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Abstract

For any gas network, it is desirable to have a reasonable estimate of the demand flows.
However, flow meters are much more expensive than pressure sensors to install, and so it
would be economical to be able to estimate the flow demands from pressure measurements
alone. In this thesis, both model and observer based methods for estimating unmeasured

flow demands in linear gas networks with sparse pressure telemetry are investigated.

Firstly, we introduce the basic gas network model in the form of a linear time invariant
descriptor system, which requires the upstream pressure and all flow demands as inputs.
Thus the basic model is useless for estimating the flow demands since these are needed
to drive the model. Hence, we proceed to derive rearranged and augmented gas network
models that contain the flow demands in their state vectors, and that are capable of flow
demand estimation.

The first two flow estimation models investigated are simply pressure driven models
that have their system eigenvalues within the unit circle. These models are capable of
asymptotically estimating the flow demands. We next explore a completely observable

model constructed by incorporating trivial difference equations of the form
flow demand 1 = flow demand y.

Two techniques for constructing robust observers are employed: robust eigenstructure
assignment and singular value assignment. These are shown to help reduce the effects of
the modelling error introduced by the above trivial difference equations. Such modelling
error is then further reduced by making use of the known time profiles for the flow
demands.

Unfortunately, the pressure measurements available are subject to constant bias and
white noise. The measurement biases very badly degrade the flow demand estimates, and
so must be estimated. This is achieved by constructing a further model variation that in-
corporates the biases into an augmented state vector, but now includes information about
the flow demand profiles in a new form, which allows the estimation of the measurement
biases, as well as the flow demands themselves. Finally, less sensitive flow estimation
models are presented with smoothing techniques to reduce the effects of measurement

noise.
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Chapter 1

Introduction

For any gas network, it is desirable to have a reasonable estimate of the demand flows.
However, flow meters are much more expensive than pressure sensors to install, and so it
would be economical to be able to estimate the flow demands from pressure measurements
alone. In this thesis, both model and observer based methods for estimating unmeasured
flow demands in linear gas networks with sparse pressure telemetry are investigated.
Two techniques for constructing robust observers are employed: robust eigenstructure
assignment [24], [25], and singular value assignment [34], [4].

The gas networks considered are linear and consist of a number of pipe sections with
a gas source at the upstream end and flow demands at pipe junctions and at the down-

stream end. For example, for a three pipe network we would have

Upstream Source — Pipe Section a — —— Pipe Section b — —— Pipe Section ¢ — Downstream Demand
Junction Junction

Demand Demand

We assume the only measurements of the real gas network available are discrete pres-
sure measurements at all sites of gas inflow (the upstream end) and outflow (the pipe
junctions and downstream end). These measurement sites are the natural ‘boundaries’
of the network, where some data (pressure or flow demand) need to be specified to drive

a network model.



In chapter 2 we introduce the basic gas network model from [34], based on two partial
differential equations for modelling natural gas flow in high pressure pipelines, derived
by mass and momentum balance arguments [19], [30]. Such a model, which we denote

by MO, is in the form of a linear time invariant descriptor system
Eozo(k +1) = Aozo(k) + Bouo(k + 1) + Biuo(k)

which results from linearising the original differential equations about a steady state
and discretising the linearised equations using the #-method [37]. All pressure and flow
variables are thus perturbations away from that steady state. An MO0 model requires
the upstream pressure and all flow demands as inputs; thus an MO0 model is useless
for estimating the flow demands since these are needed to drive the model. Hence, we
proceed to derive rearranged and augmented gas network models that are capable of
flow demand estimation. The major advantage of this linear time-invariant model over
other time-varying or non-linear models [18], [21], is that we may use the large amount
of control theory that already exists for linear time-invariant systems.

In chapter 3, we investigate a new gas network model variation, denoted by M1,
which requires only pressure measurements as inputs. Such a model can be shown to be
asymptotically stable and allows asymptotic estimation of the pressure profiles. From
these pressure profiles the flow demands may be estimated. In chapter 4 we investigate
a further rearrangement of the basic M0 model to give a new model variation, denoted
by M2, with the low demands now moved into the state vector. Such a model can also
be shown to be asymptotically stable (under slightly more restrictive conditions) and
allows asymptotic estimation of the flow demands. However, due to a different difference
approximation, M2 models are shown to allow more accurate flow demand estimation
than M1 models.

In chapter 5, we discuss techniques, known collectively as observers, capable of es-
timating the entire system state of discrete dynamical systems that have the property
of complete observability [29], [2]. In particular, two techniques for constructing robust
observers are described: robust eigenstructure assignment and singular value assignment.
In chapter 6 we introduce a further gas network model variation, denoted by M3, that
contains the flow demands in its state vector, but which is also completely observable,

and for which we may construct observers. An M3 model is constructed by incorporating



trivial difference equations of the form
flow demand ;41 = flow demand .

Obviously, if such a model were run, the estimates of the flow demands would not change.
However, if the flow demands change slowly with time, then observers constructed upon
such models can track the flow demands fairly well; although the above difference equation
for the flows will contain some modelling error. Such trivial difference equations have
been used previously for both leak detection [3] and state estimation [32]. Experimental
and theoretical evidence is given to show how the two techniques, robust eigenstructure
assignment and singular value assignment, reduce the effects of the above modelling error
upon the observer state estimate. The M3 model is further developed by making use of
the known time profiles for the flow demands to remove the modelling error introduced
by the above trivial difference equations. The new trivial difference equations for the flow

demands become
flOU) demanddzzfnd site _ flOU) demanddzmand site T f]glemand site

where the f]glemand site

may be estimated from the telemetry from other measured demand
flows.

In chapter 7, we introduce a new observer technique, which we term ‘cycling’. Cy-
cling involves a series of dynamic observers, travelling along the time axis, one after
another. Each dynamic observer uses information about the flow demand profiles given
by the previous observer. The convergence properties of this type of cycling technique
are investigated theoretically.

In chapter 8 we investigate the effects of measurement bias on the various state es-
timation techniques. It may be the case that the pressure measurements at the sites of
flow demand are subject to a constant bias, i.e. instead of using a true value for Bz(k)v
the vector of pressures at the sites of gas inflow and gas outflow, we drive the models and

observers with

(k) = p,(k) +b

“2Zmeasured
where b represents a vector of constant biases. These constant biases will introduce
error into the state estimates of the different estimation techniques. This is a serious

problem for flow demand estimation due to the sensitivity of the flow demand variables



to perturbations in the pressures. In chapter 9 a standard approach from [34] is explored
but shown to be inadequate without a new approach to encoding information about the
flow demand time profiles. We investigate a further model variation, denoted by M4,
capable of estimating both flow demands and pressure measurement bias, but which uses

trivial difference equations for the flow demands of the form

demand stte

flow demand py1 = wy x flow demand

where the w,fem“”d site

are estimated from other measured flow demands. This new way
of incorporating information about the flow profiles allows the estimation of the mea-
surement biases, as well as the flow demands themselves. However, the M4 models have
time-varying system matrices and basic control theory for time-invariant systems does
not always extend to time-varying systems [41], [26], [6], [7]. Our observer designs must
also be modified [15].

In chapter 10 we examine the problem of measurement white noise. We avoid Kalman
filters due to their unexceptional performance in [17], [40], [35], and instead examine two
simple smoothing techniques, and derive two final model variations, M5 and M6, to deal
with the problem of the sensitivity of the flow demand estimates. M5 and M6 models
have only a single total flow demand perturbation state variable that is the sum of all the
individual demand flow perturbation variables. Such models are less sensitive to pressure
measurement noise.

Finally, in chapter 11 we make some final conclusions and suggest some proposals for

future work.



Chapter 2

The Standard System Model (M0)

In this chapter, the standard underlying model, based directly on [34], is constructed for
a simple linear network with demand flows. This initial model, which we denote as an
MO0 model, actually assumes that all flow demands are measured and used as inputs to
drive the model. Hence, obviously an M0 model, itself, cannot be used for flow demand

estimation.

2.1 The Linearised Differential Equations Govern-
ing Gas Pipe Dynamics

Firstly, we derive the linearised equations governing gas dynamics in a single section of

pipe. For each section, from [34], we have the following two equations
DAPY) + (1 - P)QIQI™ =0, 21)
the momentum balance equation ignoring time variations in (), and
Dy(P)+ (1 —7P)*D,(Q) = 0, (2.2)
the mass balance equation, where:
P(x,t) is the gas pressure in bar
Q(x,1) is the mass flow rate in m.s.c.m.h. (millions of standard cubic metres per hour)

x is distance along pipe in metres



t is time in hours

€1, €, T, are constants, and D,, D, are partial derivatives with respect to x and t re-
spectively. 7 is used in the linear expression for compressibility, 7 = 1 — 7P, which is
always positive.

We begin by modelling a straight section of pipe of length L, with constant cross-
sectional area.

For computational ease, we normalise the pipe section length, pressure and mass flow

rate:

t—az/L, P=-P/N,, Q—Q/N, (2.3)

where N, and N, are positive constants which are chosen such that |P|,|Q|<1. The

normalisation results in

D,—(1/L)D, , T—7N,

P

61—>(61LN;“)/(N;) , e—(eaN,)/(LN,). (2.4)

The normalised equations (2.1) and (2.2) are, therefore, to be solved for 0 < = < 1
and ¢ > 0. The boundary and initial conditions are yet to be specified.

Our approach is to linearise about a mass flow rate and pressure profile in order to
obtain two linear equations which approximate equations (2.1) and (2.2). Our mass flow

rate and pressure profile are
Pla1) = P(a), (2.6)

where Q is a positive constant mass flow rate from © = 0 to « = 1, and P(x) is the
constant pressure profile.

Substituting (2.5) and (2.6) into equation (2.1) gives
D, (P?) + (1l —7P)Q% =0,

which is equivalent to

2PD.(P))/(1 —=7P)+¢Q% =0, (2.7)

which is permissible because the compressibility, Z =1 — 7P, is always positive. But

(2PD,.(P))/(1 —7P)=— (2/7)D.(P + 7 'In(1 — 7P)),



which can be substituted into (2.7) to give
—(2/T)D (P + 77 n(1 — 7P)) + 6,Q% = 0.
This is easily integrated from 0 to x and then rearranged to give
TP(x) + In(l —7P(z)) = 7P(0) + In(1l — 7P(0)) + pQ"x, (2.8)

where 3 = 7%¢;/2. For each pipe section in the network, equation (2.8) is used to find
a consistent steady state pressure profile, P(x), about which to linearise. An assumed
steady value for the inline flow, Q and a value for P(0) are substituted into equation (2.8),

and then a steady pressure profile is generated using an iterative technique such as New-

ton’s [23], [5].

Now let
P(x,t) = P(x) + p(x,t), (2.9)

Q(z,t) = Q + q(z,1), (2.10)

where ¢ and p are perturbations about the mass flow rate and pressure profile and are
smaller in magnitude than @ and P respectively. We can thus assume that P and () are

positive and substitute equations (2.9) and (2.10) into equation (2.1) to get
Dy(P+p)’ +a(l =P —71p)(Q+4q)" =0,

which can be linearised by expanding the (Q + ¢)* term using the binomial theorem,
neglecting all the second order terms and cancelling out the terms corresponding to

equation (2.7). Thus we derive
2D, (Pp) + ae (1 — 7P)Q* g = ¢,7Q%,

which can be rearranged into

—2PD,(p) —2D,(P)p+ e17Q%p
ac; Q11— 7P)
—2I'D.(p) =2(1 = 7P)D.(D)p+ e17Q%p/(1 — 7P)

aEIQa—l ’

where

I(P)="P/(1—rP), (2.11)

7



and hence

D.(T') = Do(P)/(1 = 7P)>. (2.12)
Using equation (2.7) to substitute for ¢ Q%, and then using equation (2.12), gives

aEIQa—l ’

q:

which gives

q=—eD,(I'p), (2.13)

where €3 = 2/(ae; Q7).
Turning our attention now to equation (2.2) and substituting for P and @ using

equations (2.9) and (2.10) we have
Di(P +p) +ex(l = 7P —7p)*Do(Q + ¢) = 0,

and, because P is a function of z only and Q is a constant, this immediately simplifies

to

Di(p) + &(1 = 7P — 7p)*D.(q) = 0.

This equation can be linearised by a similar process to that used for the momentum

balance equation by neglecting second order terms in p and ¢. This gives
Di(p) + e2(1 = 7P)*D,(q) = 0. (2.14)

If we now differentiate both sides of equation (2.13) partially with respect to x, we can

then substitute for D,(¢) in equation (2.14) to obtain
Di(p) = QD4 (Tp), (2.15)

where

QP) = eze3(1 — 7P)°.

Thus we replace the non-linear equations (2.1) and (2.2) with the equations (2.13) and
(2.15), which are linearised about a mass flow rate and pressure profile. Equation (2.15)

is used to approximate the perturbations in pressure and is solved for 0 < # < 1 and ¢ > 0.

The initial conditions for a pipe section are taken to be
p(x,0)=0 for 0<a<I.

8



The following boundary data are required at the ends of the pipe section:
at x = 0 we require

p(0,1) = P(0,1) = P(0),

or

9(0,1) = =3 D,(T'p) [,o = Q(0,1) = Q,

and at * = 1, we require

p(1,1) = P(1,1) = P(1),

or

d(1,1) = —aDu(Tp) |,y = Q(1.1) - Q.

2.2 The Finite Difference Approximation

Each of the pipe sections have nodes at either end and a number of regularly spaced

internal nodes. For an arbitrary pipe section with s + 1 nodes, we have
Nodes: O—1—2—3. . 5
«———Pipe section———

Firstly, we introduce some notation. For any pipe section with s+ 1 nodes, we let our

numerical approximations be
pirp(téx, kot), ¢ rq(eéx, két), Iiml(P(idx)), QrQ(P(idx)),
where ¢ = 0,1,2.3,.....s, 0z is the spatial discretisation interval of the pipe and 6t is the

sample period with k=0,1,2,...

In our numerical model, we use a finite difference scheme based on the nodal pressure

perturbations only; the perturbations in inline flows can then be calculated separately



from the computed pressure perturbation profile using a difference approximation based

on equation (2.13).

For any pipe section, at any of its nodes, the governing differential equation
Dy(p) = QD4 (T'p) (2.16)

can be approximated by the weighted average finite difference scheme

Pist1 — Dig = 0Qr(Tizipizijrr — 20ipipsr + Digi pigt 1)

+(1 = 0)Qr(Tisipii e — 2Uipi g + Dixapizix)

for 0<0<1, where r = 6t/(6x)*. This finite difference equation can be rewritten as
—0Qrli_apict g1 + (14 2000 pi ppr — 00rlipa pist g1 =

(1 — Q)Qirri_lpi_Lk —|— (1 — 2(1 — G)errz)pz,k ‘I‘ (1 - Q)Qirri+1pi+17k. (217)

In [34], the truncation error [37], [28], of difference equation (2.17) is shown to be
O(6x)? + O(6t)? for 0 = 1/2, and O(6x)* + O(6t) for 0< < 1/2 and 1/2 < §<1. Hence,
difference equation (2.17) is consistent with differential equation (2.16) for 0<0<1. How-
ever, for § = 1/2, difference equation (2.17) is a Crank-Nicolson scheme with the highest

order of accuracy.

For a simple numerical model, the initial conditions for any pipe section with s + 1

nodes may be taken to be
Pio = 0

for all pressure perturbation variables.
At end nodes 0 and s, we require boundary data. For example if pressure is given,

then at node 0 we have
por = P(0,k6t) — P(0), for k=0,1,2,..,
while at node s we have

psi = P(1,két) —P(1), for k=0,1,2,..

10



For flow boundary conditions given at node s in a general pipe section, we use the
following theory.

Using equation (2.13) we derive the finite difference equation

— e3(Pspapst1 e — Dsmips—1k) = 202qs (2.18)

for the boundary flow condition at the node ¢ = s for any pipe section. From [37],

approximating the derivative D, (I'p) by

Dx(rp)%(rs-l-lps-l—l,k - Fs—lps—l,k)/25$

involves a leading error on the right hand side of order (6z)*. Eliminating 'y 1psi1x
and I's41psi1re1 between equation (2.17), with ¢ = s, and equation (2.18), gives as the
general finite difference equation for any pipe section with a flow boundary condition at
t=3s
—20Q0,rTs_1ps—1 jr1 + (1 + 209D )ps 1 + (200,02 [ €3)qs py1 =
21 = 0)QerTs_yps—1 e + (1 = 2(1 — 0)QurTs)pss — (2(1 — 0)Qsrda/€3)qs - (2.19)

For a flow boundary condition at node 0 of a general pipe section, equation (2.13)
gives

— es(Dpr e — Toipoig) = 202qo . (2.20)

Similarly, approximating the derivative D,(I'p) by

D, (Tp)=(Typ1p — Uyp_qp) /20

involves a leading error on the right hand side of order (6z)*. Eliminating I'_yp_; x and
I'_yp_144+1 between equation (2.17), with ¢=0, and equation (2.20), gives the general

finite difference equation for any pipe section with a flow boundary condition at :=0
(1 —|— 20Q0TF0)p07k+1 — 20Q0TF1p17k+1 — (20Q0T5$/63)Q07k+1 =

(1 — 2(1 — Q)Qorro)ka —|— 2(1 — Q)Qorrlka —|— (2(1 — 0)Q0T5$/63)Q07k. (221)

2.3 The Network Model

Now we consider how to link up the separate finite difference models for the single pipe

sections into a network model. For the network model, we use superscripts to denote

11



particular pipe sections.

Regarding the initial linearisation procedure, we linearise about different inline flows
for all pipe sections. Hence, for our linear network, we linearise about a steady state
where the flow demands at the junctions are not zero. In practice, a value for the steady
flow, Q7, in each pipe section z may be suggested by, say, substituting the values of the
pressure measurements at the opposite ends of the pipe section into equation (2.8) and
solving for Q7. It may be the case that we have to make a best guess for a value for Q7.

Firstly, we use equation (2.8) to linearise for the upstream section (i.e. section
a for the example network) by substituting in an assumed steady value for the in-

Quepstream section - and a value for Purstream secton(()) - and generating a steady

line flow,
pressure profile using an iterative technique such as Newton’s. In practice, a value for
Ppupstream section (()) i5 suggested by the upstream pressure measurement of that section.

Next, the same procedure is carried out for neighbouring sections downstream in turn,
using different steady inline flows, Q7, for linearising each general pipe z, and using the
calculated value for P*7*(1) from the adjacent upstream section as the value for P*(0)
each time.

This means that at each pipe section junction we are linearising about a steady

demand flow

Qz/z-l—l — Qz . QZ-I-l

where Q7 is the steady flow we linearised about in the upstream section z, and Q**! is

the steady flow we linearised about in the downstream section z + 1.

Now we examine how to link up the separate finite difference schemes for two general
adjacent pipe sections, z and z + 1, in a linear network. Pipe sections z and z + 1 have,
say, s* + 1 and s*T' 4 1 nodes respectively (although one of these nodes is shared by both

pipe sections).

Nodes: 0"—1"—2"—3%.......... (s7)7 )07 17+l 2=l___ 3=+l . (s7t1)=H

————Section z Section z +1———— —

12



For our ‘internal boundary node’ (s7)?/0**!, we derive a finite difference equation that

links up the finite difference equations for the two pipe sections on either side, z and z+1.

22+

, out of

We assume that at time level k, we have a normalised flow demand, Dy,

the pipe junction, z/z 4+ 1, where

z/z+1 2]z z/z+1
D/ Q/+1‘|‘dk/ 7

Q#/*+1 is the demand flow out of the pipe junction z/z4 1 chosen for the linearisation, and
d;/Z—H is a perturbation away from that steady demand flow. Then to enforce continuity

of mass flow at node (s7)?/0**! | we require

007 ger + (L= )2 )+ [0St + (1= )t + [0 + (1= 0)d7 ) = 0. (2.22)

Rearranging both equation (2.19) for pipe » and equation (2.21) for pipe z + 1, for ¢,
etc., and substituting into equation (2.22) gives us the following finite difference equation

for our internal boundary node (s7)%/0*t!.

(q)z/z+1 ze 19/61‘ )ps .y k+1+(1+q)z/z+1 2F2/2+19/6l‘ _|_<I)z/z+1 Z+1F2/Z+19/6l‘2+1) z{:‘l-l-l

—(@ G st i+ @ =
(<I>Z/Z+1€§F§z_1(l—9)/5xz)pi;_Lk—I-(l—CI)Z/Z-HEgFZ/Z-"l(1—9)/51‘2—<I>Z/Z+1€§+1FZ/Z+1(1—9)/51‘Z+1)pz/2+1

+ (@G (1 — ) /627 it — @/ (1 —oyd;/ (2.23)

where we have defined

z z+1
(I)Z/Z—I—l _ €3 €3 )—1
- z+1
2r76a* Q7 2rrtlér Q)

1

and where, because pZ. ;= pZJr and 2. =Tg™, at the junction we have denoted the pres-

sure perturbation by p, 2= =pi 1= po t1and denoted I' by ['*/**'=T2, =I'¢*!. This equa-

tion is our ‘connectivity equation’, which is the actual finite difference equation we use

at the node between two pipe sections z and z + 1. Equivalent connectivity equations

djunction

are also derived for other pipe junctions. The junction demand flows, must be

Y

known and used as an input to the model rather like an internal boundary condition.

13



For consistency of notation, the numerically computed flow demand at the down-

stream end of the last pipe of the linear network, Q"*=P¢(1, két), is denoted by Dznd_pipe.

end—pipe b
y

Also, we denote the demand flow perturbation at the downstream end, ¢_ ;7 0% ¢,

s
d," """ Then we have

end—pipe __ ~yend—pipe end—pipe
D = Qririne e,

where Q¢"4Pire i the steady flow through the end-pipe section about which we linearised.

For any linear gas network with ¢ pipes, with pressure input data available at the
upstream end and flow demand input data available at the ¢ sites of outflow, the corre-

sponding n dimensional M0 model takes the form
Eozo(k +1) = Aozo(k) + Bouo(k + 1) + Biuo(k), (2.24)

where xy(k) is the n dimensional state vector containing the nodal pressure variables,
ugy(k) is the g + 1 dimensional input vector containing the upstream pressure input and
the ¢ flow boundary inputs to drive the model, and Ey, Ag and B}, B2 are system ma-
trices derived from the underlying finite difference equations, with dimensions nxn and

nx(g+ 1) respectively.

If we have pressure measurements available at the sites of flow demand, this corre-

sponds to having g measurements of the M0 state variables
Yy (k) = Cozo(k)  for k=0,1,2,...., (2.25)

where the matrix Cj is the ‘measurement matrix’.

It we arrange the pressure variables in the state vector in their order along the pipe

network, i.e. in the following way

2/3 g—1/g

1l 1 1 /2 2 2 2 g g g g 1T
£0(k)_[plykaPZ,ka""apsl_l’kapk aplykapzka""aps2—1ykapk g apk ’pl,k’pZ,k""’psg—lyk’psgyk]

bl

where each pipe has s77° + 1 nodes, then Fy and Ay are tridiagonal.

Ey and A take the form

14



[ [E, ]
T[E2,
EO —
B,
B,
[ [A], ]
A%,
AO —
A,
A7,

where [E?] and [A”] are general tridiagonal square blocks containing the coefficients of
the inner pressures along pipe z from difference equations (2.17). The blocks, [E?] and
[A7], are sandwiched between single rows corresponding to the ¢ — 1 connectivity equa-
tions (2.23) and downstream flow boundary equation (2.19) for pipe ¢, and single columns
containing the coefficients of the pressures at the pipe junctions and the downstream end.
These rows and columns maintain the tridiagonal structure of Ey and Ag; the non-zero

elements of these rows and columns being represented by x°.

The general :'* row of the general rectangular block [E?] ] takes the form
[0,y 0, —r%0QTZ | 1+ 200057 | —r*007T,, .0,....0],
and of the general rectangular block [[A?] ] takes the form
0,00, 51— O)QTZ, L 1—207(1 = 0T | 17(1 - O)QTZ,, ,0,....0],

where, for z = 1 and ¢ = 1 the first nonzero elements of the above general rows are absent.

The row corresponding to a ‘connectivity equation’ (2.23) at the junction of pipes z

and z + 1, in the £y matrix has the form

15



[0,....,0, —(®**T T2 _,0/627) , (14 &/ H /240 /60" 4 &/ H GHIDA/ 24 g Jgp 4Ty
—(@ It g /67Ty 0, ...0],
and in the Ay matrix has the form
[0,....,0, ®/FHLET:,  (1-0)/62° , (1=®*FH G F Y (1-0) /607 — @ FH LTI HL (1) fs27+) |
LRI (L —g) /6t 0,...0].

The row corresponding to the flow boundary equation (2.19) at the downstream end, in

the £y matrix has the form
0,....,0, =2r90Q%,19, | ., 14 2r90Q%,1',],
and in the Ay matrix has the form

[0,y 0, 209(1 — 0)Q9,T9, 1 —279(1 — 6)Q7,T%,].

2.4 Theorems

In this section, we firstly prove that the matrix Fy of an M0 model is full rank if § > 0.
We next prove that the MO0 system eigenvalues are real if § > 0. Lastly, we prove that

the M0 system eigenvalues are within the unit circle for 1/2<0<1.

All theorems rely on the following inequalities. | RS 0, [Junction 5 §zPre > (),

node

e > 0,0 > 0, QPP > 0, e?pe > 0 and ®7vetor > () for all pipes, nodes and junctions.

node

We firstly define three new matrices.

We define the diagonal matrix, Dy, where the :** diagonal element of Dy is equal to

the value of I””¢ at the i*" node along the linear gas network (starting at node 1 of the

upstream pipe section). Since [P'P¢ > () and [7unetion > () by definition, the matrix Dy is

node

full rank with all diagonal elements positive.

16



Next, for 840, let the matrix My = —(1/0)(1 — Ey). Then it can be easily verified
that

and

Ao=1— (1 - 0)M. (2.27)

By inspection, My is real and tridiagonal, with all off-diagonal elements, m;; with
li — j| = 1, non-zero and negative. Hence, from Theorem 12.3 in the appendix, all

the eigenvalues of My are real.

Lastly, let Gy = MyDg*'. By inspection, iy has the following properties:
o tridiagonal
o diagonally dominant with strict inequality at ¢ = 1
e g;;>0,¢; <O0forall 7 and j with |t — j| = L.
From Theorem 12.1 in the appendix, we have that Gy is full rank.
Theorem 2.1 If § > 0, the matriz Ey of an MO model is full rank.

Proof

Let Iy = EoDy*. Assuming 0 > 0, we can derive Fy = Dy' + 0G, which, due to the
properties of Dy and (G, must be strictly diagonally dominant. Hence, from Theorem

12.2 in the appendix, Fy is full rank, and hence Fy = FyDg must be full rank also. O
Theorem 2.2 If § > 0, the eigenvalues of an MO model are real.

Proof

Since, if § > 0, the matrix Ej is invertible, from equations (2.26), (2.27), we have

Thus, for p; EM(Ag, Eo) and 7,EX(My), for e =1, ..., n,

pi= 1"'07—2

17



where A\(Ag, Fy) denotes the spectrum of the matrix £y ' Ay and A(M;) denotes the spec-
trum of the matrix My. Hence, since the eigenvalues, 7;, of M, are real then so are the

eigenvalues, y;, of (Ey"' Ag) real. O

Theorem 2.3 An MO model has system eigenvalues within the unit circle, and hence is

asymptotically stable, if (1/2)<6<1.

Proof

From equations (2.26), (2.27), we have
det(Ag — pko) = det((1 — p)l 4+ (1 — )8 — 1) My). (2.28)

Since the determinant of the product of two matrices is equal to the product of the

determinants of the individual matrices, from equation (2.28) we can derive
det(Ag — pby) = det((1 — p)Dgt + (1 — )0 — 1)Go)det(Dy).

We show det(Ag — pFo)#0 for |p|>1 and (1/2)<0<I1.

The matrix Dy is full rank, and hence det(Dy)7£0.

By inspection, if p>1, then (1 — y)<0 and ((1 — )6 — 1)< — 1. Also, if pu< — 1, then
(1 —p)>2 and ((1 — p)0 —1)>0.

So, for |p|>1, we have the following two cases.

Case 1) If (1 — u)f — 1) = 0 then (1 — p)>2 and (1 — @)Dy 4 (1 — p)f — 1)Gy) =
(1 — p)Dy* which is full rank. Then det((1 — p)Dg* 4 (1 — )0 — 1)Gy)#0.

Case 2) If ((1 — x)f — 1)%0 then, due to the properties of Dy and G, the matrix
(1 — w)D3* + ((1 — )8 — 1)Go) has the following properties

o tridiagonal
o diagonally dominant with strict inequality for : = 1

e off-diagonal elements with |: — j| = 1 are non-zero and of opposite sign to diagonal

elements.

18



and, from Theorem 12.1 in the appendix, is full rank.

Then det((1 — p)Dy" + (1 — ) — 1)Go)F0.

Hence, for |u|>1, det(Ao — puko) = det((1 — p) Dyt + ((1 — )8 — 1)Go)det(Dg)#0.

Thus, if (1/2)<6<1, the eigenvalues of the MO0 system matrices have modulus less

than 1, and the M0 model is asymptotically stable. O

The Lax stability [37] of the MO0 model is defined in terms of the boundedness of the
solution to the finite difference equations at a fixed timestep, T', as 6t and éx tend to
zero with r = 6§t /(6x)* kept fixed. Tt is related via Lax’s Equivalence Theorem [37] to the
convergence of the solution of the M0 system to the solution of the governing differential
equations (2.16), as the computational mesh is refined. However, unlike the asymptotic,
or Liapunov, stability already investigated above, Lax stability is not directly dependent
on the eigenvalues of the system. Some attempt was made to provide proofs of both the
Lax stability of the MO0 system and the convergence of the solution of the M0 system to
the solution of the governing differential equations (2.16), as the computational mesh was
refined. Unfortunately, this was not achieved, the difficulty being the space-varying na-
ture of the system coefficients. Two good references that deal with this specific problem
are [36] and [16]. Providing such stability and convergence proofs for M0 systems and
all other systems explored in this thesis would be a worthwhile area of future research.
However, experimentally, the solution of the M0 model was found to be convergent, for

both # = 1/2 and § = 1, as the computational mesh was refined with r = 0.6666 for all

pipes.

This base M0 model has also been tested thoroughly in [34] with real gas network

data, and was found to model the behaviour of real gas networks quite accurately.
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Chapter 3

Formulation of a New M1 Variant

Model

The gas networks we wish to estimate are linear with pressure measurement only; and
these measurements are only available at the upstream source and at sites of flow de-
mand. We now show how a new model variation, denoted by M1, which is capable of
estimating flow demands, may be constructed from a base M0 model. The M1 model
is simply a pressure driven model, and is derived from an M0 model by first removing
the ¢ — 1 connectivity equations and the downstream flow boundary equation from the
system, and then removing the ¢ flow demand variables. The M1 model is still in the
form of a discrete descriptor system, but where the state vector now contains the nodal
pressures except those pressures at sites of gas outflow. The M1 model is essentially a

disconnected set of equations for each pipe.

The base M0 model can be rearranged and partitioned as

&1 &z | | o (k£ 1) A A || p (k) N Bi, 0 py(k+1)
5271 5272 BZ(k —|— 1) AQJ ./4272 }_?z(k) 0 8%72 d(k —|— 1)

Bil 0 Bg(k)
0 Bi, || dk)

+ (3.1)

where }_72(k) is a ¢ dimensional vector containing measured pressure perturbation state
variables at the sites of flow demand, }_71(]6) is a n — ¢ dimensional vector containing the

remaining pressure perturbation state variables along the pipes, }_73(k) is the upstream

20



pressure input (assumed known), and d(k) is a ¢ dimensional vector containing the flow
demand perturbation input variables that we wish to estimate. The top n — ¢ rows cor-
respond to general difference equations (2.17), and the lower ¢ rows correspond to the

g — 1 connectivity equations and the single downstream flow boundary equation.

The new M1 system has the form

5171}_?1(]6 +1) = AM}_?l(k) — 5172}_?2(]6 +1)+ 8%71}_?3(]6 + 1)+ ./4172}_?2(16) + Bil}_??)(k) (3.2)

which can be expressed in the general descriptor system form
Eyzy(k+1) = Ajzy (k) + Bluy (k + 1) + Biu, (k) (3.3)
where
uy (k) = [p, ()", p, (k)]
It we arrange the pressure variables in the state vector in their order along the pipe
network, i.e. in the following way
Ty (k) = [Pk Do s voes Pt oo PR > D3 s woes P2 s wosessensvnsncs T SO P

where each pipe has s77¢ + 1 nodes, then the M1 system matrices, £y and A;, are

tridiagonal. F; and Ay take the form

[E]
(2]

[B51

[F7]

[A']
[A7]

Ay
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where [E?] and [A?] are general tridiagonal square blocks containing the coefficients of the
inner pressures along pipe z from difference equations (2.17). The general square blocks

[E7] and [A*] are as previously described for the M0 model.

As an M1 model is run, the normalised inline flow perturbations at the ends of each
pipe section are estimated by applying a forwards or backwards difference discretisation
of equation (2.13). In other words, at the upstream end of a general pipe z, we would

have
qg,k = _ﬁg(ripik - F(ZJP(ZJ,k)/‘SxZ- (3-4)

From [37], approximating the derivative D, (I'p) by

Do (Tp)a(Iipi . — Topo ) /0

involves a leading error on the right hand side of order 6z*. At the downstream end, we

would have
q;,k = —eé(Fizpiz,k - F§Z—1p§z—1,k)/5$2- (3-5)

Similarly, approximating the derivative D,(I'p) by
Do(Up)~(Vpl p — o ypie 21 1)/ 027

involves a leading error on the right hand side of order 6z*. To estimate the demand

flow, di/Z—H at a general pipe junction z/z 4 1, we use

& = i — gt (3.6)

3.1 Theorems

We are able to derive identical theorems for M1 models as we have done for M0 models.
Firstly it is proved that the matrix £; of an M1 model is full rank it § > 0. Then it is
proved that the M1 system eigenvalues are real if § > 0. Finally, it is proved that the

M1 system eigenvalues are within the unit circle for 1/2<6<1.

As with MO0 models, all theorems rely on the following inequalities. | KA 0,

node

Diunction - §gpiee > (0, pPire > 0, 6 > 0, Q20 > 0, &7 > 0 and ®7*mon > () for all

node
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pipes, nodes and junctions.

We firstly define three new types of matrix.

We define the general diagonal matrix, D?, corresponding to pipe z for z = 1,.... g,
where the 7** diagonal element of D? is equal to the value of I'? for ¢ = 1, ..., 5* — 1. Since
Fiipdee > 0, the matrices D* are full rank with all diagonal elements positive.

Next, for £0, we define the general matrix M?, corresponding to pipe z forz =1, ..., ¢,
where M* = —(1/6)(I — E?). Then it can be easily verified that

B = I + OM* (3.7)

and

A7 =1—(1—0)M". (3.8)

By inspection, the matrices M* are real and tridiagonal, with all the off-diagonal ele-
ments, mf; with |i — j| = 1, non-zero and negative. Hence, from Theorem 12.3 in the

appendix, all the eigenvalues of the matrices M? are real.

Lastly, we define the general matrix G*, corresponding to pipe z for z = 1, ..., ¢, where
G* = M?D?"". By inspection, the matrices G* have the following properties:

o tridiagonal

o diagonally dominant with strict inequality at 2 =1 and ¢ = s* — 1

e gi; >0,g;; <0 forall i and j with |¢ — j| = 1.
From Theorem 12.1 in the appendix, we have that the matrices G* are full rank.

Theorem 3.1 If 6 > 0, The matriz £y of an M1 model is full rank.

Proof

To show the matrix £y is full rank, we show the matrix blocks, E?, are full rank.
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For a general pipe section z, let F* = E°D*. Assuming 6 > 0, we can derive
F? = D*' 4 0G*, which, due to the properties of D* and G, must be strictly diagonally
dominant. Hence, from Theorem 12.2 in the appendix, F* is full rank, and hence E* =

F#D? must be full rank also. O
Theorem 3.2 If § > 0, the eigenvalues of an M1 model are real.

Proof

To show the eigenvalues of an M1 model are real, we show the eigenvalues of the

blocks 7~ A are real.

For a general pipe section z, since the matrix E* is invertible if § > 0, from equations
(3.7), (3.8), we have

det(A” — pB”) = 0 <= det((I + OM*)" (I — (1 — O)M?) — pul) = 0.

Thus, for € A(A%, E?) and ;e A(M?), for ¢ =1,..., 8" — 1,

'_1—(1—(9)7'2'
Hi= 1—|—(9TZ '

Hence, since the eigenvalues, 7;, of M are real then so are the eigenvalues, u;, of (EZ_1 A7)

real. O

Theorem 3.3 An M1 model has system eigenvalues within the unit circle, and hence is

asymptotically stable, if (1/2)<0<1.

Proof

To show the eigenvalues of an M1 model are within the unit circle, we show the

eigenvalues of the blocks £~ A® are within the unit circle.

For a general pipe section z, from equations (3.7), (3.8), we have

det(A” — pB7) = det((1 — p)I + ((1 — 1)0 — 1)M?). (3.9)
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Since the determinant of the product of two matrices is equal to the product of the

determinants of the individual matrices, from equation (3.9) we can derive
det(A* — pE?) = det((1 — p)D* + ((1 — p)0 — 1)G*)det(D?).

We show det(A” — pE?)#£0 for |p|>1 and (1/2)<6<1.
The matrix D? is full rank, and hence det(D?)#£0.

By inspection, if 4>1, then (1 — x)<0 and ((1 — )0 — 1)< — 1. Also, if u< — 1, then
(1 —p)>2 and ((1 — p)0 —1)>0.

So, for |p|>1, we have the following two cases.

Case 1) If ((1 — )0 —1) = 0 then (1 — p)>2 and ((1 — @)D" 4+ (1 —p)f — 1)G*) =
(1 — p)D*™" which is full rank. Then det((1 — @)D= + ((1 — )8 — 1)G7)=£0.

Case 2) If ((1 — ;)0 — 1)#0 then, due to the properties of D* and G, the matrix
(1 = )D*7" 4 ((1 = p)f — 1)G?) has the following properties

o tridiagonal
o diagonally dominant with strict inequality for : =1 and ¢ = s* — 1

e off-diagonal elements with |i — j| = 1 are non-zero and of opposite sign to diagonal

elements.

and, from Theorem 12.1 in the appendix, is full rank.

Then det((1 — )D*™" 4+ ((1 — )8 — 1)G*)£0.
Hence, for |p|>1, det(A” — pE?) = det((1 — p)D* 4 ((1 — )8 — 1)G*)det(D?)0.

Thus, if (1/2)<0<1, the eigenvalues of the matrix blocks E*~ A% have modulus less
than 1. O
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3.2 Experiments

For all experiments in this thesis, a standard M0 model of the linear three pipe network
from chapter 1, was run to simulate a real gas network with the upstream pressure, junc-
tion demand flows, and downstream flow demand specified as boundary inputs to the
system. The parameters for this base M0 model, and all other models investigated in

this thesis, are given in the appendix. Except for a few experiments in chapter 10, the

flows at demand sites A/B, B/C and C were in the ratio 2:5:13.

When the M0 model had been running for a while, the pressures at the upstream
end and the sites of flow demand were recorded at each timestep and fed into an M1
model. The flow demands predicted by the M1 model were then compared with the
true flows used as inputs to the M0 model. For experiments 3.1 to 3.3, the M0 model
simulating a gas network was identical to the M0 model upon which the M1 model was
constructed. For experiments 3.4 and 3.5, the M0 model simulating a gas network had
a much finer discretisation (in both space and time) than the M1 model to give some
idea of the effects of the modelling error due to the finite difference approximation of the
original differential equations.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
DY are shown as thick lines in Figs. A, B and C respectively, and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.

Since, throughout this thesis, the different state estimation techniques tended to pro-
duce large errors during the first few timesteps, the results graphs may begin only after

a few timesteps have already passed.

Data taken from M0 model with identical mesh - both M0 and M1 models
have 5 spatial nodes along each pipe.

Experiment 3.1) M1 Model with § =1

Experiment 3.2) M1 Model with § = 0.75
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Experiment 3.3) M1 Model with § = 0.5

Data taken from M0 model with much finer mesh - M1 model has 5 spatial
nodes along each pipe.

Experiment 3.4) M1 Model with § =1
Data taken from M0 model with much finer mesh - M1 model has 10 spatial

nodes along each pipe.

Experiment 3.5) M1 Model with § =1
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3.3 Discussion

In all experiments, there was some error due to the crude forwards and backwards differ-
ence approximations used to discretise equation (2.13). However, as the computational
mesh of the M1 model was refined, this error decreased. No theoretical analysis is pre-
sented here to prove that such error should decay as the computational mesh is refined,
and the possibility of such analysis would be worth exploring. As mentioned in the
previous chapter, two good references for this problem are [36] and [16]. From the ex-
periments with pressure data taken from an MO0 model constructed upon a much finer
mesh, it could be seen that the modelling error introduced by discretising the original
differential equations would not affect the flow estimates too adversely if a sufficiently
fine computational mesh was used.

For 6 = 1/2, the M1 model converged very slowly to a reasonable estimate of the
flow demands. However, as § moved closer to 1, it was found experimentally that the
eigenvalues of the M1 system tended to move closer to the origin, and there was faster
convergence. For experiments 3.1, 3.2 and 3.3, the M1 system eigenvalues for various

values of 6 are given in the following table.

=1 | 0=075| 6=05
0.04677 | —0.25145 | —0.82126
0.01417 | —0.30826 | —0.94411
0.00834 | —0.31854 | —0.96689
0.04568 | —0.25333 | —0.82524
0.01383 | —0.30886 | —0.94543
0.00814 | —0.31889 | —0.96769
0.03679 | —0.26871 | —0.85804
0.01106 | —0.31373 | —0.95622
0.00651 | —0.32178 | —0.97412

Hence, the choice of # is to some extent a balance between the order of accuracy of the

finite difference scheme, and the speed of convergence of the system.

The main disadvantage of an M1 model is the error introduced into the state esti-

mate by the crude forwards and backwards difference approximations used to discretise
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equation (2.13). In the next chapter we investigate a new model, which we term an M2
model, which uses a central difference approximation of equation (2.13). It is shown that

the flow estimates of such a model contain significantly less error.
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Chapter 4

Formulation of a New M2 Variant

Model

We now show how a new pressure driven model variation, denoted by M2, which is capa-
ble of estimating flow demands from the available pressure telemetry, may be constructed
from a base MO0 model using the same central difference discretisation of equation (2.13)
that the base M0 model uses. The M2 model is derived from an M0 model by swapping
over the flow variables from the input vector with the local pressure variables from the
state vector. It is still in the form of a discrete descriptor system, but where the state
vector now contains the demand flows and all nodal pressures except those pressures at
sites of gas outflow. The new input vector now contains those pressures at sites of gas

outflow.

The base M0 model can be rearranged and partitioned as

Sl oeet) LR N MR | pries
2/ 2/ —3(k)
—I—[B B ] Z(k)], (4.1)

where p , p,, p, and d are as described earlier.
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The new M2 system has the form

[ g ] p(k+1) | _ [ VB ] p, (k) . [ B g ] p,(k+1)
d(k+1) d(k) p,(k+1)
[o ] B 02

which can be expressed in the general descriptor system form

Eyzo(k + 1) = Agz,y(k) + Byus(k + 1) + Bius(k). (4.3)

4.1 Theorems

We are able to derive similar theoretical results as for M0 and M1 models; however, suf-
ficient conditions for asymptotic stability are slightly more restrictive. Firstly, we prove
that the matrix Iy of an M2 model is full rank if § > 0. It is then proved that the M2
system eigenvalues are real if # > 0. Next, it is proved that the M2 system eigenvalues
are within the unit circle for 1/2 < <1, and are within or on the unit circle for § = 1/2.
Lastly, we prove the following. When pressure data is fed from a base M0 model into
its corresponding M2 model, then, if the M2 model is asymptotically stable, the system
state of the M2 model tends with time to the state of the base M0 model and its flow
inputs.

As with MO0 models, all theorems rely on the following inequalities. reee s ),

node

Diunction - §gpiee > (0, pPire > 0, 6 > 0, QP20 > 0, &7 > 0 and ®7*mon > () for all

node

pipes, nodes and junctions.

If the base M0 model is rearranged and partitioned as equation (3.1), then the cor-
responding M2 model has the form

5171 0 }_?l(k + 1) _ A171 0 pl(k) B%,l —5172 }_?B(k + 1)
5271 —8%72 d(k —|— 1) AQJ B;Q d(k) 0 —5272 }_?2(]6 —|— 1)
B, A k
1,1 1,2 P ( ) ‘ (4 4)
0 ¢423 pZ(k)

36



We can immediately see that the spectrum of an M2 system contains all the eigenvalues

of the corresponding M1 system.
It the flow demand perturbation variables are arranged in the M2 state vector in

their order along the pipe network, i.e.
dik) = [d* a3, 7 )T
then the g x ¢ matrix blocks 8%72 and B%Q are diagonal. For: = 1,...,g—1, the :'" diagonal

elements of —B;, and B}, are ®/i+19 and — @Y/ +1(1 — f) respectively. The ¢*" diagonal
elements of —Bj , and B3, are 20Q,776x7/¢5 and —2(1 — 0)Qyr9629 /€] respectively.

Theorem 4.1 If 0 > 0, the matriz Iy of an M2 model is full rank.

Proof

For §#0, it may be seen that the matrix block —Bj, is a diagonal matrix with all
diagonal elements non-zero. Hence, —8%72 is full rank. Also, by Theorem 3.1, the matrix
block & ; is full rank for § > 0. Hence, by inspection of the structure of E,, we see that

F5 is full rank. O
Theorem 4.2 If § > 0, the eigenvalues of an M2 model are real.

Proof

From equation (4.4), it can be seen that the eigenvalues, y;, of an M2 system are

given by the values of u for which

Al,l 0 5171 0
det(Ay — pks) = det( — ) =0.
AZ,I B;Q 52,1 _8%72
Hence the eigenvalues, p;, of an M2 system are given by the eigenvalues of the matrix
blocks £ 1Ay 1 and (=B3,)7'B3,. By Theorem 3.2, if § > 0, the eigenvalues of Et A

are real. By inspection, (—8%72)_18372 is a diagonal matrix with real diagonal elements

—(1—0)/8, and hence real eigenvalues. Hence, the eigenvalues of an M2 model are real.

a

Theorem 4.3 The eigenvalues of an M2 model have modulus less than 1 if (1/2) < <1,
and have modulus less than or equal to 1 if§ = (1/2) (in which case there are g eigenvalues

equal to —1).
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Proof

Above it was shown that the eigenvalues, u;, of an M2 system are given by the eigen-
values of the matrix blocks 51_711,4171 and (—8%72)_18372. By Theorem 3.3, the eigenvalues
of &1 A11 are within the unit circle for 1/2<0<1/2. The eigenvalues of (—B},)™'B3,
are its diagonal elements —(1 — 6)/0. For 6 = 1/2 these diagonal elements are equal to
—1, and hence the M2 system will have g eigenvalues equal to —1. For (1/2) < <1, we
have |(1 — 6)| < 1/2, and hence we have |(1 — 8)|/]|0] < 1. Thus, for (1/2) < <1, we
have | — (1 —0)/6] < 1 and the g eigenvalues of (—Bj,)~' B3, are within the unit circle.

a

The advantage of an M2 model over an M1 model is that an M2 model uses the
original ¢ — 1 ‘connectivity equations’ (2.23) and the single downstream flow bound-
ary equation (2.19) in the estimation of the flow demands. These flow equations are
based on central difference approximations of equation (2.13); whereas to estimate the
flow demands with an M1 model requires the use of less accurate forward or backward

differences of equation (2.13). For M2 models we have the following theorem.

Theorem 4.4 When pressure data is fed from a base MO model into its corresponding
M2 model, then for 1/2 < 0<1, the system state of the M2 model tends with time to the
state of the base MO model and its flow inputs.

Proof

We can rewrite the M0 model as
E'p,(k+1)+E"p(k+1) = B'p(k+1) - BYd(k +1) =

A'p, (k) + A"p, (k) + B p,(k) + B d(k) (4.5)

and we can rewrite the M2 model as
~ 1/ 1//~ o
E’Bl(k + 1)+ E"Bz(k +1)—B Bg(k +1)—B d(k+1) =

A'p, (k) + A"p, (k) + B p,(k) + B d(k) (4.6)
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where the M2 state vector is

Subtracting equation (4.6) from equation (4.5) gives

E'(p, (k+1) = by (k+1) = B (d(k+1) —d(k+1)) = A'(p, (k) = p, (k) + B (d(k) — d(k)).

(4.7)
If we define the errors
(k) = p, (k) = p, (k)
es(k) = d(k) — d(k)
then equation (4.7) becomes
Elei(k4+1) = BYey(k+1) = Ale, (k) + B¥ ¢,(k). (4.8)

Equation (4.8) can be arranged as the system

where e(k) is n dimensional and has the form

and F, and A, are identical to the system matrices of the M2 model.

From Theorem 4.3, if 1/2 < #<1 then M2 system is asymptotically stable, and we
can see that the error, e(k), decays away. Then the system state of the M2 model tends
with time to the state of the base M0 model and its flow inputs. O

It a real gas network, from which pressure data was taken to drive the M2 model,
was accurately modelled by the base M0 model, then for §€(1/2,1] the M2 model state

should tend to the true state of the gas network.

4.2 Experiments

When the M0 model had been running for a while, the pressures at the upstream end and

the sites of flow demand were recorded at each timestep and fed into an M2 model. The
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flow demands predicted by the M2 model were then compared with the true flows used
as inputs to the M0 model. For experiments 4.1 to 4.3, the M0 model simulating a gas
network was identical to the M0 model upon which the M2 model was constructed. For
experiment 4.4, the M0 model simulating a gas network had a much finer discretisation
(in both space and time) than the M2 model.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
DY are shown as thick lines in Figs. A, B and C respectively and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.

Data taken from M0 model with identical mesh - both M0 and M2 models
have 10 spatial nodes along each pipe.

Experiment 4.1) M2 Model with § =1

Experiment 4.2) M2 Model with § = 0.75

Experiment 4.3) M2 Model with § = 0.5

Data taken from M0 model with much finer mesh - M2 model has 10 spatial

nodes along each pipe.

Experiment 4.4) M2 Model with § =1
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4.3 Discussion

It is immediately apparant that the central difference approximation of equation (2.13)
has very greatly reduced the error in the estimates of the flow demands. Indeed, it can
be seen that, for 1/2 < <1, with identical meshes the state of the M2 model tends with
time to the exact state of the base M0 model and its flow inputs. However, like the M1
models, we have not presented a theoretical guarantee of the convergence of the solution
to the M2 model to the solution of the governing differential equations (2.16), (2.13), as
the computational mesh is refined. The possibility of such a proof would be worth explor-
ing, and as mentioned previously, two good references for this problem are [36] and [16].
From the experiments with pressure data taken from an M0 model constructed upon a
much finer mesh, it can be seen that the modelling error introduced by discretising the

original differential equations would not affect the flow estimates too adversely.

When 0 = 1/2, the M2 model was found to have multiple eigenvalues equal to —1 and
the M2 model flow estimates failed to converge. As 6 moved from 1/2 to 1, the modulus
of the eigenvalues of the M2 system appeared generally to decrease in a similar manner
to an M1 system. Indeed, we have already shown that the spectrum of an M2 system
contains all the eigenvalues of the corresponding M1 system (a table of M1 system
eigenvalues for various values of § was given in the previous chapter). The remaining ¢
eigenvalues of the M2 system have been shown to be equal to —(1 — 8)/6. For § = 1/2
these eigenvalues are —1, but as # moves to 1 we see that these eigenvalues tend to zero.
As the modulus of the eigenvalues decreased, the M2 model state converged more rapidly
with time to the base M0 model state. The most rapid convergence occurred when 6 = 1.

However, § = 1/2 represented a Crank-Nicolson finite difference scheme with the
highest order of accuracy, and unfortunately this value of # could not be used in practice.
For this reason, we now turn to alternative techniques for state estimation, observers,
which are introduced in the next chapter. These lead to working state estimation tech-
niques constructed upon gas network models with both § = 1/2 and a central difference

discretisation of equation (2.13).
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Chapter 5

Observers

For a dynamical system, only a few measurements may be available; and the challenge of
state estimation is to determine the state of the whole system from these measurements
over time. If a dynamical system has measurements available corresponding to linear
combinations of state variables of its system model, then the system may be completely
observable, and an observer employed for state estimation [29], [2].

We consider the time-invariant linear descriptor system
Fx(k+1)= Az(k) + Blg(k + 1)+ BQQ(k) (5.1)

where F, A € R"™", B!, B ¢ R"*™, with discrete measurements of the real system given
by
y(k)=Ca(k) fork=0,1,2,...., (5.2)

where C' € R9*". We assume F is full rank, and C' is full row rank.

We firstly define complete observability and then discuss techniques, known collec-
tively as observers, capable of estimating the entire system state of discrete dynamical

systems (5.1), (5.2) that have the property of complete observability.

5.1 Observability

The system (5.1), (5.2) is completely observable if and only if knowledge of the inputs

and measurements over some timesteps is enough to determine uniquely an initial state
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z(0).
The following theorem gives a necessary and sufficient condition for complete observ-

ability, known as the Hautus condition [42], [13], [25].

Theorem 5.1 A system of the form (5.1), where the matriz E is non-singular, with
measurements available of the form (5.2), is completely observable if and only if we have

the following condition.

For all peC

N
|
=
=
|
I
[
Q
|
I
f=)
|
I
f=)

(5.3)

where vER"™.

5.2 Design A : The Direct Observer

Assume the behaviour of a system is described by (5.1), (5.2). The method solves the
matrix equation

OX = A, (5.4)

where @ is the matrix

0O 0 A —-E 00

¢ 0 0 0 5
o ¢ o0 0

o o ¢ 0

o o o

and

Xt =1k ztk+ D)0 2(k+2)7, 2k +n —1)T]
where Z(k) is the observer estimate for z(k), and
AT = [ (Bu(k + 1)+ Bulk))T, —(Bu(k +2) + Bu(k + 1), ..
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v —(Blg(k +n—1)+ BQQ(]C +n— 2))T,QT(k),yT(k +1), ....gT(k +n—1)]

where n is the dimension of system (5.1), and is the number of timesteps over which

equation (5.4) is solved.

The number of timesteps over which equation (5.4) needs to be solved might not be
quite as large as n. However, if the system is completely observable, then from [2] it can
be shown that n is the maximum number of timesteps needed. If the matrix © does not
attain a large enough rank to determine X uniquely after n timesteps, then the system is
not observable. The situation is somewhat more complicated when we consider numerical

error, and for a good discussion of this problem, see [31].

For a current state estimate, at each timestep we would collect measurements from
the current and previous n — 1 timesteps, and then solve equation (5.4) over this time

window.

5.3 Design B : The Dynamic Observer

Assume the behaviour of a system is described by (5.1), (5.2). We form a new descriptor

system

Ez(k+1)=(A—-GO)z(k)+ B'u(k + 1) + B*u(k) + Gy(k). (5.5)

This is our dynamic observer system. Our aim is to construct the matrix GG so that
2(k)—z(k) as k——o0 regardless of the true value of z(0), which we assume to be

unknown. Subtracting system (5.5) from system (5.1), gives
E(z(k+1) —2(k+1)) = A(z(k) —z(k)) — G(y(k) — Cz(k)) (5.6)

where the last term is equivalent to —G(Cx(k) — CZ(k)). If we define the error between
the two systems (5.1) and (5.5) at time level k to be

e(k) = a(k) — 2(k) (5.7)
then substituting equation (5.7) into equation (5.6) gives
Fe(k+ 1) = Ae(k) — GCe(k)
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or

Ee(k+1) = (A — GCe(k). (5.8)

We require e(k)—0 as k——o00; and for this we require the eigenvalues of the matrix
pencil (A — GC, E) to have modulus less than unity. Hence, designing our observer
system is equivalent to finding a matrix GG such that all the eigenvalues of the matrix
pencil (A — GC, E) lie strictly within the unit circle. If the system, (5.1), (5.2), has an

invertible matrix F and is observable, then we can find such a matrix G [4], [13], [25].

5.3.1 Eigenvalue Assignment Technique: Eigenstructure As-

signment

We use a technique described in [24], [25]. Let us assume that we have a set A of n

distinct real eigenvalues that we wish to assign to the observer system; where

with [N| <1, fori=1,.....n. Let D = diag[)\;].

Let X = [z, e ,z,] be the modal matrix of the pencil (A — GC, F), and let
Y o=y, e ,y_| be the modal matrix of the pencil (AT — CTGT ET). Then
(A— GO)X = EXD (5.9)
and
(AT - CcTGTY = ETY D. (5.10)

Now compute the QR decomposition of CT

CT = QR, (5.11)
where
AT
T c
et
and
Re| :
0
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and Cy is gxg, upper triangular and non-singular. If equation (5.10) is rearranged and

factorisation (5.11) substituted in, then
RGTY = QT(ATY — ETY D),

from which

GT = C7'QT(ATY — ETy D)y ! (5.12)
and
0=Q(ATY — ETY D). (5.13)
Equation (5.13) implies
(AT = NE)y. € Im(CT), fori=1,...,n, (5.14)

or

y, € N{QI(AT = N ET)],

where A represents the right null space. If the dimension, ¢, of the measurement vector
is greater than one, then there is a certain amount of freedom in the choice of the y..
This freedom may be utilised in selecting a set of y, such that the observer eigenvalues

are as insensitive as possible to perturbations in the matrices A, K, C and G.

A generalised eigenvalue of the matrix pencil (A — GC, F) can be described by the
pair (p;,6;)€CxR (where CxR is the cartesian product of the spaces of complex and
real numbers respectively) where the associated eigenvalue is A, = p;/6;, for i = 1,....,n.
Then from equations (5.9) and (5.10), we assume that for left and right eigenvectors y.
and x; respectively we have

6:(A = GC)x; = pi P,
Syl (A= GC) = pylE (5.15)

and

Q;TFE% =0, fori#j. (5.16)

In a non-defective pencil, perturbations of O(e) in A, F,C and (i cause perturbations of

O(€)k(p4,6;) in a simple eigenvalue where k(p;,6;) is the condition number:

wlui, 6) = lly o leally / (lpil® + 632, (5.17)
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and z; and y, are assumed to be normalised such that
y; B, =6, (5.18)

y! (A= GO)z; = i, (5.19)

[39].

Now, since we are assuming £ is full rank, we may assume we have a set of eigenvec-
tor/eigenvalue pairs, (z;,y,), (1, 6;), for e =1, ...... ,n, where the eigenvectors are scaled
such that ||y ||, =1 and 6; = 1 forz = 1,...... ,n. Then to minimise the condition num-
bers (5.17), we need to minimise the ||z;||,. From equation (5.18) with all §; = 1, we

have

YTEX =1, (5.20)

from which we have

X =Y"'E)" (5.21)
So to minimise the |[z,][,, we can select the y. such that
_ 2
YT E) Ml = 11X = (Sillzll)
is minimised.
To select a set of left eigenvectors, y,, such that I(YTE)™| is minimised, we use
a simple method that, although it cannot be guaranteed to converge to the minimum

value of ||[(YTE)™!|, attainable, has been found to significantly reduce the value of

H(YTE)_IHF over a number of iterations.

The method begins by selecting a set of vectors which satisfy equation (5.13). For

each eigenvalue in the set A, we calculate the QR decomposition

QA= NE)Q. = Ry (5.22)
where
ST
Qf =
ST
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and

Rlz

Y

R
0
and S; is nxg. If y. = S;v; for some v,€RY, then equation (5.14) is satisfied. Now

assume we have a set of independent vectors, {y}, chosen for each i from span{S;}, as

the columns of Y, the initial choice being somewhat arbitrary. Let

and calculate the QR decomposition

Q3 = Ry (5.23)
where
r | 4
Qz = -
)
and
Y,
RQ — g
0

The vector z;, is orthogonal to the columns of Y}, and so, from equation (5.16) we have
that z; is parallel to Fz;. Thus, if we choose the new y, with ||y, |,=1 from span{S;},
to be as ‘parallel to’ z, as possible, and hence as parallel to EFz;, as possible, and assume

x;, 1s normalised such that

y;‘:Egk =1,

then we are minimising ||z,||, and hence r(u;,0;). So the updated y, is obtained by

projecting z; orthogonally onto the subspace S; and normalising to give
v, = S5 2/ 1Sk zill,- (5.24)

The method then continues with Yj4; from equation (5.23) and one sweep of the method
is completed when £ has run from 1 to n.

Over a few sweeps of the method, ||(YT E)~!||, should reduce since we are minimising
the condition numbers (4, &;). So, for each sweep, ||(YTE)™!||,- is monitored, and when
it reaches a local minimum value, the method is terminated. G is then calculated from

equation (5.12).
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General Eigenvalue Assignment Algorithm

1) Compute the QR decomposition of C7T

ct =QR,
where
AT
T ¢
Q"=
and
o |0
0

2) For each eigenvalue \; for ¢ = 1,...,n in the set A, calculate the QR decomposition

Qf(A - )‘iE)Qc = Ry,

where
ST
o - [ ]
St
and
R
Rl -
0

and S; is nxp.

,n, choose any vector, y, from span{S;} as one of the columns of

3) For each 1 =1, ...

the matrix Y.

4) For k=1,...,n, let

and calculate the QR decomposition

ngk = R?v
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where

|4
Qz = -
)
and
Y,
RQ - g .
0
Let

Y = Sksggk/"sggk"z'

5) Calculate |[(YTE)=Y|,.
6) Repeat steps (4) and (5) until ||(YT E)7!||,- reaches a local minimum.

7) Let
GT =C7'QT(ATY — ETY D)Y .

5.4 Design C : The Dynamic Observer with Feed-
back at the Current Time level

Here we present an observer design from [34], which has been found to give significantly
reduced errors at the measurement points. This method uses feedback at the current
time level.

Assume the behaviour of a system is described by (5.1), (5.2). We form a new de-

scriptor system

(E—HC)&(k+1) = (A= GOV2(k) + B u(k + 1)+ Bu(k) — Hy(k+ 1)+ Gy(k), (5.25)

where the H and (G matrices are to be chosen. This is our dynamic observer system. The
term in H represents feedback at the current time level, and the term in G represents
the familiar feedback at the previous time level.

If we define the error between the two systems (5.1) and (5.25) at time level k to be

e(k) = z(k) — 2(k), (5.26)



then subtracting equation (5.25) from equation (5.1) gives
(E—HC)e(k+1)=(A—-GC)e(k). (5.27)

If H can be chosen such that (F— HC') is nonsingular, then its inverse can be calculated to
give an explicit expression for e(k 4 1) from equation (5.27). We notice that (£ — HC)™*
would multiply all the terms on the right hand side of equation (5.27). Therefore, if
|(E — HC)™!|| could be made small for a suitable norm, then the effects of certain forms
of modelling error, that will be described later, should be reduced. It would also be
advisable to ensure the condition number of (F — HC') is not too large since this matrix
has to be inverted implicitly in equation (5.25) to calculate Z(k + 1).
We know that if
E—-HC=UxVT (5.28)

is the singular value decomposition of (K — HC'), where ¥ = diag[o;] and the o; are

arranged in nonincreasing order, then
£ = HC|, = o1

(B —HC) |, =0,

and we define the 2-norm condition number
condy(E — HC) = 0y/0,.

Hence, if we choose the 2-norm, then the problem reduces to calculating the matrix H
to make o, as large as possible whilst keeping oy as small as possible. This would satisfy
all three conditions: (F — HC') nonsingular, |[(E2 — HC)™!|, small, and condy(E — HC')
small.

Once the matrix H has been calculated, the observer design is completed by using a
method, such as eigenstructure assignment presented in the previous section, to calculate
a matrix G to assign a set of eigenvalues, all less than unity in modulus, to the matrix
(E— HC)™Y(A — GC). Then from equation (5.27), we can readily see that the error,
e(k), between the observer state estimate, Z(k), and the true system state, x(k), must

tend to zero.
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5.4.1 Singular Value Assignment

We use a method from [34], [4] for determining the matrix H with ¢ of the singular values
of (K — HC') assigned arbitrarily.
Let the QR-decomposition of matrix C7 be

cT = QR, (5.29)
where
QT
T c
o - { ;
and
Re|
0

If equation (5.28) is transposed and the factorisation (5.29) applied to C'T then we have
RHT = QT(ET — vUT). (5.30)

Let U = [uy, ..o, tt,,] and V = [vy, .....,v,]. Then from equation (5.30) we see that the w,,

v; and o; must satisfy

QY (ETu; — o) =0 fori=1,...n,

C

which implies that
ETu; — o, € Im(CT)  fori=1,..,n. (5.31)

Therefore, to assign any singular values to the matrix £ — HC', we must find 2n vectors
{u;,v;} and n scalars {o;} which satisfy condition (5.31) and the orthogonality constraints
on the matrices U and V. This method calculates the U and V matrices with n — g of the
singular values of I/ — HC' fixed to n — g of the singular values of I/, and the remaining ¢
singular values assigned arbitrarily. Unfortunately, a certain set of n — ¢ singular values
of ' cannot be affected by the addition of the term HC', and will always be singular
values of the matrix £ — HC for any feedback matrix H [4].

First of all, form QT ET and calculate the SVD
QTETU, , U] = V(% , 0] (5.32)
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and since rank(F£) = n and rank(C') = g we have
Y1 =diag{o1,02, i 0n_y}.
Refering now to the matrices U/ and V' in equations (5.28) and (5.30), let
U=[l, U] (5.33)
where U, and U, are from equation (5.32) and let

V=107, 0l (531)

where V is also from equation (5.32), and Q. and Q. are from equation (5.29). It can be
verified that the {u;, v;} and {o;} satisfy the condition (5.31) for ¢ = 1,...,n — ¢, where
the o; are the singular values of QT ET. The matrices U and V as defined in (5.33) and
(5.34) also satisfy the orthogonality condition.

Now assume that we wish to assign the set {o;} for j = n — ¢+ 1,....,n as the
remaining ¢ singular values of £ — HC. Let ¥y = diag{o;} for j=n—g+1,....,n and
calculate

H=(EQ, — U,5)C5T, (5.35)
where Cg 7 = (CIH)™' = (CyHT.

Then, by using equation (5.35) to substitute for H in equation (5.28), and substituting
in (5.33) and (5.34), the QR decomposition (5.29) and the SVD (5.32) may be used to

verify that
[0y, U] (E—HO)QYV , Q] =3 (5.36)

1 0
Y = .
0 X,

Since the n-¢g singular values contained in ¥; remain fixed, if the ¢ singular values of

where

Y4 are chosen such that

Un—9(21)<0-j(22)§0-1(21) fOT ] = 17 - 9, (537)

then we know that

o (B — HC) = oy (QTET)
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and

oo~ HC) = 0,y (QTET).

For a more robust observer design, we ideally want

on(E) < 0, y(E1)<01(X1)<oy(E).

General Singular Value Assignment Algorithm

1) Compute the QR decomposition of C'T

C" = QR,
where
AT
T _ c
Q ot
and
Ro|
0

2) Form QTET and calculate the SVD
Q:E'[Uy, Uh] =VI[Zy, 0],

where

Y= diag{alv T2y 00y Un—g}

is a diagonal matrix with the n — ¢ fized singular values which cannot be modified.

3) Assume that we wish to assign the set {o;} for j = n—g¢+1,....,n as the remaining

g singular values of £ — HC'. Let ¥y = diag{o;} for j =n —¢g+1,.....,n and calculate
H = (EQC - UZZZ)CO_Tv
where Cg 7 = (CIH)™' = (C7HT.
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Chapter 6

Formulation of a New M3 Variant
Model for Use in Direct and

Dynamic Observers

We now show how a new model variation, denoted by M3, which is capable of estimating
flow demands, may be constructed from a base M0 model using information about the
flow demands, such that these new M3 models are observable.

Since, in practice the flow demands change very slowly with time, the M3 models

assuime
flow demand®7 ™ *¢ = flow demand®™*"* *',
ie.
ddz:r_ullnd site _ ddzmand site fOT Cl” k (61)

The key feature of M3 models is that they contain difference equations of the form (6.1).

Then to form an M3 model, we start from a base M0 model and move the ¢ dimen-
sional vector, d(k), from the input vector to the state vector. We then introduce ¢ new

trivial difference equations of the form
(ks + 1) = d(k) (62)

into the new system. Assuming the base M0 model is arranged and partitioned as in
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equation (4.1), then the new n + g dimensional M3 system has the form

Ey —BY || 2ok +1) Ao BY || zo(k) BY 2
= + Py(k41)+ py(k)
0 I d(k+1) 0 I d(k) 0 0
(6.3)
which can be expressed in the general descriptor system form
Esza(k + 1) = Asza(k) + Byus(k +1) + Bius(k). (6.4)

For such an M3 model, the only input required is the upstream pressure (assumed
known). The g pressure measurements of the real gas network at the sites of flow demand
are not needed as inputs to the M3 model, and are in fact measurements of its state

variables
Y (k) = Caus(k) (6.5)

available for use in a direct or dynamic observer.

6.1 Theorems

In this section, we firstly prove that the matrix F3 of an M3 model is full rank if 6 > 0.
We next prove that if § > 0, then an M0 model with pressure measurements available at
the sites of flow demand is completely observable. This result is then used to prove that
for 1/2<6<1, M3 models are completely observable if there are pressure measurements
available at all the sites of flow demand. Lastly, it is proved that M3 models are not

completely observable if there are fewer measured pressures than flow demands.
Theorem 6.1 If 0 > 0, the matriz E3 of an M3 model is full rank.

Proof

FEsis (n 4 g¢)x(n + g) and takes the form

EO _Bl//
0 1

E3:

where [ is gxg.
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By construction, since we have already shown FEy is invertible for § > 0, E3*' is

(n+g)x(n + g) and takes the form

E;t E;'BY
0 I

B3t =

where [ is gxg.

Hence, the matrix E3 of an M3 model is full rank. O

Theorem 6.2 If § > 0, an MO model with pressure measurements available at the sites

of flow demand is completely observable.

Proof

The MO system (2.24) has g pressure measurements available at the sites of flow

demand, corresponding to the following ¢ dimensional vector of state variables

?Jo(k) = Cozy(k) (6.6)

where Cy is gxn and is the measurement matrix.

Since we have shown that the eigenvalues of an M0 system are real for § > 0, the

MO system with measurements (6.6), is observable if and only if for p€R

(Ao — plip)u =0 (6.7)

Cov =0 (6.8)
—

v=20 (6.9)

where veR".

Equation (6.9) = equations (6.7), (6.8) trivially.

We assume the pressure variables are arranged in the state vector in their order along

the pipe network, i.e. in the following way

2/3 g—1/g

_r,l 1 1 /2 2 2 2 g 9 g g T
2o(k) = [P1 g Po g s Port o PR PL ks Po ks o Paa o Pl o oeeeeeeees PP DY e Plas g Pio k]

bl
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where each pipe has s?7° + 1 nodes. Fy and Ay are then tridiagonal.

For 60, from equations (2.26) and (2.27), we have

Ao — pbio = (1 — p)l + (1 — p)0 — 1) M.

If (1 —p)f —1) =0, we can readily see that
AO—/LEO = (1 —IM)],

and so all the off-diagonal elements of (Ag—uFEy) are all zero and all the diagonal elements
of (Ag — pkFy) are all 1 — p.

However, if ((1—x)0—1) = 0, then p#1, and so, all the diagonal elements of (Ag—puFo)
are non-zero. Then (Ag — pFy) will be full rank.

Hence, equation (6.7) implies equation (6.9).

If ((1—p)0—1)#0, then due to the properties of My, we can readily see that Ag—puFoy =
(I—p) I+ ((1—p)0—1)M, is tridiagonal with non-zero off-diagonal elements for |i —j| = 1.

Equation (6.8) zeros the last element of v corresponding to the downstream end
pressure variable. Then, by induction, either going up or down the scalar equations in
system (6.7), we find all the elements of v are zero.

Hence, equations (6.7), (6.8) = equation (6.9).

Hence, if # > 0, an M0 model with pressure measurements available at the sites of

flow demand is completely observable. O
Theorem 6.3 If1/2<0<1, an M3 model is completely observable.

Proof

By inspection, the eigenvalues of an M3 system consist of the n eigenvalues of the
base M0 system, and ¢ eigenvalues equal to 1. Hence, for § > 0, the eigenvalues of the

M3 system are real.
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The M3 system is observable if and only if for all p€R

(As — pls)v =0 (6.10)

Civ =0 (6.11)
=

v=20 (6.12)

where veR"9.

Equation (6.12) = equations (6.10), (6.11) trivially.

Equations (6.10), (6.11) and (6.12) can be expressed in the following way. The M3
system is observable if and only if for all p€R

(Ao — pEo)v, + (BY — pu(=B""))v, =0 (6.13)
(1—py, =0 (6.14)
Cov, =0 (6.15)
=
v, =0, 2,=0 (6.16)

where v = [vT, 1] | and v,€R", v,eR.

YnoZg

We firstly consider the case p#1.

From equation (6.14) we have v, = 0.
Substituting v, = 0 into equation (6.13) gives

(Ao — pEo)v, = 0. (6.17)

Since we have shown the original M0 system is observable for # > 0, we have for all
reER
(AO — IME())QH = Q 5 C()Qn = Q 5 p— v, = Q (618)
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Hence, we have v, =0, v,

= 0; and so equations (6.10), (6.11) = (6.12).

We secondly consider the case p = 1.

Let the base M0 system be partitioned according to equation (4.1). Then equa-

tion (6.13) can be written as the following system of n equations for the n+ ¢ dimensional

vector v
v/
[(A/ _ /LE/) (A// _ /LEH) (BQI/ . /L(—Blu))] Q;; _ Q (619)
Yy
where
v/
v,=|
v//

and v/ €R"77 and v//€RY.
Equation (6.15) zeros the elements of v/. Removing v from system (6.19) gives the
system

(A =By (B = (=B | | =0 (6.20)

Yy

However, the system matrices of an M2 model corresponding to the base M0 model

have the form

Ay =[A" BY]
So system (6.20) has the form
v/
v

Since the M2 system stability theorem shows that for 1/2<0<1, x = 1 is not an
eigenvalue of an M2 system, (Ay — pks) is full rank, and hence system (6.21) implies

/

|
3

|

g

Hence, we have v/ =0, v =0, v, = 0; and so equations (6.10), (6.11) = (6.12).

Hence, if 1/2<0<1, an M3 model is completely observable. O
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Theorem 6.4 An M3 model will not be completely observable if there are fewer measured

pressures than flow demand state variables.

Proof

We assume we have g flow demand state variables, and less than ¢ pressure measure-

ments.

Necessary and sufficient conditions for the complete observability of an M3 system

are given by equations (6.10), (6.11) and (6.12).

It 4 = 1, then, since there are g flow demand state variables, the bottom ¢ rows of
the matrix (As — uFs) are zero vectors. Hence the maximum rank of (As — pFs) is n.
Also, since there are less than ¢ pressure measurements, the maximum rank of C5 is less
than g.

Hence, for y = 1, if we combine systems (6.10) and (6.11) into a single system to solve
for v, such a system would have rank less than n + g. Hence, equations (6.10) and (6.11)
would have non-zero solutions for v.

Thus, equations (6.10) and (6.11) do not imply equation (6.12), and hence the M3

system is not observable. O

For M3 models constructed with trivial difference equations of the form (6.1), it
was found direct observers did not work well. Thus to estimate the flow demands in
the gas network, a dynamic observer constructed upon an M3 model is run assuming
all the pressure and flow perturbations are initially zero. The pressure perturbation
measurements are fed in at each time level, and the observer state tends to the state of
the gas network with time. Perfect asymptotic convergence is not obtained unless the
flow demands do not vary with time, since equations (6.2) contain modelling error. If the
flow demands are changing, although not too rapidly, the observer still tracks the state of
the gas network fairly well. Indeed, typically, the flow demands in gas networks change
only slowly throughout the day.
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6.2 Weighted M3 Models

In fact, the profiles of the flow demands are fairly well known from other measured
demands that change thoughout the day with similar patterns of gas consumption. More
accurate M3 models may be constructed using such information available about the
shapes of the flow demand profiles with time. This corresponds to knowing the constants

flglemand site in

flOU) demanddzzfnd site _ flOU) demanddzmand site T flilemand site

fdemand site
k

where the may be estimated from the telemetry from other measured demand

flows. After normalisation, we would have

normalised flow demanddzfﬁf”d it — pormalised flow demand™mem® st® 4 femand site

where fdemand site — fdemand site [N g i e we would have

demand site demand site demand site demand site rdemand site
Q + e =Q + d*; + i

Qdemand site

and cancelling from both sides gives the new trivial difference equations for

the flow demand perturbations
ddzT_lr_Lilnd site _ ddzmand site T f]ilemand site fOT all k. (622)

The M3 models now contain difference equations of the form (6.22) where the weightings,
fgem“”d site are contained in a new vector added to the right hand side of the M3 system.

The new weighted M3 models have the form
Byra(k 4 1) = Asza(k) + Blus(k + 1)+ Blus(k) 1 Lyk) (6.23)

where the vector [5(k) contains the weightings, fgem“”d site . The addition of the vector
I5(k) to the M3 model does not alter its observability. Note that only the shape of the
flow demand profile is needed and not its placement relative to the flow magnitude axis.
Thus, estimating the demand flows means placing the profiles up or down the flow de-

mand magnitude axis.

To estimate the flow demands in the gas network, a dynamic observer may be con-

structed upon a weighted M3 model and run as before. Now there is perfect asymptotic
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convergence because we have lost the modelling error in the extra trivial difference equa-
tions (6.22) for the flow demand perturbations. However, now direct observers work well

](‘N]glemand site would

enough to be used as well. Obviously, in practice, the estimates of the

not be exact, and there would still be some error in the observer estimate.

6.3 Experiments

When the M0 model had been running for a while, the pressures at the upstream end
and the sites of flow demand were recorded at each timestep and fed into the various M3
model-based observers. The flow demands predicted by these techniques were compared
with the true flows used as inputs to the M0 model. For experiments 6.1 to 6.7 and 6.11
to 6.13, the M0 model simulating a gas network was identical to the M0 model upon
which the M3 model was constructed. For the remaining experiments, the M0 model

simulating a gas network had a much finer discretisation (in both space and time) than

the M3 model.

fidemand site " were incorporated into the M3

In experiments 6.1 to 6.10, no weightings,
models. However, for experiments 6.11 to 6.18, the M3 models incorporated the exact
values of the weightings, calculated from the flow demand inputs to the M0 model.

The two types of dynamic observer were run with either ‘large’ eigenvalues spread
evenly in the interval (0,0.5), or ‘smaller’ eigenvalues spread evenly in the interval
(0,0.025). For each dynamic observer design, the eigenvalues were assigned robustly ex-
cept for experiment 6.5, where step 6 of the robust eigenstructure assignment algorithm
was omitted. When the design C observer was run, the arbitrarily assignable singular
values were spread in the interval described by equation (5.37).

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
D¢ are shown as thick lines in Figs. A, B and C respectively and the state estimates for

pA/B pB/C

L7, DY’ and DY are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.
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fdemand site
k

6.3.1 Experiments with no weightings, , included in

the trivial low demand difference equations

Data taken from M0 model with identical mesh - both M0 and M3 models
have 10 spatial nodes along each pipe.

Experiment 6.1) Observer Design B (large eigenvalues) with § =1

Experiment 6.2) Observer Design B (small eigenvalues) with § = 1

Experiment 6.3) Observer Design B (large eigenvalues) with § = 0.5

Experiment 6.4) Observer Design B (small eigenvalues) with § = 0.5

Experiment 6.5) Observer Design B (small eigenvalues) with § = 0.5 (Figenvalues not
assigned robustly)

Experiment 6.6) Observer Design C (small eigenvalues) with § = 1

Experiment 6.7) Observer Design C (small eigenvalues) with § = 0.5

Data taken from M0 model with much finer mesh - M3 model has 10 spatial
nodes along each pipe.

Experiment 6.8) Observer Design B (small eigenvalues) with § = 1

Experiment 6.9) Observer Design B (small eigenvalues) with § = 0.5

Experiment 6.10) Observer Design C (small eigenvalues) with § =1

rdemand site

6.3.2 Experiments with weightings, f{ , included in the

trivial low demand difference equations

Data taken from M0 model with identical mesh - both M0 and M3 models
have 10 spatial nodes along each pipe.

Experiment 6.11) Observer Design B (small eigenvalues) with § = 1

Experiment 6.12) Observer Design B (small eigenvalues) with § = 0.5

Experiment 6.13) Observer Design C (small eigenvalues) with § =1

Data taken from M0 model with much finer mesh - M3 model has 10 spatial
nodes along each pipe.

Experiment 6.14) Observer Design B (small eigenvalues) with § = 1

Experiment 6.15) Observer Design B (small eigenvalues) with § = 0.5
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Experiment 6.16) Observer Design C (small eigenvalues) with § =1

Data taken from M0 model with much finer mesh - M3 model has 5 spatial
nodes along each pipe.

Experiment 6.17) Observer Design A with § =1

Experiment 6.18) Observer Design A with § = 0.5
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6.4 Discussion

6.4.1 Observer Design A : The Direct Observer

When the weightings, fgem“”d site were not included in the M3 model, the direct ob-

flemand site were included, for all values of

server gave poor results. However, when the
6€[1/2,1], the state estimate of the direct observer contained no error when data was
taken from an M0 model with an identical mesh, and contained only a small amount of
error when data was taken from an MO0 model with a much finer mesh. Curiously, in
contrast to dynamic observer designs, the direct observer gave the most accurate state
estimates with § = 1/2 rather than with § = 1. The graphs presented begin at timestep
14 due to the need to build up enough timesteps to be able to solve equation (5.4) directly
for the state estimate.

The main disadvantage with the direct observer was the large amount of computa-

tional work involved.

6.4.2 Observer Design B : The Dynamic Observer Without
Feedback at the Current Time-Level

When the weightings, fgem“”d sitewere not included in the M3 model, after an initial
large error over the first few timesteps characteristic of observer designs, design B ob-
servers gave fair estimates of the demand flows when small eigenvalues were assigned.
However, these dynamic observers gave estimated profiles for the demands that always
lagged behind the true profiles as the observers attempted to continually ‘catch up’ with
the changing flows. This can be understood by considering the un-weighted M3 system

FEsxg(k 4+ 1) = Aszq(k) + B§g3(k + 1)+ ng(k) (6.24)

with discrete measurement of the real pipe system available, corresponding to the follow-

ing vector of linear combinations of system state variables

y,(k) = Cazs(k). (6.25)
This system (6.24) assumes trivial difference equations for the demand flows of the form

ddz:r_ullnd site _ ddzmand site fOT all k. (626)
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However, if the demand flows are changing then the true equations for the demands
become

d d sit d d sit rd d sit
d ZT_lr_Liln site _ ] Zman site T fkeman site fOT all k, (627)

flemand site is 5 correction term.

where
If we include these correction terms, Ngem“”d sit into the M3 system (6.24), we get
the system

Eszs(k +1) = Aszs(k) + Baus(k + 1) + Bius(k) + L5 (k), (6.28)

where [5(k) is a vector containing the fiemend site terms.

The design B dynamic observers were built around the original M3 system (6.24) and
had the form

EsZs(k + 1) = AsZs(k) + Byus(k + 1) + Bius(k) + Gly,(k) — Csz3(k)). (6.29)
If we define the error between the two systems (6.28) and (6.29) at time level k to be
e(k) = z3(k) — 25(k), (6.30)
then subtracting equation (6.29) from (6.28) gives
FEse(k+1) = (As — GC3)e(k) + [5(k). (6.31)

Thus, [5(k) acts as a forcing term on the errors. If the demands are changing, the forcing
term [5(k) will be non-zero, giving error in the dynamic observer estimate.

It can be seen that the design B dynamic observer gave much less error with small
system eigenvalues than with large system eigenvalues. If the eigenvalues of the observer
system (6.29) are small, then so are the eigenvalues of the error system (6.31), and hence
the errors damp down more quickly. In fact, whereas the design B dynamic observer with
6 = 1 and with large system eigenvalues gave estimated demand profiles that were very
crude reflections of the true shapes of these profiles; with smaller system eigenvalues it
gave accurate estimates of the shape of the demand profiles, although shifted. Indeed,
the first smeared the corners of the demand profile, but the latter did not. However, all
demand profiles estimated by design B dynamic observers were slightly shifted.

As 0 moved from 1 to 1/2, the errors in the state estimates of the design B dynamic
observers with small eigenvalues, seemed to increase. This phenomenon is not understood.

However, as 6 moved from 1 to 1/2, the assigned observer eigenvalues became more
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sensitive. When the eigenstructure assignment algorithm had been used to find a matrix
G to assign eigenvalues to the observer system, the values of these observer eigenvalues
were then checked by finding the eigenvalues of the matrix £ ' (A3 —GC3). Depending on
the computational mesh and the value of 8, the observer eigenvalues sometimes appeared
to have moved. This effect was worst for § = 1/2. Indeed, when large eigenvalues were
assigned to the observer with § = 1/2, the observer became unstable; on checking it was
found that not all the eigenvalues had remained within the unit circle. It may be that for
0 = 1/2, the M3 system is in some sense ‘close’ to unobservability. Gaining theoretical
understanding of this problem would be worthwhile future research.

Some experiments were run comparing the results from dynamic observers with less
robust eigenvalues. For § = 1/2 (although not for § = 1), depending on the model pa-
rameters, it was sometimes found that the good conditioning of the observer eigenvalues
reduced the error in the observer state estimate due to the error in the trivial difference
equations (6.2) for the flow demands. It is not understood why the robustness of the
observer eigenvalues might help to reduce such error only for § = 1/2. However, we will

now suggest two possible reasons for this phenomenon.

Reason 1

The first possible reason is that the robustness of the eigenvalues means that they are
perturbed less by numerical error. Then the robustly assigned eigenvalues remain closer
to the origin, and, from both previous discussion above and further argument presented
next, the error in the state estimate is reduced. This would explain why this phenomenon
was only seen for § = 1/2, where the sensitivity of the observer eigenvalues became a

serious problem.
Reason 2
The following analysis suggests a second possible reason why the robust eigenstructure

assignment technique might help to reduce the error introduced into the state estimate

by the form of the modelling error present in equations (6.2).
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We show that an upper bound on the norm of the error in the state estimate of an
M3 model based dynamic observer, caused by modelling error present in equations (6.2),

is minimised by minimising
condp(X) = || X | X7 |

where X = (YT E)~! is the modal matrix of right eigenvectors of E3'(A3 — GC3). The
eigenstructure assignment technique minimises ||(Y7E)™!| .

From equation (6.31) we can show for any timestep s
efs) = [B5 ' (A3 — GOo)'e(0) + 37 VBT (As — GO)VES (s —1—j).  (6.32)
Applying basic theory of vector and matrix norms [20] to equation (6.32), we can derive

s—1
le(s)ll, <NTES (As = GO0, + D0 ITE: ! (As = GO IIE (s — 1= )],
(6.33)
We assume the matrix £ ' (As — GCs3) has a full set of linearly independent eigenvectors,

and from equation (5.9) we have the spectral decomposition
E?)_I(Ag - GCg) - XDX_I, (634)

where D is a diagonal matrix of observer eigenvalues, ;. Substituting equation (6.34)

into equation (6.33) gives
s s—1 _ ; _ .
le() L, <NX DX N0, + 32 MX DXl Ta(s = 1= j)ll,-  (6.35)
Applying basic theory of matrix norms to equation (6.35) gives
s s—1 ; ; — .
le(s)ll,<condi: (X) DI, + > cond (X)[ DI E5 (s = 1 =)l (6.36)

Equation (6.36) represents an upper bound on the norm of the error in the state estimate
of an M3 model based dynamic observer, caused by modelling error present in equa-
tions (6.2). It is obvious this upper bound is minimised by minimising condp(X). Also,

since

D]l = MAXL| A}

we can see that reducing the modulus of M AX{|);|} will also reduce this upper bound.

This may help to explain why reducing the modulus of the eigenvalues assigned to the
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observer system helped to reduce the error in the state estimate.

When the weightings, fgem“”d sitewere included in the M3 model, the design B dy-
namic observer state estimates converged perfectly for § = 1, with both small and large
system eigenvalues. Assigning small system eigenvalues to the design B dynamic ob-
servers gave faster convergence. However, as § moved to 1/2; a very small amount of

error began to persist in the state estimate.

Lastly, when pressure data was taken from an M0 model constructed upon a much

finer mesh, only a small amount of error was introduced in to the observer state estimate.

6.4.3 Observer Design C : The Dynamic Observer With Feed-

back at the Current Time-Level

In most ways, the design C dynamic observers behaved in a very similar manner to design
B dynamic observers, except for increased sensitivity for # = 1/2. The design C observer
became unstable even when it was attempted to assign small eigenvalues; on checking the
assigned observer eigenvalues it was found that not all the eigenvalues were within the
unit circle. However, with small eigenvalues and § = 1, the design C dynamic observers
seemed to give more accurate state estimates than design B observers when constructed
upon M3 models without the weightings, fgem“”d site  The following analysis may suggest
why.

The design C dynamic observers were built around the original M3 system (6.24) and
had the form

Bszg(k+1)+H (y,(k+1)=Css(k+1)) = AsZs(k)+Bsus(k+1)+Bius(k)+G(y, (k)= Cs2s(k)).
(6.37)
If we define the error between the two systems (6.28) and (6.37) at time level k to be

e(k) = a5(k) — z5(k), (6.38)
then subtracting equation (6.37) from (6.28) gives

(Es — HC3)e(k + 1) = (As — GCs)e(k) + L3(k). (6.39)
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As with design B observers, [5(k) acts as a forcing term on the errors. However, the
matrix H was chosen to minimise the 2-norm of (E; — HC3)™', and this matrix is im-
plicitly multiplied into the forcing term, I5(k), thus reducing its effects. With § = 1, in
the experiments with dynamic observers the 2-norm of the matrix £5' was 1.50, while
the 2-norm of (F3 — HC3)™" was 0.56; this is believed to explain the improvement in the

accuracy of the state estimate when feedback is included at the current time-level.

In an equivalent manner to design B observers, it may be shown that the robust
eigenstructure assignment technique might help to reduce the error introduced into the
state estimate by the form of the modelling error present in equations (6.2). However,
we can also show that an upper bound on the norm of the error in the state estimate is
minimised by minimising the 2-norm of (E; — HC3)™!.

In a similar way to the derivation of equation (6.32) for the error in the state estimate
of design B observers, we may derive the following equation for the error in the state

estimate of design C observers. For any timestep s we have
e(s) = [(EBs — HC5) ™! (A3 — GIC3)]%¢(0)
+ Z;;;[(Eg — HC3) (A3 — GO3)V (Es — HC3) M y(s — 1 — j). (6.40)
Applying basic theory of vector and matrix norms to equation (6.40), we can derive
le(s)l[,<I(Es — HOs)TH][(As — GC3)5]le0)],

s—1 _ ; ; _ .
+ 2 Ml = HO) T3 lI(As — GOs)llall(Es — HCa) 7 l,llls(s — L= 5l (6.41)

Equation (6.41) represents an upper bound on the norm of the error in the state estimate
of a design C observer, caused by modelling error present in equations (6.2). It is obvious

this upper bound is minimised by minimising |[(Es — HC3)™' ],

If model parameters such as pipe lengths, timesteps, etc. were altered, then the
2-norm of (K3 — HC3)™! changed, altering the accuracy of the design C observer state
estimates. If the 2-norm of (E; — HC'3)™! increased, then the errors in the state estimates

increased, and if the 2-norm of (E; — HC3)™! decreased, so did the errors.
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When the weightings, fgem“”d sitewere included in the M3 model, the design C dy-

namic observer state estimates converged pertectly for § = 1.
Lastly, as with design A and B observers, taking pressure data from an M0 model

constructed upon a much finer mesh introduced only a small amount of error to the

observer state estimate.
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Chapter 7
Cycling

Here we introduce a technique, called ‘cycling’, that can reduce the error introduced into
the dynamic observer state estimates by the trivial difference equations (6.2) contained
in M3 models. Cycling involves a series of dynamic observers, travelling along the time
axis, one after the other. Each dynamic observer uses information about the flow demand

profiles given by the previous observer. The technique is made up of the following cycles.
1st Cycle

Firstly we run the usual dynamic observer based upon an M3 model assuming no
knowledge about the flow profiles; i.e. with trivial flow equations of the form (6.2). This

gives an initial state estimate, 23(k), for £ = 0,1,.... This is the first cycle.
2nd Cycle

Next we run another dynamic observer making use of the discrete jumps in the de-
mands estimated by the first observer. We assume the M3 model is partitioned accord-
ing to equation (6.3). Then the second cycle observer estimate, denoted by z3(k) for

k=0,1,..., is calculated from

(B3 — HC3)Z3(k+1) = (As — GC3)23(k) + Bius(k + 1) + Bius(k) — Hy,(k+1) + Gy, (k)

00
+ (Z3(k +1) — 25(k)) (7.1)
0 I
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where [ is g xg, and where the H matrix is zero for a design B dynamic observer. This

gives a new state estimate for £ = 0,1, ....
ith Cycle

This process can be repeated for a number of cycles, each time making use of the
discrete jumps in the demands estimated by the previous cycle. The ith cycle estimate,

z4(k) for k = 0,1, ..., is calculated from

(Es— HC3)Zh(k+1) = (As — GO3)Zh(k) + Blus(k + 1) + Bius(k) — Hy,(k+1) + Gy, (k)

00| . |
+ (25 (k + 1) — 257 (k) (7.2)
0 I

where [ is g xg, and where the H matrix is zero for a design B dynamic observer. This

gives a new state estimate for £ = 0,1, ....

Each further cycle is simply another dynamic observer travelling along the time axis,
incorporating information from the state estimate of the previous cycle (dynamic ob-
server). It is not immediately obvious how many cycles should be used; it may be that
only a second cycle is needed for a significant improvement in the state estimate. A
natural question to ask is what happens to the state estimate, Z5(k) for any timestep k&,
as 1—00. We have the following convergence theorem for cycling based upon a design

C observer only.

Theorem 7.1 When cycling is performed upon a design C observer, for each timestep,
k, 25(k) tends to a limit as more cycles are performed, i.e.
B(k)—Bo(k) as i—roo,

if and only if all the eigenvalues of (Ez — HC3)™'Y are within the unit circle.

Proof
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Consider a timestep T. We wish to investigate the convergence of z4(k) for k =

1,...,7, as the number of cycles increases. Define

z4(T)
(T — 1)

Then from the general cycle equation (7.2), it can be seen z* obeys

Rzt =52+ (7.3)

where

(By — HCOy) —(As — GCy) ]
(Bs— HCs)  —(As — GCs)

(Es — HC3) —(As — GCs)
_ (Bs — HCs) |

97



Bius(T) + Bius(T — 1) — Hy (T) + Gy (T — 1)
Biug (T — 1) + Bius(T —2) — Hy (T — 1) + Gy (T — 2)

S
Il

Bius(2) + Bius(1) — Hy,(2) + Gy, (1)
| Bius(1) + Bius(0) — Hy, (1) + Gy, (0) + (As — GC3)5(0) — T25(0) |

and 24(0) are the observer initial conditions for all cycles. The matrix R™'S is block
upper triangular and has square blocks (F3 — HC3)™'Y on its diagonal. The eigenvalues
of R™1S are the eigenvalues of the square blocks (E; — HC3)™'T.

All the eigenvalues of R™'S are within the unit circle if and only if the eigenvalues
of (B3 — HC3)™'Y are within the unit circle. Then, system (7.3) converges to a unique

limit as the number of cycles increases, and we have
Z'—sz2 as i—00.
Hence, at each timestep £ =1,....,T", we have
ig(k)—@:))(k) as 1—00.

If a design B observer is used, by inspection it is obvious that the matrix £~'T has
multiple eigenvalues equal to 1, and hence the eigenvalues of R71S are not within the

unit circle and system (7.3) is not convergent. O

With the design C observers, we seek to find a matrix H such that ||(EFs— HCs)™|, <
1. Since ||Y||, = 1, if [|[(E5 — HC3)7 Y|, < 1 then ||[(Es — HC5)7' T, < 1, which implies
all the eigenvalues of (E3 — HC3) T are within the unit circle. Then from the previous

theorem, the cycling technique is convergent to a unique limit.

We now investigate how the error in the state estimate behaves as the number of

cycles increases. Let the true behaviour of the gas network be described by
Bszg(k + 1) = Aszs(k) + Byus(k + 1) + Bius(k) + L3(k) (7.4)
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where I,(k) is a vector containing the fiemend site tarms.
The general ith cycle (for ¢ > 1) is given by equation (7.2). If we define the error
between the ith cycle observer estimate and the model (7.4) to be

e'(k) = z5(k) — 25(k) (7.5)
then subtracting equation (7.2) from equation (7.4) gives
(Bs — HCs)e'(k +1) = (A5 — GCy)e' (k) + Ly(k) — Yz (b + 1) + Y25 (k)
which, using equation (7.5), can be rewritten as

(Bam HCa)E (k1) = (A= GO (k) + (k)= Tlag(k+ 1) =~ (4 D]+ Y s (k) — ().

Inspection of the structure of the M3 model (7.4) shows
Ly(k) = Tas(k + 1) — Tas(k). (7.7)
Adding equation (7.7) to equation (7.6) gives
(Fs — HC)e' (k4 1) = (As — GC3)el (k) + Y (k + 1) — Y=L (k). (7.8)
Define

e(T)
(T —1)

Then from equation (7.8), we can see g’ obeys

Re™ = Se' +w (7.9)
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where the matrices R and S are as previously defined,

0
0
W = )
0
| f(e(0)) |
e(0) = ¢'(0) for all ¢, is the error in the observer initial conditions for all cycles, and

f(e(0)) = [(As — GC3) — Y]e(0). If system (7.9) has its system eigenvalues within the

unit circle and is convergent to a limit, £, then this limit satisfies
Re = Se +w,

i.e.

(R—S5)e =w. (7.10)

Then we can see that

e (R—5)"w as i—o0,

where the matrix (R—.5) is invertible since system (7.9) does not have an eigenvalue equal
to 1. From the previous analysis, a sufficient condition for this is ||(Es — HC3)™!|, < 1.
We can see that if the observers are given the correct initial conditions, then e(0) is zero

and ¢’ decays completely away as the number of cycles increases.

However, e(0) will most likely not be zero, and this error will propagate with time. It
would be difficult to provide a simple analysis of the propagation of such error with time
for any arbitrary number of cycles performed. However, for the special case of a design
C observer with ||(Es — HC3)7 '], < 1 where the cycles are performed to convergence, we

can analyse the how the error, e(k), in the limit estimate, Z5(k), propagates with time.
We assume |[(F3 — HC5)™|, < 1 and that system (7.9) reaches a steady state, ¢,
after enough cycles. We investigate this steady state. Equation (7.10) can be written out
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as

[ [(Bs— HC3) =T Ay — GO3) + 7 | <) ’
[(Fa — HC3) = T] [—(43 — GC3) 4+ 7] (T - 1) 0
[(Bs — HCOs) = Y] [-(4s — GCa) + 7] () 0
[(Es — HC3) — ]
L L e ] | f(e(0)) |

where

e = [e(T) (T = 1)" (1)1,

By inspection of the above, we find
(s — HC3) — Tle(1) = f(e(0))
and generally
[(Bs— HCs) — Y]e(k +1) = [(As — GC3) — Y)e(k) for k=1,..T—1.  (7.11)

The matrix [(Es — HC3) — Y] is full rank since, both ||(E3 — HC5)™|[, < 1 and || T[], =1
imply ||(Es — HC5)™'Y||, < 1, which implies (F3 — HC3)™'T has no eigenvalue equal to

1. Thus, if the eigenvalues of system (7.11) are within the unit circle, then
e(k)—0 as k—o0.

Ideally, we would like to be able to find feedback matrices H and G such that |[(E5 —
HC3)7Y|, < 1 and the eigenvalues of system (7.11) are within the unit circle. In this
situation, the cycles may be continued to convergence to a limit, for which the error in
the state estimate decays with time. It is shown later that this can be achieved, but not,
unfortunately, for § = 1/2.

It should be noted that when [|(E3 — HC3)™!|, < 1 and the cycling is performed to
convergence, a much cheaper equivalent approach is to solve system (7.3) directly for its

limit, z, from the equation

[R—S]lz=v

which, by inspection, would involve a new form of observer

[(Es—HC5)=T]z(k+1) = [(As—GCs)=T]Z(k)+Baus(k+1)+Bius(k)— Hy ,(k+1)+Gy, (k)
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stepping through time. By inspection of the above system, it is immediately apparant
that the trivial difference equations for the flows, and thus the modelling error they
contain, have been removed. However, it can be shown that it is not now possible to find
feedback matrices GG and H to assign arbitrary eigenvalues to this new system. This is

further explored in the discussion of the experimental results.

7.1 Experiments

When the M0 model had been running for a while, the pressures at the upstream end and
the sites of flow demand were recorded at each timestep and fed into the M3 model-based
cycling observers. The flow demands predicted by these techniques were then compared
with the true flows used as inputs to the M0 model.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
D¢ are shown as thick lines in Figs. A, B and C respectively and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.

In all experiments, data was taken from an M0 model with an identical mesh - both

MO and M3 models have 10 spatial nodes along each pipe.

Two cycles performed

Experiment 7.1) Observer Design B (small eigenvalues) with § = 1
Experiment 7.2) Observer Design B (small eigenvalues) with § = 0.5
Experiment 7.3) Observer Design C (small eigenvalues) with § = 1

Cycles performed to convergence

Experiment 7.4) Observer Design C (small eigenvalues) with § = 1
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7.2 Discussion

The graphical results of these experiments should be compared to the graphical results

of the previous chapter.

Regarding the ‘2 cycle’ experiments, 7.1 to 7.3, only with the design C observer, was
the state estimate much improved over the entire flow profile. However, with the design
B observer, there was significant improvement in the state estimate of certain parts of
the flow profiles from the second cycle. The second cycles seemed to perform badly where
the gradient of the flow profile changed sharply, but significantly improved those parts

flemand site \were constant. This is not

of the flow profiles for which the demand jumps,
yet understood, but it may be that it would be possible to determine periods in the day

where those parts of the flow profiles would respond well to a second cycle.

Regarding the ‘many-cycle’ experiment, 7.4, the cycling technique was found to be
convergent only when a design C observer was being used. This behaviour can be ex-
plained by noting that with the design C observer, with = 1, we had ||(Es—HC5)7Y||, =
0.56 < 1, and hence, as the previous analysis showed, the cycling technique was con-
vergent. Without feedback at the current time-level being incorporated into the basic
dynamic observer design, this convergence was lost.

The error in the design C observer state estimates, was seen to be very significantly
reduced by cycling to convergence for # = 1. Indeed, the error was seen to decay com-

pletely away with time. This behaviour can be explained by the following.

When a cycling technique, based upon a design C observer with ||(EFs— HC3)™ ||, < 1,

converged, we showed that the error in the state estimate obeyed equation (7.11)
[(Fs — HCs) — Y]e(k 4+ 1) = [(As — GC3) — Tle(k).

If we assume the M3 model is arranged according to equation (6.3), and that the base
MO0 model is arranged according to equation (4.1), then the M3 model may be written
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as

El E// _B1// }_?l(k—l_l) A/ A// BQ// Bl(k)
pk+1) | = p.(k
0o 0 I ol ) 0 0 I 2, (k)
d(k+1) d(k)
1/ 2!
+ . BB(k—I—l)—I— . &(k)

Then system (7.11) may be written as

E' E"— H, _Bl” —1err(k T 1) A AT -G Bz” Blerr(k)
E+1) | = k

0 —H2 0 —2er7~( ) 0 —G2 0 _QSTT( )
der?“(k + 1) derr(k)

where Hy, Hz, G and G, are matrix blocks arising from the feedback matrices. p, (k),

—lerr

p, (k) and d,,,(k) are the errors in the state estimates of p (k), p,(k) and d(k) respec-

—zerr

tively.

We can rearrange the above system to

’ o, (B ’ 1 (R)
B —BY B —H, || e A BY AT Gy || T
derr(k + 1) = derr(k)
0 0 —H2 0 0 _GZ
Bzerr(k +1) —2m(k)

which can be written in the form

E, E"—H;
0 —H,

izm(k + 1)

where

_ |, R
QQerr(k) - |: d (k) ] )

Zerr

and the matrices £y and A, are identical to the corresponding M2 system matrices. By
inspection of the above system, for any value of §, the set of eigenvalues of the above
error system contains the eigenvalues of the corresponding M2 system. We have shown
that the eigenvalues of an M2 system are within the unit circle for 1/2 < <1, but not
for # = 1/2. This helps to explain the experimental results: when 1/2 < #<1 the error
e(k) decayed with time, and when 6 = 1/2 the error did not appear to decay.

By inspection of the above system, the remaining eigenvalues of the error system are

given by the blocks Hy and (9; and for the error to decay, these eigenvalues would also
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need to be within the unit circle.

How best to use the cycling technique is still not understood. When the cycling
technique is not convergent, we can still get some improvement in the state estimate of
certain parts of the flow profiles from a second cycle. The second cycle seemed to improve

significantly those parts of the flow profiles for which the demand jumps, fgem“”d site

, were
constant. This might be particularly useful for a design B observer with § = 1/2, since
for = 1/2, the corresponding M2 model has multiple eigenvalues equal to —1, and is
not asymptotically stable.

The most significant improvement in the state estimate came when the cycling tech-
nique was convergent. When the cycling technique was based upon a design C dynamic
observer with 1/2 < <1, the error introduced into the state estimate by the difference
equations (6.2) decayed completely away as the number of cycles increased. However,
from the above analysis, we see that the decay of the error with time is governed by the
eigenvalues of the corresponding M2 system. In fact, for a suitable choice of feedback
matrices, H and G, (i.e. with Hy = E” and G4 = A”) we can show that the cycling
technique, cycling to convergence, is directly equivalent to the corresponding M2 sys-
tem. A worthwhile area of future research would be to determine how the extra freedom

available in the choice of H and (G may be used to improve the performance of the cycling

technique over the corresponding M2 system.
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Chapter 8

The Effects of Pressure
Measurement Bias on M1 and M2

Models, and M3 Model Based

Observers

It may be the case that the pressure measurements at the sites of flow demand are subject
to a constant bias, i.e. instead of using a true value for }_72(16), we drive the models and

observers with

(k) = p,(k)+0 (8.1)

“Zmeasured

where b represents a vector of biases, constant with time. These constant biases will
introduce error into the state estimates of the different estimation techniques. This is
a serious problem for flow demand estimation due to the sensitivity of the flow demand
variables to perturbations in the pressures.

We denote the corrupted model and observer state estimates by (k) where
&est(k) — &(k) —I_ &67’7’(]6)

and z.,.(k) is the error introduced into the state estimate due to the measurement bias.

Zerr

Similarly we specifically denote the corrupted state estimates of p, (k), p,(k) and d(k) by



dest(k) = d(k) + deyr (F)

respectively, where p.  (k), p, (k) and d.,,(k) are the errors introduced into these state
estimates due to the measurement bias.

For each estimation technique, we seek to find p, (%), p, (k) and d,,,(k), and show

Zerr

these errors are asymptotically the same for all estimation techniques. We also show that,
whilst the relative errors in the pressure estimates are acceptable, the relative errors in

the flow demand estimates may be very large.

8.1 M1 Models

Consider the M1 model (3.3). If the M1 model is driven by [u; (k) 4+ w,,. ] where u, (k)
is the vector of ‘true’ pressures and w,, is a vector resulting solely from the unknown

constant biases of equation (8.1), then the actual model run is
Erzy,, (k+1) = Avzy, (k) + Bilug (b + 1) + w,,, ]+ Bilw (k) +w,,, ). (8.2)
From the M1 model equation (3.2), equation (8.2) may be written as

Eiap, (k+1) = Avap, (k) =Eialp,(k+1)+81+ By 1p, (k+1)+ Aa[p, (k) + 8+ B 1p, (k).
(8.3)

If equation (3.2) is subtracted from equation (8.3), we derive
51,1}_?1m(k +1) = A1,1}_?1m(k) — &1 20+ Aq2b. (8.4)

System (8.4) describes how the state estimate error, p, (k), due to constant measure-

ment bias behaves, and we investigate this now.

Since we have proved the M1 system (3.3) is asymptotically stable for 1/2<6<1, then
so is system (8.4) which has the same system matrices. Since the input to system (8.4)

is constant, the system reaches a steady state given by
51,1}_?1m = A1,1}_?1m — &1 20+ Ay b,

i.e.

(&1 — Al,l)ljlm = (=& 2+ Ai2)b. (8.5)
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It we arrange the pressure variables in the state vector in their order along the pipe

network, i.e. in the following way

ol 1 1 2 2 2 g .9 g T
T3 (k) = [P1 s P2 jos wes P11 s PT e P2 s woves Pg2 1 oo weeeeeseeeeencs s P g Po e Pag_1 1)

where each general pipe z has s* 4+ 1 nodes (including end nodes), then the matrix

(€11 — Ai 1) takes the form

(B — A
[B? — A7

(51,1 - A1,1) =

[Br1 — As1]
[B7 — A7

and system (8.5) consists of ¢ disjoint subsystems of the form

B — A, = I (5.6)
Each system (8.6) contains s* — 1 scalar equations

2T, = T i+ T (8.7)
forz=1,...,5" — 1, where p; _ represents the asymptotic steady state error contained in

the M1 model state estimate of p7, due to pressure measurement bias. In the first and
last equations of each system (8.6), pj_and p;z,, represent the normalised measurement
biases at the upstream and downstream ends of the general pipe z respectively. These
biases are contained in the vector [*.

Each i'* equation of system (8.6) is divided by r*Q? to give s° — 1 scalar equations of

the form

QFfme = Ff—1pf—1m + Ff+1pf+1err- (8-8)

If we had a maximum value for I'p;  occur internally along the pipe, i.e. for : =
1,...,8" — 1, then for that particular internal node, say node j where 1<5<s* — 1, we
would have

U5ps.,, 2Tipi,,  for 0<i<s™. (8.9)

J
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From equation (8.8) we have
QFjijTT = Fj_]‘pj_]‘err —I_ Fj—l—]‘pj-l_lerr‘ (8‘10)

Equation (8.10) combined with inequality (8.9) implies

z .z

z z _
Fj_lpj_lerr - Fjpjerr

Uinpip, =15p.,,-
We can continue in this way to show that all the I'; pf are equal forz = 0, ..., 5*. So if

we had a maximum value for I'; p occur internally along the pipe, i.e. for:=1,..., 51,

then for that particular internal node, say node j, we would have

Fjpjerr = nggerr = Fizpiz (811)

err

Hence

FfpferrgMAX(nggm,szpjgrr) fori=1,...,8 —1. (8.12)

By considering a minimum value for I'; p occurring along the pipe, we can similarly

derive

Uip;, >MIN(Topg,,,  Teeps: ) fori=1,...5 —1. (8.13)

From bounds (8.12) and (8.13) we have for a general pipe z

Fz—l/zbz—l/z Fz/z—l—l bz/z—l—l Fz—l/zbz—l/z Fz/z—l—l bz/z—l—l
<p: <MAX
Ff Y Ff ]—plerr— [ Ff Y Ff

MIN| | for any node .
(8.14)
where we have denoted the upstream and downstream normalised measurement biases,
Po.,, and pg- by b*='/% and b7/**! respectively. Equation (8.14) represents bounds on
the constant errors in the normalised state estimate of the pressures along a general pipe

z, due to measurement bias. It can be seen that the estimate errors depend only on the

measurement biases at the two ends of the particular pipe z.
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It we assume the measurement biases are not greater than 1 bar or less than —1 bar,
then we have
— 1<y V2N, <1 and — 1<b/7HIN,<1. (8.15)
However, for a typical gas network we would have

35 bar < True pressure < 70 bar. (8.16)

Multiplying inequality (8.14) by N,, and combining with inequalities (8.15) and (8.16),
gives

FError in pressure estimate [==1/= e/t

<1/35x MAX [, =

| for node i of pipe z.
(8.17)

True pressure

If the I'* do not vary greatly along each pipe, then we can see that the pressure estimates

will not be completely swamped by the error introduced by measurement bias.

We now examine the asymptotic steady error in the state estimate of the flow demands
due to pressure measurement bias. As an M1 model is run, the normalised inline flow
perturbations at the ends of each pipe section are estimated by applying a forwards or
backwards difference discretisation of equation (2.13), i.e. for a general pipe z, at an

upstream pipe end, we would have

e = P = ToPG .. )/ 077 (8.18)

and at a downstream pipe end, we would have

U por = —e§(F§Zp§Z7kest — F§Z—1p§2—1,k65t)/5$2- (8.19)
To estimate the demand flow at a pipe junction, we use

zfz41 211
dkest - qsz,kest - qo,—l];est' (820)

However, the terms pj, . pg .., Pizy.., and pi-_;,  now contain error due to the
measurement bias. Hence, the flow estimates, ¢5,__, i, , and dZZ;H also contain error
due to the measurement bias.

If we subtract equations (3.4), (3.5) and (3.6) from equations (8.18), (8.19) and (8.20)

respectively, and assume the errors in the pressure estimates due to measurement bias

have reached a steady state, we derive
qgerr = _eg(ripierr - nggerr)/5$27 (821)
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G5z, = —ea(Tseps, = Toemapioa,,, )/ 827 (8.22)
and

Al =a -0l (8.23)

err

respectively, where ¢Z , ¢%. and d?/**! are the steady errors due to measurement bias
err err

in the estimates of ¢, ¢i-, and di/Z—H respectively.

Next we examine the solution to the s* — 1 scalar equations (8.8) in order to derive an
explicit formula for ¢ and ¢.. in terms of the measurement biases b*=1/% and b*/*1,

For a general pipe z, let
n”=15pi. . —Tope,,. - (8.24)
The first scalar equation from the system of scalar equations (8.8) is
—Iepg., +205p;,  —15p;  =0. (8.25)
Combining equation (8.25) with equation (8.24) gives
e =15p;, —Tipi. . (8.26)
We can continue to show for pipe z
Uipipr,, —Uipl =0 fori=0,..s -1 (8.27)

Substituting equation (8.27) into equation (8.21) and equation (8.22) gives

Goorr = sz, = —€51° /07 (8.28)
However, adding all s* equations of the form (8.27) i.e for ¢ = 0,...,s* — 1, gives
USps: —Lope,,, = s"n" (8.29)

Rearranging equation (8.29) gives

n = (szpjgrr —I'gps,., )/s" (8.30)
Substituting equation (8.30) into equation (8.28) and using s*6x” = 1, gives

qgerr = qjgrr = _eg(rz/z-l-l bz/z-l—l . Fz—l/zbz—l/z)‘ (831)
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The estimates of the flow demands can be shown to be more sensitive than the es-
timates of the pressures to measurement bias. If we assume the real gas network is
operating in a fairly steady state, then system (3.2) also reaches a steady state. Then in

a similar way as for equation (8.31), we can derive

q(z)’ — qu — _eg(rz/z—l—lpz/z—l—l _ Fz—l/zpz—l/z) (832)

where ¢Z, ¢, p*~'/* and p?/**! are the steady states of Q6.1 Qo= 1 Po . and pZ. , respectively.

We assume we have a small inline flow in pipe section z and that we have linearised about

Q7% =0, then from equations (8.31), (8.32) we may derive

Error in normalised pipe end flow estimate  q5, = Qe [/z41pe/=41 _ Te=1/zp=1/z
Correct normalised pipe end flow ¢ qr TEleLlpp/eHl _Talzpe-1/zd

Using inequality (8.15), we have that [6*/?+! — b*/*~1| may be as large as 2/N,. However,

in a typical gas network, we would usually have a pressure drop of less than 3 bar along

the pipe, and for a very small flow, [[?/#+1 p?/2+1 _T#=1/2p2=1/2| may be very small indeed.

Hence, we can see that for a small flow, we may well have

Error in pipe end flow estimate

1. 8.33
Correct pipe end flow ~ ( )

Small demand flows at the junctions can be seen to have the same sensitivity problem
as the inline flows at the pipe ends. We assume there is a small junction flow demand at
the pipe junction z/z + 1, and that we have linearised about Q*/**' = 0. In which case,

from equations (3.6) and (8.23), we have

. . . . . 1
Error in normalised junction flow estimate itean e, — qé;
Correct normalised junction flow d#/=+1 gz — gt

where d?/*t1 is the steady state of di/Z—H. If the true junction flow demand, d*/*t!, is

z Z-|—1

very small, then ¢Z.~¢;"", and hence it can be seen that we could have

Error in junction flow estimate

(8.34)

Correct junction flow
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8.2 M2 Models

Consider the M2 system (4.3). If the M2 model is driven by [u,(k) 4 u,, ] where u,(k)
is the vector of ‘true’ pressures and u,, is a vector resulting solely from the unknown

constant biases of equation (8.1), then the actual model run is

Bz, (k+1) = Aszy, (k) + Bylus(k + 1) + 1y, ] + Balus (k) + ug,,, . (8.35)

If the base MO0 model is arranged and partitioned as in equation (3.1), system (8.35)
then has the form

&1t 0 Qlest(k—l_l) o
5271 _B%,Z dest(k—l_l)

N B, A

0 ./4272

2y (k) ] . (8.36)
py(k) +0

If equation (4.4) is subtracted from equation (8.36), we derive

5171 0 Py k + 1) _ ./4171 0 Blerr(k) n B% 1 5172 0
&1 =By | | dere(k+1) Azy B3y || der(k) 0 —&o || b
B2 A 0
L T . (8.37)
0 A, b

System (8.37) describes how the state estimate error, [}_7{ (k), d*

=err

(k)])T, due to constant

measurement bias behaves, and we investigate this now.

Since we have proved the M2 system (4.3) is asymptotically stable for 1/2 < <1,
then so is system (8.37) which has the same system matrices. Since the input vector, of

system (8.37) is constant, the system reaches a steady state given by

(E1p — Aig) 0 2 Bi, =& 0
(E21 — A21) (—Bj, —B3,) d.,, 0 —&p b
B2 A 0
S N (8.38)
0 A, b

Thus we see that p. is given by the top n — g rows of the above system, i.e.

(&1 — Al,l)ljlm = (=& 2+ Ai2)b
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As1 B3, dogi(F) 0 —&p p(k+1)+b
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which is identical to equation (8.5) for the M1 model. d.,,. is then given by the last
g rows of system (8.38), which correspond to the ¢ — 1 connectivity equations, and the
single downstream flow boundary equation.

We denote the corrupted state estimates of the downstream flow of the last pipe ¢7, ;,

and the demand flow di/Z—H at the general pipe junction z/z + 1, by

g — 9 g
qsgvkest - qsgyk —I_ qsgykerr

d;éi—l—l _ dz’/z—l—l _I_dz/z—l—l

kerr
respectively, where ¢, , and dZ:H are the errors introduced into these state estimates
by measurement bias.

The single downstream flow boundary equation for the last pipe ¢ is given by equa-

tion (2.19). Hence, the last row of system (8.37) contains the following scalar equation

for qggvkerr
—2(9(25579rgfgg_lpig_Lk_l_lm + (1 4 209,191, )pgg,k-l—lerr + (20Q§grg5:1;g/e§)q§g7k+lerr —

2(1 = )T 1 peg 1 g, + (1= 2(1 = 0) 2 150 )i ., — (2(1 = 0)x0 7027 /) ., -

Thus, the last row of system (8.38) contains the following scalar equation for ¢%

err

—2Q§grgfig_1p§g_lerr + QQggrgFgngg + (2Q§grg5:1;g/eg)q§g =0
and dividing through by 20719 and rearranging gives

Qs = _ﬁg(rggpigrr — ISPl )/ 627 (8.39)

Serr

which is identical to equation (8.22) with z = ¢, which gives the error in the downstream
flow estimate of an M1 model. Hence, we have shown that, asymptotically, the error in
the downstream flow estimate of an M2 model is equal to the error in the downstream

flow estimate of an M1 model.
The g — 1 connectivity equations for the general pipe section z/z + 1 are given by

equation (2.23). Hence, the last g rows of system (8.37) contain g — 1 scalar equations

for the variables, dZ :H, of the form

(@G 0/627)pie_y ., + (14 O FFIGD A 50t 4 @ G AL g gty

_(@Z/Z+1€§+1Fi+19/6$2+1)pi:ll—cl{-lerr + (I)z/z+19dzfl-|:r —

(LG (1=0) 607 e g+ HLGT (1) 0" @7 L GH D 4 (1) /507 ) )

err
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G (L= 0) /s piE! | - @ (1 - 0T

Rerr err

Thus, the last g rows of system (8.38) contain ¢ — 1 scalar equations of the following
z/z+1

form for the variables, dZ/7

—(q)Z/Z-HELZ),Fiz_1/6l‘z)p§z_1err + (q)z/z+1€§Fz/z+1/6xz + @Z/Z+1€§+1F2/2+1/6l‘2+1)pz{f-l_l
_(q)z/z+1€§+1ri+1/6xz+1)pil—Tlr + @Z/Z-Hd;{f-l_l -0
and dividing through by ®*/**! and rearranging gives

it = {=eg (D =L apie Ly ) /007y = {=eg P OTHpI ) T/ pi i) foa" 41 (8.40)

err err lerr

Returning again to the equations governing the errors in the flow estimates of an M1
model, if we substitute equations (8.21) and (8.22) into equation (8.23), then we derive an
equation which gives the error in a junction flow estimate of an M1 model, and which is
identical to equation (8.40). Hence, we have shown the asymptotic errors in the junction
flow estimates of an M2 model are equal to the asymptotic errors in the junction flow

estimates of an M1 model.

8.3 Observers Constructed Upon M3 Models

We show that the error due to measurement bias introduced into state estimate of the
direct observer, and the asymptotic steady error introduced into a dynamic observer,
constructed upon M3 models, are both equal to the asymptotic error introduced into
an M2 model. We assume the observers are constructed upon un-weighted M3 mod-
els (6.4); however, the same results may be obtained for weighted M3 models (6.23) by
incorporating the vector of weightings, [5(k), into the analysis.

If the M2 model is arranged and partitioned according to equation (4.2), then equa-

tion (8.35) may be written in the form

[ g ] (kD) [ v B ] p,,. (k) +[ B ] py(k+1)
dest(k —I_ 1) dest(k) BQ(k —I_ 1) —I' é
k
+ [ B? A”] 2;(%) (8.41)
p,(k) +b
If equation (4.2) is subtracted from equation (8.41), we derive
E+1 k
[ E' —B" ] A [ A BY ] P, (B | E"b+ A" (8.42)
derr(k + 1) derr(k)
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System (8.42) is equivalent to system (8.37) and describes how the state estimate error
due to constant measurement bias behaves. As explained previously for system (8.37),

system (8.42) reaches a steady state given by

[E/ . A/] [_BI// . B2//] ilerr — —E”é _I_ A//é. (843)

Zerr

We show that the error due to measurement bias introduced into the state estimate of
a direct observer and the asymptotic state estimate of a dynamic observer, constructed

upon M3 models, is given by an equation identical to equation (8.43).

8.3.1 The Direct Observer

Consider a direct observer (5.4), constructed upon an M3 model (6.4). We assume the
right hand side of equation (5.4) is formed from u;(k) and [y (k) + b], where b is the

vector of unknown constant biases from equation (8.1). The actual observer run is
®iest = é + Abias' (844)

where Ay, is a vector resulting solely from the biases b. © is the matrix

As —Fs 0 0
0 As —Es 0 0
0 0 As —E5 0 0

X= {2 (D)2 (k+ 1) 25 (k+2)", 2y (k40 —1)T],
where Z;_ (k) is the observer estimate for z;(k),
{A+ A" = {=(Bius(k + 1) + Bius(k))", —(Bius(k + 2) + Bius(k + 1))",
ooy —(Blug(k +n — 1) + Biug(k +n —2))7,
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[gg(k) + Q]Tv [Qg(k + 1) + Q]Tv ey [gg(k +n— 1) + Q]T}v

and n is the number of timesteps over which equation (8.44) is solved.

If equation (5.4) is subtracted from equation (8.44), we derive
®ierr = ébias' (845)
where

iZ—"/”/’ = {EBerr(k)T7236rr(k —I_ 1)T7E3err(k —I_ 2)T7 """ i-?)err(k —I_ n— 1)T}7

~

Zy (k) is the error due to measurement bias in the observer estimate for z5(k), and

AL = {07 0T, .....0", 0" 0", .07 ).

=bias

We observe that system (5.4) is the usual direct observer constructed upon an M3 model.
As shown previously in chapter 5, if the underlying M3 model accurately describes the
behaviour of the gas network, system (5.4) will give the true state of the gas network.
Then system (8.45) describes how the state estimate error, X due to constant mea-

—=err?

surement bias behaves.

Since the M3 model (6.4) with measurements (6.5) is completely observable, if the
the scalar equations of system (8.45) are consistent with each other the matrix © will
have a large enough rank to completely determine a unique solution for X',,.. The unique
solution is found from the following.

By inspection of system (8.45), it can be seen that a solution must behave according

to

Eszs, (k+1) = Aszs,, (k) (8.46)

with constraints
Coto,, (K) =B, (F) = (3.47)

~

We investigate a steady solution, Z5 = 25 (k) for all k, given by equations (8.47) and
ES@S&TT‘ = AS@BST’I" (848)

Assuming the M3 model is arranged and partitioned as in equation (6.3), and assum-

ing the base M0 system is arranged and partitioned according to equation (4.1), then
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equation (8.48) can be written in the form

[E/ . A’] [E" . A”] [_Bl” . Bz”]

5 = 0. (8.49)
0 0 0

Combining systems (8.47) and (8.49) gives

[E/ . A/] [E” _ A//] [_Bl” _ B2”]

(8.50)
0 I 0

“Zerr

o~

d

Zerr

>

—

0}

3

R
1
o~ S
| |

A unique consistent solution to system (8.50) can be found as follows. The last g rows
of system (8.50) give
5 =

2err

Then the top n rows of system (8.50) give

~

lerr

o~

d

Zerr

[E/ N A/] [_BI// . an] :| — _E”é‘l’ A//é

which is identical to equation (8.43).

Hence, the error introduced into the M3 model-based direct observer state estimate
due to the constant measurement bias of equation (8.1), is identical to the asymptotic
error introduced into the state estimate of M2 models, which in turn is identical to the

asymptotic error introduced into the state estimate of M1 models.

8.3.2 The Dynamic Observers

Consider a dynamic observer, (5.5) or (5.25), constructed upon an M3 model (6.4). If
the observer is driven by us(k) and [y (k) + b], where us(k) and y, (k) are vectors of
‘true’ pressures, and b is a vector resulting solely from the unknown constant biases of

equation (8.1), then the actual observer run is
(By — HO)E (k1) = (As — GO, () + Blus(k 1 1) + Blus(h

— Hly,(k+1) 4+ 0] + Gly, (k) + b, (8.51)
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where the matrix H may be zero for design B dynamic observers.

If equation (5.25) is subtracted from equation (8.51), we derive
(By — HO3)E,,, (k4 1) = (As — GCo)is,, () — Hb+ G (5.52)

We observe that system (5.25) is the usual dynamic observer constructed upon an M3
model. As shown previously in chapter 5, if the underlying M3 model accurately de-
scribes the behaviour of the gas network, system (5.25) will tend asymptotically to the
true state of the gas network. Then system (8.52) describes how the state estimate error,

~

25 (k), due to constant measurement bias behaves.

Since the original observer system is assigned eigenvalues within the unit circle, sys-
tem (8.52) also has its eigenvalues within the unit circle and is asymptotically stable.
Also, since the input to system (8.52), —Hb + (b, is constant, the system tends with

time to a steady state, Z; , given by

Assuming the M3 model is arranged and partitioned as in equation (6.3), and the base
MO system is arranged and partitioned according to equation (4.1), then equation (8.53)

can be written in the form

[E/ . A’] [E" — H, — A" 4 Gl] [_Bl” . Bz”] :lerr B _H, + Gl
0 —Hy + Gy 0 _212 —Hy+ Gy |
(8.54)

where Hy, Hy, GGi and (G5 are the matrix blocks arising from the feedback matrices.

Since system (8.52) does not have an eigenvalue equal to 1, the matrix [(£s — HC5) —
(As — GC3)] must be full rank, and so the square matrix block (—Hy 4+ (3) is full rank
also. Then it can be seen that the bottom ¢ rows of system (8.54) give

p, =b (8.55)

2err

Substituting equation (8.55) into the top n — g rows of system (8.54) gives

~

[E/ _ A/] [_Bln . Bz//] Blerr — —E”é _I_ A//é

o~

d

Zerr
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which is identical to equation (8.43).

Hence, the asymptotic error in the M3 model-based dynamic observer due to the
constant measurement bias of equation (8.1), is identical to both the error introduced
into the state estimate of a direct observer and the asymptotic error introduced into the
state estimate of M2 models, which in turn is identical to the asymptotic error introduced

into the state estimate of M1 models.

8.4 Experiments

As the M0 model was run, the pressures at the upstream end and the sites of flow
demand were recorded at each timestep. The pressure measurements at the three flow
demand sites, A/B, B/C and C, were then corrupted by constant biases of 1 bar, —1 bar
and 1 bar respectively. These corrupted pressures were then fed into the M1 and M2
models, and M3 model based observers. The flow demands predicted by these estimation
techniques were then compared with the true flows used as inputs to the M0 model.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
D¢ are shown as thick lines in Figs. A, B and C respectively, and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F
respectively.

The M3 model based observers include the exact values of the weightings, Ngem“”d site

in the trivial flow demand difference equations so that the effects of the measurement

biases may be observed without other forms of error present.

Data taken from M0 model with identical mesh - M0, M1, M2 and M3 models
have 10 spatial nodes along each pipe.

Experiment 8.1) M1 Model with § =1

Experiment 8.2) M2 Model with § =1

Experiment 8.3) Observer Design B (small eigenvalues) with § = 0.5

Experiment 8.4) Observer Design C (small eigenvalues) with § = 1
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Data taken from M0 model with identical mesh - M0 and M3 models have 5
spatial nodes along each pipe.

Experiment 8.5) Observer Design A with § = 0.5
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8.5 Discussion

The estimates of the flow demands, from all of the flow estimation techniques, were
completely swamped by the error introduced by pressure measurement bias. Hence, a
technique must be found to deal with such measurement biases. One approach would be
to consider such biases as sensor faults and investigate fault diagnosis techniques [33].
Another approach, described in [34], tries to incorporate the biases into the existing model
state vector and construct an observer upon such an augmented model. However, we can
show that any such techniques will not work with the M1, M2 or M3 models presented
so far; and that an entirely new model will be required to filter out the adverse effects of
measurement bias. From the preceding analysis contained in this chapter, it can be seen
that, when running an M1 or M2 model, or any type of observer based upon an M3
model, any time series of pressure inputs and measurements which have been corrupted
by any set of constant pressure sensor biases, are perfectly consistent with some unique
times series of M1, M2 or M3 system states with no pressure input or measurement
biases, which will be the actual state estimates given (asymptotically, in the case of a
dynamic observer). Hence, as long as the biases are not so gross that these new M1,

M2 or M3 system states are unphysical, the biases will be undetectable.

Firstly, we consider M1 and M2 models. Assuming some initial conditions, any

(k) = p,(k) + b, will be

time series of bias corrupted pressure inputs, }_73(k) and Py
perfectly consistent with either the unique times series of M1 system states given by
equation (8.2), or the unique times series of M2 system states given by equation (8.35),
where the unbiased M1 and M2 input pressures would be assumed to be }_73(k) and
(p,(k)+28). These unique M1 and M2 system states would obviously be the actual state

estimates given by the M1 and M2 models.

Next, we consider M3 models. Assume the true state of the gas network is given by
an M3 model
Eazs(k +1) = Aszs(k) + Byus(k + 1) + Bius(k) (8.56)

where

Cszy(k) = p, (k)
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for some initial conditions. In the preceding analysis of this chapter, it was shown that

the error in the direct observer estimate was given by a steady M3 model sequence
E'?’i?)err(k —I_ 1) = AS@Berr(k) (857)

consistent with constraints

Cois,,, (F) =D, (K)=b, (8.58)

“2err -
and that the asymptotic error in the dynamic observer estimate was identical. If we add

system (8.57) to system (8.56), we derive the following system
EB&Best(k —I_ 1) = AS&Best(k) —I_ B;%(k —I_ 1) —I_ B32Q3(k) (8'59)

which is consistent with biased pressure measurements

QSESt(k) = 03£3est(k) = BQ(k) + év

where x5 (k) = z3(k) + Z5_ (k). Hence, any time series of bias corrupted pressure

measurements, p, (k) = p,(k) + b, will be perfectly consistent with the unique

measured
times series of M3 system states given by equation (8.59), where the unbiased input and
measurement pressures are assumed to be p_(k) and (p,(k) + b) respectively.

From the previous analysis of this chapter, the estimate of a direct observer, and the

asymptotic estimate of a dynamic observer will be given by z5(k) + Zs_, , i.e. by 25, (k)

of system (8.59).

In the next chapter we investigate a new model variation that is able to estimate the
pressure measurement biases by incorporating information about the time-profiles of the

flow demands in a different manner to weighted M3 models.
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Chapter 9

Measurement Bias and M4 Models

It may be the case that the pressure measurements at the sites of flow demand are subject

to a constant bias, i.e.

|2

(k) = p,(k) + b(k) (9-1)
where b(k) is a g dimensional vector of constant measurement biases. This is a serious

problem for flow demand estimation and these pressure measurement biases need also to

be estimated.

The ¢ measurement biases are assumed to obey
b(k+ 1) = b(k). (9.2)

To try to estimate these biases, we construct a new model variation, which we denote
by M4. As with the construction of the earlier M3 model, we start from a base M0
model. As before we first incorporate the input variables, d(k), into the state vector, but
this time the M4 models assume trivial difference equations for the flow demands of the

form

flOU) demanddzzfnd site _ w]cjemand stte % flOU) demanddzm“”d site

demand site

where the w{ are estimated from other measured flow demands. After normali-

sation, we would have

normalised flow demandd,ﬁf”d site — qpfemand site o pormalised flow demand®y™*™ #t°,
that is, we would have
demand site demand site demand site demand site demand site
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Hence, the normalised and linearised gas network M4 models now contain difference

equations of the form

ddz:r_ullnd site  _ w]cjemand site « ddzmand site T (wiemand site 1) « Qdemand szte‘ (94)

These scalar equations may be written together as the following sub-system of the M4
model

d(k +1) = W(k)d(k) + (W(k) —I)g

where W (k) is a diagonal block containing time-varying profile coefficients, w{emaend site

and ¢ is a vector containing the steady flow demands, Qdemand site ahout which the gas
network model is linearised. The term on the far right, (W (k) — I)g, is included on the
right hand side of the M4 system as shown below.

Next we incorporate the measurement biases into the new state vector, and incorpo-

rate the trivial difference equations (9.2) into the system.

Assuming the base M0 model is arranged and partitioned as in equation (4.1), then

the new n 4+ 2¢ dimensional M4 system has the form

Ey —BY 0] zo(k+1) Ao BY 0| z4(k)

0 I 03[dk+1)I=F0 Wk 07F dk)

0 0 Il bk+1) 0 0 11l bk
BY B?

+ L0 Jp(k+ 1)+ F 0 Ip,(k)+ | (W(k)—1)g (9.5)
0 0 0

which can be expressed in the general descriptor system form
E4£4(k + 1) = A4(k)£4(k) + Bi24(k + 1) + BZH4U¢) + 14(]5) (9-6)

where the system matrix A4(k) is time-varying. It should be noted that the Hautus
condition has been shown to be necessary and sufficient for the complete observability of
time-invariant systems only.

For such an M4 model, the only pressure input required is the upstream pressure

(assumed known). The ¢ pressure plus bias measurements of the real gas network at
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the sites of flow demand are not needed as inputs to the M4 model, and are, in fact,

measurements of its state variables

y (k) = Cazy(k), (9.7)

available for use in a direct or dynamic observer.

9.1 Theorems

In this section, we firstly prove that the matrix Iy of an M4 model is full rank if 6 > 0.
Secondly, we prove certain conditions to be sufficient to guarantee the assignability of
eigenvalues to the observer at a particular timestep. In fact, we show that for 1/2<0<1,
if at a particular timestep, the diagonal elements of W (k) are not equal to either 1 or to
any of the eigenvalues of the corresponding M2 model, then at that timestep the Hautus
condition holds for the M4 model (9.6). Finally, we show the necessity of the new M4
model form of the profile difference equations for the flow demands. It is shown that if
the profile difference equations of an M4 model are replaced by the M3 model profile

difference equations, then the Hautus condition never holds at any timestep k.
Theorem 9.1 If§ > 0, the £y matriz of an M4 model is full rank.

Proof

Eyis (n 4 2¢)x(n + 2g) and takes the form

E, —B' 0[
Fy = 0 I 0
0 0 I

where [ is gxg.

By construction, since we have already shown Ej is invertible if § > 0, E; ! is
(n+2g)x(n 4+ 2¢) and takes the form
E;' E;'BY 0
Ef'=1 0 I 0
0 0 1
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where [ is gxg.

Hence, the 4 matrix of an M4 model is full rank. O

Theorem 9.2 For 1/2<0<1, if at a particular timestep the diagonal elements of W (k)
are not equal either to 1 or to any of the eigenvalues of the corresponding M2 model,

then at that timestep the Hautus condition holds for the M4 model (9.6).

Proof

By inspection, at any particular timestep, k, the eigenvalues of an M4 system con-
sist of the n eigenvalues of the base M0 system, ¢ eigenvalues equal to the ¢ variables
demand site

wy , and ¢ eigenvalues equal to 1. Hence, the eigenvalues of the M4 system are

real.

The Hautus condition holds for the M4 system if and only if for all peR

(Aa(k) — pEs)o =0 (9.8)
Cyo =0 (9.9)
—
v=20 (9.10)

where veR"T%9,

Equation (9.10) = equations (9.8), (9.9) trivially.

Equations (9.8), (9.9) and (9.10) can be expressed in the following way. The Hautus
condition holds for the M4 system if and only if for all peR

(Ao — nEo)u, + (B — p(=B"))o, = 0 (9.11)
(W (k) = pD)z, = 0 (9.12)

(1- )i, =0 (9.13)

Cov, + 0, =0 (9.14)



~T ~
where v = [Qg,gg,gg]:r , and v, €R", v, €RY, v ,€R’.

We firstly consider the case where u#1.
Equation (9.13) implies o, = 0.
Substituting v, = 0 into equation (9.14) gives

Cov, = 0. (9.16)

If pFwiemend site for all flow demands, equation (9.12) gives v, = 0.

Substituting v, = 0 into equation (9.11) gives

=0 (9.17)

Since the original M0 system is completely observable for # > 0, we have for all peR
(Ao — pEo)v, =0 , Cov, =0 < v, =0. (9.18)

Equations (9.16), (9.17) and (9.18) give v,, = 0.
Hence we have v = (.
If = wiemand site for any flow demands, we consider the base M0 system partitioned
according to equation (4.1). Then equation (9.11) can be written as the following system
T T T)T

of n equations for the n + g dimensional vector [v, 0, ,v,

(A=) (A" —pE") (B —u(-B"NIE 5, 1=0  (0.19)

where



and v, ,€R"7Y and v, €R.
Equation (9.16) zeros the elements of v,, corresponding to the measured pressures at
the sites of flow demand; i.e. equation (9.16) zeros v,. Removing v, from system (9.19)

gives the system

(4 —t?) (B (=B %z 0. (9.20)

Yy

However, the system matrices of an M2 model corresponding to the base M0 model

have the form

So system (9.20) has the form

(A= ) | - =0 (9.21)

demand site

If we assume p = wy, is not equal to an eigenvalue of the corresponding M?2

system, (As — pksy) is full rank, and hence system (9.21) implies

Hence we have v = (.

We secondly consider the case where p = 1.

demand site

Since we are assuming none of the w} are equal to 1, equation (9.12) gives

vg:Q.

Substituting v, = 0 into equation (9.11) gives
(Ao - ,MEO)Qn = 0.

Since we have shown for 1/2<6<1, that all the eigenvalues of the original M0 system
have modulus less than 1, the above equation with ¢ = 1 implies v,, = 0.

Substituting v, = 0 into equation (9.14) gives v, = 0.
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Hence we have v = (.
Hence, we have the result; equations (9.8), (9.9) = equation (9.10).

Hence, for 1/2<0<1, if at a particular timestep the diagonal elements of W (k) are
not equal either to 1 or to any of the eigenvalues of the corresponding M2 model, then

at that timestep the Hautus condition will hold for the M4 model (9.6). O

We construct dynamic observers for such an M4 system by finding a new feedback
matrix, G(k), at each timestep to assign eigenvalues within the unit circle. Since, the
matrix A4(k) is time-varying, assigning eigenvalues within the unit circle is not necessarily
sufficient to cause the observer to converge asymptotically. However, if the dynamics
of the real system are quite slow, from [15], it follows that assigning sufficiently small
eigenvalues may well give convergence.

We can find the feedback matrix G(k) to assign observer eigenvalues arbitrarily at
each timestep k& when the Hautus condition holds, and the above theorem implies the
Hautus condition does not hold for only a few specific values of the coefficients w74, At
these particular timesteps we can run the simple M4 model i.e. without the observer
feedback terms G(y(k) — Cz(k)) or H(y(k +1) — Cz(k + 1)). However, alternatively, it
may be possible to choose 8 to place the eigenvalues of the corresponding M2 system

node

away from likely values of the coeflicients w};°*, which for slowly varying flow demands

should be close to 1.

Lastly, in this theory section we show why the new M4 model form of trivial difference
equation (9.4) for the flow demands is neccessary in order to estimate the measurement

biases. We have the following theorem.

Theorem 9.3 I[f the trivial difference equations

ddzT_lr_L%nd site  _ w]cglemand site % ddzmand site T (wzemand site 1) % Qdemand site

of an M4 model are replaced by the M3 model difference equations
ddz:r_ullnd site _ ddzmand site T f]ilemand site fOT all k,

then the Hautus condition never holds at any timestep k.
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Proof

If we had incorporated the previous M3 model form of difference equation (6.22)
into M4 models, the M4 system matrices would have been identical except that for the
matrix block W(k), we would have had W (k) = [ for all timesteps k. Thus, the matrices
FE4 and A4 would have had the form

E, —BY 0
Es=t 0 I 0
0o 0 I
and
Ay B¥ 0
Ar=FL 0 1 0
0o 0 I

The Hautus condition holds for this alternative M4 system if and only if for all p€R

(Ay— pE v =20 (9.22)

Coo =0 (9.23)
=

v=20 (9.24)

where veR"T%9,

We combine systems (9.22) and (9.23) into the following system
Ay — pE
( 4= M 4) ]LQ:Q. (9'25)
Cy

For y =1, from the above structures for Ay and FEj4, we can see that (As — pFy) has

rank at most n, whilst 'y has rank ¢g. Hence, the matrix

(Ag — ply) ]L
Cy

has at most rank n 4 ¢, and, by the ‘rank 4 nullity’ theorem [14], [27], system (9.25)

admits non-zero solutions for v. Hence, the Hautus condition does not hold. O
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9.2 Experiments

As the M0 model was run, the pressures at the upstream end and the sites of flow
demand were recorded at each timestep. The pressure measurements at the three flow
demand sites, A/B, B/C and C, were then corrupted by constant biases of 1 bar, —1 bar
and 1 bar respectively. These corrupted pressures were then fed into both design A and
design B observers constructed upon an M4 model. For the design B dynamic observer,
the feedback matrix, &, was recalculated at each timestep, and the assigned eigenvalues
were spread evenly in the interval (0,0.1). Experiments with design C observers are not
presented since design C observers constructed upon M4 models were found to behave
similarly to design B observers. The flow demands predicted by the observers were then
compared with the true flows used as inputs to the M0 model. For experiments 9.1 to
9.3, the M0 model simulating a gas network was identical to the M0 model upon which
the M4 model was constructed. For experiments 9.4 to 9.8, the M0 model simulating
a gas network had a much finer discretisation (in both space and time) than the M4
model.

In all experiments, the M4 models were given the exact values of the profile coeffi-
cients, wiemand sitecalculated from the flow demand inputs to the M0 model.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
DY are shown as thick lines in Figs. A, B and C respectively, and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.

Data taken from M0 model with identical mesh - both M0 and M4 models
have 10 spatial nodes along each pipe.

Experiment 9.1) Observer Design B with 6 = 1

Experiment 9.2) Observer Design B with § = 0.75

Experiment 9.3) Observer Design B with § = 0.5

Data taken from M0 model with much finer mesh - M4 model has 5 spatial

nodes along each pipe.
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Experiment 9.4) Observer Design A with § =1
Experiment 9.5) Observer Design A with § = 0.75
Experiment 9.6) Observer Design A with § = 0.5

Data taken from M0 model with much finer mesh - M4 model has 10 spatial
nodes along each pipe.

Experiment 9.7) Observer Design B with 6§ = 1

Experiment 9.8) Observer Design B with § = 0.75
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9.3 Discussion

The chosen flow profile was a severe test for the observers due to the long central period
for which the flow demands remained constant. For this period the feedback was omitted

from the dynamic observer leaving the simple M4 model.

When data was taken from an MO0 model with an identical mesh, the direct observer
gave perfect state estimates for all timesteps (although these graphs are ommitted), for all
values of #€[1/2,1]. However, if fewer spatial nodes were used, the direct observer could
fail during the period for which the flows remained constant. Increasing the number
of spatial nodes increased the dimension of the M4 model, and hence, the number of
timesteps over which equation (5.4) was solved. This helped to give equation (5.4) a
large enough rank to be solved for a unique solution over these difficult regions of the
flow profiles.

With data taken from an identical mesh, the dynamic observer converged successfully
with time for § = 1 and § = 3/4, but not for § = 1/2. As 6 moved from 1 to 1/2, the
assigned observer eigenvalues became more sensitive in a similar way to M3 model based
dynamic observers. Indeed, on checking the assigned observer eigenvalues, it was found
that all eigenvalues were within the unit circle when ¢ = 1 but not when 0 = 1/2. It
may be that for § = 1/2, the M4 system is in some sense ‘close’ to losing the Hautus
condition. Gaining theoretical understanding of this problem would be worthwhile future
research. For the dynamic observer, it was also noted that the eigenvalues of the system
needed to be not only within the unit circle, but much closer to the origin before there was
convergence. Since the observer has time-varying system matrices, assigning eigenvalues
within the unit circle is not sufficient for asymptotic stability, and hence convergence.
From [15], sufficiently small eigenvalues need to be assigned before there is convergence.

Unfortunately, we have no theoretical guarantee of the observability of the time-
varying M4 system, or of the performance of the direct and dynamic observers con-
structed upon such models. This would be a worthwhile area of future research, for

which some useful references would be [41], [26], [6], [7], [15].

When data was taken from an MO0 model with a much finer discretisation, both di-
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rect and dynamic observers behaved poorly for # = 1. Direct and dynamic observers
constructed upon M4 models are in some sense more sensitive to modelling (and mea-
surement) error than previous estimation techniques investigated in this thesis. From
various experiments performed, it was seen that the error present in the state estimates
generally seems to have the following form. The error seems to decrease over periods

demand site

when the profile coefficients, w{ , are constant, but increase suddenly when there

is a sudden change in the values of w™ad ¢ This is not understood, but it may be
the case that an alternative observer design could help to reduce such error. Perhaps an
observer that switched between the different models, M3 and M4, at certain times of
day could be designed to estimate the biases, where the M4 model based observer would
run over certain ‘favourable’ timesteps only. Then these estimates of the biases may be
kept while an M3 model based observer is run over periods where an M4 model based
observer would fail.

However, as § moved from 1 to 1/2, the error introduced by taking data from a finer

mesh was reduced. For § = 1/2, the dynamic observer failed due to the sensitivity of the

observer eigenvalues; however, the direct observer coped very well indeed.

In the next chapter, we look at the problem of pressure measurement noise. Experi-
mental results show clearly the extra sensitivity of M4 models, the flow state estimates
of which are completely swamped by the error introduced by measurement noise. To deal
with this problem, we examine two simple smoothing techniques, and derive two final
model variations, M5 and M6, to deal with the problem of the sensitivity of the flow de-
mand estimates. M5 and M6 models have only a single total low demand perturbation
state variable that is the sum of all the individual demand flow perturbation variables.

Such models are less sensitive to pressure measurement noise.
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Chapter 10

White Noise, Flow Integration
Smoothing Techniques, M5 and M6
Models.

All pressure measurements taken from gas networks are subject to white noise, which is
assumed to have a Gaussian distribution with mean 0 bar and standard deviation 0.1 bar
[11], [38]. Due to the sensitivity of small flow demand estimates to pressure measurement
perturbations, this is a major problem and we now look at filtering/smoothing techniques.
We avoid Kalman filters due to their unexceptional performance in [17], [40], [35], and
instead examine two simple smoothing techniques that are computationally cheap, but
very effective. These two smoothing techniques make use of the known flow demand
profiles; the first technique is based on difference equations of the form (6.22), and the
second technique is based on difference equations of the form (9.4). We also derive two
final model variations, M5 and M6, to deal with the problem of the sensitivity of small
flow demand estimates. M5 and M6 models have only a single total low demand per-
turbation state variable that is the sum of all the individual demand flow perturbation
variables. Such models are less sensitive to pressure measurement noise. M5 models
are based on difference equations of the form (6.22), and give quite acceptable flow de-
mand estimates when measurement noise is present. However, M5 models cannot cope
with measurement bias. Hence, M6 models are developed, which are based on difference

equations of the form (9.4), which can also estimate biases.
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N.B. Up until now, in experiments throughout this thesis, the flows at demand sites
A/B, B/C and C were in the ratio 2:5:13. However, in this chapter a few indicated
experiments will also be run with the flows in the ratio 20:1:79. This will be important
in demonstrating the differing effects of pressure measurement noise on the estimates of

flow demands of considerably different magnitude.

10.1 The Effects of White Noise on the State Es-
timation Techniques Presented So Far

In this section, we examine experimentally how the presence of white noise in the pres-
sure measurements affects the flow demand estimates of the various model and observer

techniques.

10.1.1 Experiments

In the following experiments, the models and observers were tested using the same flow
profiles as used previously throughout this thesis, which we call profile a. For profile a,
the flow demands were initially increasing linearly, then constant, and then decreasing
linearly. However, the experiments with M4 model based observers are repeated with
new profiles, which we shall call profile b. For profile b, the flow demands were initially
decreasing linearly, then increasing linearly, and then decreasing linearly again. Profile
a was a servere test for the M4 model based observers due to the long central period
for which the flow demands remained constant. Profile b, does not have any period for

which the flow profile coefficients, wemand site are 1.

As the M0 model was run, the pressures at the upstream end and the sites of flow
demand were recorded at each timestep. The pressure measurements at the three flow
demand sites, A/B, B/C and C, were then corrupted by white noise with a Gaussian
distribution with mean 0 bar and standard deviation 0.1 bar. At each timestep, the
measurement noise errors were independent of the measurement noise errors at other
timesteps. For the experiments with M4 model based observers, the pressure measure-

ments at the three flow demand sites, A/B, B/C and C, were then corrupted by constant
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biases of 1 bar, —1 bar and 1 bar respectively. These corrupted pressures were then fed
into the M1 and M2 models, and M3 and M4 model based observers. The flow de-
mands predicted by these estimation techniques were then compared with the true flows
used as inputs to the MO0 model.

The M3 and M4 model based observers incorporated the exact values of the weight-

demand site

flemand site and profile coefficients, w?

ings, , respectively.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
DY are shown as thick lines in Figs. A, B and C respectively, and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.

Data taken from M0 model with identical mesh
All experiments were based on models with 10 spatial nodes per pipe, except for exper-
iments 10.3, 10.6 and 10.8 (direct observers), which were based on models with 5 spatial

nodes per pipe. For all experiments, the flow demands were in the ratio 2:5:13.

Experiment 10.1) M1 Model with 0 = 1 (flow profile a)

M2 Model with 0 = 1 (flow profile a)

(M3 model) Observer Design A with 0 = 0.5 (flow profile a)
Experiment 10.4) (M3 model) Observer Design B (small eigenvalues) with 0 = 1 (flow
profile a)

Experiment 10.5) (M3 model) Observer Design C (small eigenvalues) with 0 = 1 (flow
profile a)
Experiment 10.6

Experiment 10.2
Experiment 10.3

)
)
)
)

M4 model) Observer Design A with 0 = 0.5 (flow profile a)
M1 model) Observer Design B with § = 1 (flow profile a)
M4 model) Observer Design A with 6 = 0.5 (flow profile b)
M4 model) Observer Design B with § = 1 (flow profile b)

Experiment 10.7
Experiment 10.8

) ( )
) ( )
) ( )
) ( )

Experiment 10.9
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10.1.2 Discussion

For all estimation techniques, the smaller the flow demand, the more badly affected they
were by the pressure measurement noise. Of the estimation techniques that did not es-
timate measurement bias, only direct observers based upon M3 models gave acceptable
estimates of the larger flow demands. However, these are computationally expensive, and
a robust dynamic observer is really needed. Regarding bias estimating techniques, both
direct and dynamic M4 model based observers were particularly sensitive to measure-
ment noise, and no improvement was found for any value of #. Also, the choice of flow
profile did not seem to greatly affect the dynamic M4 model based observer, although,

the direct observer seemed to give more accurate flow estimates with profile b.

We will now investigate two smoothing techniques that help to reduce significantly
the error in the flow demand state estimates due to measurement noise. These smoothing
techniques are based on the two types of trivial difference equation used in M3 and M4

models respectively.

10.2 The M3 Flow Integration Smoothing Tech-
nique

It is possible to use the known profiles of the flow demands to smooth the profiles of
the flow demand estimates corrupted by pressure measurement noise. For the M3 flow
integration smoothing technique, we use trivial difference equations for the low demand
perturbations of the form (6.22). An M3 model based observer is run continuously.
Over any time interval, k = r,...,s, (say one hour), for each demand the estimated
flow perturbation at each time step is integrated, that is, for each flow demand we find

S8 _ ddemand site where ddemend it is our noise contaminated estimate of ddemand site,

Since

Gdemand sit demand sit
dkeman stie — dkeman stie _I_ ek
where e is some varying error due to noisy inputs to the observer, we have that

s Tdemand site s demand stte s
Zk:rdk - Zk:rdk + Zk:rek'
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Since the assigned observer eigenvalues are asymptotically stable, we would expect that

in the sum 3 ;_ e, the individual e cancel out to some extent, and that

s Jdemand site
Ek:rdk

s demand site
Ek:rdk

—s1 as s —r—o0. (10.1)

Some attempt was made to provide a statistical proof of equation (10.1), but this was
not achieved. Future theoretical investigation of the validity of equation (10.1), would be
worthwhile, and a useful reference for this would be [12] p.30. Assuming equation (10.1)

ddemand site is 3 good estimate

holds, if the time period k = r,..., s is large enough, >7_.

s demand stte
of >°7_.ds .

If, after a large time period, £k = r,...,s, we assume we have a good estimate of

S5 _ diemand site then we can find d%me¢ ¢ from the following.

From the definition of the flow demand profile jumps, Ngem“”d site it can be seen that

for any timestep &
. . kel ~ .
demand stte __  jdemand site demand site .
d;, =d; -I-E],:Tfj if k>r
from which we can derive

Zzzrdiemand site — (S —r 4+ 1)diemand site 4 ZZ:T+1(Zj;:ﬂdemand site)7

i.e.

d d sit k=1 7d d sit
ddemand site _ (ZZ:Tdkeman 5% e) _ ZZ:T+1(Z]':T jeman 5% e)
! (s—r+1)

Once Yi_, diemaend site i calculated, it may be used as an estimate for $5_ ddemand site,

ddemand site ddemand site
7 7

may then be estimated from the above equation. From we can

Y

compute diemand site for all k from the difference equations (6.22).

10.2.1 Experiments

The M3 flow integration smoothing technique was not found to work well with direct

observers. Hence, only experiments with dynamic observers are presented here.

Experiments 10.4 and 10.5 were repeated as experiments 10.10 and 10.11, respectively,
this time applying the M3 flow integration smoothing technique to timesteps 10 to 30.

Hence, only results for these timesteps are presented.
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10.2.2 Discussion

It can be readily seen that the M3 flow integration smoothing technique significantly
reduces the error, due to pressure measurement noise, in the flow demand estimates of
M3 model based dynamic observers. Also, the smoothing technique maintains the true
‘shapes’ of the profiles, but with the measurement noise causing such estimated profiles

to be shifted up or down the flow demand axis.

Although it was not investigated experimentally, the M3 flow integration smoothing
technique could be implemented as a filtering technique for each current time-level. At
each new timestep, s, the smoothing process would be carried out over some timesteps,
k=r, .. s, togive a filtered estimate for the current time-level s. This would be a more
useful approach, and the effectiveness of such an M3 flow integration filtering technique

would be worth exploring.

10.3 The M4 Flow Integration Smoothing Tech-
nique

For the M4 flow integration smoothing technique, we use trivial difference equations for
the flow demand perturbations of the form (9.3). An M4 model based observer is run
continuously. Over some time interval, k& = r,...,s, (say one hour), for each demand
the estimated flow perturbation at each time step is integrated, that is, for each flow
demand, we find ZZZTJiem“”d site where Jiem“”d site is our noise contaminated estimate

of ddemand site - Ag explained previously, we expect that if the time period k = r,.... s is

Ciiemand site diemund site

large enough, then »77_ will be a good estimate of >°;_,

Firstly, it is obvious that
: : s demand site demand site
Total normalised integrated flow = Zk:r(dk “+0 )

_ (S — 1)Qdemand site T ZZ:Tdiemand site‘ (102)
Secondly, from equation (9.3) it can be seen that

Total normalised integrated flow = (d%mend site . Qdemand site)
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><(1 _I_ wfemand site _I_ wfemand sitewgiqmnd site _I_ _I_ Hzl__lTle/emand site)

— (dgemand site T Qdemand site)(l T Zz;i(H::Twz/emand site))

— diemand site(l_l_zz;i(H:/:Twzl/emand site))_l_ Qdemand site(l_l_zz;i(H::Twzl/emand site))‘

(10.3)

Combining equations (10.2) and (10.3) gives

d d sit d d sit
ddemand site __ (S — T+ 1)Q e e + ZZZTdkeman e . Qdemand site
T - (1 + 25—1 (Hk wdemand site)) :
k=r ki=r %k

Once Yi_, diemaend site i calculated, it may be used as an estimate for $5_ ddemand site,

ddemand site may then be estimated from the above equation. From d®m"d sit¢  we can

compute diemand site for all k from the difference equations (9.4).

10.3.1 Experiments

The M4 flow integration smoothing technique was not found to work well with direct
observers. Hence, only an experiment with a design B observer is presented here (the

smoothing technique worked equally well with a design C observer).
Experiment 10.9 was repeated as experiment 10.12, this time applying the M4 flow

integration smoothing technique to timesteps 10 to 30. Hence, only results for these

timesteps are presented.
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10.3.2 Discussion

For Figs. D and F, the graphs coincide with the axes.

It can be readily seen that the M4 flow integration smoothing technique significantly
reduces the error, due to pressure measurement noise, in the flow demand estimates of

M4 model based dynamic observers. However, the error is still very large indeed.

In a similar way to the M3 flow integration smoothing technique, the M4 flow inte-
gration smoothing technique may be implemented as a filter for each current time-level.
Although an M4 flow integration filtering technique was not investigated experimentally,

the performance of such a technique would be worth exploring.

The M3 and M4 models still contain the underlying sensitivity of the small flow
demands to pressure measurement perturbations. For this reason we next examine two
new model variations, M5 and M6 models, for which the estimates of small flow demands

from observers constructed upon such models are significantly less sensitive.

10.4 The M5 Model

Due to the sensitivity of the previous models to pressure measurement noise, we now
investigate a new model variation, denoted by M5, which has only a single total flow
demand perturbation state variable that is the sum of all the individual demand flow
perturbation variables. We consider the g scalar equations of the form (6.22). If we add

these ¢ equations together we can derive
digt, = di + [t for all k (10.4)

whete d = T siemr i and = S ey JEm S, The M
models now contain the single state flow variable, d{* with a difference equation of the
form (10.4), where the sum of weightings, N};Ot, is contained in a vector on the right hand
side of the system as shown later.

To recover the values of the separate flow demand perturbation variables, dfemaend site,

from di°*, the model uses information about the relative magnitudes of the flow demands;
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demand site

that is, we assume that at each timestep, for each flow demand the ratio, af , 18

known, where

d demand site demand site
k

flow deman = ap x total flow demand j

and Ogaiemand sitegl‘

After normalisation, we would have

demand site

normalised flow demand ™™ ** = o x normalised total flow demand j,

that is, we would have for any particular demand site h (where h may be a junction

demand site, z/z + 1, of general pipes z and z 4 1, or the downstream demand site, ¢)

Qh + dz = ozz X Zflemand Site:l(gdemand site + diemund site)
and hence
dz — Oézdzl;ot + aZQtot . Qh (10‘5)
where QtOt = flemand site=1 Qdemand site‘

To form an M) model, we start from a base M0 model. All the basic difference
equations of the form (2.17) remain unchanged in an M5 model. However, the g — 1
connectivity equations and the single downstream flow boundary equation are altered by
the following. The ¢ flow demand perturbation variables are removed from the input
vector, summed into a single total low demand perturbation variable, and then incorpo-
rated into the new M5 state vector, that is, the n dimensional M0 state vector z4(k) is

augmented to the n + 1 dimensional M5 state vector

io(k)

tot
dk

is(k) =

The new trivial difference equation (10.4) is then added to form the M5 system. Assum-
ing the base M0 model is arranged and partitioned as in equation (4.1), the new n + 1
dimensional M5 system has the form

Ey elk+1) || zolk+1) Ao a(k) | | zo(k) BY B?

tot - tot —I_
0 1 it 0 1 dt 0 0
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v(k v
v(k+1) . _N(k)
0 i

where the vectors e(k + 1) and a(k) contain only the time-varying coefficients linking

(10.6)

the total flow variable, di°, with the new forms of the ¢ — 1 connectivity equations and
the single downstream flow boundary equation. Likewise, the vectors v(k + 1) and v(k)
contain only elements associated with the ¢ flow equations. These elements of e(k + 1),
a(k), v(k + 1) and v(k) are now determined by considering the new forms of the flow

equations in M5 models.

The original general ‘connectivity equation’ between two pipe sections z and z 4+ 1 is
given by (2.23). For an M5 model, equation (10.5) is substituted into equation (2.23) to

give

(@ G 0/607 iy g + (L O GT 0 507 4 @ GEIT g 50 il

(@GP /50 p L+ 0T Y el QY 0 =
(<I>Z/Z+1€§F§z_1(1—9)/6xz)pi;_lyk-I-(l—CI)Z/z‘i'l€§F2/2+1(1—9)/6l‘2—<I>Z/Z+1€§+1FZ/Z+1(1—9)/6362"'1)pz/z-l_l
(@G (L — 0) /827 T )it — @7/ (1 — 0) (a7 det + /P Tl — Q7Y (10.7)

which can be rearranged to

(@ G 0/607 Wiy g + (L4 O G 507 4 @7 G g 50l

—(@ T /6 i @7 e, =
(q)z/z+1€§F§z_1(1_9)/6xz)p§1_17k+(1_q)z/z+1€§F2/2+1(1_9)/6xz_(I)z/z+1€§+lrz/z+1(1_9)/6l,z+1)pz/z-l-l
+(<I)z/z+1€§+1ri+1(1 i 9)/51‘24'1)])?;1 _ (I)z/z+1(1 . H)Ozz/z-l—ld;ft

_ (I)z/z+16(az{:‘1+1 Qtot _ Qz/z+1) _ (I)z/z+1(1 i 9)(az/z+1Qtot _ Qz/z+1). (108)

Equation (10.8) represents the new form of the connectivity equation for pipe sections z
and z+1 used in M5 models. The last two terms of equation (10.8), —CI)Z/Z"'l@(ozifl—l_l Qlot—
Q*/#1) and —®7/*t1(1—0)(a;/**' Q'' — Q*/*+1) are contained in the the vectors v(k+1)
and v(k) respectively. The coefficients ®*/+! Ga;ffl, — /(] — G)Q;/Z—H of the total

tot

flow perturbation variable, dif, ...,

are contained in the vectors e(k + 1) and a(k) re-

spectively.
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A similar procedure is carried out to obtain the new form of the downstream flow
boundary equation. The original downstream flow boundary equation is given by equa-
tion (2.19). For an M5 model, equation (10.5) is substituted into equation (2.19) to
give

—QQQ“ZngFgg_lpsg_Lk{_l + (1 + 209?9 rgrgg )psg,k-l-l
—|—(2(9Qg r95x9/63)( ownstreamd};o_lzil + aiownstream tot Qdownstream) —
(1 - Q)Qggr Fsg lpsg 1 k ‘I_ (1 - 2(1 - Q)Qggrgrsg)psg k
o (2(1 o Q)Qggrg5xg/6g)(aiownstreamd};ot T aiownstream Qtot o Qdownstream) (109)

which can be rearranged to
20011y pas—1er + (L 20081 p s + (20081967 ) adosrstram gt =

2(1=0)Q% Ty o1+ (1= 2(1 =) T ) ps g — (2(1 — 0) Q19827 /e Javformetream gt
_(29(}‘579 r95xg/6g)(aiiulmstream tot Qdownstream)
. (2(1 . G)Qggrg5xg/6g)(aiownstream Qtot . Qdownstream)‘ (1010)

Equation (10.10) represents the new form of the downstream flow boundary equation used
in M5 models. The last two terms of equation (10.10), — (20,1927 €§) (afyreiream Qo —
Qdownstream) and _( ( H)Qgg rg5xg/63)(aiownstream tot Qdownstream)7 are contained in
the vectors v(k—+1) and v(k) respectively. The two coefficients, (20Q%,19629 / ¢} )agyretream
and —(2(1 — 0)Q,r9629 /f)adownstream of the total flow perturbation variable, Ay rcsteps

are contained in the vectors e(k 4 1) and a(k) respectively.

One can immediately see that if the ratios between the separate flow demands remain

constant with time, i.e., if for all demand sites, i, we have
af =a" for all k,
then the M5 system matrices, F5(k 4+ 1) and As(k) will be time invariant. However, if

the ratios, af change with time, then so will Es(k + 1) and As(k).

The above M5 model can be expressed in the general descriptor system form

Bs(k + D)as(k +1) = As(k)zs(k) + Bsus(k + 1) + Bius (k) + L5(k + 1) + (k). (10.11)
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For such an M5 model, the only pressure input required is the upstream pressure
(assumed known). The g pressure measurements of the real gas network at the sites of
flow demand are not needed as inputs to the M5 model, and are, in fact, measurements

of its state variables

y (k) = Csa5(k) (10.12)

available for use in a direct or dynamic observer.

10.4.1 Theorems

In this section, we firstly prove that the matrix F5 of an M5 model is full rank for
each timestep k, if § > 0. We then prove that the Hautus condition holds for the M5
model (10.11) for each timestep k, if 1/2<0<1.

Theorem 10.1 [If 8 > 0, the matriz Es of an M5 model is full rank for each timestep
k.

Proof

Fsis (n 4 1)x(n+ 1) and takes the form

By construction, since we have already shown Fj is invertible if § > 0, E5' is (n +

1)x(n + 1) and takes the form

E7Y —Ele(k+1
E5_1 _ 0 0 —( )
0 1

Hence, the matrix K5 of an M5 model is full rank for each timestep k. O

Theorem 10.2 [f 1/2<0<1, the Hautus condition holds for the M5 model (10.11) for

each timestep k.
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Proof

By inspection, the eigenvalues of an M5 system consist of the n eigenvalues of the
base M0 system, and 1 eigenvalue equal to 1. Hence, the eigenvalues of the M5 system

are real.

We have the Hautus condition for the M5 system if and only if for all peR

(As(k) — pEs(k+1))v =20 (10.13)
Csv=0 (10.14)

<
v=20 (10.15)

where veR" 1.

Equation (10.15) = equations (10.13), (10.14) trivially.

Equations (10.13), (10.14) and (10.15) can be expressed in the following way. We
have the Hautus condition for the M5 system if and only if for all peR

(Ao — plio)v, + (a(k) — pe(k + 1))v; =0 (10.16)
(1—ppy =0 (10.17)
Cov, =0 (10.18)
—
v, =0, 8, =0 (10.19)

where v = [v!,vT]T | and v,€R", v;€R.

We firstly consider the case where u#1.

Equation (10.17) implies v; = 0.
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Substituting v; = 0 into equation (10.16) gives

Since we have shown the original M0 system is observable for # > 0, we have for all
reER
(AO — /LEo)Qn = Q 5 C()Qn = Q , — v, = Q (1021)

Equations (10.18), (10.20), (10.21) = v, = 0.
Hence, we have v, =0, v; = 0; and so equations (10.13), (10.14) = (10.15).

We secondly consider the case where p = 1.

Equation (10.16) becomes
(Ao — Eo) (a(k) —e(k+1)) =0 (10.22)

If we assume the MO0 model is partitioned according to equation (3.1), then equa-

tion (10.22) may be written as

A1 =& A, — & 0
( 1,1 1,1) ( 1,2 1,2) U o, _q (10‘23)
(A2,1 - 52,1) (Az,z - 52,2) ﬁ(k)

where the vector hA(k)ERY now contains the g elements of (a(k)—e(k+1)) that correspond

to coefficients from the flow equations. Also, v, = [Qg_g,yg]T where v, ,€R"7Y and
v,€RY.

Equation (10.18) zeros the g elements of v,, corresponding to the measured pressures
at the sites of flow demand. Hence v, = 0.

Removing v, from system (10.23) gives

A1 — & 0 v,
(Ai1—&1) 0 i (10.24)
(A2,1 - 52,1) ﬁ(k) %]

From the stability theorem for M1 systems, for 1/2<6<1, 1 is not an eigenvalue of

(51_711.,4171), and hence (A1 — & 1) is full rank. Hence equation (10.24) implies v,,_, = 0.

n—g

The vector (a(k)—e(k+1)) contains g— 1 elements of the form —®*/*+!(1 — H)Q;/ZH —

G=/#+1 Ga;ffl which result from the ¢ — 1 connectivity equations, and one element of the
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form —(2(1 — 0)Q% 19629 /) agernsiream — (200,196 [€§)adsym ™ which results from
the downstream flow boundary equation. For 1/2<6#<1, it is obvious that both terms in
each element of the vector (a(k)—e(k+1)) have the same sign, and that at least one term
is always non-zero. Hence, the vector (a(k) — e(k + 1)) contains non-zero elements, and
hence, the vector h(k) also contains non-zero elements. Thus equation (10.24) implies

vy = 0.

Hence, we have v, =0, v; = 0; and so equations (10.13), (10.14) = (10.15).

Hence, for 1/2<6<1, the Hautus condition holds for the M5 model (10.11) for each

timestep k. O

If the ratios af“m®d s do not vary with time then the M5 system matrices do not

vary with time and we have the following corollary.

Corollary 10.1 For 1/2<0<1, if the ratios, aim " st do not vary with time, then the

M5 model is completely observable.

When the ratios, a5 do not vary with time, we are assured of the complete
observability of the M5 model and direct and dynamic observers may be employed for
state estimation.

When the ratios, ademand site do vary with time, and hence the M5 system matrices
vary with time, we may employ time-varying versions of the dynamic and direct observers

in a similar way to M4 models.

In the following experiments, we abandon direct observers due to their high compu-

tational expense, and investigate dynamic observers only.

10.4.2 Experiments

As the M0 model was run, the pressures at the upstream end and the sites of flow
demand were recorded at each timestep. For experiments 10.13 to 10.16, there was no
pressure measurement noise added. However, for experiments 10.17 to 10.22, the pres-

sure measurements at the three flow demand sites, A/B, B/C and C, were corrupted
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by white noise with a Gaussian distribution with mean 0 bar and standard deviation 0.1
bar. These pressures were then fed into the M5 model based observer (or M3 model
based observer in experiment 10.21). The eigenvalues assigned to the M5 model based
observer were spread evenly in the interval (0,0.1). The flow demands predicted by this
estimation technique were then compared with the true flows used as inputs to the M0
model. For all experiments, the M5 (or M3) model based observer included the exact

](‘Ndemand site
k

values of the weightings, , in the trivial flow demand difference equations. Ex-

demand site

act values were also used for the ratios, af . Also, in each experiment the M5

(or M3) model had 10 spatial nodes along each pipe.

For experiments 10.13 to 10.20, flow profile a was used with the flows at demand sites
A/B, B/C and C in the ratio 2:5:13. For the final two experiments, 10.21 and 10.22, sim-
ilarly shaped profiles were used, but where the ratio between the demands was changed
to 20:1:79. These last experiments demonstrated how M5 models can very significantly
improve the state estimates of very small flows in the presence of pressure measurement
noise.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
D¢ are shown as thick lines in Figs. A, B and C respectively, and the state estimates for
DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.
The following four experiments do not have measurement noise added.

Data taken from M0 model with identical mesh
Experiment 10.13) (M5 model) Observer Design B with § =1
Experiment 10.14) (M5 model) Observer Design B with § = 0.5
Data taken from M0 model with much finer mesh
Experiment 10.15) (M5 model) Observer Design B with § =1
Experiment 10.16) (M5 model) Observer Design B with § = 0.5
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The following two experiments do have measurement noise added.

Data taken from M0 model with identical mesh
Experiment 10.17) (M5 model) Observer Design B with § =1

Data taken from M0 model with much finer mesh

Experiment 10.18) (M5 model) Observer Design B with § =1

The following four experiments do have measurement noise added, but the M3 flow
integration smoothing technique is then applied to the observer estimates of the individual

flow demands.

Data taken from M0 model with identical mesh
Experiment 10.19) (M5 model) Observer Design B with § =1
Data taken from M0 model with much finer mesh

Experiment 10.20) (M5 model) Observer Design B with § =1
Experiment 10.21) (M3 model) Observer Design B (small eigenvalues) with § =1 (New

flow ratio 20:1:79)
Experiment 10.22) (M5 model) Observer Design B with § =1 (New flow ratio 20:1:79)
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10.4.3 Discussion

When pressure data was taken from an M0 model with an identical mesh, the M5 model
based dynamic observer converged perfectly for § = 1. However, as § moved close to 1/2,
error began to persist in the state estimate. As 6 moved from 1 to 1/2, the assigned
observer eigenvalues became more sensitive in a similar way to dynamic observers based
upon M3 and M4 models. As was suggested for these earlier models, it may be that
for # = 1/2, the Hautus condition for the M5 system is close to failing, and theoretical
analysis of this would be of value. When pressure data was taken from an MO0 model
with a much finer mesh, observers based upon M5 models continued to perform well,

with little increase in the error in the flow demand estimates.

When pressure measurement noise was added, but no smoothing technique applied,
it could be seen that the estimates of the first two small demands contained much less
error than with previous model and observer designs. The salient feature of M5 models
is their decreased sensitivity to pressure measurement noise. When the M3 flow integra-
tion smoothing technique was also applied, the estimates of the flow demands became
very good indeed. The last two experiments, 10.21 and 10.22, clearly demonstrate the

M5 model’s increased accuracy in the estimation of very small flow demands.

Unfortunately, pressure measurements from real gas networks are also subject to
constant bias, and M5 models are not able to cope with these. Hence, we now investigate
the last model variation of this thesis, the M6 model, that not only has the benefits of
a single flow demand state variable, but is also capable of estimating the measurement

biases.

10.5 The M6 Model

The estimates of small flow demands from observers based upon M5 models were found
to be significantly less sensitive to pressure measurement noise than with previous models.
However, M5 model based observers were unable to cope with measurement bias. We
now investigate a new model variation, denoted by M6, that also has only a single total

flow variable, but which can also estimate the measurement biases. We consider the g
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scalar equations of the form (9.4). If we add these g equations together we can derive

tot g demand site jdemand site g demand stte demand site
dk‘l'l o Zdemund site:lwk d k + Zdemund site:l(wk o 1)Q

(10.25)

g ddzmand site

T emamd siteel for all k, as before. We can now use equation (10.5)

where di°* =

to substitute for each term, d?mend st on the right hand side of equation (10.25) to give

tot g demand site/ demand site jtot demand site ~ytot demand stte
dk‘l'l o Zdemund site=1 K (ak dk + Ok Q )
g demand stte demand site
+ Zdemund site:l(wk 1)Q (1026)
and rearranging gives
tot tot tot
di’yy = endy? + (op — 1)Q% (10.27)

demand site ,demand site
Ay

g : :
where ¢ = 39, o WS . The M6 models now contain the single

state flow variable, di’*, with a difference equation of the form (10.27) where the term

(cr, — 1)Q™" is contained in a vector on the right hand side of the system as shown later.

To form an M6 model, we start from a base M0 model and initially proceed in a
similar way to the formation of an M5 model. All the basic difference equations of the
form (2.17) remain unchanged in an M6 model. However, the ¢ — 1 connectivity equa-
tions and the single downstream flow boundary equation are altered by the following.
The ¢ flow demand perturbation variables are removed from the input vector, summed
into a single total flow demand perturbation variable, and then incorporated into the new
M6 state vector. The new trivial difference equation (10.27) is then added to form the
M6 system.

However, with M6 models we now assume, as we have assumed with M4 models,
that the pressure measurements at the sites of flow demand are now subject to a constant

bias described by equation (9.1)

(k) = p, (k) + b(k).

|2

The g measurement biases are assumed to obey equation (9.2)

b(k +1) = b(k).
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The last step in the construction of an M6 model is to incorporate the g measurement
biases into the new state vector, and incorporate the trivial difference equations (9.2)

into the system.

The new n + 1 + ¢ dimensional M6 state vector now has the form
io(k)
z6(k) = dfft
b(k)

Assuming the base M0 model is arranged and partitioned as in equation (4.1), the new

n 4+ 1+ ¢g dimensional M6 system has the form

Fo elb+1) 0] aolk+1) Ao a(k) 0 ]| ao(k) ]
0 1 0 dily =l 0 ¢ 0 diet
o 0 I|| bkt 0 0 || bk
BY BY v(k+1) v(k) _
+1 0 [+ + | 0 |p(k)+ 0 + | (ex —1)0™ (10.28)
0 0 0 0

where [ is g xg, and where the the construction of the vectors e(k+1), a(k), v(k+1) and
v(k) is identical to the M5 model. One can immediately see the M6 system matrices,
Fs(k 4+ 1) and Ag(k) are time-varying.

The above M6 model can be expressed in the general descriptor system form
Eo(k + D)azg(k +1) = As(k)ze(k) + Bsug(k + 1) + Biua(k) + Ls(k + 1) + I5(k). (10.29)

For such an M6 model, the only pressure input required is the upstream pressure
(assumed known). The g pressure measurements of the real gas network at the sites of
flow demand are not needed as inputs to the M6 model, and are, in fact, measurements

of its state variables

y(k) = Cozg(k) (10.30)

available for use in a direct or dynamic observer.
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10.5.1 Theorems

In this section, it is firstly proved that the matrix Fg of an M6 model is full rank if 6 > 0.
Secondly, we prove certain conditions to be sufficient to guarantee the assignability of
eigenvalues to the M6 model based dynamic observer at a particular timestep. In fact,
we show the following. For 1/2<0<1, if at a particular timestep the coefficients, ¢,
are not equal to 1, or to any of the eigenvalues of the corresponding M1 model, or to
—((1 = g)afemand site) /(Qagermand site) for at least one demand site, then at that timestep
the Hautus condition holds for the M6 system (10.29).

Theorem 10.1 [f 8 > 0, the matriz Eg of an M6 model is full rank.

Proof

Fsis (n+ 14 g)x(n+1+g) and takes the form

L = 0 1 0
0 0 I

By construction, since we have already shown FEj is invertible for § > 0, Eg' is

(n+14g¢g)x(n+1+g) and takes the form

Ey' —Ei'e(k+1) 0
E'=1 0 1 0
0 0 1

Hence, the matrix Eg of an M6 model is full rank. O

Theorem 10.2 For 1/2<0<1, if al a particular timestep the coefficients, cg, are not
equal to 1, or to any of the eigenvalues of the corresponding M1 model, or to —((1 —
0)afemand sitey [(Gagemand sitey for qf least one demand site, then at that timestep the Hau-

tus condition holds for the M6 system (10.29).
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Proof

By inspection, at any particular timestep k, the eigenvalues of an M6 system consist
of the n eigenvalues of the base M0 system, 1 eigenvalue equal to ¢, and ¢ eigenvalues

equal to 1. Hence, the eigenvalues of the M6 system are real.

We have the Hautus condition for the M6 system if and only if for all ueR

(Ag(k) — uEs(k +1))v =0 (10.31)
Cev =0 (10.32)

—
v=10 (10.33)

where veR"1H9,
Equation (10.33) = equations (10.31), (10.32) trivially.

Equations (10.31), (10.32) and (10.33) can be expressed in the following way. We

have the Hautus condition for the M6 system if and only if for all peR

(Ao — plio)v, + (a(k) — pe(k + 1))v; =0 (10.34)
(ck —p)vy =0 (10.35)
(1—p)v, =0 (10.36)
Cov,, +v, =0 (10.37)
=
v,=0,v,=0,v,=0 (10.38)
where v = [Qg,gf,gg]:r and v,€R", v,eR' | v, €RY.

Y

We firstly consider the case where p = 1.

If ex#1, equation (10.35) implies v; = 0.
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Substituting v; = 0 into equation (10.34) gives
(Ao - ,MEO)Qn = 0.

Since the MO0 stability theorem shows 1 is not an eigenvalue of the M0 system for
1/2<60<1, the above equation implies v,, = 0.
Substituting v, = 0 into equation (10.37) gives v, = 0.

Hence we have v = (.
We secondly consider the case where u#1.
Equation (10.36) implies v, = 0.

Substituting v, = 0 into equation (10.37) gives

Cov,, = 0. (10.39)

If p#ck, equation (10.35) implies vy = 0.
Substituting v; = 0 into equation (10.34) gives

Since the original M0 system is completely observable for # > 0, we have for all peR
(AO — /LEo)Qn = Q 5 C()Qn = Q , — v, = Q (1041)

Equations (10.39), (10.40) and (10.41) imply v, = 0.

Hence v = 0.

If u = ¢, equation (10.34) becomes

(Ao — cx ki) (a(k) — cre(k +1)) ] {v] =0. (10.42)
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If we assume the MO0 model is partitioned according to equation (3.1), then equa-

tion (10.42) may be written as

Ay — € Ay g — i€ 0 e
( 11 — Ck 1,1) ( 12 — Ck 1,2) N_ Qg _0 (10‘43)
(A2,1 - Cng,l) (Az,z - Ckgz,z) ﬁ(k)

(5]

where the vector é(k)GRg now contains the g elements of (a(k) — cxe(k + 1)) that cor-
respond to coefficients from the flow equations. Also, v,, = [Qg_g,ﬁg]T where v, €R"7Y
and v, €R”.

Equation (10.39) zeros the g elements of v,, corresponding to the measured pressures

at the sites of low demand. Hence 0, = 0.

Removing 2, from system (10.43) gives

(A2,1 - Ckg2,1) E(k) Uy

A1 — i€ 0 n—
(Arg —eréin) Un—yg — 0. (10.44)

If ¢; is not an eigenvalue of the corresponding M1 system, then (A;; — ¢& 1) is full

—0.

rank. Hence equation (10.44) implies v,

The vector (a(k)—cre(k+1)) contains g—1 elements of the form —P/att (1—(9)oz;/z+1 —
ckCI)Z/Z"'l@ozifl—l_l which result from the ¢ — 1 connectivity equations, and one element of
the form —(2(1 — 0)Q% 19829 /ef)afernsiream — ¢ (200,192 [€§)adsymre™ which results
from the downstream flow boundary equation. It can be seen that if the coefficients, ¢,
are not equal to —((1 — §)agemend sie) [(gafemand site) for at least one demand site, then

the vector (a(k) — cxe(k 4 1)) contains at least one non-zero element.

If the vector (a(k)—cre(k—+1)) contains at least one non-zero element, then the vector
E(k) will also contain that non-zero element. Then equation (10.44) implies v; = 0.

Hence v = 0.

Hence, for 1/2<0<1, if at a particular timestep the coefficients, ¢, are not equal to
1, or to any of the eigenvalues of the corresponding M1 model, or to
—((1 = g)afemand site) /(Qagermand site) for at least one demand site, then at that timestep

the Hautus condition holds for the M6 system (10.29). O
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From the above theorem, we expect the Hautus condition to hold for the M6 model
almost always. However, in an equivalent way to M4 models, it is interesting to note
that § may be chosen to exert some control over the discrete values of the coefficients,
¢k, for which the theorem does not guarantee the Hautus condition to hold for the M6

system.

10.5.2 Experiments

As the M0 model was run, the pressures at the upstream end and the sites of flow
demand were recorded at each timestep. For experiments 10.23 to 10.25, there was no
pressure measurement noise added. However, for experiments 10.26 to 10.31, the pres-
sure measurements at the three flow demand sites, A/B, B/C and C, were corrupted by
white noise with a Gaussian distribution with mean 0 bar and standard deviation 0.1 bar.
The pressure measurements at the three flow demand sites, A/B, B/C and C, were then
corrupted by constant biases of 1 bar, —1 bar and 1 bar respectively. These corrupted
pressures were then fed into the M6 model based observer (or M4 model based observer
in experiment 10.30). The eigenvalues assigned to the M6 model based observer were
spread evenly in the interval (0,0.1). The flow demands predicted by this estimation
technique were then compared with the true flows used as inputs to the M0 model. In
all experiments, perfect values were used for the profile coefficients, wim* ¢ ¢ and the
ratios, ademand site - Also in each experiment the M6 (or M4) model had 10 spatial nodes

along each pipe.

For experiments 10.23 to 10.29, flow profile a was used with the flows at demand sites
A/B, B/C and C in the ratio 2:5:13. For the final two experiments, 10.30 and 10.31, sim-
ilarly shaped profiles were used, but where the ratio between the demands was changed
to 20:1:79. These last experiments demonstrated how M6 models can very significantly
improve the state estimates of very small flows in the presence of pressure measurement

noise.

For each experiment, the true flow demand profiles for the demands, DkA/B, DkB/C and
DY are shown as thick lines in Figs. A, B and C respectively, and the state estimates for

DkA/B, DkB/C and D¢ are shown as thin lines. The percentage errors between the state
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estimates of DkA/B, DkB/C and D¢ and their true values are shown in Figs. D, E and F

respectively.
The following three experiments do not have measurement noise added.

Data taken from M0 model with identical mesh
Experiment 10.23) (M6 model) Observer Design B with § =1
Experiment 10.24) (M6 model) Observer Design B with § = 0.5
Data taken from M0 model with much finer mesh

Experiment 10.25) (M6 model) Observer Design B with § =1
The following two experiments do have measurement noise added.

Data taken from M0 model with identical mesh
Experiment 10.26) (M6 model) Observer Design B with § =1

Data taken from M0 model with much finer mesh

Experiment 10.27) (M6 model) Observer Design B with § =1

The following four experiments do have measurement noise added, but the M4 flow

integration smoothing technique is then applied.

Data taken from M0 model with identical mesh
Experiment 10.28) (M6 model) Observer Design B with § =1
Data taken from M0 model with much finer mesh

Experiment 10.29) (M6 model) Observer Design B with § =1

Experiment 10.30) (M4 model) Observer Design B with § =1 (New flow ratio 20:1:79)
Experiment 10.31) (M6 model) Observer Design B with § =1 (New flow ratio 20:1:79)
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10.5.3 Discussion

The performance of M6 model based dynamic observers showed the same dependency
on # as dynamic observers based upon previous flow estimation models. The dynamic
observer based on an M6 model converged perfectly for §# = 1 when the M0 model used
to generate the pressure data was constructed on an identical mesh. However, as § moved
close to 1/2, the observer completely failed to converge. Similarly to dynamic observers
based upon previous flow estimation models, the assigned observer eigenvalues became
more sensitive as # moved from 1 to 1/2, and a theoretical study of whether the Hautus
condition is near to failing for § = 1/2 would be useful. As with M4 systems, M6 sys-
tems have time-varying system matrices. As with M4 systems, the theoretical analysis
of firstly, the observability of M6 systems, and secondly, the convergence of dynamic

observers constructed upon M6 systems, would be worthwhile future research.

When data was taken from an M0 model with a much finer discretisation, the M6
model based dynamic observer did not perform so well. The same super-sensitivity that
existed with M4 systems exists for M6 systems. As was suggested for M4 systems, per-
haps some further investigation into modelling strategies and different observer designs
may help to remedy this. For example, perhaps an observer that switched between the
different models, M5 and M6, at certain times of day could be designed to estimate the
biases, where the M6 model based observer would run over certain ‘favourable’ timesteps
only. Then these estimates of the biases may be kept while an M5 model based observer

is run over periods where an M6 model based observer would fail.

When pressure measurement noise was added, but no smoothing technique applied, it
could be seen that the estimates of the first two small demands contained less error than
with the previous M4 model based dynamic observer designs. When the M4 flow integra-
tion smoothing technique was also applied, the estimates of the flow demands improved
further. However, the last two experiments, 10.30 and 10.31, clearly demonstrate the
considerable benefit of using M6 models to estimate very small flow demands. Unfortu-

nately, the error due to measurement noise and modelling error is still unacceptably large.

Although we do not yet have a viable technique for estimating flow demands from
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pressure telemetry in the presence of both measurement bias and noise, some proposals

for future research are presented in the next chapter.
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Chapter 11

Final Conclusions and Proposals for

Future Work

The fundamental problem in estimating flow demands from pressure telemetry is the
sensitivity of the flow demands, especially small flow demands, to modelling and mea-
surement error. When the pressure measurements fed into M1/ M2 models and observers
constructed upon M3/ M4 models, were corrupted by noise, the flow demand estimates
were swamped by the resulting error. The M5/ M6 modelling approach of summing all
the flow demand variables into a single total flow variable seemed to reduce greatly the
sensitivity. The flow integration smoothing techniques were also particularly effective.
However, although smoothed M5 flow demand estimates were acceptably accurate when
pressure measurement noise was present, they were unable to cope with measurement
bias. Of the two models, M5 and M6, only observers constructed upon M6 models
could cope with measurement bias. However, observers constructed upon M6 models
were found to be still very sensitive to modelling error and measurement noise. Hence,
so far we do not have a practical technique for flow demand estimation from pressure

telemetry. We do, however, have some proposals for future research.

A fundamental problem to investigate is why the M6 systems are so sensitive to
pressure measurement noise, and if there is a way of remedying this. However, the sensi-
tivity of the flow demand estimates from observers constructed upon M6 models may be
partly due to the observer design. It would be interesting, therefore, to investigate other

observer designs, e.g. optimal control techniques [1], and in particular Kalman filters
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[12], [9], [8], [10]. Some references [17], [40], [35], have suggested little gain from the extra
computational expense involved with Kalman filters. However, in these experiments, the
Kalman filter was compared with an observer design with a built in filter. The filtering
technique used in this comparison observer relied on the availability of both flow demand
and pressure measurements at the sites of gas inflow/outflow. Hence, such a filtering
technique cannot be used for our purpose, where flow measurement is not available.
Various theoretical questions raised in the thesis should also be explored. Can the
solutions to the numerical models be shown to converge to the solutions to the govern-
ing differential equations as the compuational mesh is refined? What are the conditions
necessary to guarantee the observability of the time-varying models? When do dynamic

observers based upon time-varying models converge?

In conclusion, we have investigated a series of models and made some progress in tack-
ling the practical problems of flow demand estimation from pressure telemetry. However,
more research is required, perhaps involving Kalman filters, to find a technique that gives

acceptably accurate flow estimates from pressure data from a real gas network.
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