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Abstract

Data assimilation techniques combine observations and prior model forecasts to create

initial conditions for numerical weather prediction (NWP). The relative weighting as-

signed to each observation in the analysis is determined by the error associated with its

measurement. Remote sensing data often have correlated errors, but the correlations

are typically ignored in NWP. As operational centres move towards high-resolution fore-

casting, the assumption of uncorrelated errors becomes impractical. This thesis provides

new evidence that including observation error correlations in data assimilation schemes

is both feasible and beneficial. We study the dual problem of quantifying and modelling

observation error correlation structure. Firstly, in original work using statistics from

the Met Office 4D-Var assimilation system, we diagnose strong cross-channel error co-

variances for the IASI satellite instrument. We then see how in a 3D-Var framework,

information content is degraded under the assumption of uncorrelated errors, while re-

tention of an approximate correlation gives clear benefits. These novel results motivate

further study. We conclude by modelling observation error correlation structure in the

framework of a one-dimensional shallow water model. Using an incremental 4D-Var

assimilation system we observe that analysis errors are smallest when correlated error

covariance matrix approximations are used over diagonal approximations. The new re-

sults reinforce earlier conclusions on the benefits of including some error correlation

structure.

i



Declaration

I confirm that this is my own work and the use of all material from other sources has

been properly and fully acknowledged.

Laura Stewart

ii



Acknowledgements

Firstly, I would like to thank my supervisors Dr Sarah Dance and Prof. Nancy Nichols

for their personal and academic support, without which I could not have completed this

research. I am also grateful to Dr Amos Lawless for his assistance with my work. I

would also like to thank my Met Office supervisor Dr John Eyre whose knowledge of my

research field was invaluable. Additionally I would like to thank Dr Stephen English,

Dr James Cameron and Fiona Hilton from the Met Office, who helped enormously with

the operational aspects of my work. I also acknowledge the financial support of the

National Environmental Research Council (NERC) and the Met Office.

To all my friends in the Mathematics department, thank you for sharing the good

and the bad (!) with me over the last three years. To all my friends outside the world of

maths, thank you for tolerating the world of maths over the last three years! To John,

thank you for keeping me grounded by reminding me that I was still just a ‘skiving

student’ regardless of my work load(!); I will never forget the love and support you gave

me over the years. I would also like to thank my parents for their continued support

of my education; their hard work and success has been an inspiration to me. Finally,

thank you to Joe, Coral and Georgia who are a constant reminder that there is more to

life than burying one’s head in a book!

iii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data assimilation and remote sensing 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 3D-Var and Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 4D-Var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Incremental 4D-Var . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Practical implementation . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Remotely sensed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Satellite observation physics . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Inverse retrieval problem . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Current satellite data usage . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Current issues in satellite remote sensing . . . . . . . . . . . . . 27

2.5 Error covariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Origin of observation errors . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Observation error correlations . . . . . . . . . . . . . . . . . . . . 34

iv



2.5.3 Current issues in the treatment of observation error correlations 35

2.6 Diagnosing observation error correlations . . . . . . . . . . . . . . . . . 38
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Chapter 1

Introduction

Data assimilation techniques are used to exploit information contained in observational

data, previous forecasts and atmospheric dynamics for the purpose of weather forecast-

ing. By statistically weighting this contributing information, data assimilation produces

the best estimate of the current state of the atmosphere; this is used as the initial

conditions for a model forecast. The weighted importance of each component in the

assimilation is determined by its associated error. The chaotic nature of the atmosphere

requires that the initial conditions be accurately specified to avoid rapid error growth

[64], and thus the correct specification of the weighting errors is vital.

1.1 Motivation

In numerical weather prediction (NWP) the governing equations used to describe the

behaviour of the atmosphere contain approximately 107 variables, and are sampled by

order 106 observations in a 6 hour synoptic period. The observations are provided
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by the Global Observing System (GOS) [4] and include in-situ and remotely sensed

measurements, each with an associated error structure. We treat observation errors as

independent with type, i.e, radar observation errors are independent of aircraft obser-

vation errors, but dependency often exists between observations measured by the same

instrument. Satellite observations typically have horizontally and vertically correlated

errors. Origins of these errors include observation spatial proximity, contrasting model

and observation resolutions, and observation pre-processing. Surface-based observations

are also affected by correlated errors but their typically lower density means the effects

of the correlated error are less significant. The size of the problem in NWP restricts

the storage of the extra information provided by the error correlations. In operational

weather prediction centres around the world, the data assimilation is most often per-

formed under the assumption of uncorrelated satellite observation errors.

The assumption of zero correlations is often used in conjunction with data thinning

methods such as superobbing [5]. This reduces the density of data by averaging the

properties of observations in a region, and assigning this average as a single observation

value. Under such assumptions, increasing the observation density beyond some thresh-

old value has been shown to yield little or no improvement in analysis accuracy [60],

[21]. Although discarding available information may be appropriate when the spatial

resolution of the observations is denser than the model grid, recent technological ad-

vances have challenged the practicality of such methods. The Unified Model at the Met

Office is run operationally at a 4km horizontal resolution, but the increasing demand for

nowcasting and convective scale modelling has motivated the move towards a UK area

model with resolution of order 1.5km [55]. Under such conditions there is a requirement

to retain all the available data to provide details on the appropriate scales, and thus an

alternative approach to dealing with observation error correlations is needed.
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Approximating observation error correlation is a relatively new direction of research

but progress has been made. In [43] circulant matrices were used to approximate a

Toeplitz observation error covariance matrix. Results showed that incorrectly assuming

uncorrelated observation errors gave misleading estimates of information content. In

[34] Fisher proposed assigning a block-diagonal structure to the observation error co-

variance matrix, with (uncorrelated) blocks corresponding to different instruments or

channels. Using this technique, individual block matrices were approximated by a trun-

cated eigendecomposition. On a simple domain, spurious long-range correlations were

observed.

1.2 Thesis aims

In this thesis we expand on the existing body of work on modelling observation cor-

relation structure. We first quantify observation error correlation structure for an op-

erational satellite instrument. The statistical results we obtain are new and motivate

the need to include satellite observation error correlations in data assimilation algo-

rithms. By performing variational data assimilation experiments in a three-dimensional

and four-dimensional framework, we then examine the impact of new and existing ap-

proximations to error correlation structure. In undertaking this work we wish to address

the following questions:

• What is the true structure of the observation error correlations?

Satellite observations typically carry correlated observation errors; the magnitude

and structure of the error covariances can be difficult to quantify [83]. In order
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to generate a good approximation, we must first have an accurate estimate of the

true error correlation structure.

• What approximations are available to model error correlation struc-

ture? What is their impact on data assimilation diagnostics?

For an approximate error correlation structure to be implemented operationally it

must be computationally feasible. We therefore present approximations which will

not be overly demanding on computational time and storage. These approxima-

tions are then ranked on their impact on different assimilation retrieval measures.

• How well do these approximations perform in a data assimilation ex-

periment? Is it better to model observation error correlation structure

incorrectly than not at all?

It remains unclear whether a better representation of the true error correlation

structure will be evident in the analysis of a data assimilation problem. The final

experiments quantify analysis accuracy under different diagonal and correlated

approximations to a simulated error correlation structure.

1.3 Thesis outline

The thesis is structured as follows. Chapter 2 introduces the concepts of data assim-

ilation and remote sensing. Although data assimilation is a relatively new science,

rapid progress has been made. We briefly discuss the evolution of data assimilation

algorithms, and focus on the two methods used in the thesis: three-dimensional vari-
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ational data assimilation (3D-Var) and four-dimensional variational data assimilation

(4D-Var). Observing System Experiments (OSEs) at the European Centre for Medium

Range Weather Forecasting (ECMWF) and elsewhere have shown that the inclusion of

satellite data in a 4D-Var algorithm results in the greatest positive forecast impact over

all observation types [4], [89]. Here we review the physics and operational treatment of

satellite data, and highlight its importance in current NWP. Details on the nature and

origin of observation error covariances are then given. The chapter is concluded with a

description of the techniques used to quantify these error covariances.

In Chapter 3 we address the second question posed in Section 1.2 and present possible

matrix representations of the observation error covariance structure. Three different

approximating structures are described: diagonal [14], circulant [78], [43], and eigende-

composition [34] approximations. We pay careful attention to the feasiblity of including

these matrices operationally. The effectiveness of each approximation can be evaluated

using several parameters. In the second part of the chapter we describe the following

retrieval diagnostics: analysis error covariance matrix, information content, and matrix

and vector norms. These properties can be used to determine how well each approxi-

mation performs in a data assimilation system.

Chapter 4 addresses the first question posed in Section 1.2 and contains new results

on quantifying error correlation structure. We first introduce the Infrared Atmospheric

Sounding Interferometer (IASI) satellite instrument, and describe how its measurements

are processed in the Met Office incremental 4D-Var assimilation scheme. Using a post-

analysis diagnostic based on variational data assimilation theory [25] and statistics from

the Met Office system, we successfully quantify the cross-channel error correlations be-

tween IASI measurements. Diagnosed error covariances are given for the pre-processing
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1D-Var assimilation and the main 4D-Var assimilation. Comparisons are made with the

current operational error variances.

More novel results are presented in Chapter 5, where we consider modelling correlation

structure in a 3D-Var framework. Being a simpler system than the 4D-Var framework,

the results can be analysed more easily. Using information content measures, we quan-

tify the success of each matrix approximation described in Chapter 3 in modelling an

empirically derived observation error correlation structure. The impact of each approx-

imation can then be evaluated relative to the truth. Conclusions based on numerical

evidence are drawn for different background error structures and constructions of the

analysis error covariance matrix. The original results in this chapter address the second

thesis question posed in Section 1.2.

Motivated by the results in Chapter 5, Chapter 6 describes the mathematical frame-

work needed to extend this investigation to a 4D-Var setting. We introduce a set of

one-dimensional shallow water equations (SWEs) [54], used to represent simplified at-

mospheric dynamics, and describe the continuous analytical and discretised numerical

models. We then develop a new incremental 4D-Var data assimilation system for the 1D

SWEs which models observation error correlation structure using diagonal, Markov and

eigendecompostion matrix approximations. Finally we describe the coding tests used to

test the validity of the model assumptions.

Chapter 7 contains further new results which address the final thesis question posed

in Section 1.2. Using the model and data assimilation system described in Chapter 6,

this chapter extends the findings in Chapter 5 and examines the impact of correlated

error covariance matrix approximations in a 4D-Var framework. We first describe the

experiment methodology and the error diagnostics used. We then determine the different
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realisations of the approximate observation error covariance matrices to be used in the

experiments. Assimilation accuracy is then evaluated for each approximation under

different simulations of the true error distribution. The novel results motivate further

study in this field.

Finally in Chapter 8 we summarise the work done and draw conclusions from these ex-

perimental results regarding the effectiveness of modelling observation error correlations

in data assimilation algorithms. We also make suggestions for possible further work in

this area.
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Chapter 2

Data assimilation and remote

sensing

2.1 Introduction

In NWP an accurate high-resolution representation of the current state of the atmo-

sphere is needed as an initial condition for the propagation of a weather forecast. Despite

the availability of millions of observations, these alone are insufficient to fully represent

the state of the atmosphere. Additional knowledge about atmospheric dynamics and

physics is needed to compensate for the inadequacies of the observations; these include

under-determinancy, measurement error, and observations that are non-linearly related

to atmospheric variables. Data assimilation provides techniques for combining obser-

vations of atmospheric variables with a priori knowledge of the atmosphere to obtain

a consistent representation known as the analysis. The weighted importance of each

contribution is determined by the size of its associated errors; hence it is crucial to the

8



accuracy of the analysis that these errors be correctly specified.

In an operational setting, the order of the problem in NWP is approximately 107 un-

known variables with approximately 106 observations available over a 6 hour time win-

dow [7]. At the UK Met Office the operational forecast suite is run 24 hours a day

and 365 days a year. There is a limited amount of computer time in which to run a

forecast model: for example, a typical North Atlantic European (NAE) model forecast

slot is only 65 minutes long [1]. Therefore data assimilation algorithms must be able to

compute the analysis quickly and efficiently for large scale problems.

The complexity of data assimilation in NWP has increased significantly since the first

objective analysis algorithms were introduced by Gilchrist and Cressman in 1954 [38].

The Cressman analysis scheme set the analysis equal to a background state plus a

weighted contribution of the observations dependent on their spatial proximity to model

grid points. The background state was given by the best available approximation to

the present state, such as a climatology or a previous forecast. A later extension to

this method was a more general algorithm, the successive correction method [6], in

which the weights were defined so that the background state had an impact even at

the observation points. The procedure was also iterative to enhance the smoothness

of the analysis. However, neither of these methods were entirely robust or concerned

with the optimality of the analysis. For example, if we had a climatology that we knew

was of good quality, then it was possible we would still modify it using values provided

from poor quality observations. More statistical techniques were needed to ensure the

observations and the background state were weighted in a manner appropriate to their

uncertainty and the underlying physical features of the system.

Several statistical assimilation techniques have been developed for meteorology; numer-
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ical cost, robustness, and the optimality of the solution generated are all important

issues in their operational use. Generally these techniques can be classified as sequential

or variational, intermittent or continuous [8]. Sequential assimilation algorithms solve

the system of equations needed for an optimal solution explicitly; variational algorithms

solve the equations implicitly through the minimisation of a cost function. Intermittent

methods assimilate all the observations as if they were taken at the same time, while

continuous methods assimilate the observations at the time of measurement.

Clearly intermittent methods are simpler to implement since any algorithm is free of

the additional constraint of time, but because real observations are available at dif-

ferent times, continuous methods are more prevalent in operational data assimilation

algorithms. The work in this thesis is concerned with variational assimilation algo-

rithms using both intermittent and continuous methods. In the next two sections we

describe three-dimensional variational assimilation (3D-Var), an intermittent method,

and four-dimensional variational assimilation (4D-Var), a continuous method.

2.2 3D-Var and Bayes’ Theorem

NWP is concerned with generating the ‘best’ analysis given some prior atmospheric

information and a set of observations. The best analysis can be defined as that which

gives the best subsequent forecast, without compensating for errors in the forecast model

[62].

Consider a discretised representation of the true state of the atmosphere xt ∈ R
n, where

n is the total number of state variables. The analysis used in NWP will consist of

the same model variables as this discretisation, and must be consistent with the first

10



guess or background field xb ∈ R
n and the actual observations y ∈ R

m, where m is

the total number of measurements. The background state and observations will be

approximations to the true state of the atmosphere,

xb = xt + ǫb, (2.1)

y = h(xt) + ǫo, (2.2)

where ǫb and ǫo are the background and observation errors, respectively, and h is the

possibly nonlinear observation operator mapping from state space to measurement space;

for example, a fast radiative transfer model which simulates radiances from an input

atmospheric profile. The errors are assumed unbiased and mutually independent,

E[ǫb] = E[ǫo] = E[ǫb(ǫo)T ] = E[ǫo(ǫb)T ] = 0, (2.3)

and also to have covariances B = E[ǫb(ǫb)T ] and R = E[ǫo(ǫo)T ].

The analysis state is the solution to the inverse problem of determining the ‘best’ es-

timate of xt which satisfies (2.1) and (2.2). This analysis is sometimes known as the

maximum a posteriori estimate and can be derived in terms of probability distribution

functions (pdfs) using Bayesian methods.

Bayes’ theorem [56] states that the posterior probability of event A, given that event

B occurs, is proportional to the prior probability of A multiplied by the probability of

event B given that event A occurs;

P(A|B) ∝ P(B|A)P(A). (2.4)

Applying this idea to data assimilation theory [62]: event A is the state of the system

and event B is the sample of observations. Therefore maximising the posterior proba-
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bility P(A|B) is equivalent to finding the state of the system which best represents the

observations.

Assuming that all pdfs are Gaussian, let Pb(x) be the prior pdf of the state and Po(y|x)

be the conditional probability of the observations given the state;

Pb(x) = k1 exp{−1

2
(x − xb)T B−1(x − xb)}, (2.5)

Po(y|x) = k2 exp{−1

2
(y − h(x))T R−1(y − h(x))}, (2.6)

where x is the analysis state, h is the possibly nonlinear observation operator, and k1

and k2 are normalisation factors independent of x. Using Bayes’ Theorem, we obtain

the posterior (or analysis) pdf of the state,

Pa(x|y) = k3 exp{−1

2
(x − xb)T B−1(x − xb) − 1

2
(y − h(x))T R−1(y − h(x))}, (2.7)

where k3 is also independent of x. By taking natural logs of both sides of (2.7), we

can see that maximising Pa is equivalent to minimising − ln(Pa), i.e, minimising the

quadratic cost function

J(x) =
1

2
(x − xb)T B−1(x − xb) +

1

2
(y − h(x))T R−1(y − h(x)). (2.8)

The cost function (2.8) measures the distance from the analysis state to the observations

and the background state, weighted by the inverse of their respective error covariances.

The cost function minimisation can be solved approximately to obtain the best linear

unbiased estimate (BLUE) [49], xa:

xa = xb + K(y − h(xb)), (2.9)

K = BHT (HBHT + R)−1, (2.10)

where H is the linearised observation operator given by H = ∂h
∂x |xb

and K is the Kalman

gain matrix specifying the optimal weighting of the observations in the analysis. When
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h is linear the cost function minimisation is solved exactly, and the associated analysis

error covariance matrix is given by

Sa = (HT R−1H + B−1)−1. (2.11)

The BLUE can be seen as a further extension of the initial Cressman analysis algorithm,

since the analysis is still obtained through an explicit combination of the observations

and the background [49].

Sequential assimilation algorithms approximate (2.9) and (2.10) directly; optimal inter-

polation is an example of a suitable algorithm previously used operationally [61]. In

current operational NWP, the error covariance matrices are too large to be used explic-

itly in global assimilation problems, and therefore an implicit variational alternative is

needed.

The statistical method used operationally by the UK Met Office between 1999 and 2004

was three-dimensional variational data assimilation (3D-Var) [63]. This algorithm seeks

the minimum of (2.8) by performing several evaluations of the cost function and its

gradient in order to approach the minimum using a suitable descent algorithm [17].

The size of the error covariance matrices is still an issue with the main cost in the cost

function evaluation lying in inverting B and R. Although conceptually useful, 3D-Var

treats observations as if they were valid at the same point in time, which is clearly an

unrealistic assumption. An extension to the standard 3D-Var is the First Guess at the

Appropriate Time (3D-FGAT) method [91]. This technique calculates the observation

increments (y − h(x)) at their appropriate measurement times, but then applies the

increments at a single analysis time. A further sophisticated extension of this method

is four-dimensional variational data assimilation.
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2.3 4D-Var

Four dimensional variational data assimilation (4D-Var) is an extension to 3D-Var which

allows the distribution of observations within a time interval (t0, tn). The continuous

nature of the 4D-Var approach is illustrated in Figure 2.1. The current 4D-Var problem is

a modification of the original variational method proposed in [79] where information from

a time-sequence of observations was combined with a numerical model. The objective

of 4D-Var is to minimise the cost function,

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb)

+
1

2

n
∑

i=0

(hi(xi) − yi)
T R−1

i (hi(xi) − yi) (2.12)

≡ Jb +

n
∑

i=0

Jo,i

≡ Jb + Jo (2.13)

subject to the strong constraint that the sequence of model states must also be a solution

of the model equations,

xi+1 = m(ti, ti+1, xi), (2.14)

where xi is the model state at time ti, m(t0, ti, x0) is the nonlinear model evolving x0

from time t0 to time ti, xb is the background field given by a previous forecast, yi is

the observation vector at time ti, and hi is the nonlinear observation operator at time

ti. The strong constraint given by equation (2.14) implies the model is assumed to be

perfect.

The cost function measures the distance between the model state x0 and the background

at the start of the time interval t0 (the Jb term), and the sum of the observation in-

novations (hi(xi) − yi) computed with respect to the time of the observation (the Jo,i
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terms). 4D-Var therefore provides an initial condition such that the forecast best fits

the observations within the whole assimilation interval.

Assimilation window

obs
obs

JB

JO,1

JO,2

JO,3

xb

xa

t0

x

Forecast

obs

obs

O,3

JO,4

tn t

Figure 2.1: Diagrammatic representation of 4D-Var method: minimise the squared distance between
the analysis xa and the background xb at the beginning of the assimilation window (JB term) plus the
squared distance between the observations (red stars) and the forecast state throughout the assimilation
window (JO,i terms).

Although demonstrably superior to 3D-Var [76], the size of the problem in NWP inhibits

the direct solution of the 4D-Var cost function (2.12). When 4D-Var methods were

originally being investigated it was determined that in order to use a 4D-Var algorithm,

a significantly faster computer or a substantial algorithmic improvement was needed

[18]. The formulation of an incremental 4D-Var algorithm provided this improvement.

2.3.1 Incremental 4D-Var

Incremental 4D-Var, as proposed by Courtier et al [18], reduces the cost of the 4D-

Var algorithm by approximating the full nonlinear cost function (2.12) by a series of

convex quadratic cost functions. The minimisation of these cost functions is constrained
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by a linear approximation M to the nonlinear model m (2.14). Each cost function

minimisation is performed iteratively and the resultant solution is used to update the

nonlinear model trajectory. The iterative minimisation procedure is known as the inner

loop; the update step is known as the outer loop. Full details of the procedure are

described in the following iterative algorithm [52] where k is the iteration number:

1. At the first timestep (k = 0) define the current guess x
(0)
0 = xb.

2. Run the nonlinear model to calculate x
(k)
i at each time step i.

3. Calculate the innovation vector for each observation

d
(k)
i = yi − h(x

(k)
i ).

4. Define an increment δx
(k)
0 = x

(k+1)
0 − x

(k)
0 .

5. Start the inner loop minimisation. Find the value of δx
(k)
0 that minimises the

incremental cost function

J (k)(δx
(k)
0 ) =

1

2
(δx

(k)
0 − (xb − x

(k)
0 ))T B−1(δx

(k)
0 − (xb − x

(k)
0 ))

+
1

2

n
∑

i=0

(Hiδx
(k)
i − d

(k)
i )T R−1

i (Hiδx
(k)
i − d

(k)
i ) (2.15)

subject to

δx
(k)
i+1 = M(ti, ti+1, x

(k))δx
(k)
i ,

where Hi is the linearisation of the observation operator hi around the state x
(k)
i .

6. Update the guess field using

x
(k+1)
0 = x

(k)
0 + δx

(k)
0 .

7. Repeat outer loop (steps 2 - 6) until the desired convergence is reached.
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An advantage of this method is that the inner loop cost functions can be simplified;

for example, by performing the inner loop minimisation at a lower spatial resolution.

Incremental 4D-Var is the data assimilation algorithm currently used at several NWP

centres such as the Met Office [76] and ECMWF [75]. However, correctly specifying the

observation error structure is still an important issue under this new formulation.

2.3.2 Practical implementation

We now consider the practical details of implementing a 4D-Var system. The issues

considered below will be specific to individual assimilation problems. In Chapter 6 we

will describe the practical implementation issues relative to a one-dimensional shallow

water model which we will use in experiments in Chapter 7.

Minimisation algorithm

There are several algorithms suitable for the inner loop minimisation required in 4D-Var.

In this work we use the conjugate gradient method (CGM) [36]. This gradient descent

method minimises (2.12) or (2.15) by optimally choosing conjugate search directions

such that the algorithm does not minimise in the same direction twice.

The CGM requires the calculation of the cost function (2.15) and its gradient with

respect to the model state at time t0. The gradient of the cost function (2.15) is given

by

∇J = ∇Jb + ∇Jo (2.16)
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where

∇Jo = −
n
∑

i=0

MT
i HT

i R−1
i [Hiδx

(k)
i − d

(k)
i ] (2.17)

∇Jb = −B−1[δx
(k)
0 − (xb − x

(k)
0 )] (2.18)

where MT
i is the adjoint of the linear model M(ti, ti+1, x

(k)). From (2.15), (2.17) and

(2.18) we observe that both a forward linear model M and a backwards adjoint model

MT are required for the calculation of the cost function and its gradient, respectively.

Tangent linear model

In Section 2.3.1 we described how an incremental 4D-Var assimilation requires a linear

approximation to a nonlinear model. The linear approximation used in this work is the

tangent linear model (TLM) [50]. To generate the TLM we assume that a nonlinear

model and its linearised version exhibit similar behaviour for a period known as the

validity time. We then consider the nonlinear model mi applied to a perturbation δx

from a state x, and perform a Taylor expansion about x,

mi(x + δx) = mi(x) + Mi(x)δx +
1

2
M̂i(x)δx2 + higher order terms (2.19)

where Mi = δmi

δx is the Jacobian of mi found by differentiating the discrete nonlinear

model equations with respect to the state x, and M̂i = δ2mi

δx2 is the matrix of second

derivatives. By taking first order terms only, we can approximate the nonlinear model

mi with a linear discrete model Mi,

mi(x + δx) = mi(x) + Mi(x)δx. (2.20)
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Adjoint model

The adjoint model MT provides us with a system of model equations, solvable back-

wards in time to obtain the gradient of the cost function [90]. In practice the discrete

adjoint equations are constructed directly from the tangent linear model code using an

‘automatic adjoint’ method [37]. The principal application of adjoint models is in sen-

sitivity analysis, and further details on the derivation, properties, and applications of

adjoint models are given in [27], [28]. In Chapter 6 we comment on how the TLM and

adjoint code are constructed for a one-dimensional shallow water model, and describe

the coding tests needed to determine their suitability for inclusion in a data assimilation

algorithm.

We have seen in Section 2.2 and 2.3 how the complexity of data assimilation techniques

has increased in recent years. In order to ensure that current and future data assimilation

methods are fully utilised, there is a need for accurate and plentiful observations.

2.4 Remotely sensed data

Millions of observations are available for the running of operational data assimilation

algorithms; at the ECMWF, 4-8 million observations are assimilated every 12 hours

[4]. As data assimilation techniques improve, as we have seen happen recently with the

transition from 3D-Var to 4D-Var, the demands on observation density will only become

larger. The current availability of satellite data will likely be a contributing factor in

the success of future techniques.

Since the first atmospheric sounders were launched on the Nimbus 3 satellite in 1969
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[78], satellite observations have been used to complement the ‘conventional’ observation

network. Conventional observations are typically in-situ measurements of temperature,

wind, pressure and humidity, observed directly by an instrument on a radiosonde or an

aircraft, for example. The static or human dependent nature of these observations results

in significant data voids on the globe, e.g, very few surface observations are available

over sub-Saharan Africa, and no aircraft observations are available for non-mainstream

flight paths. Satellite remote sensing allows us to obtain data from places where it is

inconvenient or even virtually impossible to obtain an in-situ measurement.

The main providers of satellite data to global NWP centres are the American (NASA

and NOAA), European (ESA and EUMETSAT), and Japanese (JAXA and JMA) space

agencies. Global coverage from satellite observations is ensured by the complementarity

of the geostationary (GEO) and low earth orbiting (LEO) platforms operational at each

centre. Contrary to conventional observations, satellite measurements do not directly

relate to desired atmospheric quantities; this indirect nature is the feature of remote

sensing rather than a physical ‘remoteness’. The subsequent treatment and utilisation

of satellite observations in data assimilation algorithms is therefore a complex physical

problem.

2.4.1 Satellite observation physics

Satellite instruments measure the electromagnetic radiation (or radiance) L that reaches

the top of the atmosphere at a given frequency ν. Electromagnetic radiation travels in

wave form at different frequencies, and is responsible for energy transfer within the

atmosphere. The measured radiances are related to geophysical variables through the

radiative transfer equation [30]
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L(ν) = (I0)ντν(z0) +

∫ ∞

z0

Bν{T (z)}dτν(z)

dz
dz, (2.21)

where

(I0)ν is the emission from the earth’s surface at height z0,

τν(z) is the vertical transmittance from height z to space,

T (z) is the vertical temperature profile,

and Bν{T (z)} is the corresponding Planck function profile.

Equation (2.21) is constructed under the assumption of an entirely one-dimensional

transmittance along the instrument viewing path with no molecular scattering in and

out of the beam. We assume no cloud or rain contributions, but these can be handled

in the infra-red and microwave spectrum provided they are either entirely emission

or absorption, and there is no significant scattering. The problem of cloudy radiance

assimilation is discussed in detail in [30], [57], [70]; we will return to the problem in

Section 2.4.4.

The radiative transfer equation is further explained by considering a solitary air parcel

at some level in the atmosphere. The radiation emitted to space from this air parcel is

determined by its temperature and the atmospheric density of the emitting gas within

the parcel. A body at different temperatures emits different amounts of radiation. At-

mospheric density decreases exponentially with height, and so the intensity of radiation

reaching the top of the atmosphere is less for a parcel at the same temperature but at

a higher atmospheric level. Also, the radiance emitted from a parcel of air close to the
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earth’s surface may be entirely absorbed before it reaches the top of the atmosphere. Ra-

diance measurements at different frequencies (or channels) will have different absorption

characteristics, and therefore by sensing at different frequencies we obtain information

on the vertical profile of the thermodynamic state and composition of the atmosphere.

A detailed overview of the satellite instrument technologies used to observe the atmo-

sphere is given in [29]; we will briefly summarise the main aspects. In general, we

categorise the frequencies (or channels) used in NWP into three different types: at-

mospheric sounding channels (passive instruments), surface sensing channels (passive

instruments), and surface sensing channels (active instruments). Passive instruments

sense natural radiation emitted by the earth’s surface or the atmosphere, while active

instruments emit radiation and sense the amount reflected or scattered back by the

earth’s surface or atmosphere. Details on the features of these channels are given in

Table 2.1.

Channel Instrument Channel location Use in NWP
type type

Atmospheric Passive Infrared and microwave Atmospheric
Sounding spectrum where main temperature and

contribution to measured humidity
radiance is from the
atmosphere

Surface Passive Window regions of Surface temperature
Sensing infrared and microwave emissivity

spectrum where the main Ocean surface wind
contribution is from Soil moisture
surface emission

Surface Active Window regions of Ocean winds
Sensing spectrum that actively Cloud monitoring

illuminate the surface (CloudSat,CALIPSO)

Table 2.1: Typical NWP channel properties

Now consider a channel (i.e, a certain frequency) where we know the primary absorber of

radiation is a well-mixed gas with known concentration (i.e, oxygen or carbon dioxide).

In equation (2.21) Planck’s function Bν{T (z)} relates the measured radiance intensity at
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a given frequency with the temperature of the absorbing substance; this is then weighted

by the derivative of the transmittance profile dτν(z)
dz . Therefore a radiance measurement

at frequency ν can be interpreted as a weighted average of the atmospheric Planck

function profile, where the weighting function is

κ(ν) =
dτν(z)

dz
. (2.22)

As the derivative of the transmittance profile, an empirically derived weighting function

is subject to knowledge of the absorption and density profile of the absorbing gas at a

given frequency, as well as the vertical temperature profile.

The weighting function κ(ν) specifies the layer of the atmosphere from which the mea-

sured radiation originates. This layer will not correspond to a single modelled level,

but rather incorporate several, with a varying radiance contribution from each (as rep-

resented by broad, peaked weighting functions). The altitude at which a weighting

function peaks will depend on the strength of absorption in the given channel, i.e, fre-

quencies at which the absorption is strong will have high peaking weighting functions.

By selecting channels with different absorption strengths, we can build a series of weight-

ing functions, which provide information on the radiance contribution, and hence mean

temperature, of many layers.

There are two important characteristics of weighting functions that influence the use of

satellite observations in NWP. The first is their broad width. A width of up to several

kilometres hinders the ability of satellite sounders such as the High-resolution Infrared

Radiation Sounder (HIRS) to identify small scale vertical atmospheric structures. How-

ever with the advent of instruments with a high spectral resolution, such as interfer-

ometers like the Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric

Sounding Interferometer (IASI), sharper weighting functions can be built. The second
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characteristic is the overlapping nature of the weighting functions for one instrument.

A consequence of this is a lack of independent data for different atmospheric levels.

Despite the several thousand channels observed by the AIRS and IASI instruments, the

characteristics of their weighting functions result in the radiance measurements under-

sampling the smallest scales that are vertically resolved by the NWP model. Therefore

the process of obtaining an atmospheric temperature or humidity profile from the set of

radiance measurements becomes an ill-posed inverse problem, similar in nature to the

general data assimilation problem.

2.4.2 Inverse retrieval problem

The problem of obtaining temperature products from radiances is ill-posed because we

have only a finite number of radiance measurements for an unknown continuous function

T (z); any one combination of measurements could be from thousands of different profiles.

Previous data assimilation schemes such as Optimal Interpolation required the explicit

conversion of radiance observations to temperature profiles before the analysis. Typically

a 1D-Var retrieval process using background information from a short range forecast was

used. The result was an ‘optimal’ temperature profile solution that fits the background

information and the measured radiances, respecting the uncertainty in both. Details on

this process can be found in [32].

Using retrieval algorithms will however result in a correlation between the errors in the

retrieval and the forecast background, both of which are subsequently used in the main

assimilation. In a system of the size used operationally, representing these complicated

error characteristics is very tricky. The new generation of variational analysis methods

such as 3D-Var and 4D-Var avoid this issue and allow the direct assimilation of radi-
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ance information. The forecast background still provides the prior information needed

to supplement the radiances, but it is not used twice and hence more complicated er-

ror characteristics are avoided. This approach also avoids the random and systematic

errors introduced by unnecessary pre-processing such as angle adjustment and surface

corrections, and allows faster access to data from new platforms (Advanced Microwave

Sounding Unit (AMSU) data from NOAA-16 was assimilated operationally 6 weeks after

launch [67]). However, although slightly lessened, the significant problems of background

and observation error specification are still present.

2.4.3 Current satellite data usage

The Global Observing System (GOS) consists of several different observation types, but

satellite data is the dominant contributor. At the ECMWF, satellite data accounts

for 95% of the data used in assimilation, 90% of which is radiance data; over 20 million

satellite observations are used every day, and this is expected to increase to 28 million by

2010 [4]. The current satellite data sources include radiances (i.e, IASI on Metop, AIRS

on AQUA, SEVIRI on Meteosat-9), ozone (SBUV on NOAA-17), bending angles (GRAS

on Metop), Atmospheric Motion Vectors (Meteosat-7/9), and sea surface parameters

such as wind speed and wave height (Seawinds on QuikSCAT).

The meteorological impact of satellite data in operational NWP systems is illustrated

by observing system experiments (OSEs) and information content studies. OSEs are

performed regularly to assess the performance of individual components of the GOS;

the impact of a GOS component is determined by adding it to the baseline assimilation

system. In 2007, eliminating all satellite observations from the ECMWF assimilation

system caused a skill reduction of 0.75 days in the northern hemisphere and 3 days in the
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southern hemisphere [4]. OSEs performed at the Met Office in 2003 and 2007 showed

that when IASI and AIRS data was assimilated in 2007, the impact of eliminating

microwave sounding data was significantly reduced relative to the 2003 assimilations [4].

Information content studies use a popular information measure called the degrees of

freedom for signal (dofS) to represent the amount of information available from a set of

observations [77]. By eliminating different observation types, the contributing informa-

tion from the missing component can be observed. The dofS is defined to be

dofS = trace(I − SaB
−1) (2.23)

where I is the identity matrix, and Sa (2.11) and B are the analysis and background

error covariance matrices, respectively. In Chapter 3 we discuss information content

measures in more detail. These measures are subsequently used in the experiments

described in Chapter 5.

Experiments at the ECMWF in 2003 show a 25% reduction in the dofS when no Ad-

vanced TIROS Operational Vertical Sounder (ATOVS) data was assimilated relative to

the baseline of assimilating all observations [89]. The size of this drop was not mirrored

in the elimination of any other data type. Such experiments demonstrate that the time

and money spent on the procurement and utilisation of satellite data is worthwhile.

The evolution of satellite technology is ongoing and the demand for accurate, high-

resolution data is increasing. It is therefore important that the procurement of satellite

data is in line with these requirements. For example, the Meteosat third generation

satellite proposed for launch in 2015 will include an infrared sounder whose spectral,

and hence vertical, resolution will be comparable with IASI (≈ 1km), but with improved

horizontal (< 10km) and temporal (< 1hour) resolution. The result will be more fre-
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quent information on temperature and water vapour profiles suitable for the nowcasting

demands of European weather agencies [31]. However, as the quantity and complexity

of satellite data increases, important issues in its treatment must be addressed.

2.4.4 Current issues in satellite remote sensing

The horizontal and vertical resolution of numerical forecast models are sampled by

millions of observations. Many of these observations are provided by high spectral

resolution sounders, such as IASI on Metop and CrIS on NPP and NPOESS. Such

observations are also used by climate, chemical and environmental research, and so it is

unsurprising that the exploitation of high resolution data is an area of major scientific

interest.

Instruments such as AIRS and IASI measure radiation in thousands of different chan-

nels and hence provide atmospheric temperature and composition information at a much

higher accuracy and vertical resolution than previous sounders. However, better utilisa-

tion of this data is needed. Large quantities of high resolution observations are currently

omitted from data assimilations because their underlying features are not well under-

stood or cannot be accurately represented. Below we will briefly discuss the reasons for

this omission, and the current work in the area.

Channel selection and data compression

The assimilation of all channels from a high spectral resolution sounder is neither feasible

nor computationally efficient, and so channel selection methods are used. The aim of the

selection process is to choose the set of channels providing the optimal subset of data to
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be inserted into the assimilation. A desirable set of channels will be large enough to ac-

curately represent atmospheric variability but small enough to be assimilated efficiently

within NWP systems.

Specific methods of channel selection based on objective criteria are described in [74].

The iterative method proposed by Rodgers [77] was found to generate the best results

in respect to the lowest standard deviations of errors over the vertical profile. This

method takes entropy reduction (ER) and degrees of freedom for signal (dofS) as the

objective criteria reflecting an improvement in the analysis error covariance matrix Sa.

From the subset of pre-screened channels, the ER or dofS is calculated for each non-

selected channel and the channel with the largest value is chosen for inclusion. Before

the next channel is chosen, Sa is updated so that information obtained from previously

chosen channels is acknowledged before the next is selected, therefore accounting for

redundancy between channels.

The Rodgers iterative channel selection method was performed for the AIRS [35] and

IASI instruments [74], [15] and its robustness demonstrated under different specifications

of the background error covariance matrix and different atmospheric profiles. However,

not all available channels can be incorporated into such channel selection methods. The

properties of certain absorbing gases (trace species) or external influencing factors at

certain wavelengths mean channels incorporating them are blacklisted. For example,

shortwave channels (wavelength < 5µm) can be affected by sunlight and surface emis-

sivity in ways that cannot be represented easily in the forward model, and so are not

chosen in preference to longwave channels that can provide the same information. A

channel selection that is too static may lead to wasting crucial information.

NWP centres are now investigating alternative treatments of huge data volumes. One
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promising method is principal component analysis (PCA) [92]. The nature of PCA

techniques is to approximate data vectors with many elements (i.e, IASI observations

of 8461 channels) by a new correlated set of data vectors containing fewer elements.

The procedure retains most of the variability and information of the initial data. Gold-

berg et al [40] demonstrated that PCA produces an efficient retrieval of atmospheric

temperature, moisture and ozone, and an accurate reconstruction of over 2000 AIRS

channels from 60 principal component scores. Also, a PCA-based noise filter for high

spectral resolution infrared data was shown by Antonelli et al [2] to significantly reduce

the random component of the instrument noise of the observations.

The reconstruction in PCA results in data vectors which are linear combinations of

the initial data set. Therefore the errors in the reconstructed data set will be lin-

ear combinations of the initial errors, i.e, the error characteristics become much more

complicated. It is expected that storing observations in principal component form, i.e,

using reconstructed radiances, will only become possible operationally once these error

characteristics can be better represented.

Assimilation of ‘cloudy’ radiances

Approximately 70% of the globe is covered by cloud [93], and therefore much of the

satellite data available to NWP centres contains contributions from cloud. Because of

the highly nonlinear relationship between satellite retrievals and cloud properties, direct

use of cloudy radiances is often avoided in global NWP systems, and approximately 80%

of satellite data is rejected because it is cloud contaminated. It is therefore unsurprising

that the assimilation of cloudy radiances is of high priority at all NWP centres.
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Attempts were previously made to assimilate ‘cloud-cleared’ radiances for AIRS data

[57] but the assumptions of homogeneous cloud used in the technique were violated

under most atmospheric conditions. Recent work in [70] addressed the feasibility of

assimilating cloudy radiances directly. The proposed technique used simple retrieved

cloud parameters from a 1D analysis to constrain the radiative transfer calculation in

the assimilation process. The results using synthetic AIRS measurements demonstrated

improvements in root-mean-square temperature and humidity errors for shallow layer

cloud. However, results were less promising when the cases of thick or multi-layer cloud

were considered.

A common conclusion from ‘cloudy’ radiance studies is that the physical parametrisa-

tion of clouds in radiative transfer modelling is vital to the successful assimilation of

‘cloudy’ radiances. Currently both the Met Office and the ECMWF assimilate some

cloudy radiances using schemes similar to those described in [70] with limited cloud

parameterisation [68]. It is hoped that a more aggressive use of high resolution infrared

radiances to provide information on temperature structure near the cloud top will result

in more accurate characterisation of the clouds. This will however lead to additional

dependencies and complexities in the charcterisation of the observation errors.

Observation error characterisation

A common issue arises when addressing the utilisation of high resolution satellite obser-

vations: the specification of the observation error structure. Clearly the more processing

steps involved in assimilating the observations, the more complicated the error charac-

teristics become; for example in PCA. The correct specification of these errors is vital

to the success of the assimilation. Studies have shown that increasing observation den-
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sity beyond some threshold can result in little or no improvement in analysis accuracy

[60], or even a degradation [21], when the correlated observation errors are treated as

independent. With the new generation of multi-channel advanced sounders, treating

observation errors incorrectly will only result in further sub-optimality.

Observation errors are present in all data and their nature is often dependent on the

instrument used or the feature they observe. Contrasting model-observation resolutions

and inaccurate physics in the radiative transfer equation mean satellite observation er-

rors are highly likely to be correlated. However, in NWP centres observation error

correlations are often set to zero regardless of the data type or the processing involved.

This is deemed necessary for the computational demands of the data assimilation prob-

lem where a non-diagonal observation error covariance matrix can be very expensive

to invert; but with the increasing use of high resolution data, the validity of this as-

sumption has been severely challenged. At the Met Office, correlated observation errors

are already included in radio occultation assimilation, and there are plans to implement

correlated AMV errors at the ECMWF in 2010.

NWP centres have concluded that a better utilisation of satellite data will only be pos-

sible when observation error correlations are included in the data assimilation process.

The aim of this thesis is to show that this inclusion is both feasible and beneficial. In

Section 2.5 we will motivate the problem further by discussing the origin and role of

observation error correlations.
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2.5 Error covariances

We have seen that the specification of the error covariances for both the background

and observations will determine their weighted importance in the final analysis. We

now study more closely the origin and structure of the observation error covariances,

and discuss their role in producing an accurate forecast.

The uncertainty associated with taking an observation sample is represented through

an error vector ǫo ∈ R
m. The error vector is assumed to have Gaussian distribution

with mean zero and error covariance matrix R = E[ǫo(ǫo)T ] ∈ R
m×m. The Gaussian

assumption does not hold in practice but the resultant pdfs make equation manipulation

involving the errors algebraically simpler. The error covariance matrix R is comprised of

the individual observation error variances on the diagonal and the error cross-covariances

on the off-diagonals. A variance is defined as the mean-square deviation about the mean

of the error data; a covariance is a measure of the association between two error variables

[10]. In operational systems the error covariance matrix must be symmetric positive-

definite.

Consider a simple 2 × 2 case. Suppose we have a direct measurement y = (y1 y2)
T of

a variable x = (x1 x2)
T , then the associated error ǫ and error covariance matrix R are

given by ǫ = (ǫ1 ǫ2)
T and

R =









E[ǫ1ǫ1] E[ǫ1ǫ2]

E[ǫ2ǫ1] E[ǫ2ǫ2]









=









var(ǫ1) cov(ǫ1, ǫ2)

cov(ǫ2, ǫ1) var(ǫ2)









(2.24)

≡









σ2
1 σ12

σ12 σ2
2









(2.25)

where σ2
1 and σ2

2 are the error variances associated with measurement components y1
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and y2, respectively, and σ12 is the error covariance of the two measurement components.

The observation errors can be classified as systematic or random, depending on whether

they are constant between consecutive measurements, or vary randomly. Some system-

atic errors are removed from the observations prior to assimilation; for example, biases

are typically removed in order to avoid a biased analysis [23]. The remaining random

errors will determine the extent to which the background will be corrected to match the

observations.

2.5.1 Origin of observation errors

The size and structure of observation errors will vary according to their origin. For

example, a typical wind error in a radiosonde measurement is 2 m/s, while a satellite

wind observation may have errors in the range 1 − 10 m/s. Observation errors not

only include errors explicitly generated in taking the observations, but also errors in the

treatment of these observations. These two sources are sometimes considered in separate

terms [20], but in this work we will contain them in a single error covariance matrix for

algebraic convenience. Observation errors are distributed in the horizontal and vertical,

and can generally be attributed to four main sources:

• Instrument noise - The error associated with an instrument reading under a set

of test conditions will be provided by the instrument manufacturers. For example,

satellite manufacturers provide the error associated with an instrument reading

from a black body at 280K; this is known as the neδt value. These errors can also

be directly measured in space.

• Forward model error - This includes errors associated with the discretisation
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of the radiative transfer equation and errors in the mis-representation of gaseous

contributors.

• Representativity error - This is present when the observations can resolve spa-

tial scales or features that the model cannot. For example, a sharp temperature

inversion in the vertical can be well-observed using radiosondes but cannot be

represented precisely with the current vertical resolution of atmospheric models.

• Pre-processing - Any pre-processing the observations are subject to will generate

errors. For example, if we eliminate all satellite observations affected by clouds and

some residual cloud passed through the quality control, then one of the assimilation

assumptions is violated and the cloudy observations will contaminate all satellite

channels which are influenced by the cloud.

2.5.2 Observation error correlations

In order to represent accurately the observations in a data assimilation system we must

be able to correctly determine both the diagonal error variances and the off-diagonal

cross-covariances. In order to study the off-diagonal elements of R directly, it can help

to transform the error covariances into error correlations using the formula:

ρij ≡ corr(ǫi, ǫj) =
cov(ǫi, ǫj)

√

var(ǫi)var(ǫj)
, (2.26)

where ǫi and ǫj are the errors associated with an observation at point i and j in space,

respectively. One can then decompose the observation error covariance matrix R into

a diagonal variance matrix D ∈ R
m×m and a correlation matrix C ∈ R

m×m: R =
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D1/2CD1/2,

C =

























1 ρ12 . . . ρ1m

ρ12 1 . . . ρ2m

...
. . .

. . .
...

ρ1m ρ2m . . . 1

























,

D =

























σ1
2 0 . . . 0

0 σ2
2 . . . 0

...
. . .

. . .
...

0 0 . . . σm
2

























, (2.27)

where σ2
i is the variance of the ith error component, and ρij is the correlation level

between error components i and j [49].

2.5.3 Current issues in the treatment of observation error correlations

In the current operational assimilation systems at the Met Office and the ECMWF,

almost all observation error correlations are assumed to be zero, i.e, the error correlation

matrix C is the identity. This is a reasonable assumption for pairs of observations

measured by distinct instruments, or for instrument noise from a regularly calibrated

instrument. However under certain conditions this assumption is entirely inaccurate.

Observation error correlations can be vertically or horizontally distributed. If observa-

tions are used at a higher spatial frequency than the horizontal model resolution, then

they will be affected by horizontal correlated errors of representativity because the model

will be unable to represent the finer scale spatial structure given by the observations.

Vertical errors of representativity will be present if the vertical model resolution is too

low to represent a small scale physical feature as represented in the observation. For
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example, the forecast model may be unable to represent accurately a complex humidity

structure at its current vertical resolution, leading to correlations in the errors between

satellite channels sensitive to water vapour. Also observation preprocessing can generate

artificial error correlations; for example, vertical correlations between satellite channels

when PCA is used to compress data.

When observations are assimilated using their true error correlations, as opposed to the

assumption of independent errors, the influence of the observations on the analysis is

reduced. However, the inclusion of the observation error correlations has been shown to

increase the accuracy of gradients of observed fields represented in the analysis [81]. They

also act in conjunction with the background error covariance to specify how observation

information should be smoothed. In Chapters 5 and 7 we will show how including

correlated errors can increase the information content available from a data set, and

reduce analysis error in an assimilation.

Unfortunately the magnitude and structure of these error correlations are relatively

unknown, and since the number of observations is of order 106 [7], the storage and

subsequent computational demands of using observation error correlations are deemed

infeasible. Hence operationally, observations are usually assumed uncorrelated. In most

cases to compensate for the omission of error correlation, the observation error vari-

ances are inflated so that the observations have a more appropriate lower weighting in

the analysis. In [14] Collard calculated the analysis retrieval error under different diag-

onal approximations to the estimated error covariance structure of AIRS data. Results

showed an increase in the temperature and humidity error when diagonal approxima-

tions were used. The best approximation using a diagonal error covariance matrix was

found to be when the errors were inflated between 2-4 times larger than the standard
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deviations of the true error covariance matrix. This is equivalent to multiplying the vari-

ance matrix D (2.27) by a constant. The variance enlargement was however constrained

by the need for a physically accurate error estimate.

The assumption of zero correlations is often used in conjunction with data thinning

methods such as superobbing [5]. This reduces the density of the data by averaging

the properties of observations in a region and assigning this average as a single obser-

vation value. Under these assumptions, increasing the observation density beyond some

threshold value has been shown to yield little or no improvement in analysis accuracy

[5], [60], [21]. Such studies, combined with earlier examples on how ignoring correlation

structure hinders the use of satellite data (i.e, constraining channel selection algorithms

[15]), suggest that error correlations for certain observation types have an important

role to play in improving numerical weather forecasting.

Approximating observation error correlations in NWP is a relatively new direction of

research but progress has been made. In [43] Healy and White used circulant matrices to

approximate symmetric Toeplitz observation error covariance matrices. Results showed

that assuming uncorrelated observation errors gave misleading estimates of informa-

tion content, but using an approximate circulant correlation structure was preferable

to using no correlations. Fisher [34] proposed giving the observation error covariance

matrix a block-diagonal structure, with (uncorrelated) blocks corresponding to different

instruments or channels. Individual block matrices were approximated by a truncated

eigendecomposition. The method was shown to be successful in representing the true

error correlation structure using a subset of the available eigenpairs. However, spurious

long-range correlations were observed when too few eigenpairs were used. This method

is potentially expensive if a large number of eigenpairs are needed. The work in this
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thesis extends on the existing body of work on modelling observation error correlation

structure.

2.6 Diagnosing observation error correlations

In order to successfully model observation error correlations, we must have some un-

derstanding of the true error structure. This is not a straightforward problem because

error covariances cannot be observed directly, only estimated in a statistical sense. Both

the background, y−h(xb), and the analysis, y−h(xa), innovations are useful sources of

information on the statistical properties of the errors, and can be used in several ways

to provide a sound statistical basis for a refinement of the analysis system.

2.6.1 Hollingsworth-Lönnberg approach

The most commonly used estimation technique is the observational method, otherwise

known as the Hollingsworth-Lönnberg method after the authors who popularised its

use in meteorology [47]. This method uses background innovations statistics from a

dense observing network, under the assumption that the background errors carry spatial

correlations while the observation errors do not.

The premise is to calculate a histogram of background innovation covariances stratified

against vertical or horizontal separation. The background innovation is given by

c = E
[

(y − h(xb))(y − h(xb))
T
]

(2.28)

where y is the observation vector, xb is the background vector, and h is the observa-

tion operator. Under the assumption of mutually independent errors, equation (2.28)
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becomes

c = R + HBHT (2.29)

where H is the linearised observation operator. The i, j-th element of c represents the

departure covariance between two points i and j in space.

At zero separation, i.e, when i = j, we have c(i, i) = σ2
o(i) + σ2

b (i) where σ2
o(i) is the

observation error variance at point i and σ2
b (i) is the background error variance in obser-

vation space at point i. At non-zero separation, R(i, j) = 0 and the departure covariance

is given by the background covariance between points i and j. By calculating c(i, j) for

several pairs of spatial points we can create a histogram of the departure covariances

scaled by the distance between the points (Figure 2.2). At zero separation we have infor-

mation on the averaged background and observation errors; at non-zero separation we

have information on the averaged background error covariances. By fitting an isotropic

correlation model to the histogram and extrapolating this model to zero separation, we

obtain a statistical estimate of the observation and background errors separately. This

method was shown in the original paper to derive the covariance structure of wind back-

ground and observation errors, under the assumption of local homogeneity of the errors

[47].

2.6.2 Desroziers’ method of statistical approximation

With the increasing need for good error covariance specification, new methods have

been proposed for diagnosing error correlations. Dee and da Silva [24] used a maximum

likelihood method to estimate information on error statistics. Their work resulted in

the derivation of statistical parameters that varied in time. Desroziers and Ivanov [26]

used statistics of the analysis innovations to tune background and observation error
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Figure 2.2: Diagrammatic representation of the Hollingsworth-Lönnberg method where c(i, j) is the
covariance between spatial points i and j. c(i, j) provides information on the background and observation
error variances σ2

o(i) + σ2
b (i) at zero separation, and the background error covariances at non-zero

separation. The red line is an isotropic correlation model fit to the histogram and extrapolated to zero
separation. At zero separation the model provides information on σ2

o(i) and σ2
b (i) individually.

parameters, resulting in a successful description of the observation error parameters in

a 3D-Var framework.

Although several error diagnosis methods have been demonstrated as successful and

computationally feasible, the fundamental assumption that the observation errors are

uncorrelated is incorrect. If we were to model observation errors as correlated, many

of the diagnostics cannot be used. For example, in [24] both background and rep-

resentativeness errors are likely to be spatially correlated, and therefore the statistical

separation of error parameters becomes significantly tougher. A method that address the

separation of correlated observation and background errors was proposed by Desroziers

et al in 2005 [25]. The principle of the Desroziers’ method is to use post-analysis diagnos-

tics derived from linear estimation theory to statistically approximate the covariances

of the observations, background and analysis errors in observation space. We describe
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the method below.

Equations (2.1) and (2.2) show how the background state xb and the observation vector

y are approximations to the true state of the atmosphere xt. Assuming that the obser-

vation and background errors are uncorrelated and mutually independent (2.3), we can

derive the BLUE equations (2.9) and (2.10) describing the optimal analysis state xa.

Following [25] we write an alternative expression for the analysis state (2.9) in terms

of the background state xb, the Kalman Gain matrix K (2.10), and the background

innovation vector do
b ,

xa = xb + Kdo
b . (2.30)

The background innovation vector do
b is the difference between the observations y and

their background counterparts h(xb), and can also be described in terms of the observa-

tion and background errors,

do
b = y − h(xb) = y − h(xt) + h(xt) − h(xb),

≈ ǫo + H(xt − xb),

≈ ǫo + Hǫb (2.31)

where H is the linearised verison of h.

Similarly the analysis innovation vector do
a is given by the differences between the ob-

servations and their analysis counterparts h(xa),

do
a = y − h(xa) = y − h(xb + Kdo

b),

≈ y − h(xb) − HKdo
b ,

≈ (I − HK)do
b ,

≈ R(HBHT + R)−1do
b . (2.32)
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By taking the expectation of the cross product of (2.31) and (2.32), and using the

assumption of mutually uncorrelated observation and background errors (2.3), we find

a statistical approximation of the observation error covariances,

E
[

do
a(d

o
b)

T
]

= E
[

R(HBHT + R)−1do
b(d

o
b)

T
]

≈ R(HBHT + R)−1
E

[

(ǫo + Hǫb)(ǫo + Hǫb)T
]

≈ R(HBHT + R)−1
(

E
[

ǫo(ǫo)T
]

+ HE

[

ǫb(ǫb)T
]

HT
)

≈ R(HBHT + R)−1(HBHT + R)

≈ R. (2.33)

The relation (2.33) should be satisfied provided the covariance matrices used in R(HBHT +

R)−1 are consistent with the true observation and background error covariances E
[

ǫo(ǫo)T
]

and E
[

ǫb(ǫb)T
]

. This diagnostic can be used as a consistency check to ensure the obser-

vation error covariances are correctly specified in the analysis. Similar diagnostics can

be generated to check the background error covariances in observation space, HBHT ,

the analysis errors covariances HSaH
T , and the sum of the observation and background

error covariances, R + HBHT [25].

In [25] the diagnostics were applied to analyses from the French operational ARPEGE

4D-Var data assimilation system. The results showed that background and observation

errors were being overestimated in the analysis. Also by applying the diagnostic (2.33)

in a toy problem, Desroziers et al showed that most of the information on observation

error covariances can be recovered when they are initially mis-specified. Such results are

encouraging because the diagnostic by its construction is nearly cost-free, and it allows

the distinction between observation and background correlation structure. However, the

relation (2.33) only holds exactly when the errors assumed in the assimilation are equal
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to those found in reality, i.e, E
[

ǫo(ǫo)T
]

= R, and the observation operator is linear.

Care must therefore be taken when interpreting the results using these diagnostics.

2.7 Summary

In this thesis we are concerned with quantifying and modelling observation error correla-

tion structure in NWP. In order to address the three thesis questions posed in Chapter 1

we must provide the theoretical background for the experiments described in later chap-

ters. In this chapter we introduced the concepts of data assimilation and remote sensing.

The role and impact of correlated observation errors in relation to these fields are studied

in detail throughout the thesis.

In the first three sections of this chapter we described different data assimilation tech-

niques and their role in the evolution of NWP. We focused on the variational methods

of 3D-Var and 4D-Var, and described in detail the resultant cost functions and their

practical implementation. These techniques will be used in the experiments performed

in later thesis chapters.

In Section 2.4 we considered the procurement and properties of remotely sensed satellite

data, namely satellite radiance observations. We described the nature of these observa-

tions and how their relationship to atmospheric variables through the radiative transfer

equation leads to an ill-posed inverse retrieval problem. Since satellite radiance data ac-

counts for approximately 90% of all data used in the ECMWF assimilation algorithms,

optimising its usage is a large area of operational research. We concluded the section

by highlighting the current issues in satellite remote sensing including observation error

characterisation.
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In the penultimate section of the chapter we focused on observation error covariances.

These are often ignored in operational data assimilation algorithms, but evidence and

intuition suggests that their inclusion will improve the use of satellite data. This will

be further investigated in Chapters 5 and 7. Here we described the origin and structure

of observation error covariances, and discussed the impact of treating observation errors

as independent. We reviewed the current proposed methods of incorporating error

correlation structure in data assimilation algorithms; these methods will be further

discussed in Chapter 3.

Finally we discussed the different techniques available to quantify error covariance struc-

ture. We described the Hollingsworth-Lönnberg method which assumes independent

observation errors, and a new method proposed by Desroziers et al [25] in which ob-

servation error correlations can be independently derived. The Desroziers’ method of

statistical approximation will be used later in Chapter 4 to quantify observation error

correlation structure for satellite instrument data.
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Chapter 3

Matrix representation and

retrieval properties

In Chapter 2 we described the structure and properties of the observation error covari-

ance matrix, and commented on its current treatment in operational data assimilation

algorithms. In this chapter we will carefully examine the different approximating struc-

tures that can be used to represent covariance matrices, and the retrieval properties

used to measure the success of the approximation. The theory in this chapter addresses

the second thesis aim posed in Chapter 1: what approximations are available to model

error correlation structure and what is their impact on data assimilation diagnostics?

3.1 Diagonal approximations

One of the benefits of satellite observations is the vast quantity of data available; how-

ever, this in turn is an obstacle to its assimilation. If the observation vector is of size
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m then the observation error covariance matrix contains m2 elements, but by symmetry

this is reduced to (m2 + m)/2 independent elements. When observations have indepen-

dent errors, i.e, the errors are uncorrelated, (m2 −m)/2 of these elements are zero, and

we only need represent m elements. However, when the observation errors are correlated,

we may have to represent, and subsequently use, the maximum number of elements in

the observation error covariance matrix.

From equation (2.8) and (2.12), we know that the inverse of the observation error covari-

ance matrix is the form needed for the calculation of the cost function and its gradient.

When the observation error covariance matrix is diagonal, its inverse will also be diag-

onal. However a non-diagonal matrix, even if sparse, may have a dense inverse. This

inverse is required for 2N matrix-vector calculations in the cost function and gradient

evaluations, where N is the number of assimilation timesteps. A dense inverse may

therefore result in excessive additional cost in running a data assimilation algorithm. In

operational NWP, this problem is avoided by treating the observation errors as uncor-

related and using diagonal approximations to the true error covariance matrix.

The simplest diagonal approximation of an error covariance matrix is a diagonal of the

true variances, or D in equation (2.27). However, by ignoring entirely the correlated

component of the observation error, the observations will be overweighted in the analysis

because they will appear more or less informative than they truly are. Therefore in order

to compensate for the lack of correlation, a diagonal approximation given by the diagonal

of the true matrix scaled by an inflation factor is used [46]. This reduces the weighting
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of the observations in the analysis. The diagonal approximation is now in the form

D̂ =

























d1σ
2
1 0 . . . 0

0 d2σ
2
2 . . . 0

0 0
. . . 0

0 . . . 0 dmσ2
m

























, (3.1)

where di is the inflation factor for variance σ2
i .

The diagonal inflation factors are empirically derived from test data sets; we have no

mathematical reasoning to assume that they are truly optimal. However, work in finan-

cial mathematics on approximations to a correlation matrix may provide us with the

techniques to quantify the optimality of our approximations [44], [87]. Further discussion

of this is given in Chapter 8.

In [14], Collard examined the impact of different diagonal observation error covariance

approximations on the assimilation of AIRS data. Using three different estimates of the

true standard deviation, results showed that diagonal inflation is constrained, between

2-4 times, by the need for a physically accurate error estimate. Collard also concluded

that the full potential of the observations, especially with regards to resolving fine scale

vertical structure, could not be realised under the assumption of uncorrelated error. Such

results suggest an alternative approach to dealing with observation error correlations is

needed.

3.2 Circulant approximations

One possible approach to representing the observation error covariance matrix in a

more realistic and operationally useable form is described in [43]. In [43], the authors
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propose that a near symmetric Toeplitz observation error covariance matrix can be well

approximated by a circulant matrix. The spectral properties of the circulant matrix

allow for ease of use in operational 1D-Var algorithms. Below we describe the form and

properties of Toeplitz and circulant matrices, and demonstrate how the approximation

is formed.

3.2.1 Toeplitz matrices

Toeplitz matrices are a class of persymmetric matrices, i.e, they are symmetric about

their northeast-southwest diagonal, and can be written in the form

Tm =

































t0 t−1 t−2 . . . t−(m−1)

t1 t0 t−1 . . . t−(m−2)

t2 t1 t0 . . . . . .

...
. . .

. . .
. . .

...

tm−1 tm−2 . . . t1 t0

































, (3.2)

where Tm = [tk,j ; k, j = 0, 1, . . . , m−1] and tk,j = tk−j [41]. A standard Toeplitz matrix

has 2m − 1 independent entries; a symmetric Toeplitz matrix has only m independent

entries. A simpler class of banded Toeplitz matrices can be defined by the constraint

that tk = 0, |k| > M for some finite M [41].

Toeplitz matrices are dense matrices with a special structure, and arise in many mathe-

matical applications such as signal and image processing. The Toeplitz structure can be

exploited, and specific iterative procedures are available to solve the resultant Toeplitz

systems. In this work we are not concerned with solving general Toeplitz systems ex-
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plicitly, but a detailed discussion of the iterative techniques available is given in [69].

3.2.2 Circulant matrices

A circulant matrix is a Toeplitz matrix where each column is a circular shift of its

preceding column. A circulant matrix C can be written in the form

C =

































c0 c1 c2 . . . cm−1

cm−1 c0 c1 . . . cm−2

...
. . .

. . .
. . .

...

c2 c3 . . . c0 c1

c1 c2 . . . cm−1 c0

































, (3.3)

where each row is a cyclic shift of the row immediately above it [41]. The inherent

properties of circulant matrices make them particularly useful in matrix representation.

These can be summarised as:

(i) All circulant matrices have the same eigenvectors, given by

y(k) =
1√
m

(

1, e−
2πik

m , . . . , e−
2πik(m−1)

m

)

, k = 0, . . . , m − 1.

These are equivalent to the columns of a discrete Fourier transform (DFT) matrix

of the form
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F =
1√
m

































1 1 1 . . . 1

1 e−
2πi
m e−

2πi
m

×2 . . . e−
2πi
m

×(m−1)

1 e−
2πi
m

×2 e−
2πi
m

×4 . . . e−
2πi
m

×2(m−1)

...
. . .

. . .
. . .

...

1 e−
2πi
m

×(m−1) e−
2πi
m

×2(m−1) . . . e−
2πi
m

×(m−1)2

































. (3.4)

(ii) The eigenvalues of a circulant matrix C, given by λk =
∑m−1

j=0 cke
− 2πikj

m where j

sums over the rows of C, can be obtained by applying a DFT to the first row of

C.

(iii) The inverse, product and sums of circulant matrices are also circulant.

If we consider the eigendecomposition of a circulant matrix

C = F−1ΛF,

where Λ is the diagonal matrix of the eigenvalues of C and F is the matrix of eigenvectors,

then we can see how its inverse can be similarly decomposed:

C−1 = F−1Λ−1F.

From the properties listed above, we see that multiplying a vector by C or C−1 is simply

equivalent to applying three DFTs and one vector-vector product: one DFT to the first

row of C to calculate the eigenvalues, one DFT to represent the matrix of eigenvectors

F , and one inverse DFT to represent the inverse of F . The only storage requirements

for this process is the first row of C, and the use of Fast Fourier transforms will make

the computation of matrix-vector products very fast.
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3.2.3 Toeplitz-circulant approximations

A circulant approximation C to a symmetric Toeplitz matrix T can be described by only

its first row and contains fewer individual elements than the original Toeplitz form. The

first row of C is found by reflecting the first row of T with the reflection axis between

the columns
[

m
2

]

+
and

[

m
2 + 1

]

+
where

[

m
2

]

+
is the smallest integer value greater than

m
2 [43]. For example if m = 5 and we have a Toeplitz matrix of the form,

T =

































x y z s t

y x y z s

z y x y z

s z y x y

t s z y x

































,

then the first row of C is the reflection of the first row of T between the elements z

and s, i.e. (x y z z y). The remaining rows are found by performing a cyclic shift to

the right of the previous row to give the approximating circulant matrix

C =

































x y z z y

y x y z z

z y x y z

z z y x y

y z z y x

































.

From this example case, we can see that the disagreement between the two matrices

is confined to the off-diagonal corners. In reality these corners of an error correlation

martrix represent the correlations between horizontally or vertically spatially distant

errors, which are in general, likely to be smaller than those close together. Therefore
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the circulant matrix approximation may contain spurious long-range correlations, since

small values in the corners of Toeplitz matrix are replaced with moderately large ones.

In [41], the approximation of a Toeplitz matrix by its circulant equivalent is formalised.

It is shown that as the size of the matrix m → ∞, the difference between T and C

converges in the Frobenius norm, and C−1 becomes a good approximation to T−1, i.e,

C−1T ∼= I.

In some meteorological cases, such as for apodised 1D-Var IASI radiance measurements,

the observation error correlation matrix may be close to a symmetric Toeplitz form

[43]. In image processing problems, approximating a Toeplitz matrix by its circulant

equivalent is widely used [16], and the theory in [43] extends this idea to 1D-Var retrievals

of high resolution satellite measurements. It is demonstrated that correlation matrices

with a symmetric Toeplitz structure can be approximated with circulant matrices, and

the manipulation of such matrices is not overly complicated. In Chapter 5 we will

perform further assimilation experiments using circulant matrix structures

3.2.4 Markov special case

The Toeplitz-circulant approximation discussed above is potentially useful because it

involves less matrix storage and potentially fewer matrix operations than using a Toeplitz

matrix explicitly. However, there also exists a Toeplitz matrix whose properties allow

for a simple matrix inversion needed in the calculation of the data assimilation cost

function. Known as the Markov matrix, this matrix is the resultant covariance matrix

from a first-order autoregression process [92].

A series of data in space, such as temperature measurements T at different levels in the
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atmosphere, can be written in the form,

Tk+1 − µ = ρ(Tk − µ) + ǫk+1 (3.5)

where k is the atmospheric level, µ is the mean of the spatial series, ρ is the autoregressive

parameter, and ǫk+1 is the residual error associated with the regression [92]. Using ideas

from time series analysis applied to spatial data, we can describe equation (3.5) as a

first-order autoregressive process or an AR(1) model. This is the continuous analog of a

first-order Markov chain, i.e, the data can take on infinitely many values on a real line.

The Markov property of the process states that the probability of a future state is only

dependent on the probability of the present state and is independent of the probability

of any previous states. This does not mean series values separated by more than one step

are independent, rather that the information on the future state is contained entirely in

the present state.

By treating the values of ǫ as mutually independent, uncorrelated with the value of T ,

and Gaussian distributed with mean zero and variance σ2
ǫ , the covariance matrix of the

AR(1) process (3.5) can be derived to be

R(i, j) = σ2
t ρ

|i−j|, (3.6)

where σ2
t is the variance of the time series [78].

In [78] an AR(1) process is used to model a vertical column of temperature departures

from the mean. Here, the AR(1) covariance matrix, or Markov matrix, is written as

R(i, j) = σ2
t exp

{−|i − j|δz
h

}

(3.7)

where δz is the distance between vertical levels and h = − δz
ln ρ is the length scale chosen

so that the interlevel correlation is 1
e . To show that equation (3.7) is of the form (3.6),
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we write the correlation matrix associated with (3.7) as

C =

































1 ρ ρ2 . . . ρm−1

ρ 1 ρ . . . ρm−2

...
. . .

. . .
. . .

...

ρm−2 . . . ρ 1 ρ

ρm−1 . . . ρ2 ρ 1

































(3.8)

where ρ = exp
{

− δz
h

}

. This matrix has a tri-diagonal inverse,

C−1 =
1

1 − ρ2

































1 −ρ 0 . . . 0

−ρ 1 + ρ2 −ρ . . . 0

...
. . .

. . .
. . .

...

0 . . . −ρ 1 + ρ2 −ρ

0 . . . 0 −ρ 1

































. (3.9)

In current data assimilation algorithms, the inverse of the observation error correlation

matrix is required for the calculation of the cost function and its gradient. In order

for this to be operationally feasible, the storage requirements and number of matrix

product operations of the inverse matrix must be sufficiently small. The storage needed

for reconstructing matrix (3.9) is limited to the value of ρ, and the number of operations

involved in a matrix-vector product using a tri-diagonal matrix is the same order as

that using a diagonal matrix. Therefore calculating the cost function using the matrix

approximation (3.8) is a realistic possibility. In Chapters 6 and 7 we will model error

correlation structure using Markov matrix approximations and evaluate their success.
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3.3 Eigendecomposition approximation

Following [34] we assume that the observation error covariance matrix has a block-

diagonal structure with blocks corresponding to different instruments, or groups of

channels. It is unlikely there will be significant correlation between blocks, and cer-

tain blocks may even be diagonal because the observation errors are uncorrelated. For

those instruments or channels whose observation errors are likely to be correlated, we

can use a correlated approximation such as those described in Sections 3.1 and 3.2.

However, these approximations do not attempt to incorporate any prior knowledge of

the error correlations. A correlated matrix approximation which attempts to utilise a

potentially known error correlation structure was proposed in [34].

Recall the matrix decomposition R = D1/2CD1/2 from Section 2.5.2. In [34] the obser-

vation error covariance matrix is approximated using a truncated eigendecomposition Ĉ

of the error correlation matrix C,

R = D1/2(αI +
K
∑

k=1

(

λk − α)vkv
T
k

)

D1/2 ≡ D1/2ĈD1/2, (3.10)

where (λk, vk) is an eigenvalue, eigenvector pair of C, K is the number of leading eigen-

pairs used in the approximation, and α is chosen such that trace(R)=trace(D), i.e, so

that there is no mis-approximation of the total error variance. The inverse of (3.10) is

easily obtainable and is given by

R−1 = D−1/2(α−1I +
K
∑

k=1

(

λ−1
k − α−1)vkv

T
k

)

D−1/2 = D−1/2Ĉ−1D−1/2. (3.11)

The representation (3.10) allows the retention of some of the true correlation structure,

with the user choosing how accurately to represent the inverse error covariance matrix

(3.11) through the choice of K.
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In [34] the leading eigenpairs of C are found using the Lanczos algorithm. However, if

the correlation matrix is available explicitly, then the eigenspectrum can be calculated

directly using a suitable algorithm. The method was demonstrated successfully in [34]

for observation errors with Gaussian correlation structure and unit variance. However,

spurious long-range correlations were present when too few eigenpairs were used in the

approximation. In Chapters 5 and 7 we will apply this method to different realisations

of observation error correlation structure.

3.4 Summary of matrix representations

The approximations described in Sections 3.1 to 3.3 have all been proposed for mod-

elling observation error correlation structure in data assimilation algorithms. We have

reviewed both diagonal and correlated approximations. We described the properties of

three different correlated matrix approximations and discussed their potential benefit to

reducing the expense of the cost function calculations needed in 3D-Var and 4D-Var. In

Chapters 5 and 7 we will use these matrix representations to model different realisations

of error correlation structure.

The success of a data assimilation algorithm can be described by several measures. By

using the same observations and model framework, and varying the modelled observation

error correlation structure, any effect on the value of the measure can be attributed to

the observation error correlation approximation used. In the second half of this chapter

we will describe several popular metrics used in data assimilation studies.
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3.5 Analysis error covariance matrices

An obvious measure of how useful an observation set is to a data assimilation algorithm

is the error reduction in the state variable, i.e, the analysis error covariance matrix. The

smaller the trace of the matrix Sa, the better the reduction in error variance. Recall from

Section 2.2, under the assumptions of mutually independent background and observation

errors, and the linearity of H, the analysis error covariance matrix is derived as in [49]

to be

Sa = (HT R−1H + B−1)−1; (3.12)

substituting in the Kalman gain matrix K we obtain

Sa = (I − KH)B. (3.13)

In 3D-Var data assimilation, Sa can be calculated explicitly by (3.13). In 4D-Var the

analysis error covariance matrix is often inferred from the matrix of second derivatives

of the cost function known as the Hessian [8]. It can also be calculated sequentially [77]

but this relies on the original observation error covariance matrix being diagonal.

Equation (3.13) applies when all the statistical assumptions on the observation and

background errors are accurate. However, when we use the incorrect observation error

covariance matrix it is not appropriate to use (3.13). If we knowingly using an incorrect

error covariance matrix in the analysis error calculations, then we need to take account

of the true observation errors in order to calculate the analysis error covariance matrix

correctly. This can be achieved through the addition of an extra term to the analysis
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error covariance matrix, as in [78], giving

S∗
a = Sa + KR′KT (3.14)

K = BHT (HBHT + Rf )−1 (3.15)

R′ = Rt − Rf (3.16)

where S∗
a is the correct analysis error covariance matrix, Rt and Rf are the true and false

observation error covariance matrices, respectively, and Sa and K are both evaluated at

Rf .

However, we can argue that we always knowingly use an incorrect R matrix because it

is impossible to know the observation errors exactly. By treating Rf as an upper bound

for the true error covariance matrix, we can use the same error analysis by using Rf in

equation (3.12). In conclusion, when comparing the analysis error covariance matrix for

different structures of R, three approaches are possible:

A1 Assume we are using the correct R matrix, Rt, and evaluate Sa at this value

Sa = (HT R−1
t H + B−1)−1 (3.17)

A2 We knowingly use an incorrect R matrix and include an additional term in the

analysis error covariance matrix to accurately model this

S∗
a = (HT R−1

f H + B−1)−1 + KR′KT (3.18)

A3 Accept that we are using an incorrect R matrix but don’t know the truth, and

evaluate Sa at this value

Sa = (HT R−1
f H + B−1)−1 (3.19)
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Approaches A1 and A2 are used in [14] to determine the impact of various diagonal

approximations to an empirically determined observation error correlation structure. In

[43] A1 and A2 are also used to calculate the trace of the analysis error covariance

matrix for Toeplitz, circulant and diagonal error covariance matrix structures.

3.6 Information content

When we ignore observation error correlations and use processes such as data thinning

and superobbing we are neglecting a portion of the data, and information that could be

utilised is lost. Quantifying the information provided by an observation or an observing

system is used in the development of satellite instruments [74], [89] as well as in the

assessment of operational data assimilation systems [33]. The two most frequently used

information measures are entropy reduction (or Shannon Information Content) and de-

grees of freedom for signal. These measures are generally applicable and can be defined

without reference to a specific retrieval method [77].

3.6.1 Entropy reduction

Entropy is a real valued functional that characterises pdfs [82]. Recall from Section 2.2,

that pdfs can be used as a measure of knowledge of the state and observation vectors. If

Pb(x) represents the knowledge of the state vector before the observations and Po(x|y)

represents the knowledge after the observations are taken, then their respective entropies

are defined to be

S[Pb(x)] = −
∫

Pb(x)log2[Pb(x)]dx, (3.20)

S[Po(x|y)] = −
∫

Po(x|y)log2[Po(x|y)]dx. (3.21)
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The Shannon Information Content (SIC), or entropy reduction, due to the use of the

observations is then given by

SIC = S[Pb(x)] − S[Po(x|y)]. (3.22)

Under the assumption of Gaussian pdfs, it is algebraically convenient to use natural

logs as opposed to log2 [78]. This results in a rescaling of the entropy definition by

ln 2 = 0.69, but makes equation manipulation considerably easier. Using this approach,

we can rewrite equations (3.20) and (3.21) as

S[Pb(x)] = n ln(2πe)1/2 +
1

2
ln |B| (3.23)

S[Po(x|y)] = n ln(2πe)1/2 +
1

2
ln |Sa| (3.24)

where |B| and |Sa| are the determinants of the matrices B and Sa, respectively [78].

Combining equations (3.22), (3.23) and (3.24) we can write the SIC due to the obser-

vations as

SIC =
1

2
ln

|B|
|Sa|

. (3.25)

3.6.2 Degrees of freedom for signal

The degrees of freedom in a set of observations is a measure of the amount of information

from the data that has been utilised. The number of degrees of freedom for signal (dofS)

indicates the number of independent quantities deemed measured by the observations;

the remaining degrees of freedom, known as the degrees of freedom for noise, provide

information about the uncertainty in the data [78]. The closer the dofS is to the total

number of degrees of freedom, the more information the observations have provided.

We have an initial covariance matrix B and performing an analysis to minimise the

variance in observed directions gives us a posterior covariance matrix Sa. The size of
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the eigenvalues in each matrix represents the size of the uncertainty in the direction of

the associated eigenvector; by comparing the eigenvalues of the two, we can determine

the reduction in uncertainty.

To this end, we take a non-singular square matrix L, as in [33], such that LBLT = I and

LSaL
T = Ŝa, where B and Sa are both symmetric positive definite. This transformation

is not unique as we can replace L by XT L where X is an orthogonal matrix. Now if we

take X to be the matrix of eigenvectors of Ŝa, then we simultaneously reduce B to the

identity matrix and Ŝa to a diagonal matrix of its eigenvalues, Λ;

XT LBLT X = XT X = I,

XT LSaL
T X = XT ŜaX = Λ.

After this transformation, the diagonal elements (eigenvalues) of the transformed ma-

trix LBLT are unity and each corresponds to an individual degree of freedom. The

eigenvalues of Ŝa may therefore be interpreted as the relative reduction of variance in

each of the independent directions. Hence if n is the total number of degrees of freedom

(also the number of components of the state vector), then the dofS is given by

dofS = n − trace(Λ). (3.26)

By the properties of a matrix trace we can write (3.26) as

dofS = n − trace(Ŝa),

= n − trace(B−1Sa). (3.27)

Note that equations (3.25) and (3.27) describe the SIC and dofS in terms of the scaled

analysis variances; therefore, information inferred from one measure can be directly

related to the other. Also, we must be careful to use a consistent definition for the
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analysis error covariance matrix as described by equations (3.17) - (3.19). This issue is

addressed in the information content experiments performed in Chapter 5.

Information content studies have been performed for some of the structures described

in Sections 3.1 and 3.2. In [14] the number of dofS was calculated for different diagonal

approximations to a non-diagonal error covariance matrix. In [78] the SIC and number

of dofS were calculated in a simulated study using a Markov matrix as the true obser-

vation error covariance matrix. In this work both information measures were found to

be significantly larger when the full error covariance matrix was used in preference to

a diagonal approximation of the same variances. In [85] approaches A1, A2 and A3,

described in Section 3.5, were used to evaluate information content under different di-

agonal and eigendecompostion approximations to a SOAR distributed error correlation

matrix [3]. An eigendecomposition approximation with a sufficient number of eigenpairs

was shown to retain the most information relative to the truth. Further information

content studies are performed in Chapter 5.

3.7 Norms

The final quality retrieval measures we consider in this chapter are particular vector

and matrix norms. These can be used to evaluate assimilation accuracy and compare

covariance matrix approximations, respectively.

3.7.1 Vector norms

A vector norm is a measure of distance in vector space [36]. The norm f : R
n → R

satisfies the following properties for vectors x, y ∈ R
n and real number α:
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• f(x) ≥ 0 with equality if and only if x = 0;

• f(x + y) ≤ f(x) + f(y);

• f(αx) = |α|f(x).

A commonly used norm for measuring vectors is the 2-norm:

‖x‖2 = (|x1|2 + |x2|2 + . . . + |xn|2)1/2 = (xT x)1/2. (3.28)

However, the 2-norm is not used explicitly as a retrieval measure; it is directly related

to the root mean square error which is commonly used as a diagnostic [5], [70], [54].

Assuming the data is unbiased, the root mean square error (rms) is given by

rms =

(

1

n

(

|x1|2 + |x2|2 + . . . + |xn|2
)

)1/2

, (3.29)

=

(

1

n
xT x

)1/2

,

=
1√
n
‖x‖2 .

3.7.2 Matrix norms

Although not used explicitly in assessing data assimilation algorithms, matrix norms

are a useful measure of how accurately an error covariance matrix is approximated.

Matrix norms act as a distance measure on a space of matrices [36]. A matrix norm

f : R
m×n → R holds the following properties for matrices A, B ∈ R

m×n and real number

α:

• f(A) ≥ 0 with equality if and only if A = 0;

• f(A + B) ≤ f(A) + f(B);
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• f(αA) = |α|f(A).

The matrix norm we will use is the Frobenius norm (sometimes called the Euclidean

matrix norm), which is defined as

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2, (3.30)

where aij are the elements of the matrix A. If A is a symmetric positive-definite matrix,

such as an error covariance matrix, then the Frobenius norm can be described in terms

of the eigenvalues of A,

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2, (3.31)

=
(

tr(AT A)
)1/2

, (3.32)

=

(

n
∑

k=1

λ2
k

)1/2

, (3.33)

where λk is an eigenvalue of A.

For the purpose of this work, we are interested in the difference between an observation

error covariance matrix Rt and its approximation Rf . The Frobenius norm of the

difference is given by

‖Rt − Rf‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|rij − r̂ij |2

=
(

tr
(

(Rt − Rf )T (Rt − Rf )
))1/2

(3.34)

=

(

n
∑

k=1

µ2
k

)1/2

(3.35)

where rij and r̂ij are elements of matrices Rt and Rf , respectively, and µk is an eigenvalue

of Rt −Rf . It is also possible to calculate the Frobenius norm of the difference between

the respective analysis error covariance matrices using Rt and Rf from the formulae

(3.14)-(3.16):

‖S∗
a − Sa‖F =

∥

∥K(Rt − Rf )KT
∥

∥

F
. (3.36)
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where S∗
a and Sa are the analysis error covariance matrices of Rf and Rt, respectively.

3.8 Summary

In this chapter we addressed one of the main thesis questions posed in Chapter 1: what

approximations are available to model error correlation structure and what is their

impact on data assimilation diagnostics? In Sections 3.1 to 3.3 three different types of

approximating structures were described: diagonal, circulant and eigendecomposition

approximations. We focused on the unique properties of the approximating matrices

that make them potentially useful in variational data assimilation algorithms. Clearly

diagonal approximations can be used very cheaply in matrix-vector products, but the

tri-diagonal inverse structure of a Markov matrix and the DFT representation of a

circulant matrix demonstrate cheap ways of including some correlation structure in the

error covariance matrix. The representation of the inverse matrix of all approximations

avoids the need for a potentially expensive explicit inversion of R.

To determine whether an approximation is suitable, it is necessary to quantify its im-

pact when used in a data assimilation scheme. In Sections 3.5 to 3.7 we described three

popular retrieval measures used in the assessment of data assimilation algorithms: anal-

ysis error covariance matrices, information content and norms. These are not the only

available measures, but in contrast to diagnostics like the effect on forecast accuracy, are

simple to quantify in the subsequent framework. When calculating these measures, at-

tention must be paid to the assumptions under which the observation error correlations

are specified, i.e, do we assume a correct or an incorrect R matrix has been used? Incor-

rect assumptions can lead to misleading estimates of analysis accuracy and information
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content. If we have an accurate specification of the true error correlation structure, then

this problem is mitigated because we are more certain of the true specification of C (and

hence R). In the next chapter we will demonstrate how an accurate specification of C

can be determined.
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Chapter 4

Quantifying observation error

correlations

In Chapter 2 we described the variational formulation of operational data assimilation

algorithms, where the information provided by the observations and a first-guess model

background is weighted by the inverse of their respective error covariance matrices. We

discussed how the error characteristics of remotely sensed observation types are typically

not accurately represented in data assimilation algorithms. This can result in a negative

impact on forecast accuracy and an inefficient utilisation of observations [14], [43], [60].

Quantifying observation error correlations is not a straightforward problem because they

can only be estimated in a statistical sense, not observed directly. However, attempts

have been made to quantify error correlation structure for different observation types

such as Atmospheric Motion Vectors [7] and satellite radiances [83].

Two methods of diagnosing the correct error covariance matrices using post-analysis

diagnostics are the Hollingsworth-Lönnberg method [47] and the Desroziers’ method [25]
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described in Section 2.6. The Hollingsworth-Lönnberg method is typically used when the

background errors carry spatial correlations while the observation errors do not, while

the Desroziers’ method can be applied when observation error correlations are present.

The results in [25] demonstrated the success of the Desroziers’ method in diagnosing

cross-correlations from data which is assumed uncorrelated in the assimilation (i.e, the

observation error covariance matrix is set as diagonal) but in reality carries correlations.

In this chapter we extend these studies to operational data.

The work in this chapter aims to answer the first thesis question posed in Chapter 1:

what is the true structure of observation error correlations? Using Infrared Atmospheric

Sounding Interferometer (IASI) data as the observation type, we will apply the diag-

nostic proposed by Desroziers (2.33) to quantify the cross-channel correlations between

measurements. First we will introduce the IASI instrument and describe the likely origin

of IASI observation error correlations. We then apply the diagnostic to IASI measure-

ments processed using the Met Office incremental 4D-Var data assimilation scheme.

Technical and practical details of the process will be given, including the pre-processing

of IASI observations through 1D-Var retrievals. The diagnosed error covariances will

be produced for both the 1D-Var retrieval procedure and the 4D-Var assimilation. The

results described have previously been published as a technical report [86].

4.1 Infrared Atmospheric Sounding Interferometer (IASI)

data

The IASI instrument is an infrared Fourier transform spectrometer which measures the

infrared radiation emitted by the earth’s surface and atmosphere [9]. The first IASI
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instrument was launched on the MetOp-A satellite in 2006 as part of the EUMETSAT

European Polar System (EPS). Its spectral interval of 645-2760cm−1 is divided into

three bands and sampled by 8461 channels at a resolution of 0.5cm−1. Band one,

from 645-1210cm−1, is used primarily for temperature and ozone sounding, band two

(1210-2000cm−1) for water vapour sounding and the retrieval of N2O and CH4 column

amounts, and band three (2000-2760cm−1) for temperature sounding and the retrieval

of N2O and CO column amounts.

IASI measurements of radiances, r, are expressed as black-body equivalent brightness

temperatures, T , through Planck’s function [59]

r =
2hν3c

exp{hcν
kT } − 1

,

where k is Boltzmann’s constant, h is Planck’s constant, c is the speed of light and ν

is the wavenumber. Planck’s function is used in the radiative transfer equation (2.21)

described in Secton 2.4.1. The radiative transfer model used in the assimilation of IASI

radiances is the radiative transfer model for TOVS (RTTOV) [66].

IASI data is an important component of the global observing system. The assimilation

of IASI radiances is operational at the Met Office [45], Meteo-France [72] and ECMWF

[13], and is in the testing stage at several other national weather centres. At the Met

Office, forecast accuracy has improved through the assimilation of IASI radiances [45]

from the general channel subset determined in [15]. However, the assimilation of channels

sensitive to water vapour has only shown a weak impact on forecast accuracy. The sus-

pected cause of this underperformance is attributed partially to the mis-representation

of the cross-channel observation error correlation structure.
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4.1.1 Observation error correlations

The IASI observation errors are treated as horizontally and vertically uncorrelated. The

assumption of horizontally independent observation errors is supported by intelligent

thinning of the data ensuring that no observations are assimilated at a higher density

than model resolution. This is clearly a very inefficient use of the data, but it reduces

the complexity of the subsequent assimilation of the radiances.

Ensuring vertically independent observation errors is more difficult. Because of the na-

ture of the IASI instrument, radiance measurements are sensitive to the temperature

profile over several atmospheric levels. This distribution is represented by the broad

channel weighting functions of the instrument (Figure 4.1). Therefore the errors in

adjacent channels (i.e, those close to each other in wavelength) can potentially be corre-

lated; for example, if the sensitivity of the signal to a trace gas present in several adjcent

channels is mis-represented. The current IASI channel selection procedure deals with

this issue by avoiding the assimilation of adjacent channels. However, this cannot be

rigorously enforced because adjacent channels in certain wavelength bands are needed

to provide fine scale information on atmospheric profiles; for example, channels in the

longwave CO2 band provide information on temperature and humidity. Therefore some

level of error correlation structure will exist between selected channels.

Additionally, correlated errors of representativity are present between channels that

observe spatial scales or features that the model cannot. Although the IASI observation

spacing of 25km is similar to the Met Office NWP model grid spacing of 40km, IASI is

sensitive to small-scale variations within its 12km field-of-view which the NWP model

does not attempt to represent. For example, the NWP model may be unable to represent
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Figure 4.1: IASI weighting functions (provided by Fiona Hilton)
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accurately a complex humidity structure at its current resolution, leading to correlations

between channels sensitive to water vapour.

Finally, errors in the forward model may be correlated between channels. These include

errors in the spectroscopy, an inaccurate discretisation of the radiative transfer equation,

and mis-representation of the gaseous contributors in certain channels.

4.1.2 Processing

Any preprocessing performed on the original IASI radiances prior to their assimilation is

likely to create errors. At the Met Office before IASI observations are assimilated directly

into the NWP model, they are subject to pre-screening and quality control procedures.

This is performed in the Observation Processing System (OPS). A schematic of the IASI

observations processing path is shown in Figure 4.2.

IASI has the potential to provide observations in 8461 channels, but at present only

observations from a subset of 314 are used. IASI measured brightness temperatures

from this subset are fed into the OPS and processed using a code specifically written

for satellite measurements. This code, known as the SatRad code, implements a 1D-

Var assimilation on the bias-corrected brightness temperature measurements, y, and an

accurate first-guess model-profile from a short range forecast, xb. The solution is the

state vector x that minimises the cost function,

J(x) =
1

2
(x − xb)

T B−1(x − xb) +
1

2
(y − h(x))T R−1(y − h(x)), (4.1)

where h is the observation operator mapping from state space to measurement space, B is
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Incremental 4D-Var assimilation

Figure 4.2: Schematic of IASI radiance processing and 1D-Var retrieval (yellow boxes).

the background error covariance matrix and R is the observation error covariance matrix.

The observation operator h is comprised of a Radiative Transfer for TIROS Operational

Vertical Sounder (RTTOV) radiative transfer model [80], [66]; it accurately predicts

brightness temperatures given first-guess model fields of temperature and humidity on

43 fixed pressure levels between 0.1 and 1013hPa, as well as surface air temperature,

skin temperature and surface humidity.

The OPS has two main functions: the first is quality control on the brightness tem-

perature measurements, and the second is providing an accurate estimate of the model
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variables not assimilated in 4D-Var. The assimilation performs a local analysis of the

model state at the location of every satellite observation; an observation is suitable for

4D-Var assimilation if its 1D-Var analysis generates a good convergence and a suitable

a posteriori cost [88]. Each observation has an associated cost which is scaled to be

ideally one, and if the distribution of the costs about 1 were plotted, the quality control

procedure would be equivalent to eliminating those observations for which the costs lie

in the tails of the distribution.

Unsuitably high costs and slow convergence are caused by inconsistencies between the

background and the observations; for example, if the background assumes a clear sky

but the observation is affected by cloud. If we consider the prior and likelihood distri-

butions of the background and the observations, then the 1D-Var assimilation finds the

solution with maximum probability that satisfies both the background and the observa-

tion distribution. If the distributions are highly overlapping, then the solution state will

exist with a high probability; if the distributions have a small overlap then the solution

state is improbable, convergence to it will be slow, and its cost will be high. Identifying

and eliminating these observations in 1D-Var enables a stable and fast convergence in

4D-Var.

The 1D-Var assimilation also provides estimates of the atmospheric variables not repre-

sented in 4D-Var. The control vector in 4D-Var is comprised of a subset of the full state

vector variables, and those variables, such as skin temperature, which are not included

are unmodifiable. It is therefore crucial to the success of the assimilation that these

variables are accurately specified prior to the 4D-Var assimilation. For example, if a

poorly specified skin temperature is fixed then information from the observations will

not be able to improve it. Therefore the control variables, which can be modified, will
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be fitted incorrectly to the observations. The full state vector is used in the 1D-Var

assimilation, and the analysis values of those variables not present in the control vector

are passed to 4D-Var.

When the 1D-Var assimilation is performed in the OPS, the forward model is separately

fitted to each individual column of observations, so the position of the observations, and

hence any resolution conflicts, is already determined. Therefore, it can be argued that

the representativity errors will appear in the background matrix B, and so correlations

in representativity error within the observation error covariance matrix R will be low.

Hence, from the OPS diagnostics (2.33) we expect any error correlations to be mainly

attributed to forward model error and pre-processing error.

The OPS produces a quality controlled subset of brightness temperature measurements

suitable for assimilation in the Met Office incremental 4D-Var assimilation system [76].

As with the 1D-Var procedure, 4D-Var assimilation aims to minimise a cost function

penalising distance from the solution state to the observations and the first-guess back-

ground profile (2.15). In 1D-Var, each set of radiance measurements is assimilated at its

own horizontal location, while in 4D-Var all observation types are assimilated together

at model grid points. The algorithm generates an optimal analysis increment which is

used to update the solution state at the start of the assimilation time window. From

this starting state, the nonlinear model is run over the time window to generate a fore-

cast. The forecast model fields are output at the model grid points at pre-determined

times, and can be interpolated in time and space to the observation locations. In the

4D-Var assimilation, all observation information is fitted to the resolution provided by

the model, and so correlated representativity errors are expected to be contained wholly

in R.
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4.2 Application of the Desroziers’ diagnostic

We now describe the methodology for generating the Desroziers’ diagnostic (2.33):

E
[

do
a(d

o
b)

T
]

≈ R (4.2)

where do
b = y−h(xb) is the background innovation vector and do

a = y−h(xa) is the analy-

sis innovation vector. The suitability of the diagnostic (derived from 3D-Var assimilation

theory) for 4D-Var assimilation is shown in Appendix B. The diagnostic is calculated

for two situations: firstly using the analysis output from the OPS and secondly using

the analysis output from the incremental 4D-Var assimilation. The background and

analysis increment statistics are generated from the assimilation of only clear sky, sea

surface IASI observations. Observations will be from both day and night time, with the

exception of daytime observations from shortwave channels which will be eliminated.

Using only IASI observations in the assimilation avoids the difficulties of attributing the

diagnosed error correlation structure to different observation types. We will now discuss

the technical and practical details of the procedure.

4.2.1 Technical details

First we calculate the diagnostic for the OPS retrievals. As previously mentioned, before

satellite radiances are assimilated into 4D-Var, they are passed through the OPS for

quality control. Within the OPS, a 1D-Var assimilation is performed on the equivalent

brightness temperatures and a first-guess background, producing an analysis retrieval.

The first set of statistics will be generated using the background, do
b , and analysis, do

a,

innovations from the 1D-Var analysis.

Calculating the diagnostic using the 4D-Var retrievals is more complicated. The initial
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OPS run analyses those atmospheric quantities not present in the 4D-Var state vector,

and passes them to 4D-Var with a quality controlled set of brightness temperatures; these

are used to produce an optimal analysis increment. Along with the forecast value at the

start of the time window, the increment is run through the Unified Model (UM) [19] over

a 6 hour time window to generate an analysis trajectory. Using the same observation

set, the analysis fields can be passed back through OPS (the second OPS run), only

this time as the background input. We can therefore use the background innovations

generated by OPS as the do
a innovation statistics for the 4D-Var assimilation. This

process is shown in Figure 4.3.

Inputs yo, xb

OPS Outputs
do

b
, do

a
(1D-Var)

Var

UM

OPS Output
do

a
(4D-Var)

ŷo ⊂ y, x̂b

δxa

xa

Figure 4.3: Met Office assimilation process: yo is the initial observation set, ŷo is the quality control
observation subset, xb is the background, x̂b is the quality control background, δxa is the analysis
increment, and xa is the analysis. The yellow boxes represent assimilation steps and the pink boxes
represent assimilation inputs and outputs.

Clearly we only want to generate our statistics from those observations that are deemed

suitable to process in the Var system, i.e, those that pass the OPS quality control.

These are easily identifiable since OPS assigns all observations a quality control flag
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value: zero if the observation is passed to Var, one if the observation was accepted by

Var but spatially thinned out, and greater than one if the observation was rejected.

However, the observations passed to Var in the second OPS run will not be the same as

those passed in the initial run, because the backgrounds are different. To ensure that

the same observations are used to generate the do
b innovations in the initial OPS run and

the do
a innovations in the second OPS run, we match observations using their latitude

and longitude values.

4.2.2 Practical calculations

The aim of this chapter is to use the background and analysis increment statistics

generated from the assimilation of IASI data, to provide a consistency check on the

observation error covariances used in the assimilation. We are interested in the correla-

tions between channels used in (i) the 1D-Var assimilation in OPS (183 channels), (ii)

the 4D-Var assimilation (139 channels). Using the diagnostic (4.2), for each channel i,

we compute the observation error covariance with channel j by averaging the product

of the background and analysis innovations over the total number of observations used

in the assimilation N ,

R(i, j) =
1

N

N
∑

k=1

{(do
a)i (d

o
b)j}k −

(

1

N

N
∑

k=1

{(do
a)i}k

)(

1

N

N
∑

k=1

{(do
b)j}k

)

=
1

N

N
∑

k=1

{yo
i − ya

i }k{yo
j − yb

j}k

−
(

1

N

N
∑

k=1

{yo
i − ya

i }k

)(

1

N

N
∑

k=1

{yo
j − yb

j}k

)

, (4.3)

where yo
i is the brightness temperature value in channel i, and ya

i and yb
i are the analysis
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and background counterparts, respectively. We subtract the mean innovation values to

ensure our diagnostic is unbiased.

The diagnostic (4.3) is only an approximation of the observation error covariance matrix.

It is only strictly valid when E
[

ǫo(ǫo)T
]

= R and E
[

ǫb(ǫb)T
]

= B, i.e, when the errors

assumed in the assimilation are equal to those found in reality. Under such circumstances

the resulting matrix would be exact and symmetric. However, we are knowingly using

an incorrect specification of the observation error covariances, and so by construction

the matrix may not be symmetric. Since an error covariance matrix is required to be

symmetric positive definite, we could approximate R with the symmetric component of

our diagnosed matrix

Rsym =
1

2
(R + RT ). (4.4)

4.3 Results for 1D-Var retrievals

We now perform a set of experiments using the techniques described in the previous

section. First we consider the diagnostic (4.2) applied to the OPS analyses. A set of

analyses are produced by the 1D-Var assimilation of IASI data from the 17th July 2008

at 00z, 06z, 12z and 18z, within the Observation Processing System. The total number

of observations used to produce the statistics is 27,854; 9,131 of which are suitable for

use in the 4D-Var assimilation and 18,723 of which are thinned out. Figures 4.4 and

4.5 show the global location of all the observations used in the OPS assimilation, and

the size of their background innovations for MetDB channel 1 (sensitive to stratospheric

temperature) and MetDB channel 279 (sensitive to water vapour), respectively. Using

the formula (4.3), we calculate the observation error covariances for this data.
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Figure 4.4: Global location and background innovation value C − B (degrees Kelvin) for observations
in MetDB channel 1

Figure 4.5: Global location and background innovation value C − B (degrees Kelvin) for observations
in MetDB channel 279
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Figure 4.6: Operational error variances (black line) and diagnosed error variances (red line) (K2)

Figure 4.6 shows the operational observation error variances used in the 1D-Var assim-

ilation (black line) and the error variances diagnosed by (4.3) (red line) for all the 183

channels used in the OPS. The error standard deviations used in the OPS (square root

of the variances) are comprised of the instrument noise plus a forward model error of

0.2K. The channels numbers correspond to the index of the MetDB channel used in the

OPS, i.e, MetDB channel number 1 has OPS channel index 0 (the first channel used in

the OPS) and MetDB channel 280 has OPS channel index 182 (the last channel to be

used in the OPS). Figure 4.7 shows a typical IASI spectrum for all 314 channels; the

channels used in OPS are highlighed by the red asterisks (the full list of corresponding

channel numbers and indices can be found in Appendix A).

The structure of the operational and diagnostic error variances in Figure 4.6 is very

similar. The diagnosed error variance is significantly lower than the current operational
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Figure 4.7: Channels used in OPS (red asterisks) on a typical IASI spectrum (black line)

variance for all channels. The largest difference is in the OPS indexed channels 145 - 180

which are highly sensitive to water vapour. In conclusion, the results suggest that the

error variances are being overestimated especially in channels sensitive to water vapour.

Figure 4.8 shows the observation error covariances for the 183 channels used in the

OPS. The error covariance plot is heavily diagonally dominant; the diagonal values in

Figure 4.8 correspond to the values plotted on the red line in Figure 4.6. The darker

colours towards the top of the diagonal in Figure 4.8 correspond to the larger variance

values in channels 165-172 in Figure 4.6. The correlations are relatively weak between

channels with OPS index under 120, with the exception of channel 20 (MetDB number

21). However, channel 20 is a high-peaking channel in the temperature sounding band,

which is not used in the 4D-Var assimilation because of the stratospheric ringing of its

innovations.
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Figure 4.8: Diagnosed observation error covariance matrix for the OPS (K2)

Figure 4.9: Diagnosed observation error correlation matrix for the OPS
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The error correlation matrix can be determined easily from the error covariance matrix

using the identity R = D1/2CD1/2 from Chapter 2.5.2; the diagnosed error correlation

matrix is shown in Figure 4.9. The correlation structure shown in Figure 4.9 is not

uniformly symmetric, suggesting that the iterative procedure for updating the error

variances (as proposed by Desroziers [25]) could be beneficial.

From the results in Figure 4.9 we can conclude that when the IASI observations are anal-

ysed in the OPS, observation error cross-correlations are very small for most channels.

This can be explained by recalling that only forward model and adjacent channel error

correlation is expected to appear in the observation error covariance matrix. When we

use the analyses from the 4D-Var assimilation, we expect the cross-channel correlations

to be larger because correlated error of representativity will also be contained in R.

4.4 Results for 4D-Var retrievals

We now calculate the observation error covariances using the analysis innovations derived

from the 4D-Var assimilation of IASI data. The set of analyses are produced by the

assimilation of data from 17th July 2008 at 18:00. A total of 2,073 observations are used

to produce the statistics; this is a subset of the 6,539 observations that are used in the

OPS at this time. We expect a stronger correlation structure than that diagnosed using

the 1D-Var retrievals.

Figures 4.10 and 4.11 show the diagnosed observation error covariances and correlations,

respectively, for the 139 channels used in 4D-Var. Comparing Figure 4.10 to Figure 4.8,

we observe that the variances are notably larger in the 4D-Var matrix (up to 0.8 in Var

channel 263). Also there exist larger off-diagonal covariances in Figure 4.10. There are
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Figure 4.10: Diagnosed observation error covariance matrix for 4D-Var assimilation (K2).

four significant block structures of covariance centred around the diagonal: the first for

Var channels between 124-171 (index 86-108) which are window channels sensitive to

surface temperature and emissivity, the latter three for Var channels 176-202 (index 109-

121), 215-263 (index 122-127), and 270-280 (index 128-138) which are sensitive to water

vapour. The block structure implies the channels in each block have highly correlated

errors. This can be seen more clearly in the Figure 4.11 plot of the observation error

correlation matrix.

Figure 4.12 shows a typical IASI spectrum; the channels present in each of the block

structures in Figure 4.11 are marked by coloured asterisks, and channels outside these

blocks are marked by black asterisks. Combined with the table of spectral information

in Appendix A, we see that the channels that carry significant correlations between them

have similar spectral properties. For example, the channels between 215-263 used in Var
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Figure 4.11: Diagnosed observation error correlation matrix for 4D-Var assimilation

(index 122-127) have typical brightness temperature measurements between 217-222K,

and a Q jac peak (see Appendix A) at 208.16hPa. Var channel blocks 176-202 and 270-

280 also have similar brightness temperature measurements and a strong correlation

structure in Figure 4.11.

In addition to the block diagonal structure, Figure 4.11 also shows bands of correlation

surrounding the first, and largest, block structure. Using the summed Q jac value (see

Appendix A) as a measure of the sensitivity of a channel to water vapour, we observe

that channel index 60 (Var channel 98) has a value of 0.113 and a significant band of

correlation, while channel index 61 (Var channel 99) has a value of 0.022 and a near

zero correlation value with the surrounding channels. The largest summed Q jac values

are found in the low-peaking Var channel blocks 176-202 and 270-280 (up to 1.000

in channel 272). From these results and the diagnosed block correlation structure of
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Figure 4.12: Channels used in 4D-Var on a typical IASI spectrum: Var channel indexed 0-85 (black),
86-108 (red), 109-121 (blue), 122-127 (green), 128-138 (yellow)

channels sensitive to water vapour in Figure 4.11, we can infer that strong correlated

errors of representativity exist between channels sensitive to water vapour. This implies

that some fine scale humidity structure is represented in the IASI observations but not

in the NWP model.

Although correlations are largest in those channels highly sensitive to water vapour, a

weaker level of correlation is also present in the channels used in temperature sounding.

Figure 4.13 shows two fainter blocks of correlation centred on the diagonal for channel

indices 0-10 (Var channels 2-42) and 11-50 (Var channels 44-88) ; channels 14 and 24

are highly correlated with their neighbouring channel within these blocks. Many of the

channels within these blocks are adjacent to each other, and therefore we would expect

some level of error correlation structure. The differences in measurements between these

channels can be used to capture fine scale information on humidity and temperature
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Figure 4.13: Diagnosed observation error correlations in temperature sounding channels indexed 1-60

profiles; it is therefore desirable to include even a weak level of correlation structure in

an attempt to lower the operational error variances and hence retain more information.

An important feature of the matrices displayed in Figure 4.9 and 4.11 is their non-

symmetry. Although the matrices are predominantly symmetric, water vapour sensitive

channels 109-121 and 18-138 in Figure 4.11, for example, display asymmetric correlations

between channels. The departures from symmetry can be attributed to departures

from the assumption of using the correct observation and background errors in the

construction of (2.33). Our results demonstrate that observation errors are correlated

between certain channels, but the observation error covariance matrix used in 4D-Var

is diagonal. This emphasises the need to include a correlation structure in the error

covariance matrix.

88



We conclude this section by comparing the diagnosed error variances with those cur-

rently used operationally. In the previous section, we found that the error variances were

being over-estimated in the OPS. Figure 4.14 shows the observation error variances used

in 4D-Var (black line), the error variances diagnosed using (4.3) (red line) and the first

off-diagonal from the symmetrised diagnosed error covariance matrix (green line). For

all channels, the diagnosed variances are considerably less than those being used opera-

tionally, implying an overestimation of observation error variances in 4D-Var. However,

the size of the first off-diagonal covariance value (green line) indicates why this overes-

timation might take place. For most of the Var channels indexed 86 upwards, the first

off-diagonal covariance value is very close in size to the diagonal variance value, there-

fore ignoring this value and other off-diagonal covariances will result in over-weighting

the observations in the analysis. We conclude that it is therefore necessary to inflate

the error variances if we choose to ignore large off-diagonal covariances, as previously

suggested in [14].

4.5 Summary and conclusions

In order to model successfully observation error correlations, an accurate knowledge of

the true correlation structure is needed. This structure varies with observation type and

instrument. In this chapter we have successfully used a post-analysis diagnostic derived

from variational data assimilation theory to obtain the cross-channel error correlations

for IASI observations. We first introduced IASI data and commented on its current

usage at the Met Office. The technical and practical details of applying the Desroziers’

diagnostic to the assimilation of IASI observations were then discussed. Background and

analysis innovation statistics were acquired through the assimilation of IASI observations
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Figure 4.14: Operational error variances (black line), diagnosed error variances (red line), and first off-
diagonal error covariance (green line) in K2. Operational error variances not shown off the top of the
plot are all equal to 4K.

in the OPS and then the incremental 4D-Var assimilation system.

The current treatment of vertical IASI observation errors is to assume independence

between channels, i.e, the observation error covariance matrix is diagonal. The new

results in this chapter have challenged the validity of this assumption. The statistics

from the 4D-Var assimilation showed large off-diagonal error covariances in channels

highly sensitive to water vapour, and additional correlation structure in channels in the

temperature sounding band. Observation error correlations were shown to be signifi-

cant between neighbouring channels with similar spectral properties, leading to a block

structure in the error covariance and correlation matrix.

However, the statistics from the 1D-Var assimilation identified predominantly uncorre-

lated errors between channels, with some weak correlation in those channels sensitive
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to water vapour. These findings suggest that correlated observation errors in IASI data

can largely be attributed to errors of representativity.

The application of the post-analysis diagnostic to both the 1D- and 4D-Var assimila-

tion procedures recorded observation error variances considerably smaller than those

currently being used operationally. We can attribute this over-inflation to the assump-

tion of uncorrelated errors. In the 4D-Var assimilation, the diagnosed error covariances

between certain channels are very large, and ignoring these will lead to a mis-weighted

representation of the observations in the analysis. Therefore inflating the variances is

necessary if all observation errors are assumed independent. If we are to change this

assumption, a suitable representation of the error correlation structure is needed.

The diagnosed values of observation error covariances and correlations generated here

provide a realistic starting point for future work on including observation error corre-

lation structure in variational data assimilation. The block diagonal structure in the

error correlation matrix highlights the potential use of Markov representations for each

of the blocks, for example. Although the diagnosed matrices are not entirely symmet-

ric, the data provides us with an approximation of the ‘true’ correlation structure, and

an approximating symmetric matrix (4.4) can be generated. Against this matrix it is

possible to compare analytic error correlation structures by examining features such as

information content and analysis accuracy.

In the next chapter we run some initial statistical experiments comparing the matrix

approximations described in Chapter 3 against an empirically derived true error cor-

relation structure. The aim is to determine if an estimation of true error correlation

structure can retain important features of the data.
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Chapter 5

Information content studies in a

3D-Var framework

In Chapter 3 we described several matrix approximations suitable for representing error

correlation structure in data assimilation algorithms. In Chapter 4 we demonstrated

the quantitative behaviour of observation error correlations between channels of the

IASI instrument. The results showed an error correlation matrix with close to block

diagonal structure and strong off-diagonal correlations present between channels with

similar spectral properties. In this chapter we present new results which quantify the

success of each of the matrix approximations described in Chapter 3 in modelling an

empirically derived error correlation structure. Specifically we address the second of our

thesis aims: what is the impact of error covariance approximations on data assimilation

algorithms?

To this end we examine the information content provided by a 2D set of observations

when assimilated using their true error correlation matrix and the proposed approxima-
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tions. The assimilation technique we use is three-dimensional variational assimilation

(3D-Var) which was introduced in Section 2.2. Although we are only considering two

spatial dimensions, we shall use the terminology 3D-Var for the sake of convention.

We use the 3D-Var method because the equations for calculating information content

are available explicitly without the added complications of four-dimensional variational

assimilation.

We begin the chapter by recalling two measures of information content: Shannon Infor-

mation Content (or entropy reduction) and the degrees of freedom for signal as described

in Section 3.5.2. We describe the formula for each of these measures under the different

possible constructions of the analysis error covariance matrix. The empirically derived

observation error covariance matrix against which we test our approximations is diag-

nosed from pairs of Atmospheric Motion Vector and radiosonde collocations. We use

these results over the diagnosed structure in Chapter 4 because a known correlation

function has previously been fitted to the empirical data [7].

Results for diagonal and correlated approximations to the diagnosed error structure

demonstrate (a) the usefulness of including some level of correlation structure if suf-

ficient information is to be retained; (b) the sensitivity of the information content to

the background error correlation structure; and (c) the importance of knowing the true

observation error correlation structure even when approximations are to be made.

5.1 Information content

The overall aim of the experiment is to calculate the information content for a set

of observations when (a) the true error covariance matrix, Rt, is used, and (b) an

93



approximate error covariance matrix, Rf , is used in the assimilation process. We will

use the measures of Shannon Information Content (SIC) and degrees of freedom for

signal (dofS) to quantify the information provided by the observation set. Recall from

Section 3.5.2, the SIC and dofS can both be described in terms of the scaled analysis

variances:

SIC =
1

2
ln

|B|
|Sa|

, (5.1)

dofS = n − trace(B−1Sa), (5.2)

where B is the background error covariance matrix, Sa is the analysis error covariance

matrix, and n is the total number of observations.

The formula for the analysis error covariance matrix, Sa, varies under the specification

of the observation error covariance matrix R. In Section 3.5.1, three possible specifica-

tions for the analysis error covariance matrix were given. Below we will describe their

application to the information content measures.

The first approach is when we use the correct error covariance matrix Rt. The analysis

error covariance matrix is then given by

S(1)
a = (HT R−1

t H + B−1)−1, (5.3)

and hence the information measures can be written as

SIC(1) =
1

2
ln |B(S(1)

a )−1|, (5.4)

=
1

2
ln |B(HT R−1

t H + B−1)|, (5.5)

=
1

2
ln |BHT R−1

t H + I|, (5.6)

dof
(1)
S = n − trace(B−1(HT R−1

t H + B−1)−1), (5.7)

= n − trace((HT R−1
t HB + I)−1). (5.8)
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The second approach is when we knowingly use the incorrect error covariance matrix

Rf and include an extra term in the analysis error covariance matrix to model this [33].

The analysis error covariance matrix becomes

S(2)
a = (HT R−1

f H + B−1)−1 + K(Rt − Rf )KT , (5.9)

where K is the Kalman Gain matrix (2.10) evaluated at Rf . The information measures

under these conditions are given by

SIC(2) =
1

2
ln

|B|
|(HT R−1

t H + B−1)−1 + K(Rt − Rf )KT |
, (5.10)

dof
(2)
S = n − trace(HT R−1

f HB + I)−1 − trace(B−1K(Rt − Rf )KT ). (5.11)

Finally the third approach is when we know that we are using an incorrect error covari-

ance matrix but do not know what the true structure is. We therefore use Rf as the

true error covariance matrix. The analysis error covariance matrix is then defined to be

S(3)
a = (HT R−1

f H + B−1)−1, (5.12)

and hence the information measures can be written as

SIC(3) =
1

2
ln |BHT R−1

f H + I|, (5.13)

dof
(3)
S = n − trace(HT R−1

f HB + I)−1 (5.14)

= dof
(2)
S + trace(B−1K(Rt − Rf )KT ). (5.15)

Using the third approach can potentially give a mis-leading estimate of the information

content. This can be seen in equation (5.15), where if we treat the incorrect error

covariance matrix as the truth then the degrees of freedom for signal has an extra term,

trace(B−1K(Rt −Rf )KT ), compared to the true value, dof
(2)
S . Although this approach

is sometimes unavoidable because the true error covariance matrix is not accurately

known, the mis-calculation must be taken into account when interpreting any results.
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5.2 Data structure

We now describe the empirically derived correlation matrix against which we will test

our approximations. In [7] Bormann et al considered an observation set of Atmospheric

Motion Vector (AMV) / radiosonde collocations, and derived a spatial error correlation

structure. AMVs (known as satellite winds) are very important in NWP because of

their excellent spatial and temporal global coverage. AMVs are derived operationally

by tracking clouds in the infrared, water-vapour or visible channels, or clear-sky fea-

tures in the water-vapour channels [7]. Correlated observation errors in AMVs can stem

from tracking similar cloud structures in neighbouring channels and the use of temper-

ature profiles (with correlated errors) in height assignment. However, to avoid added

complexity in their assimilation, observation errors are assumed independent between

neighbouring observations. To justify this assumption, AMVs are thinned to a lower

resolution, and the observation error variances are inflated. However, error correlations

will still remain.

In [7] the spatial correlations of the random errors in AMVs were derived from the

analysis of pairs of collocations between AMVs and radiosonde observations. Using

these statistics and assuming spatially uncorrelated sonde errors, the spatial AMV error

correlations were obtained over dense sonde networks using a modified Hollingsworth-

Lönnberg method. Any correlations between the AMV-sonde differences of two obser-

vation points were attributed to the spatially correlated AMV errors.

The authors quantified the isotropic correlations by deriving a least squares fit of corre-

lation function to the empirical correlation data. The correlation function used was one
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derived in [20],

R(r) = R0

(

1 +
r

L

)

exp{−r/L} (5.16)

where r is the distance between observation stations, L is the length scale and R0 > 0

is the intercept.

The parameter values R0 and L, and the correlated part of the AMV error σ, were

derived for five satellites and for different pressure levels in the northern hemisphere,

tropics and the southern hemisphere. The full details of these results are given in [7]. We

will use the results for the GOES-10 satellite in the northern hemisphere at all pressure

levels; the parameter values are shown in Table 5.1.

Parameter Value

R0 0.42
L 190km
σ 3.5m/s

Table 5.1: Diagnosed values of the intercept, length scale and error standard deviation for the correlation
function (5.16) applied to the spatial AMV correlations for the satellite GOES-10 at all levels in the
northern hemisphere.

Using the diagnosed parameter values from [7] and the specified correlation function

(5.16), we construct an observation error covariance matrix for an idealised data set.

Consider N2 observations on a regular flat N × N grid, with 200km spacing between

adjacent observation points, i.e, for a 3 × 3 grid, there are 9 observations and the grid

domain is 400km × 400km

u

u

u

u

u

u

u

u

u

6

-

200km

200km

obs obs obs

obs obs obs

obs obs obs

We assume that every observation is taken directly, i.e, h = H = I. We use two
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different structures for the uniform background error correlations: firstly the identity

matrix, and secondly the Gaussian correlation function Bij = exp{−r2
ij/2L2

B}, where

rij is the Euclidean distance between point i and j, and LB = 190km is the background

length scale. The background error variance is set as σ2
B = 1m/s at each grid point; this

is chosen to be smaller than the observation error variance in line with the experiments

performed in [7]. We quantitatively evaluate the information content under different

treatments of the error correlation structure relative to the empirically diagnosed truth.

5.3 Matrix approximations

We now propose several approximations to the empirically determined error covariance

matrix described above. We wish to compare the information content available from a

simulated observation set. The five different approaches to observation error correlation

structure are:

(1) Use the true error covariance matrix Rt;

This involves using a matrix described by (5.16) with the parameters in Table 5.1.

Figure 5.1 shows the correlation function used in the construction of Rt.

(2) Set the correlations to zero in Rt;

This is the simplest form of a diagonal approximation as described in Section 3.1.

It is equivalent to setting the observation error correlation matrix as the identity

matrix.

(3) Set the correlations to zero in Rt and inflate the error variances;

This form of diagonal approximation is often used operationally in NWP centres
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(see Section 3.1). We inflate the error variances by a constant scale factor d

of between 2 and 8 to compensate for the elimination of the off-diagonal error

covariances. This is in line with previous information content studies perfomed in

[14].

(4) Describe Rf by a circulant approximation;

By construction the true error covariance matrix has a symmetric Toeplitz struc-

ture and can therefore be approximated by its equivalent circulant matrix using

the technique described in Section 3.2.3 [43]. This allows us to use a series of

discrete Fourier transforms to perform any computations involving the inverse of

Rf .

(5) Describe Rf by a truncated eigendecomposition (ED) approximation;

The leading eigenvalues and eigenvectors of the true error correlation matrix Ct

can be calculated using the inbuilt MATLAB function eigs() [65]. We can then

approximate R by a truncated eigendecomposition of the error correlation matrix

using the formula [34]

Rf = D1/2(αI +
K
∑

k=1

(

λk − α)vkv
T
k

)

D1/2 = D1/2CfD1/2, (5.17)

where (λk, vk) is an eigenvalue, eigenvector pair of Ct, K is the number of leading

eigenpairs used in the approximation, Cf is the approximate error correlation ma-

trix, and α is chosen such that trace(Rf )=trace(D). This method was previously

described in Section 3.3.

We can write α explicitly in terms of the leading eigenpairs. If Λ is the diag-

onal matrix of the leading eigenvalues and V is a matrix of the corresponding
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eigenvectors stored columnwise, then alpha is calculated by

α =
N2 −∑K

j=1

∑N2

i=1 Λ(j, j)V (i, j)2

N2 −
∑K

j=1

∑N2

i=1 V (i, j)2
. (5.18)
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Figure 5.1: Correlation function (5.16) with length scale L = 190 against grid point spatial separation.

5.4 Results

We first present the information content values calculated using the second approach

to the formulation of the analysis error covariance matrix S
(2)
a , i.e, adding an extra

term to Sa when the incorrect observation error covariance matrix Rf is used. As

anticipated, under simplified assumptions of observation error correlations, information

content is lost. Both the SIC and dofS are directly proportional to the number of

observation points; so increasing the area and volume of observations provides access to

more information.
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Figure 5.2: SIC for different grid sizes using Rt (blue line), diagonal approximation (2) (red crossed
line), and diagonal approximation (3) with d = 2 (green plus line), d = 4 (pink dot-dashed line) and
d = 8 (black double-dashed line).
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Figure 5.3: dofS for different grid sizes using Rt (blue line), diagonal approximation (2) (red crossed
line), and diagonal approximation (3) with d = 2 (green plus line), d = 4 (pink dot-dashed line) and
d = 8 (cyan double-dashed line).

5.4.1 Uncorrelated background errors

Figures 5.2 and 5.3 show the SIC (5.10) and dofS (5.11), respectively, when Rt (1)

and the diagonal approximations (2) and (3) are used; the background error covariance

matrix is the identity matrix. We see that using a diagonal approximation is very detri-
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mental to the information content. As the number of observation points increases, the

greater the difference in information content between Rt and the diagonal approxima-

tions. The depletion in information increases with the scale of variance enlargement

used in approximation (3). Variance enlargement is shown to have a detrimental effect

on the information; more so than a simple diagonal approximation (2).
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Figure 5.4: SIC for different grid sizes using Rt (blue line), diagonal approximation (2) (red crossed
line), and ED approximation (4) with half the eigenpairs (green plus line), a fourth of the eigenpairs
(pink dot-dashed line) and an eighth of the eigenpairs (black double-dashed line).
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Figure 5.5: dofS for different grid sizes using Rt (blue line), diagonal approximation (2) (red crossed
line), and ED approximation (4) with half the eigenpairs (green plus line), a fourth of the eigenpairs
(pink dot-dashed line) and an eighth of the eigenpairs (cyan double-dashed line).
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In approach (5) we approximate the error correlations by forming a truncated eigen-

decomposition of Rt. Figures 5.4 and 5.5 show that the more eigenpairs used in the

decomposition, the smaller the difference in information between Rt and the eigenpair

approximation. The eigenpair approximation retains a higher percentage of the infor-

mation available than the diagonal approximations. For all grid sizes, even when Rt is

described by an eighth of its eigenpairs, the resultant loss of information is consider-

ably less than for any diagonal approximation. However, in describing Rt by its leading

eigenpairs, using too few will lead to spurious error correlations as suggested by Fisher

[34]. Figures 5.6 and 5.7 show the true error covariance matrix for a 10×10 grid and one

reconstructed using an eighth of the eigenpairs, respectively. Spurious long range cor-

relations are noticable in the ED reconstruction. Under this set up the correlations are

not large enough to discount the approach, but care must be taken for larger problems

so as to avoid potential spurious correlations in the analysis error.
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Figure 5.6: Observation error covariance matrix Rt.
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Figure 5.7: ED approximate observation error covariance matrix constructed using an eighth of the
eigenpairs.

5.4.2 Correlated background errors

We now compare the results using the same formulation of the analysis error covari-

ance matrix but instead using a correlated background error covariance matrix. The

background error correlations follow a Gaussian distribution as described in Section 5.3.

When an ED approximation (5) is used, the results are qualitatively the same as when

B = I, but quantitatively the information content is smaller. This is because when the

background errors are treated as correlated there is less prior uncertainty in the prob-

lem, so the same reduction in uncertainty through the use of the observations gives a

smaller information content, i.e, less difference has been made. However when diagonal

approximations (2) and (3) are used, the nature of the results differs from those when

the background errors were independent.

Figures 5.8 and 5.9 show that when the background error correlations follow a Gaussian

distribution with the same length scale as the observation error correlations, using a

diagonal matrix with the variance inflated between 2-4 times retains more information
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Figure 5.8: As for Figure 5.2 but with correlated background errors.
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Figure 5.9: As with Figure 5.3 but with correlated background errors.

than a simple diagonal approximation. But once the variance is inflated to 8 times the

truth, the matrix approximation (3) performs worse than the diagonal approximation.

Information is still significantly depleted relative to the truth. These results support

the findings in [14] where Collard showed that under larger levels of observation noise,

a 2-4 times error variance inflation retained the most information relative to the truth.

105



These features of Figures 5.8 and 5.9 can be qualitatively explained by considering the

impact of error correlations on the influence of the observations and the background

in the analysis. Including background error correlations decreases the uncertainty of

the background because the prior entropy is reduced, and hence impacts the relative

influence of the observations. Under these circumstances it is more important that the

observations are assigned their correct weighting; potentially because they will have a

greater influence on the analysis. This is done through inflating the error variances as in

(3). From Figure 5.10 we see that for this experiment an inflation factor of approximately

2 produces the optimal value of SIC; while using an inflation factor of over 5 times will

deplete the information relative to a simple diagonal approximation (2).

1 2 3 4 5 6 7 8
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Variance inflation factor

S
ha

nn
on

 In
fo

rm
at

io
n 

C
on

te
nt

Figure 5.10: SIC for diagonal approximations (3) using different variance inflation factors.

For a correlated background error covariance matrix, we also examine the impact of

using a circulant approximation to Rt (4). Figures 5.11 and 5.12 show the SIC and

dofS for a circulant and a diagonal approximation. There are two noticeable features

of the plots. The first is the negative information for a 2 × 2 grid size, i.e, a 200km ×

200km grid domain with 4 observations. This depletion in information suggests that
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using a circulant observation error correlation matrix is a very poor approximation to

the truth for very small grid sizes. Using this correlation structure is detrimental to

analysis accuracy. It is however unlikely that observation sets will be this small and we

will therefore focus on larger grid domains (and therefore larger observation sets in our

problem).

The second feature of the plots is the parallel linear increase in information with the

number of observations (and hence domain size) relative to the truth. For a 4 × 4 grid

upwards, the circulant approximation retains most of the information content relative

to the truth (9.4340 dofS compared to 9.9139 for a 10 × 10 grid). By examining the

structure in Figure 5.6 we can explain this behaviour. The error covariance matrix Rt

has a thin band of significant correlation centred around the diagonal. By construction

the circulant approximation reflects the first row of Rt in roughly the central column.

Most of the reflected values are zero or very close to zero; this is consistent with Rt.

The exception will be the top right corner of the circulant matrix which will contain

spurious non-zero values reflected from the top left corner of Rt. Therefore elementwise

the circulant matrix will be a very good approximation to Rt.

The successful elementwise approximation is reflected in the difference between the ma-

trices in the Frobenius norm (3.34). For a 10 × 10 grid the Frobenius norm of the

difference between Rt and its circulant approximation is 16.65, compared to 143.44 for

a diagonal approximation, and 188.63 for a diagonal approximation with twice the error

variance. Importantly the difference in the respective inverse matrices is also small rela-

tive to the diagonal approximations. The difference in the Frobenius norm between R−1
t

and the inverse circulant matrix is only 0.47 compared to 4.45 for a diagonal approx-

imation. We can conclude that for larger observation sets, a circulant approximation
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Figure 5.11: SIC for different grid sizes using Rt (blue line), diagonal approximation (2) (red x line)
and a circulant approximation (green + line).
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Figure 5.12: dofS for different grid sizes using Rt (blue line), diagonal approximation (2) (red x line)
and a circulant approximation (green + line).

performs very well in terms of information content.
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5.4.3 Alternative analysis error covariance matrix

Finally we consider the impact of the formulation of the analysis error covariance matrix

on the information content results. Previous results have used the approach where an

additional term including the difference Rt − Rf is added to Sa when the incorrect

observation error covariance matrix was used. However, if the correct observation error

covariance matrix is unknown then this approach cannot be used. The alternative is

simply to treat the incorrect error covariance matrix as the truth, resulting in analysis

error covariance matrix S
(3)
a (5.12).
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Figure 5.13: As for Figure 5.8 but using S
(3)
a .

Figures 5.13 and 5.14 show the SIC and dofS , respectively, when Rt (1) and the di-

agonal approximations (2) and (3) are used, and the background errors have Gaussian

distributed correlations. The results suggest that using a diagonal approximation (2)

retains the most information, and is not overly detrimental to information content. Also,

the results infer that inflating the error variance in a diagonal approximation (3) has an

increasingly detrimental effect on the information content.
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Figure 5.14: As with Figure 5.9 but usig S
(3)
a .

Approximation dofS using S
(2)
a dofS using S

(3)
a

Truth 9.9139 9.9139
Diagonal 2.2067 7.1970
2× Diagonal 4.1113 3.8226
4× Diagonal 2.9912 1.9736
8× Diagonal 1.7576 1.0033
ED (50 eigenpairs) 8.8670 10.3205
ED (25 eigenpairs) 5.2322 9.4934
ED (12 eigenpairs) 3.3039 8.3366

Table 5.2: dofS for different matrix approximations using S
(2)
a amd S

(3)
a .

Comparing these results to the previous approach in which the use of the incorrect

observation error covariance matrix was incorporated, i.e, using S
(2)
a , we observe a dif-

ference in conclusions. When S
(3)
a is used the information content is being mis-estimated

using all approximations. Table 5.2 shows the dofS when S
(2)
a and S

(3)
a are used for a

10 × 10 grid. The dofS under the diagonal approximation is the largest overestimation

(increased from 2.2067 to 7.1970), but the overestimation when using the ED approxima-

tion is more than the dofS under the true observation error covariance matrix (10.3205

compared to the truth of 9.9139 when 50 eigenpairs are used). We can infer that us-

ing the incorrect observation error covariance matrix with no comparison to the truth
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can lead to misleading and inflated information content values, and subsequently incor-

rect conclusions. This highlights the importance of knowing the true error correlation

structure so as to enable comparisons and the use of S
(2)
a .

5.4.4 Summary

Before any modifications are made to operational data assimilation frameworks, the

proposed changes must be shown to demonstrate improvements. One measure of how

effectively a data assimilation algorithm treats observation data is information content.

The amount of information obtained from the observations can identify both wasteful

and efficient data assimilation techniques.

We have evaluated the loss of information content under four different treatments of cor-

related observation errors. Experiments have been performed under independent and

Gaussian correlated background errors. Information content was shown to be signifi-

cantly degraded when approximating Rt with a diagonal matrix and ignoring error cor-

relations. This implied a correlated approximation to modelling the errors was needed.

One such approach was the approximation of Rt through its leading eigenpairs (5);

this retained much of the information available even with fewer than half the available

eigenpairs. But addressing Fisher’s concerns [34], we found that spurious long range

correlations were present even for larger observation sets.

A second approach to modelling correlation structure was using a circulant matrix ap-

proximation. The circulant matrix was shown to provide a good elementwise approxi-

mation to Rt, and retained nearly all the available information for a suitably large grid

size. Both correlated approaches demonstrated the benefits of including some level of
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correlation structure.

Both the qualitative and quantitative information content results were shown to be

sensitive to the specification of the background error correlations and the construction

of the analysis error covariance matrix. The structure of B influenced the impact of a

diagonal approximation with variance inflation. When B = I, a diagonal approximation

retained more information than all inflated diagonal approximations; where as when

B had a Gaussian correlation structure, a diagonal matrix with a 2-4 times variance

inflation retained more information than a simple diagonal approximation.

There are three approaches to the construction of the analysis error covariance matrix.

The first is for when Rt is used, and the latter two are for when an approximation Rf

is used. The final two approaches either incorporate the additional error in using Rf or

treat Rf as the truth. The final results of the section showed that treating Rf as the

truth resulted in misleading and inflated information content values. This may however

be the only approach if the true error correlation structure of the data is unknown.

5.5 Conclusions

The experiments presented in this chapter evaluated the loss in information content

when ignoring error correlations, using simplified diagonal matrix structures, and using

approximate correlation structures. Our new results showed that information content

was severely degraded under the assumption of independent observation errors, but

the retention of an approximated correlation structure gave clear benefits. In addition

we examined the effect of background error correlation structure on the information

content measures. We concluded that when background errors are correlated, it is more

112



important that the observations have the correct weighting in the analysis, created by

an appropriate correlation structure.

We began the chapter by describing the two measures of information content (SIC

and dofS) for different constructions of the analysis error covariance matrix. We then

introduced diagnosed error correlations for a set of AMV observations [7]. By fitting a

correlation function to empirical correlation data, the authors in [7] were able to quantify

the spatial error correlations between AMV observations. The experiments pre-date the

Desroziers’ method used in quantifying cross-channel IASI error correlations in Chapter

4, and instead used a modified Hollingsworth-Lönnberg technique.

Different diagonal and correlated approximations to the previously diagnosed error co-

variance matrix were proposed in Section 5.3. The success of each of these was then

evaluated in terms of the information content provided by a set of simulated observa-

tions. The results showed the importance of including some approximate correlation

structure, with diagonal approximations retaining considerably less information than

their correlated counterparts. A circulant matrix approximation was shown to be the

approximation that retained the most information content for larger grid sizes.

The results also highlighted the sensitivity of information content to the background

error correlations and the construction of the analysis error covariance matrix. If the

approximate observation error covariance matrix is treated as the truth, then the infor-

mation content can be overestimated even relative to the real truth. This reinforces the

previous conclusion that it is important to know accurately the correct error correlation

structure for an observation type, even if an approximation to this structure is to be

made.
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We have addressed the second of the thesis aims and evaluated several approximations

available to model error correlation structure. We have quantified their impact on the

data assimilation diagnostic of information content. However our model is a relatively

simple test problem and we have used a simple 2D model framework and 3D-Var data

assimilation scheme. Using the results in this chapter as motivation, we extend our

research on correlated matrix approximation structures to a 4D-Var data assimilation

scheme. In the initial assimilation experiments in the following chapters we take the

proposed matrix approximations described in Chapter 3, and used in Chapter 5, and

apply them in an incremental 4D-Var data assimilation algorithm of the type used at

the Met Office. We can then address the final thesis aim, and determine the behaviour

of these approximations in a 1D shallow water model data assimilation experiment.
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Chapter 6

Modelling correlation structure in

a 1D shallow water model

In NWP a set of governing equations is used to describe complex atmospheric and

oceanic motions. However, new research ideas can be difficult and time consuming to

implement directly into such a sophisticated framework. The Shallow Water Equations

(SWEs) are often used as a test bed for atmospheric research, providing an intermedi-

ate step between conception and operational implementation. They have been shown

capable of describing important aspects of the dynamic properties we wish to model,

such as geostrophic motion in three-dimensions [71].

In the final chapters of the thesis we will study the behaviour of a data assimilation

algorithm under different approximations to the observation error covariance matrix.

We will use the SWEs as the model in the assimilation. In this chapter we introduce

the SWEs and describe the data assimilation system applied to them. We focus on the

implementation of two correlated approximations to the observation error covariance
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matrix.

We start by describing the continuous and discrete form of the SWEs; details on the

discretisation technique are provided. Our attention is then focused on the data assim-

ilation system of interest: incremental 4D-Var. The SWEs are one-dimensional so the

incremental 4D-Var system becomes two-dimensional; we shall however use the termi-

nology 4D-Var for the sake of convention. We discuss the practical issues surrounding

the implementation of the algorithm, specifically generating the approximations to the

observation error covariance matrix. This matrix is used in the cost function calcula-

tions of the 4D-Var algorithm, where matrix-vector products involving its inverse are

required. We generate new equations used for calculating these matrix-vector prod-

ucts when the observation error covariance matrix is approximated with a Markov or

an eigendecomposition (ED) matrix. These equations demonstrate a feasible method

of incorporating error correlations in data assimilation algorithms. In the penultimate

section we discuss various methods of determining convergence and solution accuracy.

We conclude the chapter by describing the coding tests necessary to ensure the validity

of the assumptions used in constructing the shallow water model.

6.1 Model framework

We begin the chapter by considering a one-dimensional shallow-water system describing

the irrotational flow of a single-layer, inviscid fluid over an object. Although multi-

dimensional shallow water models are available, the one-dimensional shallow water

model (SWM) retains the key properties of the more detailed models whilst being signif-

icantly simpler to develop. In the work described here, the added time dimension leads
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to a two-dimensional problem. The one-dimensional model has previously been used to

represent atmospheric phenomena such as air flow over mountains [48], and practical

problems such as hydraulic flow in power plants [11]. A thorough description of inviscid

multi-dimensional shallow water theory is given in [71].

6.1.1 The continuous analytical model

The continuous equations describing 1D shallow water flow are given in [54] by

Du

Dt
+

∂φ

∂xD
= −g

∂ho

∂xD
, (6.1)

D(lnφ)

Dt
+

∂u

∂xD
= 0, (6.2)

where

D

Dt
=

∂

∂t
+ u

∂

∂xD
,

and ho = ho(xD) is the height of the bottom orography, u is the fluid velocity, φ = gh is

the geopotential where g is the gravitational acceleration and h > 0 is the depth of fluid

above the orography. The problem is defined on the domain xD ∈ [0, L]. The spatial

boundary conditions are taken to be periodic, so that at any time in our assimilation

window t ∈ [0, T ],

u(0, t) = u(L, t),

φ(0, t) = φ(L, t),

ho(0) = ho(L).

The fundamental parametric condition which characterises shallow-water theory is

h

L
≪ 1;
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hence the ‘shallow’ nature of the problem. A schematic of one-dimensional shallow water

flow is shown in Figure 6.1.

h

L

u

H(x)

Φ=gh

90

Figure 6.1: Shallow water model schematic where H is the height of the bottom orography, u is the fluid
velocity, φ = gh is the geopotential, g is the gravitational acceleration, h is the depth of the fluid above
the orography and L is the length of the domain.

6.1.2 The numerical model

In many modern data assimilation systems a linearised version of the nonlinear forecast-

ing model is required; for example in incremental 4D-Var to model the evolution of a

perturbation. Therefore in order to use the SWEs as a model test-bed, their linearised

form is needed. Two possible linearisation approaches are compared in [54]. The discrete

method involves the linearisation of the discrete form of the nonlinear model to give the

tangent linear model (TLM). The semi-continuous method involves the linearisation of

the continuous nonlinear model equations and their subsequent discretisation to give the

perturbation forecast model (PFM). In [52] Lawless et al showed that the linearisation

techniques performed similarly well for noisy observations in a 1D SWM framework.

118



Therefore in this work we will employ the discrete method.

The nonlinear SWEs are discretised using a two-time-level semi-implicit, semi-Lagrangian

scheme (SISL). The SISL scheme is chosen to match closely the numerical integration

scheme used operationally at the Met Office [22]. In a Lagrangian scheme the advection

in a shallow water system is studied by tracking the position of a set of water parcels. A

set of originally regularly spaced parcels at one time step may evolve to be very close to

each other at the next time step, and therefore some areas may be poorly resolved [84].

A semi-Lagrangian scheme tracks a different set of parcels at each time step; chosen so

that their positions at the next time step (known as the arrival point) are at regularly

spaced grid points. The point from which the parcel originates is known as the departure

point. Figure 6.2 shows example departure and arrival points at two time levels.

time level tn+1 ×a1 ×a2 ×a3

time level tn •d1 × •d2 × × •d3

Figure 6.2: A semi-Lagrangian scheme with departure points (d1, d2, d3) and arrival points (a1, a2, a3).
The paths taken by water parcels from the determined departure points are shown by the full lines, and
the paths taken by water parcels from the regular grid points are shown by the dashed lines.

Applying the semi-Lagrangian method to the 1D SWEs, we denote au and du as the

arrival and departure points for the u variable, respectively, and aφ and dφ similarly for

the φ variable. The discretised form of the nonlinear model is given by

un+1
au

− un
du

∆t
+ (1 − α1)

(

∂φ

∂xD
+ g

∂ho

∂xD

)n

du

+ α1

(

∂φ

∂xD
+ g

∂ho

∂xD

)n+1

au

= 0 (6.3)

(lnφ)n+1
aφ

− (lnφ)n
dφ

∆t
+ (1 − α2)

∂u

∂xD

∣

∣

∣

n

dφ

+ α2
∂u

∂xD

∣

∣

∣

n+1

aφ

= 0 (6.4)

where the superscripts indicate the time level and coefficients α1 and α2 are time-

weighting parameters chosen to meet the stability requirements of the scheme [50].
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Equations (6.3) and (6.4) can be solved iteratively to derive the u and φ variables

at each time level [54]. The TLM is given by the linearised version of (6.3) and (6.4);

the result is a model describing how a perturbation to a solution state evolves over time

under a linear approximation. By treating the TLM code as a sequence of linear oper-

ations, the adjoint model code can be derived directly. The details of this process are

described in [12].

6.2 Data assimilation system

The data assimilation system in which we will run the SWEs is the incremental 4D-Var

method described in Section 2.3.1. This method simplifies the minimisation problem

posed in the full 4D-Var framework to a series of quadratic minimisations constrained

by a linear model, and is used operationally by the Met Office and ECMWF. Because of

the one-dimensional nature of the SWEs, the 4D-Var assimilation system is reduced to

two-dimensions. Our experiments are performed using a modified Fortran 90 code for

an irrotational shallow water model taken from the NERC Data Assimilation Research

Centre website [51]. The code was originally designed to investigate incremental 4D-Var

using non-tangent linear models, but modifications to the framework allow us to inves-

tigate the effect of different observation error correlation structures on the assimilation.

6.2.1 Correlated observation noise

The 1D SWM code is run using an identical twin experiment in which the model is as-

sumed perfect. The identical twin experiment involves running the SWM forward in time

from some initial conditions to generate a solution trajectory over a time window. From
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this solution, known as the truth trajectory, observations are sampled and perturbed

by noise, if required. The observation set and a first-guess background field are then

assimilated using an incremental 4D-Var algorithm; the resultant analysis propagated

over the time window is known as the analysis trajectory. By comparing the analysis

and truth trajectories, we can measure the success of the data assimilation method.

The original code in [51] was written such that the observations used in the assimila-

tion were sampled from the truth trajectory and perturbed using random noise with

variance σ2. In order to compare the impact of using different error covariance matrix

approximations to model correlated noise, we must first modify the distribution of the

observation noise.

In our new code, samples of correlated noise are generated outside the main program. A

MATLAB random number generator mvnrnd() [65] is run and returns random vectors

chosen from a multivariate normal distribution with mean zero and covariance matrix

R. The specification of the covariance matrix is dependent on the proposed correlation

structure of the observation errors. We assume that the errors in the u and φ observations

are mutually uncorrelated and so the observation error vectors for the u and φ field are

generated independently. The observations in the main program are now sampled from

the truth trajectory and then perturbed using the externally generated error vectors.

This allows the user to determine the level of correlation in the observation errors.

The one-dimensional construction of the shallow water model means we are considering

error correlations between observations in the horizontal. However the techniques we are

using could easily be translated to a one-dimensional vertical profile, such as the radiance

profiles used in 1D-Var. Therefore our assimilation tests will remain independent of any

discussion on issues of spatial resolution or horizontal thinning.
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6.2.2 Background error covariance matrix

The noise used to perturb the background trajectory is created using the same method

used to generate the observation errors described in Section 6.2.1. We treat the back-

ground errors as uncorrelated, and so the covariance matrix used to generate the back-

ground noise will be a diagonal matrix comprised of the error variances. The background

error variances are set as half those of the observation errors. This matrix will be used

in the assimilation as the background error covariance matrix.

6.3 Observation error covariance matrices

In order to assess the impact of modelling correlated observation error structure in

the SWM, we run the identical twin experiments using different approximations to

the true error covariance matrix used in the generation of the correlated observation

errors. By keeping all other variables the same, any changes in the analysis trajectory

can be attributed to the specification of the observation errors. In practice such an

approach is not always possible since the true error covariance matrix is rarely known

explicitly. The observation error covariance matrix is used explicitly in the calculation

of the incremental 4D-Var cost function (2.15) and its gradient (2.16), needed for the

inner loop minimisation algorithm. The contributions to the cost function and gradient

values are calculated separately for the u and φ fields because of the assumption of

mutually independent errors.

The inherited code contained three representation options for the observation error co-

variance matrix: a zero matrix (i.e, ignoring the term), the identity matrix, and a

diagonal matrix of the true error variances. These options were sufficient under the pre-
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vious specification of uncorrelated observation noise, but when correlated observation

errors are present, we need a more sophisticated approximation to the error correla-

tion structure. Below we describe the new implementation of two proposed correlated

approximations to an observation error correlation matrix: a circulant matrix and an

eigendecomposition (ED) matrix. Both approximations have previously been considered

in the 3D-Var investigations in Chapter 5.

6.3.1 Markov matrix

The Toeplitz matrix approximation we use is the Markov error covariance matrix de-

scribed in Section 3.2.4. A convenient feature of this matrix is its tri-diagonal inverse,

which is known explicitly (3.9). Using the specification of the Markov inverse and the

assumption that all observation error variances are the same in each field at each point,

we can find an explicit form for the matrix-vector products used in the calculation of

the cost function (2.15) and its gradient (2.16):

(R−1
M x)i =































1
σ2(1−ρ2)

[xi − ρxi+1] i = 1

1
σ2(1−ρ2)

[−ρxi−1 + (1 + ρ2)xi − ρxi+1] i = 2, . . . , N − 1

1
σ2(1−ρ2)

[−ρxi−1 + xi] i = N

(6.5)

and

xT R−1
M x =

1

σ2(1 − ρ2)

[

(1 + ρ2)
N
∑

i=1

x2
i − ρ2(x2

1 + x2
N ) − 2ρ

N−1
∑

i=1

xixi+1

]

where R−1
M is the Markov matrix inverse, x is the incremental innovation vector, σ2 is

the observation error variance associated with the field, N is the number of observations,

and ρ is the correlation level. The correlation level is given by

ρ = exp

(−∆x

LR

)

,

123



where ∆x is the spatial separation and LR is the correlation length scale. A technical

note is that the second of these expressions is not used explicitly in the code, because

once R−1
M x is calculated, we need only calculate the dot product of this vector and x to

find xT R−1
M x.

One of the aims of the thesis is to demonstrate how the inclusion of observation error

correlation structure is feasible in operational data assimilation algorithms. Equation

(6.5) has demonstrated an inexpensive approach to modelling error correlation structure;

the number of operations used in calculating R−1
M x is the same order of magnitude (O(n))

as that if the observation error covariance matrix was diagonal. In Chapter 7 we will

test how effective this proposed method is at modelling error correlation structure.

6.3.2 Eigendecomposition (ED) matrix

A truncated eigendecomposition of the true observation error correlation matrix can

also be used to model error correlation structure. In Chapter 5, this approximation

was shown to retain a significant amount of information content relative to a diagonal

approximation. In Chapter 7 we will investigate the effect of this approximation and the

previously proposed Markov matrix approximation on the accuracy of an assimilation

analysis.

The construction of the ED matrix and its inverse were given in Section 3.3. In our new

code, the leading eigenpairs needed for the representation are pre-computed using the

MATLAB function eigs() [65] which decomposes the true error correlation matrix into

its leading eigenvalues and eigenvectors. If the option to model the correlation structure

using an ED matrix is chosen, then the leading K (specified by the user) eigenpairs are
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read in and stored for use in the main program.

Using equation (3.11) from Chapter 3 and (5.18) from Chapter 5, we can calculate

the value of α and use the leading K eigenpairs (λk,vk), k = 1, . . . , K to implicitly

represent the inverse error covariance matrix. Again assuming that all the observation

error variances are the same in each field at each point, we have an explicit form for

the matrix vector products R−1
E x and xT R−1

E x needed for the calculation of the cost

function and its gradient:

(R−1
E x)i =

(

α−1D−1x + D−1/2
K
∑

k=1

(λ−1
k − α−1)vkv

T
k D−1/2x

)

i

=

(

1

ασ2
x +

1

σ2

K
∑

k=1

(λ−1
k − α−1)vksk

)

i

=
1

ασ2
xi +

1

σ2

K
∑

k=1

(λ−1
k − α−1)viksk (6.6)

xT R−1
E x =

1

ασ2
xTx +

1

σ2

K
∑

k=1

(λ−1 − α−1)s2
k

where R−1
E is the ED matrix inverse, x is the incremental innovation vector, D = σ2I

is the diagonal matrix of the error variances, sk = vT
k x is the dot product of vk and x,

and vik is the ith component of the kth eigenvector. As with the Markov matrix, the

expression for xT R−1
E x is unnecessary if R−1

E x has already been calculated.

We can choose K to be small in order to reduce our storage costs, but the length of the

eigenvector, N , is still likely to be large. In order to reduce the number of operations

performed we calculate the inverse values of α, σ2 and λk prior to the calculation. We

also use the inbuilt Fortran 90 function DOT PRODUCT() to calculate xTx and sk,

and calculate sk outside the sum since it only needs calculating once for each eigenpair

(λk,vk).

Again the above equations demonstrate a feasible method of incorporating error cor-
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relation structure in an operational data assimilation algorithm. We now look at the

conditions necessary for the successful treatment of the two matrices described above.

6.4 Convergence and solution accuracy

To produce the analysis trajectory most consistent with the available data over a par-

ticular time window, the incremental 4D-Var algorithm must ensure the cost function

has been solved to sufficient accuracy. A good approximation to the error covariance

matrices will ensure that the cost function is accurately specified, but in order to obtain

a desired accuracy of solution, the inner and outer loop minimisations of the algorithm

must be run until some specified tolerance level is reached. The tolerance level will

influence the cost and exactness of the solution; if the tolerance level is set too small

then excessive iterations will be performed, and if the tolerance level is too large then

the minimisation may not be solved precisely enough.

The inner loop of the assimilation algorithm is responsible for minimising a series of

quadratic cost functions constrained by a linear model; the minimisation algorithm used

in our experiments is the conjugate gradient method [36]. Because the minimisation is

essentially an approximation to the full nonlinear cost function, we need not solve it

too accurately, but it needs to have converged sufficiently [53]. Several stopping criteria

options exist for the conjugate gradient minimisation, and a good review of their use in

a similar model framework is given in [53].

In these experiments we will use the relative change in gradient stopping criteria favoured
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in [53]. This requires that the inner loop minimisation is terminated when
∥

∥

∥∇J
(k)
m

∥

∥

∥

2
∥

∥

∥
∇J

(k)
0

∥

∥

∥

2

< ǫI , (6.7)

where the subscripts indicate the inner loop iteration index, k indicates the outer loop

iteration index, and ǫI is the user set tolerance. In other words, the solution is assumed

to have converged when the ratio of the 2-norm of the inner loop gradient after m

iterations and at the start of the outer loop is less than a certain tolerance.

The outer loop of the assimilation algorithm is responsible for updating the linear model

trajectory. In practical data assimilation, the outer loops are not usually run to complete

convergence and only a few are performed. However, if we are to examine the impact of

different approximations to the observation error covariance matrix, we need the same

level of convergence to be obtained under each approximation, so as to draw consistent

conclusions. Therefore we use enough outer loops so that some convergence criterion is

satisfied. The convergence criterion we use is the relative change in function

|J (k+1) − J (k)|
1 + |J (k)| < ǫo, (6.8)

where the superscripts indicate the outer loop iteration index and ǫo is the user set

tolerance. This is one of the proposed criterion in [53].

When the tolerance levels for the inner and outer loop convergence criteria are achieved

we can be sure that the solution to the minimisation problem has converged to some

level of accuracy. However we do not know how close the computed solution is to the

‘true’ solution of the problem. By testing the gradient ∇J (k) at the converged solution

of the kth outer loop, we can determine the limiting accuracy in this solution [39]. The

best numerical accuracy we would expect in the converged solution x is the same order

as the normalised gradient
‖∇J(k)(x)‖

2

|J(k)(x)| . Experiments showed that as we decrease the
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outer tolerance ǫo, the solution accuracy increases. Setting ǫo = 0.01, we computed the

normalised gradient and found it to be of order 10−2; from [39], this is our expected

converged solution accuracy. We confirmed this accuracy by comparing the converged

solutions using ǫo = 0.01, ǫo = 0.001 and ǫo = 0.0001. The converged solution was found

to be accurate to approximately two decimal places when using ǫo = 0.01, as expected.

6.5 Coding tests

To conclude this chapter we will describe the pre-assimilation tests necessary to ensure

the validity of the model assumptions. Both the TLM and its adjoint are constructed un-

der the assumption of linearity. It is important to test the robustness of this assumption

prior to their use in the minimisation algorithm.

We can verify the TLM is coded correctly by performing two tests: the correctness test

and the validity test. The correctness test checks if the evolution of a perturbation in

the TLM is comparable with that of the same perturbation in the nonlinear model [73].

The validity test identifies the time window for which the assumption of linearity in the

TLM is valid. Details on the successful application of these tests to the TLM in the

inherited SWM code are given in [54].

We can then test the adjoint model by ensuring that the cost function gradient computed

in the assimilation is realistic; this is done using the gradient test [58]. The gradient

test is based on a Taylor series expansion of the cost function,

J(x0 + αδx0) = J(x0) + αδxT
0 ∇J(x0) + O(α2)
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which rearranged gives

χ(α) ≡ J(x0 + αδx0) − J(x0)

αδxT
0 ∇J(x0)

= 1 + O(α) (6.9)

where α is a small scalar and δx0 = ∇J
‖∇J‖ is a unit vector in the gradient direction.

If the adjoint code is working correctly and the cost function and its gradient are well

calculated, results will show χ(α) approaching 1 as α decreases to 0. An exception will

be when α is very close to machine accuracy. In Chapter 7 we perform the gradient test

under different approximations to the observation error covariance matrix to ensure the

cost function gradient is calculated correctly.

6.6 Summary

In this chapter we have described the framework of a one-dimensional shallow water

model and the practicalities of its use in an incremental 4D-Var data assimilation algo-

rithm. We started by considering the continuous and discrete form of the SWEs, and

explained how the TLM and adjoint code might be derived. We then considered the

use of the SWM in an incremental 4D-Var data assimilation algorithm; because of the

one-dimensional nature of the SWM, the incremental 4D-Var algorithm becomes two-

dimensional. We focused on the specification of the observation error covariance matrix

and its approximations. A method for generating correlated observation error noise was

described, and its application to background errors was indicated.

In Section 6.3 we discussed the role of the observation error covariance matrix in the

proposed data assimilation algorithm, and provided two possible correlated approxima-

tions. We found that by their construction, both of these approximations allowed for

the inclusion of observation error correlation structure without excessive computation
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cost. Equations specifying their use in the data assimilation algorithm were given.

We then described how the use of different error covariance matrices could impact on

convergence and solution accuracy in the data assimilation algorithm. Convergence

criteria for the inner and outer loop of the cost function minimisation were given. Also

the expected level of solution accuracy was determined. Finally we described several

coding tests used to test the validity of the model assumptions.

In the next chapter we take the theory described in this chapter, and apply it to several

assimilation experiments. The focus will be on determining how well the matrix approx-

imations described in Section 6.3 perform relative to the assumption of a diagonal error

covariance matrix.
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Chapter 7

Shallow water equations

statistical tests

In the previous section we described how an incremental 4D-Var assimilation using 1D-

SWEs could be extended to include correlated observation errors. A new approach

to modelling the observation error correlation structure was required. The two corre-

lated error covariance matrix representations given in Section 6.3 are now tested against

diagonal approximations in the modified assimilation system. The impact of each ap-

proximation on the analysis error in the assimilation is examined. The aim of the

experiments in this penultimate chapter is to address the final thesis question posed in

Chapter 1: how well do approximations to error correlation structure perform in a data

assimilation experiment? For the purpose of this chapter we decompose this into three

separate questions:

• Is it better to model observation error correlation structure incorrectly than not

at all?
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• Which matrix approximation is the most robust to changes in the true error cor-

relation distribution?

• Can we identify a suitable matrix approximation even when the observation error

correlation structure is unknown?

The new results presented in this chapter will address these three questions.

The chapter is structured as follows. We begin by outlining the data assimilation exper-

iments performed, including details on the model set up, the simulated error correlation

structures, and the analysis error diagnostics. We then describe three separate experi-

ments performed to address the questions posed above. The results shown are new and

original. The first experiment tests the performance of different matrix approximations

in modelling a Markov error correlation structure. We provide details on the choice of

the matrix approximations and ensure they have been suitably coded using the model

tests described in Section 6.5. The results suggest that a Markov error correlation struc-

ture is better modelled using a Markov matrix with a mis-estimated length scale rather

than a diagonal matrix.

In the second experiment we investigate the robustness of the matrix approximations in

modelling correlated observation error. This is done by replicating the first experiment

but instead using a SOAR error correlation structure [3] in the true error covariance

matrix. Results show that a Markov matrix is the most robust approximation, but that

an ED approximation even with a small number of eigenpairs is an improvement on

using a diagonal approximation. We then extend these experiments and investigate the

impact of the size of the observation error variances on the conclusions made.

132



Finally in the third experiment we treat the true error correlation structure as unknown,

and use the diagnostics proposed in Chapter 4 to diagnose both the true error correlation

structure, and an approximate Markov correlation structure. This tests the robustness

of our approximations when we are unsure of the error correlation structure being mod-

elled. The results are encouraging, and show that the diagnostic can be used successfully

to replicate the true error correlation structure, and diagnose a suitable Markov approx-

imation. We conclude that a Markov matrix is the most robust approximation, but

including some form of correlation structure is preferable to none at all.

7.1 Experimental methodology

The experiments performed in this chapter model a flow field described in [48] in which

shallow water motion is forced by some orography. Using the SWEs (6.1)-(6.2) described

in Chapter 6, we consider a fluid at rest when t < 0, with the geopotential equal to

φ0 − ho(xD), where φ0 is a constant. At t = 0 the fluid is set in motion with a constant

velocity u0 at all grid points, causing a wave motion to develop outwards from the

obstacle in the fluid. The solution close to the object becomes a steady state solution

[54]. We restrict the fluid motions to be not too highly nonlinear so as to keep our

assumptions of linearity as valid as possible. We use a periodic domain where the

boundaries are at a sufficient distance from the obstacle to ensure any propagating wave

motions in the vicinity of the obstacle respect the asymptotic conditions.

The data used in the experiment is based on Case A in [48]. We consider a 1D domain

between [0, 10m] equally divided into 1001 grid points with spatial step ∆xD = 0.01m.
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The height of the obstacle in the fluid is given by

ho(xD) =















hC

(

1 − x2
D

a2

)

0 ≤ |xD| ≤ a

0 |xD| < 0 or |xD| > a

where hC is the maximum height of the obstacle and a is half the length over which the

base of the obstacle extends. The values of a and hC are set as: a = 40∆xD = 0.4m,

hC = 0.05m.

The temporal domain on which the assimilation is run is 100 timesteps with step size

t = 9.2 × 10−3s. At t = 0 the initial velocity is u0 = 0.1ms−1, and the geopotential

is φ(xD) = g(0.2 − ho(xD)) where g = 10ms−2. The time-weighting parameters for

the numerical scheme (6.3) and (6.4) are set as α1 = α2 = 0.6 to satisfy the stability

conditions.

An identical twin experiment is performed by running the nonlinear shallow water model

forward in time from the initial conditions, to generate a true model solution at each

assimilation timestep (known as the truth trajectory). Observations of fluid velocity

u and geopotential φ are sampled from the truth trajectory, and random noise with

multivariate normal distribution N(0, Rt) is added as error. It is assumed there is an

observation at each grid point, and after every 10 timesteps, i.e, 10 sets of 1001 obser-

vations in total; this density was chosen to represent a very well-observed system. The

initial background is taken as the truth trajectory plus random noise from a multivari-

ate normal distribution N(0, Bt), where Bt is a diagonal matrix of the background error

variances. An incremental 4D-Var data assimilation algorithm is then run using this

observation and background data, and an analysis trajectory for the fluid potential u

and geopotential φ is generated for each spatial and temporal step.

The maximum number of outer and inner loops performed are 20 and 200, respectively.
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The outer and inner loops are terminated once the relative change in function (6.8) and

the relative gradient stopping criteria (6.7) have been achieved with tolerance of 0.01

and 0.1, respectively.

7.1.1 Simulated error correlation structure

To answer the questions posed at the start of the chapter, it is important that we run

the assimilation under different realisations of the true error structure, so as to draw

robust conclusions. We perform three experiments examining the impact of modelling

correlation structure by the proposed error covariance matrix representations discussed

in Section 6.3: a diagonal approximation, a Markov approximation, and an ED approx-

imation.

In the first experiment we compare the proposed approximate error correlation matrices

against a true error correlation matrix with a Markov distribution, CM , given by

CM (i, j) = exp

{−|i − j|∆xD

LR

}

(7.1)

where ∆xD = 0.01m is the spatial separation and LR = 0.1m is the length scale. The

Markov matrix [78] is also an option for a matrix approximation (Section 7.2). Figure

7.1(a) shows a Markov error correlation matrix with length scale LR = 0.1m.

The second experiment is an extension of the first, in which the true error correla-

tion structure follows a SOAR (second-order autoregressive) distribution rather than a

Markov one. The SOAR error covariance matrix is given by

CS(i, j) =

(

1 +
|i − j|∆xD

LR

)

exp

{−|i − j|∆xD

LR

}

. (7.2)

The SOAR matrix is an idealised correlation structure that is used at the Met Office

to model background error correlation structures in the horizontal [3]. It is often used
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in preference to a Gaussian structure because its distribution has longer tails, better

at matching empirical estimates. Figure 7.1(b) shows a SOAR error correlation matrix

with length scale LR = 0.1m. Comparing this to Figure 7.1(a), we see that the SOAR

correlation matrix has a wider band of non zero correlations.

Finally in the third experiment we consider the case when the true error correlation

structure is unknown. Using the Desroziers’ method [25] that was successfully applied

in Chapter 4, we aim to diagnose the true correlation structure and an optimal Markov

approximating structure. All three experiments are run with uncorrelated background

errors where the background error variances are half those of the observation errors, i.e,

Bt = 1
2diag(Rt).

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Observation number

O
bs

er
va

tio
n 

nu
m

be
r

Markov matrix (L
R

=0.1m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Observation number

O
bs

er
va

tio
n 

nu
m

be
r

SOAR matrix (L
R

=0.1m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 7.1: Observation error correlation structure of (a) a 100 × 100 Markov matrix with length scale
LR = 0.1m and (b) a 100 × 100 SOAR matrix with length scale LR = 0.1m. Note that we plot a 100 ×
100 matrix as opposed to the 1001 × 1001 matrix used in the problem because the intrinsic correlation
structures are more clearly shown.

7.1.2 Analysis error

We now describe the retrieval properties used to evaluate the success of each approx-

imation. The assimilation is run using different approximations Rf to the true error
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covariance matrix Rt. We illustrate the comparative behaviour of the assimilation un-

der different approximations by comparing:

(a) Error 1 (E1): The norm of the analysis error in the true solution

∥

∥xRf
− x∗

∥

∥

2
(7.3)

where x∗ is the true solution of the original model run from which the observations

are sampled, and xRf
is the converged solution to the assimilation problem using

imperfect observations when the approximation Rf is used;

(b) Error 2 (E2): The percentage norm of the analysis error in the converged solution

relative to the norm of the true converged solution

∥

∥xRf
− xRt

∥

∥

2

‖xRt‖2

× 100 (7.4)

where xRt is the true converged solution to the assimilation problem using imper-

fect observations when the true error covariance matrix Rt is used.

Errors E1 and E2 provide us with information on the closeness of different analyses at

the beginning and the end of the assimilation time window, and are calculated at the

end of each outer loop. Since the magnitude of the φ field is an order larger than that of

the u field, we produce separate error norms (7.3) and (7.4) for u and φ to avoid changes

in the u field being overshadowed by changes in the φ field. Following the discussion of

solution accuracy in Section 6.4, we can expect the accuracy in the converged solution

error E1 to be two decimal places. The error E2 is constructed by the difference of

converged solutions and therefore we expect this also to be accurate to approximately

two decimal places.
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7.2 Experiment 1: Markov error correlation structure

In our first experiment we investigate the impact on analysis accuracy of using a diag-

onal matrix, a Markov matrix, and an eigendecomposition (ED) matrix to represent a

Markov error correlation structure. First we will give some motivation for the different

realisations of the matrix approximations used, and demonstrate their correct coding in

the algorithm. The retrieval properties described in Section 7.1.2 are then calculated

for each matrix approximation.

7.2.1 Matrix representations

Many different realisations of the proposed matrix approximations could be used to

model the simulated error correlation structure. The choices we use and the motivation

for them are given in this section. Firstly the diagonal matrix representations will

be a diagonal matrix of the true error variances, and scalar multiples of this matrix.

The scalar multiples are chosen to be between two and four, in line with our earlier

information content results in Chapter 5 and from the results given in [14]. These showed

that a 2-4 times variance inflation was preferable to a simple diagonal approximation

when observation and background error correlations were present; but under correlated

observation errors and uncorrelated background errors, a simple diagonal approximation

performed better.

The Markov matrix representations will be Markov structured matrices with length

scales LR = 0.2m, LR = 0.1m, LR = 0.05m, and LR = 0.01m, i.e, double, the same

as, half, and a tenth of the true length scale. These values are chosen to represent

different levels of error dependence. Markov error covariance matrices generated using
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these length scales are plotted in Figure 7.1(a) and Figures 7.2 - 7.4. Note that as

the length scale decreases, the thickness of the central correlation band decreases. This

is also demonstrated in Figure 7.5, where the central row of each Markov matrix is

plotted. We also test the Markov matrix representation for when LR is small enough so

that CM (i, j) = 0 for i 6= j; this should produce the same result as using the diagonal

approximation with the true error variances, and is a continuity test on our system.
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Figure 7.2: Observation error correlation structure of a 100 × 100 Markov matrix with length scale
LR = 0.2m.

The ED matrix representations will be truncated eigendecompositions of the true error

correlation matrix, using a reduced number of eigenpairs. The formula used in their

calculation is given in Chapter 3 (3.10) and the specific equations in Chapter 6 (6.6).

By studying the eigenspectra of the true error correlation matrices we can estimate how

many eigenpairs are needed for a good representation. The eigenspectra of a Markov

matrix and a SOAR matrix, both with length scale LR = 0.1m, are plotted in Figure

7.6. The plots show that the eigenvalue size declines sharply as the eigenvalue number

increases. After 100 eigenvalues, the eigenvalue size is less than two for the Markov

matrix, and less than one for the SOAR matrix, and 80% and 99% of the overall un-
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Figure 7.3: Observation error correlation structure of a 100 × 100 Markov matrix with length scale
LR = 0.05m.
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Figure 7.4: Observation error correlation structure of a 100 × 100 Markov matrix with length scale
LR = 0.01m.

certainty is represented, respectively. Therefore we use 100 eigenpairs as an empirical

upper limit to the number of eigenpairs used in the assimilation.

The number of eigenpairs we will use in our approximations are k = 10, k = 20, k = 50,

and k = 100. This represents 1%, 2%, 5% and 10% of the total number of eigenpairs.
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Figure 7.5: Middle row of a 1001 × 1001 Markov matrix
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Figure 7.6: (a)Eigenspectrum of a 1001 × 1001 Markov error correlation matrix; (b)Eigenspectrum of
a 1001 × 1001 SOAR error correlation matrix

An ED approximation using the full number of eigenpairs k = 1001 is equivalent to

using the true error correlation matrix in the system. Obviously using all the eigenpairs

is an expensive procedure and would not be attempted operationally. However in these

smaller dimensioned experiments, knowing the performance of the assimilation under

the true error correlation matrix allows us to quantify the success of an assimilation

using an approximated correlation matrix relative to the truth, i.e, error E2 in Section

7.1.2. We therefore also run the assimilation using the ED approximation with the full
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number of eigenpairs.

7.2.2 Model tests

In Chapter 6 we described several tests used to ensure the validity of the model. In

the experiments performed in this chapter we modify the code used in the calculation

of the cost function and its gradient to allow for different approximations to the error

covariance matrix. Therefore in order to ensure the true gradient of the cost function is

being calculated by the modified adjoint code, we perform the gradient test described in

Section 6.2.5 under different specifications of the observation error covariance matrix. In

Figure 8.4 we plot χ(α) versus α and log(|χ(α)−1|) versus α, where χ is defined by (6.9),

for the case when a Markov approximation with length scale LR = 0.1m to the Markov

error covariance matrix is used. These figures compare well with those illustrated in [58]

and therefore we can conclude that our adjoint model does provide the true gradient

for the tangent linear model. Additional plots for other matrix approximations can be

found in Appendix C.

7.2.3 Numerical results

We now present the analysis error diagnostics generated from the assimilation of different

observation error covariance structures. The analysis errors E1 and E2 at the start of the

assimilation window (t = 0) for different approximations to a Markov error correlation

structure are given in Tables 7.1 and 7.2.

We can see that in all cases the approximation results in an improvement to the back-

ground field:
∥

∥xb − x∗
∥

∥

2
= 0.32 for the u field and

∥

∥xb − x∗
∥

∥

2
= 6.32 for the φ field. Us-
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Figure 7.7: Gradient test for a Markov approximation to a Markov error covariance matrix

Approximation E1:
∥

∥xRf
− x∗

∥

∥

2

∥

∥xRf
− xRt

∥

∥

2
E2 (%)

Truth 0.20 0 0
Diagonal 0.30 0.23 7.2
2 × Diagonal 0.31 0.23 7.2
4 × Diagonal 0.31 0.24 7.5
Markov (LR = 0.2) 0.21 0.06 1.9
Markov (LR = 0.1) 0.20 0 0
Markov (LR = 0.05) 0.21 0.05 1.6
Markov (LR = 0.01) 0.27 0.18 5.6
ED (k = 10) 0.28 0.19 5.9
ED (k = 20) 0.28 0.19 5.9
ED (k = 50) 0.25 0.15 4.7
ED (k = 100) 0.23 0.10 3.1

Table 7.1: Analysis errors in u field at t = 0 for different approximations to a Markov error covariance
matrix (‖xR‖2 = 3.20)

ing the true error covariance matrix, i.e, a Markov matrix with length scale LR = 0.1m,

produces the smallest analysis errors; the percentage error E2 is zero for this matrix

because Rt = Rf . Using a diagonal matrix approximation results in the largest analysis

errors.

Using a Markov approximation with double (LR = 0.2m) or half (LR = 0.05m) the

true length scale results in a small E2 error of less than 2% for the u and φ fields. This
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Approximation E1:
∥

∥xRf
− x∗

∥

∥

2

∥

∥xRf
− xRt

∥

∥

2
E2 (%)

Truth 2.35 0 0
Diagonal 3.61 3.04 4.9
2 × Diagonal 3.85 3.32 5.3
4 × Diagonal 4.11 3.61 5.8
Markov (LR = 0.2) 2.41 0.54 0.9
Markov(LR = 0.1) 2.35 0 0
Markov (LR = 0.05) 2.42 0.67 1.1
Markov (LR = 0.01) 3.06 2.27 3.6
ED (k = 10) 3.97 3.25 5.2
ED (k = 20) 3.80 3.03 4.8
ED (k = 50) 3.33 2.39 3.8
ED (k = 100) 2.77 1.56 2.5

Table 7.2: Analysis errors in φ field at t = 0 for different diagonal approximations to a Markov error
covariance matrix (‖xR‖2 = 62.64)

implies that choosing the exact length scale is not essential to producing accurate results.

Also, using a Markov matrix approximation with length scale between LR = 0.2m and

LR = 0.05m results in a smaller E2 error than that of an ED approximation using 100

eigenpairs. Using more eigenpairs in the ED approximation produces a more accurate

analysis, but at greater computational expense because additional eigenpairs must be

stored and used in cost function computations. We can therefore infer that although

using more eigenpairs is beneficial, a Markov approximation using an approximate length

scale is cheaper and more effective. In the next section we will see if the same conclusions

are drawn when the true error covariance matrix follows a non-Markov distribution.

It is worth noting that using an ED approximation with a small number of eigenpairs

can generate a smaller analysis error than when a diagonal approximation is used, and

is comparable with a weakly correlated Markov approximation. For example, a diago-

nal matrix approximation results in an E2 error of 7.2% in the u field compared to a

5.9% error under an ED matrix with 10 eigenpairs and a 5.6% error under a Markov

matrix with length scale LR = 0.01m. Combined with the results for a Markov matrix

approximation, this implies that it is often better to include some correlation structure,
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even if it is a weak approximation, than none at all.

Similar tests were performed for different observation densities. We found that using

more observations resulted in a small improvement in E2 for the three matrix approx-

imations tested: a diagonal matrix, a Markov matrix with LR = 0.05m, and an ED

matrix with k = 50. Increasing the number of observations had the biggest impact

on the diagonal approximation. Even when there was an observation at every timestep

(100 observation sets) the error E2 under a diagonal approximation was still significantly

larger (5.7%) than when a Markov (1.3%) and an ED approximation (3.4%) were used.

7.2.4 Summary

We have investigated the impact of approximating a Markov error covariance matrix with

diagonal, Markov, and ED matrices. We motivated our choices for the approximating

structures and showed that the adjoint model was coded properly for their inclusion. The

conclusions from these initial data assimilation experiments using a Markov observation

error correlation structure can be summarised as:

• All approximations improve on the background field but a Markov approximation

is the cheapest and most effective;

• A Markov approximation is robust under choice of length scale, even using a very

short length scale is an improvement on a diagonal approximation;

• It is often better to use some correlation structure than none at all.

In the next sections we will extend the experiments performed here to different re-

alisations of the true error correlation structure. We are interested to see if similar
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conclusions will be drawn.

7.3 Experiment 2: SOAR error correlation structure

In this section we consider the effect of our choice of the true observation error correlation

structure. In Section 7.2 the true error correlation matrix was generated from a Markov

distribution. We now change the correlation matrix to represent a SOAR distribution

with length scale LR = 0.1m. The matrix representations used to approximate this

correlation structure are the same as those used in Section 7.2. Using a SOAR matrix

will allow us to determine whether the Markov approximation also minimises analysis

error when the true correlation structure is not in Markov form, and how well the ED

and diagonal approximations perform in comparison.

7.3.1 Model tests

We must first ensure that the model is valid under the assumptions we are using. We

follow the same procedure described in Section 7.2.2 and apply the gradient test under

different approximations to the true error covariance matrix. Figure 7.8 shows that

the adjoint model generates the true gradient when a diagonal approximation is used

in the assimilation. Additional plots for other matrix approximations can be found in

Appendix C.
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Figure 7.8: Gradient test for a diagonal approximation to a SOAR error covariance matrix

7.3.2 Numerical results

The analysis errors E1 and E2 at t = 0 for the different approximations to the SOAR

error covariance matrix are given in Tables 7.3 and 7.4. Comparing the results to Table

7.1 and 7.2, we observe that the qualitative nature of the errors is very similar. For

example, using the true error covariance matrix structure results in the smallest errors

and diagonal approximations result in the largest errors. The approximations resulting

in the smallest analysis errors are a Markov matrix with length scale LR = 0.2m and

an ED matrix using 100 eigenpairs. It is intuitive that a Markov matrix with a longer

length scale is preferable, because of the wider spread of correlations in a SOAR matrix

(Figure 7.1). The E2 error in the u field is also small for Markov approximations with

length scale between LR = 0.2m and LR = 0.05m, compared to a 9.4% error when a

4× diagonal approximation is used. Inflated diagonal approximations perform slightly

worse than a simple diagonal approximation; this is in line with the information content

results in Chapter 5, when the background errors were uncorrelated.
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Approximation E1:
∥

∥xRf
− x∗

∥

∥

2

∥

∥xRf
− xRt

∥

∥

2
E2 (%)

Truth 0.11 0 0
Diagonal 0.31 0.28 8.8
2 × Diagonal 0.32 0.29 9.1
4 × Diagonal 0.32 0.30 9.4
Markov (LR = 0.2) 0.13 0.07 2.2
Markov (LR = 0.1) 0.15 0.11 3.4
Markov (LR = 0.05) 0.18 0.15 4.7
Markov (LR = 0.01) 0.27 0.25 7.8
ED (k = 10) 0.26 0.24 7.5
ED (k = 20) 0.23 0.20 6.3
ED (k = 50) 0.15 0.11 3.4
ED (k = 100) 0.13 0.07 2.2

Table 7.3: Analysis errors in u field at t = 0 for different approximations to a SOAR error covariance
matrix (‖xR‖2 = 3.19)

Approximation E1:
∥

∥xRf
− x∗

∥

∥

2

∥

∥xRf
− xRt

∥

∥

2
E2 (%)

Truth 0.57 0 0
Diagonal 3.36 3.32 5.3
2 × Diagonal 3.59 3.55 5.7
4 × Diagonal 3.99 3.95 6.3
Markov (LR = 0.2) 0.81 0.63 1.0
Markov(LR = 0.1) 1.18 1.06 1.7
Markov (LR = 0.05) 1.69 1.60 2.6
Markov (LR = 0.01) 2.89 2.84 4.5
ED (k = 10) 3.90 3.87 6.2
ED (k = 20) 3.71 3.67 5.9
ED (k = 50) 1.56 1.45 2.3
ED (k = 100) 1.06 0.85 1.4

Table 7.4: Analysis errors in φ field at t = 0 for different diagonal approximations to a SOAR error
covariance matrix (‖xR‖2 = 62.54)

It is also expected that an ED matrix using 100 eigenpairs results in a very small analysis

error relative to the converged solution, because as we observed in Section 7.2.2, 100

eigenpairs represent 99% of the overall uncertainty in the matrix. It is encouraging that

an ED approximation using even fewer eigenpairs also results in an improved E2 error

relative to a diagonal approximation; using 5% of the available eigenpairs results in an

E2 error in the φ field of 2.3% compared to 5.3% when a diagonal approximation is

used. The E1 errors in using an ED approximation to model a SOAR error covariance

structure are smaller than those generated when an ED approximation was used to model
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a Markov error covariance structure in Section 7.2. This is because, for a SOAR error

covariance matrix, more uncertainty is represented using the same number of eigenpairs;

as demonstrated in the steeper gradient in Figure 7.6.

In conclusion, the results when assimilating different matrix approximations to a SOAR

error covariance matrix have

• demonstrated the robustness of a Markov matrix as a desirable approximation

to modelling observation error correlation structure, but a larger length scale is

needed;

• shown that an ED approximation with as few as 50 eigenpairs is an improvement

on ignoring observation error correlations entirely.

It is also interesting to look at individual analysis errors over the domain. At each grid

point the analysis error is given by the difference between the true analysis and the

analysis resulting from the assimilation. Figures 7.9 and 7.10 show the analysis errors in

the u and φ fields at t = 0 and t = 50, respectively. By looking at the spread of analysis

errors for the diagonal and Markov approximations we see that the difference between

the two is not uniform over the domain, i.e, in some regions, a diagonal approximation

is much worse than a Markov approximation compared to the average. Such differences

can be important operationally. For example, if a temperature error was reduced by

0.2K on average, and is reduced by 2K on one occasion. This 2K change can result in

a modification of the wind forecast from 20 knots to 40 knots.

Comparing Figure 7.9 to 7.10 we observe that as the forecast evolves the analysis errors

become smoother. At the centre of the time window, the errors in the u field for a

Markov and a diagonal approximation are very similar compared to at the start of the
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Figure 7.9: Analysis errors in (a) u field and (b) φ field at the start of the time window. The red line is
for a diagonal approximation and the blue line is for a Markov approximation with LR = 0.2m.
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Figure 7.10: Analysis errors in (a) u field and (b) φ field at the centre of the time window. The red line
is for a diagonal approximation and the blue line is for a Markov approximation with LR = 0.2m.

time window, where the diagonal approximation was noticeably poorer. The same is

true of the φ field although the Markov approximation is still noticeably better. We can

explain this by considering the assumptions on the shallow water model. The model

in this assimilation is assumed perfect, and by construction is well-behaved, meaning

that small errors in the analysis at t = 0 will be smoothed out over time. However,

for a more complex operational system, a slight error in the true analysis field at t = 0

may propagate and grow with time, resulting in a modified forecast. It would therefore

be interesting to extend these results to an imperfect and more poorly behaved model

system.
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Figure 7.11: Plot of E2 against level of observation noise for u field. The solid line is for the diagonal
approximation, the dashed line for the ED approximation with k = 50 and the dotted line for the Markov
approximation with LR = 0.05m.
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Figure 7.12: As in Figure 7.11 but for φ field.

Finally in this section we study how the error in the assimilation depends on the level of

noise on the observations. Previous experiments were run with the standard deviation

of the noise at 20% of the mean field value, i.e, 0.02ms−1 for the u field; here we vary this

value between 1% and 30%. The error in the assimilation is described by E2, as defined

in Section 7.1.2 (7.4). A plot of this error measure versus the percentage observation
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error in the u and φ field is shown in Figures 7.11 and 7.12, respectively. We see that for

all three approximations studied, the E2 error increases with the percentage observation

error. In the u field, E2 increases close to linearly with noise level for the Markov

and ED approximation; similarly for the φ field below 20% noise level. However, the

diagonal approximation increases more rapidly with noise level in both fields, although

the gradient becomes more linear as the observation errors increase. We can conclude

that using a correlated matrix approximation is preferable to a diagonal one regardless

of the level of observation error noise.

7.3.3 Summary

We have examined different matrix approximations to an observation error correlation

matrix with a SOAR distribution. The aim of this section was to reinforce and extend

on the conclusions of Section 7.2 where the true error correlation matrix had a Markov

structure. Using the same experimental framework we found that the Markov matrix

approximation still produced the smallest analysis error when assimilated instead of the

true error covariance matrix. An ED approximation with 100 eigenpairs also performed

well, but would be more expensive to implement. Noticeably most matrix approxi-

mations that included some level of correlation structure outperformed uncorrelated

diagonal approximations; exceptions were ED approximations with very few eigenpairs.

The findings were in line with those in Section 7.2, and demonstrated the Markov matrix

as a robust choice for modelling error correlation structure.

We also studied the spread of analysis errors over the model domain at the start and the

middle of the assimilation time window. The differences between assimilations using the

diagonal and Markov matrix approximations were not uniform over the model domain,
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and were significantly larger in places. Finally we looked at the behaviour of the analysis

error E2 under different levels of observation noise. We concluded that regardless of

noise level, the difference in the analysis error using a correlated and non-correlated

approximation was significant. Also, as observation error increased, the difference in

analysis error when using a diagonal approximation became larger. This reinforced the

conclusion that including some correlation structure is both feasible and beneficial under

a variety of assimilation conditions.

7.4 Experiment 3: Unknown error correlation structure

In the previous two experiments we assumed that the true observation error correlation

structure was known. In reality this is often not the case. In this section we investigate

the choice of approximating error structure when the error covariance matrix is assumed

unknown and is subsequently derived using the post analysis diagnostic (2.33) described

in Section 2.6.2. The aim of this final experiment is to determine (a) if it is possible

to derive the true error correlation structure using the diagnostic; and (b) if we can

successfully fit a Markov matrix approximation to the derived structure.

7.4.1 Application of Desroziers’ method

Recall from Chapter 2, the post-analysis diagnostic used to determine observation error

covariance structure is given by

E
[

do
a(d

o
b)

T
]

≈ R (7.5)

where do
b = y − h(xb) is the background innovation vector and do

a = y − h(xa) is the

analysis innovation vector. In this experiment, all observations are taken directly so the
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observation operator is the identity matrix, i.e, h = H = I.

In the experiments performed in Chapter 4, the diagnostic (7.5) was shown to success-

fully quantify observation error correlation structure for IASI channel data. We apply

the diagnostic using a similar approach to that described in Section 4.2. The experimen-

tal set up is the same as when we knew the true error correlation structure in Section

7.3, with the exception that the observations are taken at every timestep. We use a

SOAR correlation matrix (7.2) with length scale LR = 0.1m to generate the observation

error correlations. The assimilation is then run under the assumption that the error

structure is unknown and a diagonal approximation of the true error variances is used

as the observation error covariance matrix. We then calculate the innovation vectors do
b

and do
a at each of the 100 timesteps and write them to a MATLAB file. This procedure is

performed a total of 10 times, to produce a sample set of 1000 background and analysis

innovation vectors from which to calculate the error correlation statistics.

The diagnosed observation error covariance matrix is then computed as follows. For each

spatial point i, we compute the observation error covariance with point j by averaging the

product of the background and analysis innovations over the total number of observations

N ,

R(i, j) =
1

N

N
∑

k=1

{(do
a)i (d

o
b)j}k −

(

1

N

N
∑

k=1

{(do
a)i}k

)(

1

N

N
∑

k=1

{(do
b)j}k

)

=
1

N

N
∑

k=1

{yi − xa
i }k{yj − xb

j}k

−
(

1

N

N
∑

k=1

{yi − xa
i }k

)(

1

N

N
∑

k=1

{yj − xb
j}k

)

, (7.6)

where yi is the observation value at point i, and xb
i and xa

i are the background and

analysis values at point i, respectively.

154



7.4.2 Diagnosing the true error correlation structure

The resultant diagnosed error correlation matrix is shown in Figure 7.13. The matrix is

more symmetric than the IASI error correlation matrices diagnosed in Chapter 4. This

is expected since the ignored SOAR correlation structure is weaker than that present

in the IASI observation errors; hence we are deviating less from the assumption of

correctly specified errors used in creating the diagnostic (7.5). Using this matrix we

can approximate the true correlation structure of the errors, and determine the best

Markov approximation to the derived errors. First we consider how well this matrix

approximates the true correlation matrix used to generate the observation errors. In

Figure 7.14 we plot the difference in the Frobenius norm between the diagnosed error

correlation matrix and a SOAR matrix approximation. The Frobenius norm (3.30),

as described in Section 3.5, provides an elementwise evaluation of the closeness of two

matrices ‖C − CS‖F where C is the diagnosed error correlation matrix and CS is the

SOAR matrix approximation. By varying the length scales of the approximations, we

can determine which SOAR matrix best fits the data.

In Figure 7.14 we see that the value ‖C − CS‖F is a minimum when the length scale

of the SOAR matrix approximation CS is LR = 0.1m. This is the length scale of the

matrix used in generating the error correlations, and we can therefore conclude that the

diagnostic is successful in deriving the true error correlation structure.

In Figure 7.15 a typical row of the diagnosed error correlation matrix is plotted against

the derived SOAR matrix approximation. The plot shows that although the diagnosed

error correlation matrix fits well to a SOAR distribution for the main band of correlation

structure, spurious correlations are present on the off-diagonals. If we wished to use
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Figure 7.13: Diagnosed observation error correlation matrix.
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Figure 7.14: Frobenius norm of the difference between the diagnosed matrix C and a SOAR approxi-
mation CS with length scale LR = 0.1m.

the diagnosed matrix directly in a data assimilation algorithm, these spurious error

correlations could possibly be removed using covariance localisation [42]. However, this

procedure can be problematic for vertical errors, or for inter-channel error correlations.

Further experiments demonstrate how the success of the reconstruction is dependent on
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Figure 7.15: Row 500 of the diagnosed C matrix (black line) and a SOAR matrix with LR = 0.1 (blue
line)

the number of observations used in retrieving the diagnostics. In Figures 7.16 and 7.17,

respectively, the observation error correlation matrices derived using 100 and 500 obser-

vations are shown. When using only 100 observations, spurious correlations are heavily

present; whereas using 500 observations produces a matrix structure very similar to that

in Figure 7.13. This suggests that it is possible to obtain a good reconstruction with

fewer observations, but there must be a sufficient number to avoid spurious long range

correlations. Similar conclusions were drawn for the construction of an ED approxima-

tion using a subset of eigenpairs in Chapter 5.

It is also important to note that the success of the matrix reconstruction was obtained

for a correlation matrix with only one free parameter ρ. Comparing this to an IASI

error correlation matrix where the correlation structure can be influenced by several

parameters, we conclude that we are limited in the extent to which we can generalise

these findings. However, the results do demonstrate the applicability of the method and

motivate further study.
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Figure 7.16: Diagnosed observation error correlation matrix using 100 observation sets.

Figure 7.17: Diagnosed observation error correlation matrix using 500 observation sets.

7.4.3 Diagnosing an approximate error correlation structure

Now we address the second aim of this final results section: can the diagnosed error

correlation structure be used to derive an optimal Markov approximation. We use a

Markov approximation because it has been shown in the previous two experimental
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sections to be a robust and efficient way of modelling error correlation structure. Figure

7.18 shows the difference in the Frobenius norm between the diagnosed matrix error

correlation matrix C and a Markov matrix approximation CM . As in Figure 7.14 we

vary the length scale to find the best fit to the diagnosed data. The smallest value of

‖C − CM‖F occurs when the length scale of the Markov matrix is LR = 0.2m. This

was the length scale found to generate the most successful Markov approximation in

the previous tests using a known SOAR error correlation matrix. However, these results

demonstrate that such an approximation can be diagnosed without prior knowledge of

the error correlation distribution. This is encouraging for situations when calculating

the true error correlation structure may be difficult.
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Figure 7.18: Frobenius norm of the difference between the diagnosed matrix C and a Markov approxi-
mation CM with length scale LR.

7.4.4 Summary

In this section we have shown new and original results on the derivation of true and

approximate error correlation structures using post-analysis diagnostics. We have suc-

cessfully derived the true SOAR error correlation structure when the assumption of
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uncorrelated errors was used in the assimilation. For a good approximation, a sufficient

number of observations were needed; using too few observations resulted in long-range

spurious error correlations.

We were also able to fit a Markov matrix approximation to the derived structure using

the Frobenius norm as a measure of the difference between matrices. The Markov

matrix diagnosed to be the best fit was also shown to be the best matrix approximation

in Section 7.3, where the experiment conditions were very similar. We can therefore

conclude that it is possible to diagnose a successful Markov approximation to a simple

correlation matrix without prior knowledge of the error distribution.

7.5 Conclusions

In this chapter we investigated the inclusion of observation error correlation structure in

an incremental 4D-Var algorithm using a 1D shallow water model. The work extended

on the findings in Chapter 5 using the techniques described in Chapter 6. We ran

the assimilation using three different approximate error correlation structures: diagonal

matrices, Markov matrices and ED matrices. In experiments 1 and 2, these matrix

approximations were tested against a simulated error correlation structure following a

Markov and a SOAR distribution, respectively.

The Markov matrix approximating structures were found to generate the smallest anal-

ysis errors for both distributions. The structure was also shown to be robust under

choice of length scale. Diagonal approximations performed poorly, and both a Markov

matrix with very small length scale and an ED approximation with 5% of the avail-

able eigenpairs produced a more accurate analysis. The results reinforced conclusions
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made in Chapter 5, and demonstrated that including some correlation structure, even

a basic approximation, is often better than incorrectly assuming error independence.

The findings also support the work in [43] where Healy and White showed that using

an approximate error correlation structure gave clear benefits over using no observation

error correlations.

In the final section of this chapter we examined the choice of an approximate error

correlation structure when the true error distribution was assumed unknown. We used

a Markov matrix as the approximating matrix based on its successful performance in

the previous two experiments. The observation error correlations were sampled from a

SOAR distribution but were treated as uncorrelated in the assimilation, i.e, a diagonal

observation error covariance matrix was used. Using the post-analysis diagnostic shown

in Chapter 4 to accurately quantify IASI error correlations and in [25] to accurately

estimate mis-specified observation error variances, we successfully diagnosed the true

observation error correlation structure. The derived matrix was however subject to spu-

rious long-range error correlations. We then used matrix differences in the Frobenius

norm to ascertain the optimal Markov matrix approximation to the derived error cor-

relation matrix. This was found to be the same matrix as that which generated the

smallest analysis error in Section 7.3. We therefore concluded that even when the true

error corelation structure is unknown, it is possible to derive cheaply an approximating

structure that performs well in the assimilation.

The results in this chapter addressed the final thesis question posed in Chapter 1: how

well do the proposed matrix approximations perform in a data assimilation algorithm?

We have shown that correlated approximations can reduce the analysis error when used

over simplistic diagonal approximations. The final section also demonstrated how to
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choose an approximating correlation structure when the true error correlation structure

was unknown. In conclusion we can deduce that (a) it is often better to model error

correlation structure incorrectly than not at all, and (b) including error correlation

structure in data assimilation algorithms is both feasible and beneficial.
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Chapter 8

Conclusions and future work

In numerical weather prediction (NWP), an accurate, high-resolution representation of

the current state of the atmosphere is needed as an initial condition for the propagation

of a weather forecast. Data assimilation techniques combine observations of atmospheric

variables with a priori knowledge of the atmosphere to obtain a consistent representa-

tion. The weighted importance of each is determined by the size of their associated

errors, so it is crucial to the accuracy of the forecast that these errors be specified

correctly.

Satellite radiance observations account for approximately 90% of the total data used in

operational assimilations [4], and are a contributing factor in the success of data assimila-

tion algorithms such as four-dimensional variational assimilation (4D-Var). The correct

treatment of radiance observation errors is a dual problem for operational weather cen-

tres. Firstly the statistical properties of the errors are relatively unknown. Observations

taken by different instruments are likely to have independent errors, but pre-processing

techniques, mis-representation in the forward model, and contrasting observation and
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model resolutions can create spatial and horizontal error correlations. Secondly, even

when good estimates of the errors can be made, the number of observations is of order

106 for a global assimilation run, and so the storage and subsequent computation using

observation error correlations is infeasible.

To avoid the issues involving observation error correlations, operational weather centres

treat most observation errors as independent. Often for satellite observations, the lack

of correlation is compensated for by inflating the error variances so that the observa-

tions have a more appropriate weighting in the analysis [46]. The assumption of zero

correlations is often also used in conjunction with data thinning methods such as super-

obbing [5], in which data in a region are reduced to a single representative observation.

Under such conditions, increasing observation density beyond some threshold value has

been shown to yield little or no improvement in analysis accuracy [60], [21]. With the

advent of high-resolution nowcasting, in which all available data is required to provide

details on finer scales, such assumptions will not be viable and an alternative approach

to dealing with observation error correlations is needed.

In this thesis we expanded on the existing body of work on observation error correlation

structure, and addressed the dual problem of correlation specification and modelling.

In Chapter 1 we posed three questions which we answered through the subsequent

experiments and analysis:

• What is the true structure of the observation error correlations?

• What approximations are available to model error correlation structure? What is

their impact on data assimilation diagnostics?

• How well do these approximations perform in a data assimilation experiment? Is
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it better to model observation error correlation structure incorrectly than not at

all?

We began in Chapter 2 by introducing the concepts of data assimilation and satellite

remote sensing. The role of observation error correlations was explained in this con-

text; we gave an overview of their possible origins and discussed current issues in their

treatment. Finally we described two statistical methods used to diagnose error correla-

tions; the Desroziers’ statistical approximation [25] was later applied in Chapter 4 and

in Chapter 7.

In Chapter 3 we addressed the second question posed in Chapter 1, and examined

the different approximating structures that can be used to represent error covariance

matrices. Three different types of approximating structure were described: diagonal

[14], circulant [43], [78] and eigendecomposition [34] approximations. We focused on

the unique properties of the approximating matrices that make them suitable for use in

variational data assimilation algorithms. Details on several retrieval measures used to

evaluate the success of these approximations were also given.

In order to generate a good approximation, we must first have an accurate estimate of

the true error correlation structure. In Chapter 4 we returned to the first question posed

in Chapter 1, and successfully used the Desroziers’ post-analysis diagnostic described

in Chapter 2 to quantify cross-channel error correlations for IASI observations. The

statistics used in the construction of the diagnostic were generated from the Met Office

operational systems. The observation error covariance matrix was derived for both the

one-dimensional retrieval procedure and the incremenatal 4D-Var assimilation. It is

a new approach to use the Desroziers’ technique to estimate the full error covariance

matrix and not just the error variances.
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We presented more new results in Chapter 5. Here we quantified the success of each of

the matrix approximations described in Chapter 3 in modelling an empirically derived

observation error correlation structure. The experiments were performed for indepen-

dent and correlated background errors using a three-dimensional variational assimilation

framework. Using the information content measures described in Chapter 3, we calcu-

lated the information provided by each approximation relative to the truth. The work

in this chapter addressed the second thesis question.

Finally we chose to investigate modelling observation error correlation structure in the

framework of the one-dimensional SWEs. This is a relatively simple model that retains

key dynamics similar to those of the full atmosphere. The penultimate two chapters

addressed the third and final question posed in Chapter 1. In Chapter 6, we devel-

oped an incremental 4D-Var data assimilation system for the 1D SWEs which models

observation error correlation structure using diagonal, Markov and eigendecomposition

matrix approximations. The important matrix-vector products for implementing these

approximations efficiently in the data assimilation process were provided. In Chapter

7 we performed assimilation experiments extending the findings in Chapter 5 using the

framework described in Chapter 6. The assimilation accuracy was evaluated for each

approximation under different realisations of the true observation error distribution. We

now discuss the conclusions we are able to draw from the new results of the work in this

thesis.

8.1 Summary

We separate our conclusions under the three questions posed in Chapter 1.
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Question 1: What is the true structure of the observation error correlations?

In Chapter 4 we showed that the cross-channel observation error correlation structure

can be derived for IASI data using a post-analysis diagnostic [25]. Using statistics

generated from the Met Office operational systems we deduced the following conclusions

from the numerical experiments:

• There exist significant error correlations between neighbouring channels with sim-

ilar properties, such as sensitivity to water vapour and typical brightness tem-

perature measurements. This results in a block diagonal structure in the error

covariance and correlation matrices;

• Error variances are being overestimated in the 1D-Var retrieval procedure and

the 4D-Var assimilation process. This inflation is needed because of the current

mis-treatment of off-diagonal error covariances;

• The largest errors of representativity are present in channels highly sensitive to

water vapour. This suggests that fine-scale water vapour structures are observed

by the IASI instrument but are not represented at the current model resolution.

Question 2: What approximations are available to model error correlation

structure? What is their impact on data assimilation diagnostics?

In Chapter 3 we described three approximating structures suitable for modelling obser-

vation error covariance matrices. We focused on the features of these matrices which

made them suitable for inclusion in variational data assimilation algorithms, namely

having a cheaply generated and easy to store inverse. In Chapter 5 we made a quanti-

tative comparison of the information content from a simulated set of observations under
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each approximating structure. The empirical conclusions were:

• Information content is severely degraded under the incorrect assumption of inde-

pendent observation errors. This supports the results seen in [14] and [43];

• Retaining some error correlation structure shows clear benefits in terms of informa-

tion content. A circulant approximation was shown to retain the most information

content of all the approximations. An eigendecomposition approximation retained

more information than a diagonal approximation but sufficient eigenpairs must be

used to avoid spurious long range error correlations as suggested in [34];

• The diagnosed information content was sensitive to the specification of the anal-

ysis error covariance matrix. If the approximating observation error covariance

matrix was assumed to be correct, then the resultant information content values

were inflated and misleading. This highlighted the importance of knowing accu-

rately the correct error correlation structure for an observation type, even if an

approximation to this structure is to be made.

Question 3: How well do these approximations perform in a data assimilation

experiment? Is it better to model error correlation structure incorrectly than

not at all?

In Chapter 6 and 7 we developed an incremental 4D-Var data assimilation algorithm

that used correlated approximations to model a simulated error correlation structure.

This was applied to one-dimensional SWEs, and the impact of each approximation on

analysis accuracy was determined. In this final new results section we concluded from

the experiments that:
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• By choosing a suitable matrix approximation it is feasible to cheaply include some

level of error correlation structure in a variational data assimilation algorithm;

• For different simulated observation error distributions and levels of error noise, it is

often better to include some level of correlation structure in the observation error

covariance matrix approximation than to assume incorrectly error independence.

For example, an eigendecomposition approximation with 5% of the available eigen-

pairs results in a smaller analysis error than a diagonal approximation;

• A Markov matrix approximation is an effective and robust approximation to mod-

elling error correlation structure;

• It is possible to derive a suitable Markov matrix approximation when the ob-

servation errors are assumed incorrectly to be independent and the Desroziers’

diagnostic is used to derive the true error correlation structure. Care must be

taken to use a sufficient number of statistics in the diagnostic to avoid spurious

long-range error correlations in the derived matrix.

The three sets of new results presented in this work have answered the questions posed

at the start of the thesis. We have demonstrated that is it both feasible and beneficial to

model observation error correlation structure under a variety of assimilation conditions.

Current operational systems require methods of incorporating observation error correla-

tion structure; the correlated approximations described in this work have shown promise

and warrent further study. However, the results generated also have some limitations.

In the next section we will comment on the constraints of our studies and describe the

possible extensions to our work that will generalise our results in a wider framework.
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8.2 Future work

In Chapter 4 we used a post-analysis diagnostic derived from variational data assim-

ilation theory to quantify cross-channel error correlations for IASI observations. The

diagnostic proved successful in generating a feasible observation error covariance matrix;

however the matrix was not entirely symmetric. We can attribute the asymmetry to vio-

lations in the assumptions used in constructing the diagnostic. To derive the diagnostic

from [25], we assumed that all error covariances were specified correctly in the analysis.

In the assimilations performed, the observation errors are incorrectly treated as inde-

pendent, and the background errors may be poorly specified. Therefore this assumption

does not hold entirely, and by construction the diagnosed matrix is not expected to be

symmetric.

For an observation error covariance matrix to be used in operational applications it must

be symmetric. If we wished to use our diagnosed matrix, R, directly in an assimilation

system, we could use its symmetric part, Rsym, as the observation error covariance

matrix:

Rsym =
1

2
(R + RT ).

We would hope that the closer we get to the correct specification of the observation and

background error covariances, the more symmetric the diagnosed matrix would be.

However, even if a symmetric observation error covariance matrix was diagnosed, the

current Met Office incremental 4D-Var system does not support a non-diagonal obser-

vation error covariance matrix, and so we cannot directly test the impact of using this

diagnosed matrix in the assimilation. However, the 1D-Var retrieval procedure does al-

low a correlated observation error covariance matrix. In Chapter 4 the diagnosed error
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covariance matrix for the 1D-Var assimilation was shown to be very weakly correlated,

implying that we would see little impact from including correlation structure. However,

if we were to use reconstructed radiances in the 1D-Var procedure, we would expect a

more strongly correlated matrix in 1D-Var. It would then be possible to assimilate the

IASI reconstructed radiances in 1D-Var using a diagnosed error covariance matrix, and

to evaluate the impact on the accuracy of the subsequent 4D-Var assimilation. Positive

results would further motivate the inclusion of observation error correlation structure in

the main assimilation.

By using a simple one-dimensional SWM in Chapters 6 and 7, we were able to evaluate

the impact of modelling error correlation structure against using the true distribution of

the observation errors. We observed improvements in analysis accuracy when Markov

and ED correlated approximations were used over uncorrelated diagonal approxima-

tions. These results were encouraging but before the matrix approximations can be

considered for operational applications they also need to be tested in a framework more

representative of the full atmospheric model.

In the model used in Chapter 7, the assumption that every model variable is observed

directly prohibits a direct comparison with satellite data assimilation, in which the

desired atmospheric fields are nonlinear combinations of the observed quantities. The

success of the correlated approximations does however motivate an extension of this

work in which an observation operator incorporating the typical integrated nature of

satellite measurements is used in the assimilation algorithm. Also the assumption of

uncorrelated background errors is unrealistic. We have seen in Chapter 5 how the

background error structure can influence the choice of the observation error covariance

matrix approximation. By coding a correlated background error covariance matrix, the
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interaction between observation and background errors could be studied further.

Additional methods to assess the quality of the analysis and the performance of the data

assimilation algorithm could also be used. For operational interest it would be useful

to compare the convergence properties and computational efficiency of the assimilation

using each matrix approximation. Techniques to study the assimilation convergence

rates are already available in the SWM code. Also, the conditioning of the minimisation

could be studied by generating the Hessian matrix of the incremental cost function. The

Hessian matrix can be described as the inverse of the analysis error covariance matrix,

therefore from the Hessian we would also be able to calculate the information content

available from the observations and compare with our 3D-Var results from Chapter 5.

In Chapter 7 we concluded that a Markov matrix was a robust and effective approxima-

tion to modelling error correlation structure. We also diagnosed an ‘optimal’ Markov

matrix approximation when the true error correlation structure was unknown. A useful

extension to this work would be a technique to derive the optimal Markov approximation

to an observation error correlation matrix without needing to evaluate the Frobenius

norm metric for several different matrices. Similar problems have been studied in finan-

cial research. In [87] the problem of finding the nearest positive semidefinite Toeplitz

matrix (in the Frobenius norm) to an arbitrary matrix was considered. In [44] the

nearest correlation matrix to a given symmetric matrix was determined by minimising

the distance between the two matrices in a weighted Frobenius norm. By extending

the ideas in [44] and [87] we could solve the minimisation problem of determining the

optimal Markov matrix approximation to a given correlation matrix.

Such a technique would also be applicable for the current treatment of observation error

correlations. The inflation of observation error variances performed in many operational
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centres is done using educated guess-work. By finding the diagonal approximation to

a true error correlation matrix which minimised the matrix difference in a weighted

Frobenius norm, we would have a more accurate representation of the observations

in the analysis. In a situation where it was unavoidable to use the assumption of

uncorrelated errors, we could at least be confident that the observations were being

weighted correctly.
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Appendix A: IASI channel

information

All the details in this appendix are provided by Fiona Hilton (personal communication).

The tables below contain information on the 314 IASI channels stored in the Met Office

database (MetDB). The column entries are described below:

1. MetDB channel number: the channel number out of 314 stored in the MetDB

2. OPS index number: the index of the MetDB channel, out of 183, used in the OPS

(starting at 0)

3. Var index number: the index of the MetDB channel, out of 139, used in 4D-Var

(starting at 0)

4. Central wave number of the channel

5. Q jac peak (hPa): the pressure level at which the water vapour mixing ratio

Jacobian peaks [30]

6. Summed Q jac peak: the sum over all model pressure levels of the absolute value

of the water vapour mixing ratio Jacobian, normalised by the maximum of the

totals for the 314 MetDB channels (out of 1)
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

1 0 648.50 0.36 0
2 1 0 654.25 0.36 0
3 2 657.00 0.45 0
4 3 1 657.50 0.45 0
5 4 658.50 2.06 0
6 5 2 659.00 1.36 0.001
7 6 659.50 1.36 0.003
8 7 660.60 1.09 0
9 8 3 660.50 0.36 0
10 9 661.25 0.29 0
11 10 662.25 2.04 0
12 11 662.75 0.87 0
13 12 663.25 0.87 0
14 13 664.50 1.66 0
15 14 665.00 0.29 0
16 15 665.50 0.70 0
17 16 666.00 1.09 0
18 17 666.50 2.06 0
19 18 667.00 0.45 0
21 19 668.50 0.70 0
22 20 669.00 0.70 0
23 21 669.50 0.56 0
24 22 670.00 0.87 0
25 23 670.75 14.81 0
26 24 671.25 0.87 0
27 25 4 672.00 1.09 0
28 26 672.50 0.45 0
29 27 673.00 2.51 0
30 28 5 673.75 0.87 0
31 29 674.50 0.22 0
32 30 6 675.25 0.56 0
33 31 676.00 1.36 0
34 32 7 676.75 1.36 0
35 33 677.50 1.09 0
36 34 678.00 0.36 0
37 35 8 678.50 0.87 0
38 36 679.25 1.36 0
39 37 9 680.00 1.36 0
40 38 680.75 0.29 0
41 39 681.25 1.09 0
42 40 10 681.75 0.22 0
43 41 682.50 0.45 0
44 42 11 683.25 0.17 0
45 43 684.00 0.29 0
46 44 684.50 0.87 0
47 45 12 685.00 0.70 0
48 46 685.50 0.56 0
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

49 47 13 686.50 0.45 0
50 48 687.25 0.87 0
51 49 14 688.00 0.87 0.002
52 50 688.75 1.36 0.001
53 51 15 689.50 1.09 0.001
54 52 16 689.75 0.87 0
55 53 17 691.00 0.17 0
56 54 18 691.50 0.70 0
57 55 19 693.00 0.87 0
58 56 20 694.50 321.50 0.001
59 57 21 696.00 269.65 0.001
60 58 22 696.50 269.65 0.001
61 59 23 697.25 339.39 0
62 60 24 697.75 269.65 0.006
63 61 25 698.25 286.60 0.002
64 62 26 699.00 416.40 0
65 63 27 699.50 396.81 0
66 64 28 700.25 321.50 0
67 65 29 700.75 339.39 0
68 66 30 701.25 436.95 0
69 67 31 702.25 321.50 0
70 68 32 702.75 358.28 0
71 69 33 703.75 303.55 0.009
72 70 34 704.50 478.54 0.003
73 71 35 705.25 339.39 0.047
74 72 36 705.50 339.39 0.053
75 73 37 706.25 436.95 0.006
76 74 38 707.00 358.28 0.016
77 75 39 707.75 416.40 0.025
78 76 40 708.25 478.54 0.004
79 77 41 709.75 457.27 0.004
80 78 42 710.25 457.27 0.004
81 79 43 711.00 610.60 0.016
82 80 44 711.50 610.60 0.005
83 81 45 712.00 610.60 0.005
84 82 46 713.50 358.28 0.103
85 83 47 714.75 638.60 0.022
86 84 48 715.25 610.60 0.009
87 85 49 718.25 457.27 0.004
88 86 50 718.75 457.27 0.002
89 87 51 719.50 377.05 0
90 88 720.50 0.45 0
91 89 52 721.25 543.05 0.004
92 90 53 725.50 727.44 0.038
93 91 54 726.50 759.16 0.123
94 92 55 727.00 727.44 0.026
95 93 56 728.50 696.97 0.032
96 94 57 731.00 478.54 0.478
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

97 95 58 731.50 610.60 0.092
98 96 59 732.25 727.44 0.113
99 97 60 733.25 727.44 0.022
100 98 61 733.75 759.16 0.096
101 99 62 734.75 727.44 0.023
102 100 63 736.25 727.44 0.022
103 101 64 737.50 727.44 0.062
104 102 65 738.00 727.44 0.048
105 103 66 738.50 759.16 0.121
106 104 67 739.00 727.44 0.076
107 105 68 739.50 727.44 0.054
108 106 69 740.00 727.44 0.175
109 107 70 740.50 416.40 0.223
110 108 71 741.25 543.05 0.008
111 109 72 742.00 696.97 0.08
112 110 73 744.25 610.60 0.426
113 111 74 745.00 610.60 0.413
114 112 75 745.75 759.16 0.215
115 113 76 746.50 759.16 0.178
116 114 77 747.25 759.16 0.237
117 115 78 748.25 610.60 0.224
118 116 79 748.75 759.16 0.344
119 117 80 751.25 759.16 0.132
120 118 81 751.75 759.16 0.288
121 119 82 752.75 727.44 0.188
122 120 83 753.25 727.44 0.188
123 121 84 754.50 610.60 0.496
124 122 85 756.00 696.97 0.298
125 123 86 759.00 792.18 0.229
126 124 87 773.50 792.18 0.360
127 125 88 781.25 792.18 0.354
128 126 89 782.75 792.18 0.380
130 127 90 786.25 792.18 0.367
131 128 91 787.50 792.18 0.359
132 129 92 788.00 792.18 0.348
133 130 806.25 792.18 0.349
134 131 93 810.25 792.18 0.305
135 132 94 811.75 792.18 0.301
136 133 95 833.75 792.18 0.265
137 134 96 861.50 792.18 0.234
138 135 97 871.25 727.44 0.668
139 136 98 875.00 792.18 0.222
140 137 99 901.50 792.18 0.198
141 138 906.25 792.18 0.326
142 139 925.00 759.16 0.521
143 140 100 928.00 792.18 0.178
144 141 942.50 792.18 0.157
145 142 101 943.25 792.18 0.167
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

146 143 102 962.50 792.18 0.150
162 144 1091.25 696.97 0.528
163 145 103 1096.00 792.18 0.087
164 146 104 1115.75 826.58 0.088
165 147 105 1142.50 826.58 0.086
166 148 1149.50 610.60 0.694
167 149 106 1168.25 792.18 0.099
168 150 1174.50 377.05 0.896
170 151 107 1204.50 826.58 0.106
171 152 108 1206.00 727.44 0.485
176 153 109 1330.00 457.27 0.907
178 154 110 1367.00 610.60 0.947
179 155 111 1371.50 478.54 0.914
183 156 112 1380.75 610.60 0.951
184 157 113 1381.75 499.54 0.900
185 158 114 1382.50 610.60 0.937
186 159 115 1384.25 499.54 0.942
189 160 116 1391.75 457.27 0.901
195 161 117 1401.50 436.95 0.899
196 162 118 1402.00 457.27 0.909
200 163 119 1408.00 478.54 0.942
201 164 120 1409.25 478.54 0.925
202 165 121 1410.75 478.54 0.911
215 166 122 1436.75 208.16 0.276
221 167 123 1456.75 208.16 0.231
251 168 124 1521.25 208.16 0.299
259 169 125 1539.00 208.16 0.257
261 170 126 1540.25 208.16 0.255
263 171 127 1542.00 208.16 0.269
270 172 128 1927.25 727.44 0.979
271 173 129 1986.75 727.44 0.887
272 174 130 1987.50 610.60 1.000
273 175 131 1989.50 638.60 0.967
274 176 132 1990.00 638.60 0.984
275 177 133 1990.50 610.60 0.973
276 178 134 1994.00 638.60 0.975
277 179 135 1994.50 727.44 0.912
278 180 136 1995.00 727.44 0.822
279 181 137 1995.50 759.16 0.748
280 182 138 1996.00 759.16 0.679
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Appendix B: Application of the

Desroziers’ diagnostic to 4D-Var

assimilation

Consider a state vector x0 at time 0, whose true value is xt and whose background

estimate is xb;

xt = xb + ǫb,

where ǫb is the background error. The state vector can be evolved forward to time i

under the tangent linear model M(ti, t0) = MiMi−1 . . .M2M1, i.e, xi = M(ti, t0, x0).

Consider m observations at different times, where the observations are related to the

state vector through a forward model h,

y1 = h(x1) + ǫo
1 = h(M1xt) + ǫo

1

y2 = h(x2) + ǫo
2 = h(M2M1xt) + ǫo

2

...

ym = h(xm) + ǫo
n = h(Mm . . .M2M1xt) + ǫo

m
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where y1 is an observation at time 1, y2 is an observation at time 2, etc, and ǫo
i is the

observation error for yi.

In 4D-Var assimilation, the observations are combined with the background estimate,

xb, to produce an optimal analysis xa, which minimises the cost function

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

m
∑

i=0

(h(xi) − yi)
T R−1

i (h(xi) − yi) (8.1)

where Ri = E
[

ǫo
i (ǫ

o
i )

T
]

.

Assuming that the observation and background errors are uncorrelated, the cost function

(8.1) can be approximated in matrix form by

J(x0) =
1

2
(x0 − xb)

T B−1(x0 − xb) +
1

2
(y − Ĥx0)

T R−1(y − hx0)
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where

y = (yT
1 , yT

2 , . . . , yT
n )T ,

Ĥ = (MT
1 HT , MT

1 MT
2 HT , . . . , MT

1 MT
2 . . .MT

n HT )T ,

ǫo = ((ǫo
1)

T , (ǫo
2)

T , . . . , (ǫo
n)T )T ,
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,

and H is the linearised observation operator.

This is the form of the cost function from 3D-Var data assimilation, and can be solved

using the same approach, i.e, minimising the cost function. The solution to the 4D-Var

assimilation problem can therefore be approximated by

xa = xb + BĤT (ĤBĤT + R)−1(y − Ĥxb).

181



Appendix C: Additional gradient

tests

Additional gradient tests for Chapter 7.
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Figure 8.1: Gradient test for a diagonal approximation to a Markov error covariance matrix.
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Figure 8.2: Gradient test for an ED approximation with k = 50 to a Markov error covariance matrix.
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Figure 8.3: Gradient test for a Markov approximation with LR = 0.1m to a SOAR error covariance
matrix.
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Figure 8.4: Gradient test for an ED approximation with k = 50 to a SOAR error covariance matrix.
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