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Abstract

This dissertation looks at methods used to model wave scattering over an un-

even water bed, namely the mild-slope equation and the modified mild-slope

equation. These methods are then manipulated so they can be applied to acous-

tic wave motion through a duct. The ducts modelled in this dissertation have

an undulating region with two uniform regions either side that may or may not

have the same width. The walls of the ducts have Dirichlet boundary condi-

tions, however the effect of Neumann boundary conditions are discussed. Both

the scattering problem and the trapped wave problem are considered. The

scattering problem is modelled with both a single mode approximation and

a multi-mode approximation. The results from these two methods are com-

pared. When modelling the trapped wave problem, only the single mode is

considered. Nonetheless, the multi-mode approximation applied to this prob-

lem is discussed. The occurrence of more than one trapped wave within the

undulating region of the duct is also investigated.
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Introduction

Chapter 1

Introduction

This dissertation explores new methods for approximating acoustic wave motion

through a varying duct. An application of the work covered in this dissertation

is controlling noise reduction in inlets and exhausts of jet engines, which effec-

tively function like acoustic waveguides.

We will be looking at a cross section of a duct with two regions of con-

stant, but not necessarily the same, width. Joining these two segments will be

a region of length ℓ that has varying width.

0 ℓ

w(x)
6

? a(x)

b(x)

Within the segment of varying width (0 < x < ℓ), the velocity potential φ is

modelled using Helmholtz equation, ∇2φ + k2φ = 0.

With this problem, the boundary conditions on the duct walls remain to

be specified. This dissertation will consider Dirichlet boundary conditions on

both of these boundaries, meaning y(a) = y(b) = 0; other boundary conditions

are discussed in the penultimate chapter.

To start, we dedicate a chapter to modelling wave scattering over an

uneven water bed, looking specifically at using the mild-slope equation, and its

variant, the modified mild-slope equation as approximation methods. Although

1



Introduction

there are differences between the water bed problem and our acoustic problem,

we can develop a model to solve our problem based on methods used to solve

the former problem.

In Chapter 2, the reader is introduced to the scattering problem over an

uneven water bed. Due to the linearity of the problem, the relation between

the amplitudes of the incoming waves and outgoing waves are discovered. Once

the scattering problem is defined, we are shown one approach used to acquire

the modified mild-slope equation and the mild slope equation. Following the

derivation of these equations is a discussion about their use as an approxima-

tion tool for a varying water bed model, taking into account the assumptions

that are made when they are used. The reader is informed of different develop-

ments that have occurred to overcome deficiencies in the mild-slope equation,

specifically on multi-mode approximations which ensure the accuracy of the

approximation is known.

Now that we are armed with a method of approximation, the next chapter

looks at single mode approximations for acoustic wave transmission through a

duct. This chapter looks at both the scattering problem and the trapped wave

problem. An ordinary differential equation is derived in a similar fashion to

the modified mild-slope equation in Chapter 2. This ordinary differential equa-

tion is part of a boundary value problem, where the boundary conditions are

calculated from the solution in regions of constant width. The boundary condi-

tions for the scattering problem and the trapped problem are different as we’d

expect different wave activity in the uniform regions. Also, with the trapped

wave problem the conditions for a trapped wave to exist need to be established,

therefore it is as an eigenvalue problem.

Chapter 4 investigates the scattering problem when more modes are in-

cluded. So we return to deriving an ordinary differential to approximate the

undulating region. However, this time we find that we N ordinary differen-

tial equations, with 2N boundary conditions, where N is the number of modes

included in the approximation. We calculate the coefficients of the ordinary dif-

ferential equations and present them as matrices to keep the notation straight-

forward. The system of boundary value problems is then solved numerically.

The results, along with the single mode approximations, are presented and dis-

cussed in Chapter 5.

Finally, we finish this dissertation with a summary and details about

2



Introduction

further work with acoustic wave transmission through ducts. Areas of further

work include multi-mode approximations for the trapped wave problem and

discussing the effect of Neumann boundary conditions along the duct walls.

3



Wave Scattering Over Uneven Depth

Chapter 2

Wave Scattering Over Uneven

Depth

2.1 Introduction

There has been extensive research into water waves propagating over a varying

bed. This has resulted in many published papers stating different methods for

approximating the solution to this situation.

This dissertation is going to use some of these same methods to approx-

imate acoustic wave transmission through a duct with varying side-walls. So

firstly, we shall discuss linear approximations to wave scattering by an uneven

bed, focusing on how the mild-slope equation and modified mild-slope equation

are used to approximate the full linear solution.

2.2 Defining a Scattering Problem

Let us begin by looking at some aspects of the scattering of a train of plane

harmonic waves by variations in the bed, on the basis of linearised theory.

The boundary value problem for the time-independent velocity potential

φ(x, y, z) arising in the three-dimensional case is

∇2φ = 0 (−h < z < 0) (2.1)

φz − σφ = 0 (z = 0) (2.2)

φz + ∇hh.∇hφ = 0 (z = −h) (2.3)

4



Wave Scattering Over Uneven Depth

together with the appropriate radiation conditions, where we have used the

notation ∇h =
(

∂
∂x

, ∂
∂y

)
and σ = ω2

g
. Here, ω is the prescribed angular wave

frequency, g is the gravitational acceleration, and x and z are Cartesian coor-

dinates, with z = 0 coinciding with the undisturbed free surface. The surface

elevation, which may be regarded as the principal unknown function, is recov-

ered from φ by

η(x, y, t) = Re
( g

iω
φ(x, y, 0)eiωt

)
. (2.4)

It is assumed that the quiescent depth h(x, y) is a given, bounded func-

tion; we shall usually suppose that it is continuous.

Suppose we take a cross-section of the water bed, we then reduce the

problem to a two dimensional situation - one for which plane waves propagate

in a direction parallel to the x-axis and h = h(x) so that φ = φ(x, z), as shown

below.

-
6
z

x

φz − σφ = 0

φz + ∇hh.∇hφ = 0

∇2φ = 0

Mixed boundary condition

Neumann boundary condition

h(x)

?

6

-

On an interval where h is constant, separation of variables used in the boundary

value problem gives

φ(x, z) =
(
A0e

ikx + B0e
−ikx

)
Z0(z, h) +

∞∑

n=1

(
Aneknx + Bne−knx

)
Zn(z, h), (2.5)

for some constants An, Bn (n ≥ 0). Here we have written

Z0(z, h) = c0 cosh k(z + h) (2.6)

Zn(z, h) = cn cos k(z + h) (n ≥ 1) (2.7)

where k denotes the positive real root of the dispersion relation

σ = k tanh kh (2.8)

5



Wave Scattering Over Uneven Depth

and kn are the positive, real roots of

σ = −kn tan knh, (2.9)

arranged so that kn ≤ kn+1 (n ≥ 1). The coefficients in (2.6) and (2.7) are

defined by

c0 = c0(h) = 2
√

k(2kh + sinh(2kh))−1, (2.10)

cn = cn(h) = 2
√

kn(2knh + sinh(2knh))−1, (n ≥ 1), (2.11)

which ensure that the functions Zn(h, z) (n ≥ 0) form a complete orthonormal

set on −h ≤ z ≤ 0. The notation makes use of (2.8) and (2.9) to define k = k(h)

and kn = kn(h) (n ≥ 1) implicitly.

-

6

k

tanh kh

σ/k

s

-

6

s

s
k

tan kh

−
σ/k

The two diagrams above correspond to equations (2.8) and (2.9) respectively.

We can see that σ = k tanh kh has just the one positive solution. This rep-

resents a wave propagating through to infinity - a travelling wave. Whereas,

σ = −kn tan knh has infinitely many solutions, representing waves that decay

exponentially.

The final conditions we require for the scattering problem are the condi-

tions on the right and left - the radiation conditions. These follow from equation

(2.5) and may be taken in the form

φ(x, z) ∼
(
A−eik−x + B−e−ik−x

)
Z0(z, h−) x → −∞, (2.12)

φ(x, z) ∼
(
A+e−ik+x + B+eik+x

)
Z0(z, h+) x → +∞, (2.13)

6



Wave Scattering Over Uneven Depth

where we have supposed that h(x) → h± as x → ∞ and written k± for the

appropriate roots of the dispersion relation (2.8) corresponding to h = h±. The

{
eikx term represents right-travelling waves and

e−ikx term represents left-travelling waves,

and A± and B± are the amplitudes of the corresponding waves, i.e. A± are the

amplitudes of the incoming waves and B± are the amplitudes of the outgoing

waves. This is illustrated below where we can see a cross-section of a water bed

that has two constant, but different heights either side of a region of length ℓ,

that has varying height.

0 ℓ

6

?

6

?h+

h−h(x)
6

?

-
-

�

�A−

B−

A+

B+

Let us focus on the two different areas of constant depth for a moment. Now

if we recall equation (2.5) we can see that as x → −∞, we must have Bn = 0

(n ≥ 1), thus preventing the solution from ‘blowing up’. Furthermore, we can

state that A0 = A− and B0 = B−. Similarly, as x → +∞, An = 0 (n ≥ 1),

B0 = A+ and A0 = B+.

As the boundary value problem is linear, we can separate this general

scattering problem into the two special cases below

-A− = 1

�R−

� A+ = 0

- T−

� A+ = 1

- R+

-A− = 0

�T+

where R± are defined as the reflection coefficients and T± are defined as the

transmission coefficients. From the diagrams we can see that the amplitudes of

7



Wave Scattering Over Uneven Depth

the outgoing waves, B±, are

A− = 1, A+ = 0 : B− = R−, B+ = T− (2.14)

A− = 0, A+ = 1 : B+ = R+, B− = T+ (2.15)

Due to linear theory, we can put these two separated cases back together to

return to the general case. So the amplitudes of outgoing waves and amplitudes

of incoming waves are therefore related by

(
B−

B+

)
=

(
R− T+

T− R+

)(
A−

A+

)
≡ S

(
A−

A+

)

where the scattering matrix S provides a complete description of the scattering

process.

2.3 Derivation of the Modified Mild-Slope Equation

Continuing with a cross-section of the water bed, let us investigate what hap-

pens when h varies. We shall start by assuming

φ(x, z) ≈ φ̂(x, z) = φ0(x)Z0(z, h(x)). (2.16)

Ideally, we would have ∇2φ̂ = 0, however, this is not the case - although it is

close to zero. So to work around this, we take the weak form of ∇2φ = 0, in

our aim to make ∇2φ̂ orthogonal to Z0(z, h(x)). Thus we require

∫ 0

−h

∇2φ̂Z0 (z, h(x)) dz = 0 (2.17)

so that

∫ 0

−h

∇2(φ0Z0)Z0 dz = 0 (2.18)

i.e.

∫ 0

−h

(
(φ0Z0)xx + (φ0Z0)yy

)
Z0 dz = 0 (2.19)

8



Wave Scattering Over Uneven Depth

or equivalently

∫ 0

−h

(φ0xxZ0 + 2φ0xZ0x + φ0Z0xx + φ0Z0yy)Z0 dz = 0. (2.20)

Now, Z0yy = k2Z0, and
∫ 0
−h

(φ′′
0Z0 + 2φ′

0Z0x)Z0 dz =
(∫ 0

−h
φ′

0Z
2
0 dz

)′
, so if we

write u0 =
∫ 0
−h

Z2
0 dz, equation (2.20) can be expressed as

(u0φ
′

0)
′ + k2u0φ0 + vφ0 = 0, (2.21)

where v =
∫ 0
−h

φ0Z
′
0Z0 dz and the dash notation indicates differentiation with

respect to x. It can further be shown that v = u1h
′′+u2h

′2, for certain functions

u1 = u1(h), u2 = u2(h) (see Chamberlain and Porter (1995) for details), so that

we have

(u0φ
′

0)
′ + (k2u0 + u1h

′′ + u2h
′2)φ0 = 0. (2.22)

This process has averaged over the vertical axis to remove z components, so we

are now dealing with just the one dimension (in x).

The last equation above (2.22) is the modified mild-slope equation. In

the general three-dimension case it is

∇h.u0∇hφ0 + (u0k
2 + u1∇2

hh + u2(∇hh)2)φ0 = 0. (2.23)

We have now seen how the modified mild-slope equation is technically derived,

we shall later discuss why it was developed.

2.4 Derivation of the Mild-Slope Equation

So far, we have made the main assumption that the

• vertical structure of the velocity potential is equal, locally, to its behaviour

over a flat bed.

A further assumption that has been widely used is that

• terms involving either the second derivatives or square of first derivatives

of the still water depth function are negligible,

i.e. ∇2
hh ≈ (∇hh)2 ≈ 0.

9



Wave Scattering Over Uneven Depth

Note that these assumptions are satisfied when h is constant. The second

assumption allows us to simplify equation (2.23) to the mild-slope equation

∇h.u0∇hφ0 + u0k
2φ0 = 0. (2.24)

The mild-slope equation was first presented by Berkhoff (1973, 1976).

2.5 Discussing the Modified Mild-Slope Equation and

Mild-Slope Equation

It is worth mentioning at this point, that the validity of the second assumption

(∇2
hh ≈ (∇hh)2 ≈ 0) has since been queried. Whilst it may seem that it is plau-

sible as long as the depth varies ‘slowly’ in some sense - recent work has shown

that the effect of ∇2
hh is more important than previously thought. Nonetheless,

experiments carried out have led to the belief that the mild-slope equation is

capable of providing excellent approximations which display the correct refrac-

tion, diffraction and scattering properties.

Other methods for solving these problems involve finding the diffraction

solution for constant depth and then superimposing the reflection solution.

These methods are questionable as it assumes reflection and diffraction are

independent of each other.

It was observed by a number of authors that the mild-slope equation failed

to produce adequate approximations for certain types of topography, such as

ripple beds. These consist of a finite patch of small-amplitude sinusoidal ripples

set in an otherwise horizontal bed. To overcome this deficiency in the mild-slope

equation, numerous authors developed different methods to model ripple bed

problems.

• Kirby (1986) presented a model in which the bed profile consists of a

slowly varying (mild-slope) component on which is superimposed a rapidly

varying component of small amplitude. Applying the vertical integration

process led to what is now called the extended mild-slope equation.

• Massel (1993) proposed an approximation which combines the basic single-

term mild-slope approximation with additional terms containing eigen-

functions corresponding to a number of evanescent modes. It is therefore

capable of dealing with relatively steep bed profiles.

Chamberlain and Porter (1995) used the relatively simple type of approximation

used by Berkhoff (1973, 1976) and Kirby (1986) to present the modified mild-

10
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slope equation.

2.6 Multi-Mode Approximations

The reader should now be familiar with one method that is used to obtain the

mild-slope equation and one of its variants - the modified mild slope equation.

As we have seen, a clear benefit of using the mild-slope equation (or a variant

of it), is its manner of reducing the dimension of the problem.

However, the drawback in using the mild-slope approximation is that its

accuracy is not known. It was stated at the beginning of Section 2.4 that the

results obtained are likely to be reasonably good approximations if the topog-

raphy is slowly varying. But even in this case the derivation does not lead to an

error term that can be estimated. To obtain more reliable quantative informa-

tion further terms must be included in the approximation. Massel (1993) con-

ducted this in the manner described in Section 2.5 by using Galerkin’s method.

Porter and Staziker (1995) also implemented the same concept by invoking a

variational principle. It was shown that, by including N additional terms and

increasing N until a desired accuracy has been reached, the removal of the ver-

tical coordinate again simplifies the problem when the extended ‘multi-mode’

approximation is used but the modified mild-slope equation is replaced by N +1

coupled partial differential equations in the horizontal variables.

2.7 Acoustic Wave Transmission

We have seen how the mild-slope equation and the modified mild-slope equation

can be used to approximate wave scattering over an uneven water bed. This

project looks at how we can adapt these methods to approximate a different

problem: acoustic wave transmission through ducts.

-
6
y

x

y = b(x)

y = a(x)

∇2φ + k2φ = 0

mixed boundary conditions

mixed boundary conditions

w(x, y)

?

6
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Wave Scattering Over Uneven Depth

The diagram above illustrates our new, acoustic, problem. The differences

between this problem and the previous water-bed problem are that

• we are working with the Helmholtz equation instead of Laplace’s equation,

• we are no longer assuming the top boundary is linear, i.e., both the top

and bottom boundaries may vary,

• we have different boundary conditions on the top and bottom of the

duct, whereas previously the assumptions of water wave theory deter-

mined these boundary conditions.

The Helmholtz equation is used as linear acoustic waves are governed by the

two-dimensional wave equation

∇2φ̂ − c2φ̂tt = 0, (2.25)

where c is the sound speed. Now if we assume harmonic time-dependence, i.e.,

φ̂(x, y, t) = φ(x, y)e−iωt, then the equation above becomes

∇2φ + k2φ = 0 (2.26)

where k = ω/c is a wave number.

This dissertation will only be working with Dirichlet boundary conditions

on both the top and bottom of the duct. We will be looking at single mode

approximations for both a scattering and a trapped wave, as well as exploring

the scattering problem further for multi-mode approximation.

Suppose we have a duct like below, where there are two different regions

of constant height either side of a varying region.

0 ℓ

w(x)
6

? a(x)

b(x)

We require a(x) and b(x) to be uniform outside a finite region 0 < x < ℓ, and

write

a(x) =

{
a0 x ≤ 0

a1 x ≥ ℓ
b(x) =

{
b0 x ≤ 0

b1 x ≥ ℓ.

Within these uniform regions, a′ and b′ are zero.

Furthermore, we shall restrict attention to the case where the undulating

12



Wave Scattering Over Uneven Depth

duct walls meet the uniform regions smoothly, i.e., we require that a′(0) =

b′(0) = a′(ℓ) = b′(ℓ) = 0.

13



Single Mode Approximations

Chapter 3

Single Mode Approximations

3.1 A Scattering Problem

3.1.1 Regions Of Constant Width

To start, we shall examine the areas of constant width and separate the variables

as previously done for the water wave problem. In uniform regions we write

φ(x, y) = u(x)Y (y), (3.1)

and separating the variables gives

u′′

u
+

Y ′′

Y
+ k2 = 0, (3.2)

⇒ u′′

u
+ k2 = −Y ′′

Y
= ν, (3.3)

where ν is a separation constant.

In the y direction we have

Y ′′ + νY = 0. (3.4)

This has the general solution

Y (y) = A cos(
√

νy) + B sin(
√

νy)

= Ã sin
[√

ν(y − a)
]
, (3.5)

where the second form ensures that the Dirichlet condition at y = a is satisfied,

and Ã is a constant. Now, there are two different areas of constant width, so

hence there are two different values of a (and b) for (3.5), and consequently

14
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there are two different ν. We shall use the notation ν(j) to correspond with aj

and bj , where j = 0, 1.

To obtain ν(j) we use the conditions determined by the Dirichlet boundary

conditions, namely Y (bj) = 0, hence

Ã sin
[√

ν(j)(bj − aj)
]

= 0, j = 0, 1. (3.6)

For this to be the case, we must have

√
ν

(j)
n (bj − aj) = nπ,

⇒ ν(j)
n =

n2π2

(bj − aj)2
. j = 0, 1 and n = 1, 2, ... (3.7)

Finally, choosing Ã = 1 we have

Yn(y) = sin

(
nπ(y − aj)

bj − aj

)
. j = 0, 1 and n = 1, 2, ... (3.8)

Let us return to equation (3.3), this time taking the equation in the x direction,

u′′

n + (k2 − νn)un = 0. n = 1, 2, ... (3.9)

This has solution

un(x) = Aneiκ
(j)
n x + Bne−iκ

(j)
n x, j = 0, 1 and n = 1, 2, ... (3.10)

where κ
(j)2

n = k2 − ν
(j)
n . Note that if κ

(j)
n is real, i.e. if n <

k(bj−a)j)
π

, then

equation (3.10) represents propagating modes. Otherwise, if κ
(j)
n is imaginary,

then ±iκ
(j)
n is real, and the modes are evanescent. We restrict our attention

to the case for which a single mode propagates, i.e we require the wall profiles

a(x) and b(x) to satisfy

1 <
k

π
(b − a) < 2. (3.11)

Hence the most general solution is

φ =
∞∑

n=1

un(x)Yn(y). (3.12)

For now, we shall make the approximation to proceed with only the single

mode, n = 1. By doing this we are assuming that the vertical structure of the

15
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velocity potential is equal, locally, to its behaviour over a flat bed - this is a

key assumption of the mild-slope equation which was discussed earlier in this

dissertation.

3.1.2 Undulating Regions

Taking the earlier assumption into consideration, let us move onto the undu-

lating regions where u1 depends on both x and y. Let

φ(x, y) ≈ u1(x, y)Y1(y, a, b), (3.13)

where a = a(x), b = b(x) and Y1 = sin
(

π(y−a)
b−a

)
.

When working with the water wave problem, the weak form of Laplace’s

equation was taken. So for this new problem we shall take the weak form of

the Helmholtz equation to force the result

∫ b

a

(∇2(u1Y1) + k2u1Y1)Y1dy = 0, (3.14)

where u1Y1 = u1(x)Y1(y, a, b) and a, b, and Y1 are defined as earlier.

Next, we rearrange equation (3.14) to give us as an ordinary differential

equation (ODE) in terms of u1 and its x derivatives. Let us begin with the

term

∇2(u1Y1) = (u1Y1)xx + (u1Y1)yy. (3.15)

When we break this down we get

(u1Y1)x = u1xY1 + u1Y1x , (3.16)

(u1Y1)xx = u1xxY1 + 2u1xY1x + u1Y1xx , (3.17)

(u1Y1)y = u1Y1y , (3.18)

(u1Y1)yy = u1Y1yy . (3.19)
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Substituting these values back into (3.14) gives

0 =

∫ b

a

[
(u1Y1)xx + (u1Y1)yy + k2u1Y1

]
Y1 dy

=

∫ b

a

[
u1xxY1 + 2Y1xu1x + u1(Y1xx + Y1yy + k2Y1

]
Y1 dy

= αu′′

1 + α′u′

1 + (β + γ + k2α)u1

= (αu′

1)
′ + (β + γ + k2α)u1 (3.20)

where (.)′ denotes the differentiation with respect to x,

α = (Y1, Y1), β = (Y ′′

1 , Y1), γ = (Y1yy , Y1), (3.21)

and the brackets denote the inner product notation

(f, g) =

∫ b

a

f(y)g(y) dy. (3.22)

Now we are required to compute the coefficients we have just defined.

α = (Y1, Y1), (3.23)

=

∫ b

a

sin2

(
π(y − a)

b − a

)
dy, (3.24)

=
1

2
(b − a). (3.25)

β = (Y ′′

1 , Y1), (3.26)

=

∫ b

a

[ (
a′Y1aa + b′Y1ab

)
a′ +

(
a′Y1ab

+ b′Y1bb

)
b′

+a′′Y1a + b′′Y1b

]
Y1 dy, (3.27)

=
1

12(b − a)

{
3b′′(b − a) − 3a′′(b − a) − 3(b′ − a′)2

−2π2(a′2 + b′2 + a′b′)
}

. (3.28)

γ = (Yyy, Y ), (3.29)

=

∫ b

a

Y1Y1yy dy, (3.30)

=
π2

2(a − b)
, (3.31)

= − π2α

(b − a)2
. (3.32)
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Note that β = 0 when a′ = b′ = a′′ = b′′ = 0.

Finally, we have all the components of the ODE. Later, we will determine

the boundary conditions for the undulating region, thus enabling us apply an

ODE solver to (3.20) so that we may acquire u1(x) in the region 0 < x < ℓ.

Suppose we have a scattering problem as below:

0 ℓ

w(x)
6

? a(x)

b(x)

�
R

-
1

- T

Earlier, we defined u1 in the constant regions as equation (3.9). Using this we

can write

u1(x) = eiκ
(0)
1 x + Re−iκ

(0)
1 x, (3.33)

for x < 0, since there is an incident right travelling wave with an amplitude of

one, along with a reflected wave of amplitude R..

Similarly, for x > ℓ we write

u1(x) = Teiκ
(1)
1 x, (3.34)

to ensure there is an outgoing wave only, the transmitted wave.

3.1.3 Determining The Boundary Conditions

The previous subsection provided us with information for u1(x) over the whole

region. The next step is to determine the boundary conditions on either side of

the undulating region. This needs to be approached in a manner that eliminates

R and T as they are unknown at this point. For continuity, the value of u1 just

to the left of x = 0 will equal the value of u1 just to the right of x = 0, as will

the derivatives of u1. Consequently we must have

u1(0
−) = u1(0

+) (3.35)

u′

1(0
−) = u′

1(0
+) (3.36)

where u1(0
±) denotes u1 slightly to the left or right of zero accordingly, and

similarly for u1(ℓ). So we require (3.33) to match (3.13) at x = 0, and similarly
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for their derivatives. This produces

u1(0
−) = 1 + R, (3.37)

u′

1(0
−) = iκ

(0)
1 (1 − R), (3.38)

⇒ u′

1(0
+) + iκ

(0)
1 u1(0

+) = iκ
(0)
1 (1 − R) + iκ

(0)
1 (1 + R)

⇒ 0 = u′

1(0) + iκ
(0)
1 u1(0) − 2iκ

(0)
1 . (3.39)

The right-hand boundary condition is found using similar reasoning with (3.34)

matching (3.13) at x = ℓ to give

0 = u′

1(ℓ) − iκ
(1)
1 u1(ℓ). (3.40)

3.1.4 Calculating the Velocity Potential φ Over The Whole

Duct

To calculate φ in the undulating region, we must first solve equation (3.20) with

(3.39) and (3.40) as the boundary conditions. This is done using a Matlab built-

in programme, bvp4c, which solves boundary value problems for ODEs. This is

an effective solver, but the underlying method and the computing environment

are not appropriate for high accuracies nor for problems with extremely sharp

changes in their solutions.

When using bvp4c, the user is required to create two function handles.

One function handle evaluates the differential equation (3.20) as a system of

first order ODEs. To do this, we let v1 = αu′
1, thus providing us with a suitable

system, (
u1

v1

)′

=

(
0 α−1

−(β + γ + k2α) 0

)(
u1

v1

)
.

The other function handle computes the residual in the boundary conditions,

so it is simply a case of applying the equations (3.39) and (3.40).

Equations (3.33) and (3.34) provided us with values for u1(x) in the re-

gions of constant width, and involve the unknowns R and T . Due to continuity,

and provided the three different regions of a(x) and b(x) join smoothly, we can

calculate R and T using the values of u(0) and u(ℓ) obtained from solving the

ODE (3.20). Starting with x = 0, we derive R by

u1(0) = 1 + R,

⇒ R = u1(0) − 1. (3.41)
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And similarly, for x = ℓ, T is defined as

u1(ℓ) = Teiκ
(1)
1 ℓ,

⇒ T =
u1(ℓ)

eiκ
(1)
1 ℓ

. (3.42)

One can easily check their values of R and T by checking that the following

holds,

|R|2 + |T |2 = 1. (3.43)

This result is due to energy conservation being implemented on the incoming

wave with amplitude one. Once our ODE is solved, we possess the values of R

and T . By substituting the newly established coefficients back into (3.33) and

(3.34), we can explicitly compute u1(x) over the whole duct. This means we

can approximate φ over the whole duct by using (3.13). The numerical results

are given later in Chapter 5.

3.2 A Trapped Wave Problem

3.2.1 Deriving An Expression For u1(x)

Another situation to analyse is the wave trapping problem. For this problem

there would not be any reflection nor transmission as we are dealing with waves

that decay exponentially outside the varying segment of the duct. For 0 < x < ℓ,

u1(x) will still be defined by the ODE (3.20). However, we need to obtain new

expressions for u1(x) to the left and right of the undulating region.

To do this, let us return to equation (3.9). From this, we write that in

regions of constant width, u1(x) is defined as

u1(x) = Ae
√

ν1−k2x + Be−
√

ν1−k2x. (3.44)

Since we require exponentially decaying solutions in the x direction we require

ν1 > k2.

We must also consider the radiation conditions, φ → 0 as |x| → ∞.

Therefore, for x < 0 we require B = 0, and for x > ℓ we require A = 0

u1(x) =





Ae

q

ν
(0)
1 −k2x x < 0

Be−
q

ν
(1)
1 −k2x x > ℓ.

(3.45)
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3.2.2 Determining The Boundary Conditions

As with the travelling wave problem, to determine the boundary conditions at

x = 0 and x = ℓ we assume that the regions of the duct are joined smoothly

at these two points. Then we require that the pressure and its gradient are

continuous at x = 0, from which we must have

u1(0
−) = u1(0

+), (3.46)

u′

1(0
−) = u′

1(0
+), (3.47)

where u1(0
±) denotes u1 slightly to the left or right of zero accordingly, and

similarly for u1(ℓ
±).

We use (3.45) from the previous subsection to determine u1(0
−) and

u′
1(0

−) and then combine them in a manner that eliminates the unknown A.

u1(0
−) = A, (3.48)

u′

1(0
−) = A

√
ν

(0)
1 − k2, (3.49)

⇒ u′

1(0
+) −

√
ν

(0)
1 − k2u1(0

+) = A

√
ν

(0)
1 − k2 −

√
ν

(0)
1 − k2A

⇒ u′

1(0) −
√

ν
(0)
1 − k2u1(0) = 0. (3.50)

Using the same approach for x = ℓ gives

u′

1(ℓ) +

√
ν

(1)
1 − k2u1(ℓ) = 0 (3.51)

3.2.3 Solving The Eigenvalue Problem

Firstly, it should be mentioned that this is an eigenvalue problem. There may

not necessarily be any eigenvalues, indicating that there is not a trapped wave.

So to start, we must find the values of k for which there is a trapped wave.

One method of approach is to use an initial value problem (IVP) solver

to solve (3.20) along with (3.50) split into two initial conditions like so

u1(0) = 1, (3.52)

u′

1(0) =

√
ν

(0)
1 − k2, (3.53)

for 0 < k <

√
ν

(0)
1 .

Next, we plot the left-hand side of the second boundary condition (3.51)

against k using the solutions from the IVP solver to derive u′
1(ℓ) and u1(ℓ). The
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roots of this function, if any, are the eigenvalues.

The roots of the plot can be found using the bisection method, which

is a root-finding algorithm that works by repeatedly dividing an interval in half

and then selecting the subinterval in which the root exists. The absolute error

for the bisection method is halved at every step, so the method converges lin-

early. Although the bisection method is slower to converge than other methods

such as the regular Falsi method, it is suitable for what we require here, and is

guaranteed to converge if the function crosses the x-axis.

Matlab’s built-in IVP solver, ode23 is suitable to solve (3.20). The func-

tion ode23 is an implementation of second/third-order Runge-Kutta methods.

To use ode23 we are required to create a function handle that, given the scalar

x and vector z as input, returns the x derivative vector z’ as output. This

requires our ODE (3.20) to be recast as a system of first order equations. Let

us introduce two new variables, z1 = u1 and z2 = u′
1. Then z′1 = u′

1 = z2 and

z′2 = u′′
1 = −α′z2+(β+γ+k2α)z1

α
. Now equation (4.19) can be written in vector

form as (
z1

z2

)′

=

(
z2

α−1(−α′z2 + (β + γ + k2α)z1)

)
.

The right-hand side of this system is used in the function handle, so that when

ode23 is run, the output z contains two columns: z1 which is actually u1(x),

and z2, which is u′
1(x).

Once we have computed u1(x) over the varying region, we can use the

values of u1(0) and u1(ℓ) to derive A and B in equations (3.45) - thus enabling

us to obtain u1(x) for x < 0 and x > ℓ. And as we know Y1 over the whole duct,

we can now approximate φ over the whole duct using (3.13). The numerical

results are given later in Chapter 5.
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Chapter 4

Including More Modes

4.1 Deriving A System Of Ordinary Differential Equa-

tions

In Section 3.1.1 we found the general solution, in uniform regions, to be

φ =
∞∑

n=1

un(x)Yn(y).

where

Yn(y) = sin

(
nπ(y − aj)

bj − aj

)
j = 0, 1.

In Chapter 3 we worked with a single mode, meaning we were only work-

ing with n = 1. Now suppose we look at N modes, implying that for regions of

uniform width of the duct,

φ ≈
N∑

n=1

un(x)Yn(y). (4.1)

In a similar fashion to the single-mode case, we now use the representation

(4.1) to motivate an appropriate form of φ in regions where the duct side-walls

undulate. Thus we write

φ ≈ φ̃ =
N∑

n=1

un(x)Yn(x, y) (4.2)
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where now

Yn(x, y) = sin

(
nπ(y − a)

b − a

)
n = 1, 2, ...N. (4.3)

Since we cannot expect (∇2+k2)φ̃ = 0, we require a weak form of the Helmholtz

equation written as

∫ b

a

(∇2 + k2) φ̃ Ym dy = 0 m = 1, 2, ...N. (4.4)

Let us begin by examining (∇2 + k2)φ̃. We find that

(∇2 + k2)φ̃ = (∇2 + k2)
N∑

n=1

unYn

=
N∑

n=1

{
(unYn)xx + (unYn)yy + k2unYn

}

=
N∑

n=1

{
u′′

nYn + 2u′

nYnx + unYnxx + unYnyy + k2unYn

}

=
N∑

n=1

{
u′′

nYn + 2u′

nYnx + (Ynxx + Ynyy + k2Yn)un

}
(4.5)

Substituting (4.5) back into (4.4) show that for any N there will be a system

of N equations in the N unknowns u1, ..., uN . When making this substitution,

the coefficients of un can be presented in a similar fashion to the single mode

approximation:

N∑

n=1

(
αm,nu′

n

)′
+
(
βm,n + γm,n + k2αm,n

)
un = 0, m = 1, 2, ...N, (4.6)

where

αm,n = (Yn, Ym), βm,n = (Y ′′

n , Ym), γm,n = (Ynyy , Ym) (4.7)

and the brackets denote the inner product notation (3.22). For notation and

programming reasons, we shall reformat equation (4.6) as

(αu′)′ + (β + γ + k2α)u = 0 (4.8)
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where

α =




α1,1 α1,2 · · ·
α2,1

. . .
...

... · · · αN,N


 ,

and similarly for β and γ. The vector u is defined as

u =




u1

u2

...

uN




.

So now we need to derive expressions for αm,n, βm,n and γm,n. We find that

αm,n = (Yn, Ym) (4.9)

=

∫ b

a

sin

(
nπ(y − a)

(b − a)

)
sin

(
mπ(y − a)

(b − a)

)
dy (4.10)

=

{
1
2(b − a) m = n

0 m 6= n
(4.11)

βm,n = (Y ′′

n , Ym) (4.12)

=

∫ b

a

sin

(
mπ(y − a)

(b − a)

)[ (
a′Ynaa + b′Ynab

)
a′ +

(
a′Ynab

+ b′Ynbb

)
b′

+a′′Yna + b′′Ynb

]
dy (4.13)

=





1
12(b−a)

{
3b′′(b − a) − 3a′′(b − a) − 3(b′ − a′)2

−2n2π2((b′)2 + (a′)2 + a′b′)
}

m = n
n

(m6−n6−3m4n2+3m2n4)(b−a)

{
a′′(b − a)(2n2m3 − n4m − m5)

−2a′(b′ − a′)m(n4 − m4) + (−1)n+m
[
b′′(b − a)(m5

−2n2m3 + n4m) + 2(b′)2m(n4 − m4) − 2a′b′m(n4

−m4)
] }

m 6= n

(4.14)

γm,n = (Ynyy , Ym) (4.15)

=

∫ b

a

−
(

nπ

(b − a)

)2

sin

(
nπ(y − a)

(b − a)

)
sin

(
mπ(y − a)

(b − a)

)
dy (4.16)

=

{
− n2π2

2(b−a) m = n

0 m 6= n
(4.17)
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Note here that αm,n does not depend on n nor m. So for any fixed value of x,

α will be a constant multiple of the N × N identity matrix.

4.2 Defining A Scattering Problem

As with the single mode, we shall model the scenario below.

0 ℓ

w(x)
6

? a(x)

b(x)

�
R1

-
I1

- T1

We shall restrict our attention to the case for which there is only a single

propagating mode within the uniform sections of the duct, i.e. we require

1 < k
π
(b − a) < 2.

In x < 0, we write

φ ≈
N∑

n=1

{
Ineiκ

(0)
n x + Rne−iκ

(0)
n x
}

Yn(y), (4.18)

where I1 = 1 is the amplitude of the incident propagating mode, and we set

I2 = · · · = IN = 0 to ensure there are no exponentially growing waves in this

region. Also, Rn is the (unknown) amplitude of the nth reflected mode.

In 0 < x < ℓ, we have the approximation

φ ≈
N∑

n=1

un(x)Yn(x, y). (4.19)

These representations of the solution must be equal at the interface x = 0, as

must their x derivatives. Thus, provided the regions either side of x = 0 join

smoothly, we have

N∑

n=1

(In + Rn)Yn(y) =
N∑

n=1

un(0)Yn(0, y) (4.20)

⇒ In + Rn = un(0), n = 1, 2, .., N, (4.21)
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and

N∑

n=1

iκ(0)
n (In − Rn)Yn(y) =

N∑

n=1

u′

n(0)Yn(0, y) (4.22)

⇒ iκ(0)
n (In − Rn) = u′

n(0), n = 1, 2, .., N. (4.23)

Upon eliminating the unknown Rn from these two equations, our first boundary

condition is

u′

n(0) + iκ(0)
n un(0) = 2iκ(0)

n In n = 1, 2, .., N. (4.24)

Following a similar procedure we can find the right-hand boundary condition.

In x > ℓ, we write

φ ≈
N∑

n=1

Tneiκ
(1)
n xYn(y). (4.25)

where Tn is the (unknown) coefficient of the nth transmitted mode. In 0 < x < ℓ,

as before,

φ ≈
N∑

n=1

un(x)Yn(x, y). (4.26)

As with the previous case, for continuity these two equations, and their deriva-

tives, must be equal at the interface x = ℓ. Thus

N∑

n=1

Tneiκ
(1)
n ℓYn(y) =

N∑

n=1

un(ℓ)Yn(ℓ, y) (4.27)

⇒ Tneiκ
(1)
n ℓ = un(ℓ) (4.28)

and

N∑

n=1

iκ(1)
n Tneiκ

(1)
n ℓYn(y) =

N∑

n=1

u′

n(ℓ)Yn(ℓ, y) (4.29)

⇒ iκ(1)
n Tneiκ

(1)
n ℓ = u′

n(ℓ) n = 1, 2, .., N (4.30)

Eliminating Tn, the unknown, from equations (4.28) and (4.30) brings us to our

second boundary condition,

u′

n(ℓ) − iκ(1)
n un(ℓ) = 0 n = 1, 2, .., N. (4.31)
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4.3 Calculating The Velocity Potential φ Over The

Whole Duct

Solving the system of N equations with 2N boundary conditions is handled in

a similar fashion to the single mode approximation in Section 3.1.4. Again, we

take advantage of the Matlab programme bvp4c so we are required to adapt our

system of second order ODEs into two systems of first order ODEs. Moreover,

with the new scattering model we have matrices and vectors as components of

the ODE system and boundary conditions. One method of approach is to create

separate function handles to calculate the entries of the coefficient matrices: α,

αx, β, and γ. A further function handle is required to store these entries in

appropriately named matrices. By making these separate function handles it

keeps the main programme uncrowded so that it is easy to follow, and results

in only defining each matrix once.
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Chapter 5

Numerical Results

5.1 Scattering Problem

All the scattering problems discussed here satisfy the inequality (3.11) for all

a(x) and b(x), thus ensuring the presence of one and only one propagating wave.

5.1.1 Single Mode Approximations

Two different categories of duct were modelled. The first, which will be referred

to as duct (1), can be described by

a(x) =





0 x < 0

d sin2
(

πx
2ℓ

)
0 < x < ℓ

d x > ℓ,

(5.1)

and

b(x) =





1 x < 0

1 − a(x) 0 < x < ℓ

1 − d x > ℓ.

(5.2)

Figures (5.1), (5.2) and (5.1.1) refer to when d = 0.1, k = 6 and ℓ = 1. We can

see that there is more activity to the left of the duct than to the right. This

shows that we have a large amount of reflection and not much transmission.

Figure (5.3) is an interesting plot. It shows the effect of increasing ℓ,

so the slope of the duct walls for 0 < x < ℓ is more gradual. The reflection

oscillates greatly as ℓ is increased. Whilst the peaks remain at a constant at a

little above |R| = 0.9, the troughs (where there is not much reflection) smoothly
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vary. The first trough corresponds to |R| approximately being 0.05. From here,

as kℓ increases each trough corresponds to more reflection than the previous

until kℓ is around 40 to 44. At this point, the troughs decrease to mirror the

results on the left-hand side of this point. From this figure we conclude that

the relection produced from duct (1) varies greatly depending on kℓ.

Now let us consider a duct that varies more smoothly, duct(2). The duct

walls are defined as

a(x) =





0 x < 0

d sin2
(

µπx
ℓ

)
0 < x < ℓ

0 x > ℓ,

(5.3)

and

b(x) =





1 x < 0

1 − a(x) 0 < x < ℓ

1 x > ℓ.

(5.4)

Figures (5.4), (5.5) and (5.6) refer to when d = 0.1, ℓ = 2, k = 4 and

µ = 1. When comparing these results with the previous duct, we can see that

there is much less reflection. Therefore, we can state that a duct of this shape

allows more acoustic wave transmission than the previous duct shape. However,

when µ is increased to eight so the duct walls have eight ‘humps’ for 0 < x < ℓ,

we have a different conclusion. Figures (5.7), (5.8) and (5.9) show us that nearly

all the energy has been reflected back.

The concept of there being more reflection when there are more ‘humps’ is

explored further in figure (5.10). Each time µ increases, so does k|R|, especially

for smaller ℓ. As the length of the undulating region increases there is less

difference between the different µ. Indeed, for ℓ = 1, the difference in k|R| for

µ = 1 and µ = 2 is minimal. For each µ, k|R| seems to level off to a constant,

and for larger µ this plateau is reached for smaller ℓ.

Figures (5.11) and (5.12) display k|R| for varying d and ℓ. Figure (5.11)

refers to when µ = 1 and figure (5.12) refers to when µ = 2. In both cases we

can see that as ℓ and d increase, so does k|R|. Perhaps a surprising outcome is

that varying ℓ has a more forceful effect on k|R| than d, where d determines the

size of the ‘humps’. This is especially noticeable in (5.12) where the changes in

k|R| occur for smaller ℓ. The outcome that d created is similar for both µ.
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Figure 5.1: Contour plot of φ over duct (1).

Figure 5.2: Surf plot of φ over duct (1).
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Figure 5.3: Real and imaginary plots of u over duct (1).
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Figure 5.4: |R| against kℓ using duct(1), with fixed k = 6.
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Figure 5.5: Contour plot of φ over duct (2).

Figure 5.6: Surf plot of φ over duct (2).
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Figure 5.7: Real and imaginary plots of u over duct (2).
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Figure 5.8: Contour plot of φ over duct (2).
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Figure 5.9: Surf plot of φ over duct (2).
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Figure 5.10: Real and imaginary plots of u over duct (2).
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Figure 5.11: k|R| against ℓ for duct (2) with different µ, where k is fixed (k = 4).
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Figure 5.12: Contour plot of k|R| for µ = 1.
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Figure 5.13: Contour plot of k|R| for µ = 2.

5.1.2 Multi-Mode Approximations

The obvious way to start this subsection is to compare some of the plots found

with a single mode approximation to the plots created when using a multi-mode

approximation. Figures (5.13) though to (5.18) do just this. When these figures

are compared with their corresponding single mode approximations (figures

(5.1) to (5.1.1) and (5.4) to (5.6)) there does not appear to be any significant

differences. This is very promising as it means that when modelling acoustic

wave transmission though a duct with Dirichlet boundary conditions along the

walls of the duct, a single mode approximation is sufficient. To verify that this

is true, figure(5.19) shows convergence after N = 2, and a difference smaller

than 0.0001 prior to this. This figure portrays |R| for varying N where d = 0.1,

ℓ = 2 and µ = 1.
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Figure 5.14: Contour plot of φ over duct (1) with N = 10.

Figure 5.15: Surf plot of φ over duct (1) with N = 10.
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Figure 5.16: Real and imaginary plots of u over duct (1) with N = 10.
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Figure 5.17: Contour plot of φ over duct (2) with N = 10.
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Figure 5.18: Surf plot of φ over duct (2) with N = 10.
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Figure 5.19: Real and imaginary plots of u over duct (2) with N = 10.
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5.2 Trapped Wave Problem

5.2.1 Single Mode Approximation With n = 1

As mentioned in Section (3.2), before finding the velocity potential φ we must

first find a value of k for which there is a trapped wave. Once again, we take

duct (2)

a(x) =





0 x < 0

d sin2
(

µπx
ℓ

)
0 < x < ℓ

0 x > ℓ,

(5.5)

and

b(x) =





1 x < 0

1 − a(x) 0 < x < ℓ

1 x > ℓ.

(5.6)

However, for this problem we shall choose d = −0.15. Let us first examine the

duct with ℓ = 2 and µ = 1. Figure (5.20) shows the second boundary condition

plotted against k. From this plot, it is difficult to determine whether there are

any eigenvalues for this model, so figure (5.21) zooms in on a small section of

the plot to verify that an eigenvalue exists. Using the bisection method, the

root is found to be at k = 2.8901. This value of k is then to produce figures

(5.22), (5.23) and (5.24), which show that the waves decay exponentially when

outside of the undulating region. Most of the wave activity is restricted to the

region 0 < x < ℓ where the velocity potential φ reaches its peak at the center

of the duct.

Figures (5.27), (5.28) and (5.29) are results produced from a similar duct.

The values for ℓ and d remain the same, but µ = 2 so we have each duct wall

has two external humps. This new µ produces a new value of k, k = 3.0501.

The figures show similar results to when µ = 1, but the velocity potential φ

decreases from the centre at a slower rate. Nonetheless, the waves decay expo-

nentially in the uniform regions.
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Figure 5.20: |R| for varying N using duct(2).
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Figure 5.21: The second boundary condition (3.51) plotted against k using duct
(2) for µ = 1.
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Figure 5.22: A close up of figure (5.20) to clearly see the that an eigenvalue
exists.
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Figure 5.23: Contour plot of φ over duct (2) for µ = 1.

Figure 5.24: Surf plot of φ over duct (2) for µ = 1.
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Figure 5.25: Real plot of u over duct (2) for µ = 1.
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Figure 5.26: The second boundary condition (3.51) plotted against k using duct
(2) for µ = 2.
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Figure 5.27: A close up of figure (5.25) to clearly see the that an eigenvalue
exists.
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Figure 5.28: Contour plot of φ over duct (2) for µ = 2.
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Figure 5.29: Surf plot of φ over duct (2) for µ = 2.
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Figure 5.30: Real plot of u over duct (2) for µ = 1.
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5.2.2 Investigating Problems With More Than One Eigenvalue

Now suppose we have two or more trapped waves within the duct. For this to

occur we require two or more eigenvalues. Whereas with the scattering problem

we chose the first mode n = 1 to ensure that we have a propagating wave, this

is not a restriction when modelling the trapped wave problem. As long as the

waves in the uniform regions are evanescent, i.e 0 < k <
√

νn, we can choose n

to be any integer when calculating u(x) for these regions. Figures (5.30) and

(5.31) show that as we choose larger n there are more eigenvalues, so there

would be more trapped waves.

Figure (5.32) shows that for n = 4 there are three different trapped waves.

These waves correspond to k = 2.9601, k = 3.8101 and k = 4.6401. Their

separate plots are portrayed by figures (5.33) to (5.41). Although the different

values of k produce very different results, all of them contain exponentially

decaying waves within the uniform regions.

An interesting result here is found when the trapped waves for n = 5 are

plotted. Figure (5.42) depicts four eigenvalues, and the bisection method find

these to be k = 3.1901, k = 3.8701, k = 4.8701 and k = 5.7601. Now comparing

the results from the first eigenvalue with the corresponding results for n = 4

we see that they have a similar shape. This is also the shape portrayed for

when n = 1 in the Section 5.2.1. Now comparing the results from the second

eigenvalues for both n = 4 and n = 5 we see that again, there is a similar

shape. The velocity potential φ is at its highest to the left of the centre, and

then reduces down to its lowest to the right. For the third eigenvalue, and for

both n, the plots depict two equal peaks for φ either side of a trough in the

centre of the duct. Lastly, the fourth eigenvalue for n = 5 produces a more

complex shape. The velocity potential appears to oscillate though the varying

region before decaying exponentially in the varying regions.

It would appear that as n increases and creates more eigenvalues, the

plots relating to the corresponding eigenvalues for different n are the same. As

the eigenvalue gets larger the trapped wave oscillates more in 0 < x < ℓ. These

results do not prove that this is true for all n, merely for the examples we have

modelled here.
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Figure 5.31: The second boundary condition (3.51) plotted against k using duct
(2) for varying n.
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Figure 5.32: A close up of figure (5.30).
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Figure 5.33: A close up of the second boundary condition (3.51) plotted against
k to clearly see how many eigenvalues exists for n = 4.
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Figure 5.34: Contour plot of φ over duct (2) for the first trapped wave (n = 4).
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Figure 5.35: Surf plot of φ over duct (2) for the first trapped wave (n = 4).
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Figure 5.36: Real plot of u over duct (2) for the first trapped wave (n = 4).
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Figure 5.37: Contour plot of φ over duct (2) for the second trapped wave
(n = 4).

Figure 5.38: Surf plot of φ over duct (2) for the second trapped wave (n = 4).
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Figure 5.39: Real plot of u over duct (2) for the second trapped wave (n = 4).
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Figure 5.40: Contour plot of φ over duct (2) for the third trapped wave (n = 4).
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Figure 5.41: Surf plot of φ over duct (2) for the third trapped wave (n = 4).
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Figure 5.42: Real plot of u over duct (2) for the third trapped wave (n = 4).

54



Numerical Results

2.5 3 3.5 4 4.5 5 5.5 6
−30

−20

−10

0

10

20

30

40

50

60

k

eq
ua

tio
n 

(3
.5

0)

Figure 5.43: A close up of the second boundary condition (3.51) plotted against
k to clearly see how many eigenvalues exists for n = 5.
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Figure 5.44: Contour plot of φ over duct (2) for the first trapped wave (n = 5).
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Figure 5.45: Surf plot of φ over duct (2) for the first trapped wave (n = 5).
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Figure 5.46: Real plot of u over duct (2) for the first trapped wave (n = 5).
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Figure 5.47: Contour plot of φ over duct (2) for the second trapped wave
(n = 5).

Figure 5.48: Surf plot of φ over duct (2) for the second trapped wave (n = 5).

57



Numerical Results

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

u

Figure 5.49: Real plot of u over duct (2) for the second trapped wave (n = 5).
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Figure 5.50: Contour plot of φ over duct (2) for the third trapped wave (n = 5).
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Figure 5.51: Surf plot of φ over duct (2) for the third trapped wave (n = 5).
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Figure 5.52: Real plot of u over duct (2) for the third trapped wave (n = 5).
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Figure 5.53: Contour plot of φ over duct (2) for the fourth trapped wave (n = 5).

Figure 5.54: Surf plot of φ over duct (2) for the fourth trapped wave (n = 5).
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Figure 5.55: Real plot of u over duct (2) for the fourth trapped wave (n = 5).

61



Further Work

Chapter 6

Further Work

Two areas of possible further work are multi-mode approximations for the

trapped wave problem, and exploring the effect of Neumann boundary con-

ditions on the top and bottom of the duct. Let us begin with the former.

6.1 Multi-Mode Approximations For The Trapped

Wave Problem

When modelling a trapped wave problem with a single mode approximation,

we had to find an eigenvalue first. We then set k to equal the eigenvalue so

as to produce a trapped wave within the duct. We found the eigenvalue by

plotting the second boundary condition (3.51) against k and used the bisection

method to find the root. Now, we saw from Chapter 4 that multi-mode ap-

proximations produced N ODEs and 2N boundary conditions. This makes the

eigenvalue problem much more complicated. Rather than seeking where one

function crosses the x - axis, we would be seeking the point (or points) where

N functions cross the x-axis at the same point (or points).

6.2 Neumann Boundary Conditions Along Duct Walls

So far, we have only worked with Dirichlet boundary conditions on the top

and bottom of the duct. Now let us suppose we had Neumann conditions. If

we recall, in Section 3.1 we separated the variables of φ in regions of constant

width. Applying the Dirichlet boundary conditions in the y direction of the
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separated solution gave us (3.8),

Yn(y) = sin

(
nπ(y − aj)

bj − aj

)
, j = 0, 1 and n = 1, 2, ...,

which ensured y(aj) = y(bj) =, where j = 0, 1. For Neumann boundary condi-

tions we require the x derivatives of y to be zero, y′(aj) = y′(bj) = 0, meaning

Yn(y) = cos

(
nπ(y − aj)

bj − aj

)
, j = 0, 1 and n = 1, 2, ....

Modelling a duct with Neumann boundary conditions can be awkward because

we require the normal derivative to always be orthogonal to the duct walls.

This is straightforward in the uniform sections as the normal is simply in the

y direction. However, for the undulating regions it is less manageable. The

normal in the varying section changes with the duct wall and is often not in

the y direction. Nonetheless, when modelling Neumann boundary conditions

we assume that the normal is in the y direction for the whole duct. This

assumption produces results that seem reasonable for most of the duct - within

the uniform regions the waves coincide with the duct walls at a right angle.

However, in the the undulating region the waves behave reasonably when they

are not close to the duct walls - but when they are close to the wall they change

direction so that they coincide with the duct wall vertically.

6.3 Related Work

Hazard and Luneville (2002) also modelled a duct with two uniform regions ei-

ther side of an undulating region. They then choose k and the width of the duct

so that exactly two modes propagate. A single mode is then sent in from the left

so that only two modes leave the duct from the right, meaning the undulating

region of the duct moves all the inserted energy into two modes. To achieve this

result the duct shape is chosen carefully by setting up a minimisation problem.

For example, the choice of coefficients in a truncated Fourier series represen-

tation of the duct walls could be tuned to minimise the amount of outgoing

waves. They managed to determine duct walls so that over ninety-nine percent

of the incoming energy is transferred to two outgoing modes.
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Chapter 7

Summary and Conclusions

This dissertation has used methods of approximating scattering over a vary-

ing water-bed to model acoustic wave transmission through ducts. We started

by becoming familiar with the water wave problem and learning one method

that can be used to derive the mild-slope equation, and the modified mild-slope

equation. We then adapted this method to produce a system of ordinary dif-

ferential equations (ODEs) in terms of un(x), for x within the varying region of

the duct (0 < x < ℓ). We begin with only taking a single mode approximation

meaning we only have one ODE.

For the scattering problem, when examing the regions of constant width,

we can use separation of variables. The separated solution in the y direction,

along with restrictions determined due to Dirichlet boundary conditions on the

top and bottom of the duct, enable us to determine Yn(y). Now, the separated

solution in the x direction provides us with a general solution for u1(x) in the

uniform domains. By assuming the undulating duct walls meet the uniform re-

gions smoothly, we use the solutions for u1 in the uniform regions to determine

the boundary conditions for our ODE. The dissertation discusses how to ma-

nipulate the problem so we can use the built-in Matlab function bvp4c to find

a solution for u1 in the undulating region. Once the boundary value problem is

solved, it is simply a matter of substitution to find the exact solutions in the two

uniform regions. Once u1 and Y1 have been calculated, it is a straightforward

multiplication to define the velocity potential φ over the whole duct.

When solving the scattering problem with more than one mode, it is ap-

proached in a similar fashion to the single mode approximation. We continue to

use bvp4c however, as there would be a system of ODEs and several boundary

conditions either side of the undulating domain, we create additional function

handles to store all the coefficients in matrices and vectors. The system of
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equations is then solved in a manner that is parallel to the single mode approx-

imation, thus allowing us to find φ.

For a single mode approximation, we did not only explore the scattering

problem, but also the trapped wave problem . This problem involved an ad-

ditional step before being able to find u1 as it is an eigenvalue problem. So

firstly, we had to discover a situation that would provide us with a trapped

wave. To find an approximation to the trapped wave problem, another Matlab

programme was discussed - ode23. The required manipulation of our ODE and

the boundary conditions to find an eigenvalue was more subtle for this problem

than for the scattering problem.

Next, we saw the numerical results of the mentioned models. The results

for the multi-mode approximations are almost the same as the single mode

approximations. This indicates, that for a scattering problem with Dirichlet

conditions along the duct walls, a single mode approximation is efficient. As

the single mode approximation does not require matrices of coefficients to be

stored, it is definitely the more cost-efficient of the two approximations. How-

ever, as discussed in Chapter 6, it is more challenging to exactly satisfy Neu-

mann boundary conditions. When modelling a duct with Neumann conditions

along the duct walls, additional modes may have a more obvious purpose.

The numerical results for the trapped wave problem showed that when

we chose n = 1 as our single mode, we had one trapped wave within the duct.

When we chose larger n we obtained more trapped waves. For a particular

n, as the eigenvalues k increased so did the number of oscillations within the

undulating region. Regardless of the value of n and the wave activity within

the varying region, the waves would always decay exponentially in the uniform

regions as expected.

Lastly, we finished with a mention of areas for further work. This included

looking at modelling the trapped wave problem with a multi-mode approxima-

tion, and the effect this would have when solving the eigenvalue problem. We

also considered how we would model a duct with Neumann boundary condi-

tions and the results we would achieve. We ended this chapter with a mention

of related work by Hazard and Luneville (2002).
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