4, three-body effects

will be considered in the coarse-grained simulations.

4.7.1 Mean field method

The radial distribution function g(r) of the center-of-mass of the polymer chains

is calculated in microscopic MD simulations(black line in Fig.4.41). Each chain

consists of 10 particles and the particle number density is 0.85σ−3. The mean field

potential is obtained from g(r) as

ϕ(r) = − 1

kBT
ln g(r) (4.13)

where r is the distance between the center-of-mass of two chains. Then we intro-

duce this mean field potential ϕ(r) into our coarse-grained simulation. Normally,

this mean field potential is a starting point of a series of iterations, but we did

not repeat the iterations in this thesis. The radial distribution function g(r) of

the polymer chains in coarse-grained simulation is measured and plotted together

with the one from the microscopic simulation in Fig.4.41. We can see that the two

distribution functions are very different due to many-body effects in the melts.

The mean field method provides a stronger pairwise interaction than it should be.

Now we would like to apply our projection force from the vacuum and the melts

to the coarse-grained simulations.
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Figure 4.42: g(r) from mi-
croscopic(lines) and coarse-
grained(open symbols) simulations
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using vacuum projection force.
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using vacuum projection force.

4.7.2 Vacuum projection force method

We use the projection force(Eq.4.9) in the vacuum from microscopic simulation

to run the coarse-grained simulations at different densities ranging from 0.01σ−3

to 0.85σ−3. Corresponding g(r) are shown in Fig.4.42 and Fig.4.43. From the

microscopic simulations, g(r) is a monotonically increasing function at low den-

sity(black lines in Figs.4.42 and 4.43). The chains tend not to overlap with each

other at short distance. The range of the correlation hole is around 1.5
√
N . If we

increase the density of the system, g(0) is not zero anymore which means that the

chains start to overlap with each other and the maximum in g(r) appears. The

range of the correlation hole becomes smaller with increasing density. At lower

densities, our vacuum projection force can reproduce g(r) in coarse-grained simu-

lations accurately, but g(r) deviates from the one from microscopic simulation at

high density ρ=0.85σ−3 as the many-body effects start to play an important role.

However, the agreement is quite good comparing to the mean field method even

at high densities(Fig.4.41).
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4.7.3 Melts projection force method

In this section, we apply the force projection procedure at different densities with

the same chain length(N=10). The forces are shown in Fig.4.20. We can see that

the forces converge to the vacuum projection force as the density of the system

decreases.

Now we would like to apply these projection forces to the coarse-grained simu-

lations at the same system density where it was obtained. The g(r) of the chains

based on this projection force is plotted in Fig.4.44 together with the ones obtained

from the mean field method, vacuum projection force method and the original mi-

croscopic simulations. The black line in Fig.4.44 is from microscopic simulation

with ρ=0.85σ−3. The symbols are from coarse-grained simulations with different

methods. It shows that if we use the projection force obtained at ρ= 0.85σ−3

directly, the result is worse than that obtained using the vacuum projection force

method. The reason is that the pressure of high density system is much larger

than the pressure in the lower density system, which results in much higher forces.

We conclude that the vacuum projection force is the best to reproduce the radial

distribution function g(r) if only pairwise interactions are considered.
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4.7.4 Pairwise force plus three-body effects

In this section, we will try to add many-body effects into the coarse-grained sim-

ulations. In section 4.5.2, we showed the impact of the position of a third chain

on the force between the two chains(Figs.[4.10-4.16]). We now introduce these

force corrections into the coarse-grained simulations. The monomer density of the

system is 0.85σ−3. We pre-calculate these force correction tables ∆fvac(r12;x3, y3)

and ∆fmel(r12;x3, y3), where r12 = i
2
− 1

4
, i ∈ N, i ∈ [1, 10]. In the new coarse-

grained simulations, we select all triple chains and add force corrections to every

chain.

f1 = fpair(r12) + ∆f(r12;x3, y3) + fpair(r13) + ∆f(r13;x2, y2) (4.14)

f2 = fpair(r23) + ∆f(r23;x1, y1) + fpair(r21) + ∆f(r21;x3, y3) (4.15)

f3 = fpair(r31) + ∆f(r31;x2, y2) + fpair(r32) + ∆f(r32;x1, y1) (4.16)

∆f(r;x, y) is obtained by using linear interpolation of discrete force correction

tables.

∆f(r12;x3, y3) =
2i+1

4
− r12

1/2
∆fvac(

2i− 1

4
;x3, y3) +

r12 − 2i−1
4

1/2
∆fvac(

2i+ 1

4
;x3, y3)

(4.17)

where 2i−1
4
≤ r12 ≤ 2i+1

4
.

The obtained radial distribution function g(r) is shown in Fig.4.45 if the pair-

wise force and the three-body correction force are derived from vacuum. After

introducing twice more fine-grained correction tables, we still got the same result.

It shows that our correction force from the vacuum overestimates the many-body

effects.

Then we would wonder whether the prediction will be better if we use the

pairwise force and three-body correction force from the melt. The results are

shown in Fig.4.46, demonstrating even larger discrepancy from the microscopic

simulations. As the pressure in the melt is very different from the one in the

vacuum, we would like to erase this effect from the melt. We have measured
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Figure 4.45: g(r) in micro-
scopic(line) and coarse-grained sim-
ulations with(blue circle) and with-
out(red square) three-body effects

from the vaccum.
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Figure 4.46: g(r) in micro-
scopic(line) and coarse-grained sim-
ulations with(blue circle) and with-
out(red square) three-body effect

from the melt.
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Figure 4.47: g(r) in micro-
scopic(line) and coarse-grained sim-
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out(red square) scaled three-body

effects from the melts.
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Figure 4.48: Projection force
from pure repulsive Lennard-Jones
potential(black line) and attractive
Lennard-Jones potential(red line).

the pressure of the system at different densities in section 4.6.2, and derived the

maximal pairwise force fmax(ρ) as a function of the density. The forces at high

densities can be scaled down to the same amplitude of the force in vacuum. In our

case the scaling ratio is chosen to be fmax(0.01)/fmax(0.85)=0.1375 and is applied

to both pairwise force and three-body correction force. The RHS of Eqs.(4.14)-

(4.16) were multiplied by this scaling ratio. The coarse-grained simulation results

are shown in Fig.4.47. Again, the three-body correction makes the agreement

worse.

In order to erase the pressure effect from the system, we also tried to increase

the cut-off length of Lennard-Jones potential to 2.5σ to introduce an attractive
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part. The amplitude of projection force derived from this attractive system is

smaller than in the purely repulsive system (Fig.4.48) and there is an attractive

undershoot around r≈1.0
√
N . Furthermore g(r) from both purely repulsive and

attractive Lennard-Jones potentials are almost exactly the same. If we apply this

force to the coarse-grained simulations, the system will be phase separated due to

the attractive force.

We also applied Percus-Yevick and Hypernetted-chain closure to derive the

pairwise potentials. We found that g(r) in coarse-grained simulations using these

potentials are exactly the same as the one from the mean field method. Derivation

details are shown in Appendix B.

4.8 Conclusions

In this chapter, we have investigated the coarse-grained modelling of polymer

melts. Blobs were introduced whose positions were defined as the center-of-mass

of the whole chain. A procedure called force projection method was proposed to

obtain the direct interaction force between the two molecules. First, we applied

this method between a Rouse chain and two repulsive walls. The distribution of

the chain between the walls and the force on the Rouse chain from the wall were

calculated in microscopic simulations. Then we applied this force into coarse-

grained simulations and obtained the same distribution function of the blobs as in

the microscopic simulations, which indicates that the force projection method is

a valid routine to coarse-grain the microscopic variables to mesoscopic variables.

Then we replaced the Rouse chain by a single Kremer-Grest chain. The same

conclusion was obtained, which means that in these simple situations the force

projection method does not depend on the local structure of the chains.

Then we applied the force projection method to the two chains in vacuum to

measure the direct interaction force between them as a function of their separation,

which was called vacuum projection force in this thesis. This force was applied

to coarse-grained simulations at different densities. g(r) from these coarse-grained
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simulations was in good agreement with the one from microscopic simulations even

at high densities. Later on the three-body effects in vacuum were investigated and

then added to the coarse-grained simulations. However, the inclusion of three-

body effects did not improve the quality of g(r). The force projection method

and three-body effects were also investigated in melts. As the pressures were very

different at different densities, we had tried to erase the effect due to pressure

but still we can not improve g(r) by simply adding the three-body contribution.

Surprisingly, we found that in one example the four-body effect can be expressed

as a sum of two three-body effects in the melts(Fig.4.40), which indicated that

the many-body effect can be approximated by the three-body effect in the melts.

Further study is still needed.



Chapter 5

Conclusions

In this thesis we investigated three different aspects of polymer dynamics using

molecular dynamics simulations: orientation relaxation in equilibrium, shear flows

and possible ways of coarse-graining.

5.1 Orientation relaxation in monodisperse and

bidisperse melts

The Rouse[4] and tube theories[14][1] are regarded as successful theories to de-

scribe the dynamics of monodisperse unentangled and entangled linear polymers.

However, both of them can not describe polydisperse melts perfectly. Thus a deep

understanding of polydisperse melts is required in the field. We simulated the sim-

plest polydisperse melts, i.e. binary blends of linear chains, and investigated the

dynamics of different components. A universal time-dependent coupling parame-

ter was derived to build the bridge between the monodisperse and bidisperse melts,

which facilitates application of the theory of monodisperse melts to polydisperse

samples.

127
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5.2 Start-up shear in the melts

As discussed before there is no successful theory to describe dynamics of entangled

polymers in non-linear regime. In this thesis the MD simulations were used to

bridge the gap between experiments and future theories. Mapping coefficients

between the experiments and our simulations were carefully chosen. A possible

shear banding was observed in a mildly entangled system, which is in contradiction

with experimental observation. In the thesis, we prescribe the velocity profile as

a linear function of the distance to the origin, which allows us to measure the

true bulk constitutive equations. However, the shear banding normally causes the

non-linear velocity profiles. In future, a different algorithm[70] will be applied to

compare with the current algorithm and directly observe shear banding in MD.

5.3 Coarse-grained simulations in the melts

All macroscopic properties of the material, i.e. pressure, temperature, etc., are

related to the microscopic molecular properties, i.e. stress, kinetic energy, which

means that if we want to understand the macroscopic properties, the investigation

of small world is essential. However, due to the limit of computer power and

number of particles, we normally can not predict a macroscopic measurement

by using microscopic simulations, which encourages the development of coarse-

graining procedures. A systematic method was developed in this thesis to derive

the effective interaction forces between polymer chains in the melts. If we apply the

pairwise interaction obtained from vacuum to the melts, a reasonable agreement

between the original MD simulations and the coarse-grained simulations can be

achieved. However, if many-body effects were introduced, the agreement became

worse. Several effects were neglected in our procedure. In order to obtained a

better agreement between simulations of two levels, we would like to add these

effects back in the future work.



Appendix A

Normal modes

The main content in this appendix was derived in Doi and Edwards book[1]. In

order to find the normal coordinates, we are using the linear transformation of

Rn(t)

Xp(t) =

∫ N

0

φpnRn(t)dn (A.1)

We need to choose φpn to make the equation of motion for Xp(t) to have the

same formula as the Ornstein-Uhlenbeck processes

ξp
∂Xp

∂t
= −kpXp + f p (A.2)

From Eq.(1.49) and Eq.(A.2), we can see that

ξp
∂Xp(t)

∂t
= ξp

∫ N

0

dn φpn
∂Rn(t)

∂t

=
ξp
ξ

∫ N

0

dn φpn

(
k
∂2Rn

∂n2
+ fn

)
=

ξp
ξ

∫ N

0

dn φpn

(
k
∂2Rn

∂n2

)
+
ξp
ξ

∫ N

0

dn φpnfn

=
ξp
ξ

([
φpnk

∂Rn

∂n

]N
0

−
∫ N

0

dn
∂φpn
∂n

k
∂Rn

∂n

)
+
ξp
ξ

∫ N

0

dn φpnfn

(A.3)
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By using Eq.(1.50)

ξp
∂Xp(t)

∂t
= −ξp

ξ

∫ N

0

dn
∂φpn
∂n

k
∂Rn

∂n
+
ξp
ξ

∫ N

0

dn φpnfn

= −ξp
ξ

(
k
∂φpn
∂n

Rn

∣∣∣∣N
0

−
∫ N

0

dn k
∂2φpn
∂n2

Rn

)
+
ξp
ξ

∫ N

0

dn φpnfn

= −ξp
ξ
k
∂φpn
∂n

Rn

∣∣∣∣N
0

+
ξp
ξ

∫ N

0

dn

(
k
∂2φpn
∂n2

Rn + φpnfn

)
(A.4)

The RHS of Eq.(A.2) can be expressed as following:

− kpXp + f p =

∫ N

0

dn (−kpφpnRn) + f p (A.5)

From Eq.(A.4) and Eq.(A.5), the following equation is achieved:

− ξp
ξ
k
∂φpn
∂n

Rn

∣∣∣∣N
0

+
ξp
ξ

∫ N

0

dn

(
k
∂2φpn
∂n2

Rn + φpnfn

)
=

∫ N

0

dn (−kpφpnRn) + f p

(A.6)

For Eq.(A.6) to hold, we must have

− kpφpn =
ξp
ξ
k
∂2φpn
∂n2

(A.7)

∂φpn
∂n

∣∣∣∣
n=0

= 0,
∂φpn
∂n

∣∣∣∣
n=N

= 0 (A.8)

f p =
ξp
ξ

∫ N

0

dn φpnfn (A.9)

Eq.(A.7) and Eq.(A.8) define the eigenfunctions φpn. We can get the solution

as following:

φpn =
1

N
cos
(pπn
N

)
(p = 0, 1, 2, . . .) (A.10)

and

kp =
ξp
ξ
k
(pπ
N

)2

(A.11)

Now we can choose ξp such that f p satisfies 〈f pα(t)f pα(0)〉 = 2ξpkBTδ(t).
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From Eq.(A.9)

〈f pα(t)f qβ(0)〉 =
ξpξq
N2ξ2

∫ N

0

dn

∫ N

0

dm cos
(pπn
N

)
cos
(qπm
N

)
〈fnα(t)fmβ(0)〉

=
ξpξq
N2ξ2

∫ N

0

dn cos
(pπn
N

)
cos
(qπn
N

)
2ξkBTδαβδ(t)

=
ξ2
p

N2ξ2
(1 + δp0)NδpqξkBTδαβδ(t)

Thus the discrete and continuous normal coordinates for Rouse model are as

follow:

Xp =
1

N + 1

N∑
i=0

Ri cos

(
πp(i+ 1/2)

N + 1

)
(A.12)

Xp =
1

N

∫ N

0

R(i) cos

(
πpi

N

)
di (A.13)

with inverse transformation

Ri = X0 + 2
N∑
p=1

Xp cos

(
πp(i+ 1/2)

N + 1

)
(A.14)

Ri = X0 + 2
N∑
p=1

Xp cos

(
πpi

N

)
(A.15)

where p is the normal mode, and i is the bead number. Note that the zeroth mode

X0 = 1
N+1

∑N
i=0Ri = Rcm corresponds to the center of mass motion.

The equation of motion after transformation to normal coordinates is

ξp
dXp

dt
= −kpXp + f p (A.16)

〈f p(t)f q(t′)〉 = 6kBTξpδpqδ(t− t′) (A.17)

where for the center of mass mode ξ0 = (N+1)ξ and kp = 0, for all the other modes

in case of discrete transformation ξp = 2(N+1)ξ and kp = 24kBT (N+1)
b2

sin2
(

πp
2(N+1)

)
.
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This means that the spectrum of relaxation times is given by

τp =
ξp
kp

=
ξb2

12kBT
sin−2

(
πp

2(N + 1)

)
; p = 1 . . . N (A.18)

Thus, the longest relaxation time is

τR = τ1 =
ξb2

12kBT
sin−2

(
π

2(N + 1)

)
≈ ξb2(N + 1)2

3π2kBT
(A.19)

which is also called Rouse time.

Eq.(A.16) describes free diffusion of the center of mass and N independent

Ornstein-Uhlenbeck processes. The formal solution of these equations are

X0(t) = X0(0) +
1

ξ0

∫ t

0

f 0(t
′)dt′ (A.20)

= X0(0) +
1

ξ0

∫ t

0

√
2kBTξ0 dW

′ (A.21)

Xp(t) = Xp(0) exp(− t

τp
) +

1

ξp

∫ t

0

f p(t
′) exp(−t− t

′

τp
)dt′ (A.22)

= Xp(0) exp(− t

τp
) +

1

ξp

∫ t

0

√
2kBTξp exp(−t− t

′

τp
) dW ′ (A.23)

And we can obtain the mean-square displacement of center-of-mass and the modes

correlation function as following:

〈(X0(t)−X0(0))2〉 =
2kBT

ξ(N + 1)
t (A.24)

〈Xp(t)Xq(t
′)〉 = δpq

1

24(N + 1)
sin−2

(
πp

2(N + 1)

)
exp(−|t− t

′|
τp

)(A.25)
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This means that the time correlation function of the end-to-end vector Re(t) =

RN(t)−R0(t) is

〈Re(t) ·Re(0)〉 = 16
∑
p=odd

〈Xp(t) ·Xp(0)〉

= 16
∑
p=odd

3kBT

kp
exp

(
− t

τp

)
≈ Nb2

∑
p=odd

8

p2π2
exp

(
−p

2t

τR

)
. (A.26)



Appendix B

Percus-Yevick and

Hypernetted-chain closure

B.1 Ornstein-Zernike equation

In statistical mechanics the Ornstein-Zernike equation is an integral equation

for defining the direct correlation function. It basically describes how the correla-

tions between two molecules can be calculated.

It is convenient to define the total correlation function:

h(r12) = g(r12)− 1

which is a measure for the “influence” of molecule 1 on molecule 2 at distance r12

away with g(r12) as the radial distribution function. In 1914 Ornstein and Zernike

proposed to split this influence into two contributions, a direct and indirect part.

The direct contribution is defined to be given by the direct correlation function,

denoted c(r12). The indirect part is due to the influence of molecule 1 on a third

molecule, labeled 3, which in turn affects molecule 2, directly and indirectly. This

indirect effect is weighted by the density and averaged over all possible positions
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of particle 3. This decomposition can written down mathematically as:

h(r12) = c(r12) + ρ

∫
c(r13)h(r32)dr3 (B.1)

which is called Ornstein-Zernike(OZ) equation. The total correlation at r12

is the sum of a direct correlation plus an indirect contribution coming from all

surrounding points.

The OZ equation has the interesting property that if one multiplies Eq.(B.1)

by ei
~k·~r12 and integrate with respect to d~r1 and d~r2 one obtains:

∫∫
d~r1d~r2h(r12)e

i~k~r12 =

∫∫
d~r1d~r2c(r12)e

i~k~r12 + ρ

∫∫∫
d~r1d~r2d~r3c(r13)e

i~k~r12h(r23)

If we denote the Fourier transform of h(r) and c(r) by Ĥ(k) and Ĉ(k) this rear-

ranges to

Ĥ(k) = Ĉ(k) + ρĤ(k)Ĉ(k) (B.2)

from which we obtain that

Ĉ(k) =
Ĥ(k)

1 + ρĤ(k)

Ĥ(k) =
Ĉ(k)

1− ρĈ(k)
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And

Ĥ(k) =

∫
d~r1d~r2h(r12)e

i~k·~r12 =

∫
d~r1d~r12h(r12)e

i~k·~r12 = V

∫
d~r12h(r12)e

i~k·~r12

= V

∫ 2π

0

dϕ

∫ π

0

dθ

∫ +∞

0

h(r12)e
ik·r12 cos θr2

12 sin θdr12

= 2πV

∫ +∞

0

dr12

∫ π

0

h(r12)e
ik·r12 cos θr2

12 sin θdθ

= 2πV

∫ +∞

0

dr12

∫ π

0

−h(r12)e
ik·r12 cos θr2

12d cos θ

= 2πV

∫ +∞

0

dr

∫ 1

−1

h(r)eik·r·yr2dy = 2πV

∫ +∞

0

h(r)r2dr

∫ 1

−1

eik·r·ydy

= 2πV

∫ +∞

0

h(r)r2 e
ikr − e−ikr

ikr
dr = 4πV

∫ +∞

0

h(r)r2 sin kr

kr
dr

= 4πV

∫ +∞

0

h(r)r
sin kr

k
dr =

4π

k
V

∫ +∞

0

rh(r) sin krdr

=
4π

k
V Fsin(rh(r)) (B.3)

where Fsin(f(r)) =
∫ +∞

0
f(r) sin krdr is a sin-Fourier transform of f(r). Put

Eq.(B.3) into Eq.(B.2), we get

Fsin(r · c(r)) =
Fsin(r · h(r))

1 + 4πρ
k
Fsin(r · h(r))

(B.4)

B.2 Percus-Yevick equation

Percus-Yevick equation is a closure relation to solve the Ornstein-Zernike equation

which relates the direct correlation function to the total correlation function. The

direct correlation function represents the direct correlation between two particles

in a system containing N − 2 other particles. It can be represented by

c(r) = gtotal(r)− gindirect(r)

where gtotal(r) is the radial distribution function, i.e. gtotal(r) = exp{−βϕ(r)}(with

ϕ(r) the potential of mean force, β = 1/kBT ) and gindirect(r) is the radial dis-

tribution function without the effective interacton potential u(r) between pairs
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included, i.e. we write gindirect(r) = exp{−β(ϕ(r)− u(r))}. Thus we can approxi-

mate c(r) by

c(r) = e−βϕ(r) − e−β(ϕ(r)−u(r)) (B.5)

u(r) =
1

β
ln

[
1− c(r)

h(r) + 1

]
(B.6)

which means we can obtain effective interaction potential u(r) if h(r) and c(r) are

known.

B.3 Hypernetted-chain equation

Hypernetted-chain equation is also a closure relation to solve the Ornstein-Zernike

equation which relates the direct correlation function to the total correlation func-

tion. By expanding gindirect(r) in the Eq.(B.5) and introducing the function

g(r) = h(r) + 1 = exp{−βϕ(r)} (B.7)

we can approximate c(r) by writing:

c(r) = e−βϕ(r) − 1 + β(ϕ(r)− u(r))

= g(r)− 1− ln g(r)− βu(r)

= h(r)− ln g(r)− βu(r)

= h(r)− ln(h(r) + 1)− βu(r) (B.8)

u(r) =
1

β
[h(r)− ln(h(r) + 1)− c(r)] (B.9)

which again means that we can obtain effective interaction potential u(r) if h(r)

and c(r) are known.
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Figure B.1: h(r) and c(r) of the
“blobs” in the system with ρ =

0.85σ−3.
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Figure B.2: Direct interaction
potential in PY and HNC closure.
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Figure B.3: g(r) in microscopic
simulation, coarse-grained simula-
tion by using vacuum projection
force, mean force and the potential

obtained from HNC closure.

B.4 Coarse-grained simulation by using poten-

tials obtained from PY and HNC closure

Now we try to get effective interaction potential for “blobs”. We can get c(r) if h(r)

is known by using Eq.(B.4). h(r) can be obtained from microscopic simulation.

In Fig.B.1, we show h(r) and c(r) in the system with monomer density equal to

0.85σ−3. Thus, we can derive the direct interaction potential by using Eq.(B.6) and

(B.9)(Fig.B.2). g(r) in the coarse-grained simulation with this pairwise interaction

is shown in Fig.B.3 together with the desired one. The result is exactly the same

as the one from the mean field method in section 4.7.1, and is much worse than

the one from the vacuum projection force method.
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