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Abstract

Hamilton’s principle is used to devise a variational principle which has as its
natural conditions the equations of irrotational motion of an incompressible, ho-
mogeneous, inviscid fluid with a free surface. By applying the shallow water
approximation to the flow variables this variational principle is reduced to an-
other one whose natural conditions are the shallow water equations of motion.
Boundary terms are added to the functional of this variational principle so that
the natural conditions now include boundary and initial conditions as well as the
equations of motion. A quartet of variational principles for shallow water flows
is derived by using Legendre transforms. These principles are modified to give
other principles for steady shallow water flows by assuming that the flow variables
do not depend on time. Variational principles are also derived for quasi one-
dimensional shallow water flows — both time-dependent and time-independent
— and for steady state discontinuous flows.

Approximations to continuous and discontinuous flows in channels of varying
breadth and domain bed profiles are calculated using finite element approxima-
tions for a selection of the variational principles developed. Approximations to
steady continuous flows are calculated on fixed grids using both the quasi one-
dimensional and the two-dimensional formulations. Methods of generating adap-
tive grids in one dimension using the variational principles are also studied and an
algorithm is given for generating approximations on an adaptive grid to steady
discontinuous quasi one-dimensional flows. Approximations are also found for

time-dependent quasi one-dimensional flows.
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Chapter 1

Introduction

The problem of fluid flow over an uneven topography and through constricting
channels has been of interest to hydraulic engineers and meteorologists for many
years. Variational methods have been widely used in other areas for even longer
but have only recently begun to play a significant part in the problems of fluid
mechanics. The finite element method is a relatively recent technique, which has
advanced the construction of approximate solutions, particularly in relation to
elliptic problems. This thesis brings together these three subjects.

More specifically the aim of this thesis is to generate numerical approxima-
tions to the solutions of the equations governing the irrotational motion of an
homogeneous, incompressible, inviscid fluid over a fixed bed profile. The method
implemented here depends on the derivation of variational principles which are
satisfied for the solutions of these equations of motion. Approximate solutions
to the equations are derived as those functions in a finite dimensional space for
which the functionals of the variational principles are stationary with respect to

variations in that space.



Luke (1967) showed that a variational principle in which the integrand (the
Lagrangian density) is taken to be the fluid pressure, as given by Bernoulli’s
energy integral, has as its natural conditions the equations governing a free surface
flow. The natural conditions of a variational principle are those which make the
corresponding functional stationary. The natural conditions of Luke’s principle
are Laplace’s equation, holding in the fluid domain, the no flow condition across
the bed and the dynamic and kinematic free surface conditions. Luke assumes
that all of the variations vanish on the other space boundaries and at the ends of
the time interval.

Hamilton’s variational principle in particle mechanics (see, for example, Gold-
stein (1980)) has, as the Lagrangian, the difference between the kinetic and poten-
tial energies of a system. The natural conditions of the variational principle are
Lagrange’s equations of motion. Salmon (1988) considers applications of classical
Hamiltonian theory to fluid mechanics. Many of these applications, such as, for
example, in Serrin (1959) and in Seliger and Whitham (1968), have been within
the area of gas dynamics. However, Miles and Salmon (1985) derived equations
describing the motion of weakly dispersive non-linear gravity waves using Hamil-
ton’s principle. In this thesis Hamilton’s principle is adapted to give a principle
whose natural conditions are the equations governing a free surface flow, and this
principle can be rearranged to give Luke’s principle, in the case where the vari-
ations vanish on all time and space boundaries except the free surface and the
domain bed.

There is a point of contact between free surface flows and compressible gas

flows if the shallow water approximation to free surface flows is invoked (Stoker



(1957)). Shallow water theory is an approximation to three-dimensional free
surface flows in circumstances where the fluid depth is small compared with some
characteristic length scale of the motion, such as the radius of curvature of the
free surface. In this thesis shallow water theory at its lowest order is considered;
this is the basic theory used in hydraulics to model flows in open channels and also
gives good approximations to the motion of tides in the oceans and the breaking of
waves on shallow beaches. The flow domain over which approximations to shallow
water flows are considered here, is a channel of slowly varying breadth, so that, to
a first approximation, the flow can be thought of as being quasi one-dimensional.

A substantial part of the thesis — Chapter 3 — is devoted to the derivation
of the variational principles corresponding to three-dimensional free surface flows
and to shallow water flows. Hamilton’s principle and a modified version of Luke’s
principle are used as the starting points of the investigation. By approximating
the variables of three-dimensional flows by their shallow water counterparts it is
possible to derive variational principles which are satisfied for solutions of the
shallow water equations of motion. It is shown that Hamilton’s principle and
the modified version of Luke’s principle are essentially the same, as are the two
variational principles for shallow water which are derived from them. Different
representations of the variational principle for shallow water are available, based
on the notion of a closed sequence of Legendre transforms introduced by Sewell
(1987). The variational principles for shallow water flows are enhanced by the
addition of boundary terms so that variations can be allowed which do not neces-
sarily vanish on the boundaries. This is an important step since, in the practical

implementation of a variational principle, if the variations are to vanish on the



boundaries then it implies that the solution must be known there.

There is, however, an undesirable feature of these principles, that conditions
on some of the flow variables must be given at both ends of the time interval.
This problem does not arise in steady shallow water flows, which are considered
in some detail. The variational principles for these flows are deduced from the
principles for time-dependent flows.

Further variational principles are created by making the assumption that the
shallow water flow is quasi one-dimensional, yielding variational principles for
time-dependent and time-independent quasi one-dimensional flows.

A number of simpler variational principles can be derived by constraining the
variations to satisfy one or more of the natural conditions. A selection of these
constrained principles is presented, some of which fit with the notion of reciprocal
variational principles.

The final section of Chapter 3 deals with the derivation of variational principles
for steady discontinuous flows, that is, for flows which contain hydraulic jumps.
The differential equations of shallow water flow are valid in regions of the domain
excluding the discontinuity while at the discontinuity the equations of motion
are replaced by jump conditions, which relate the values of the flow variables
on either side of the discontinuity. One of the jump conditions is used in the
formulation of the variational principles and the others are derived as natural
conditions by making an assumption about the variations in the flow variables at
the discontinuity.

The remainder of the thesis is concerned with using the variational principles

to generate approximate solutions for flows in channels. The Ritz method (see



Strang and Fix (1973)) can be used to obtain approximate solutions of a varia-
tional principle by expanding the variables in terms of trial functions and using
the variational principle to evaluate the parameters of the expansions. The finite
element approach is implemented by choosing the trial functions to be piecewise
polynomials, which are zero over most of the domain, these trial functions being
known as finite element basis functions. The channel flows are approximated here
by using piecewise linear basis functions, where the basis function corresponding
to a particular node of a grid is linear and continuous and non-zero only in the
elements surrounding the node, and piecewise constant basis functions, where
the basis function corresponding to a particular element is non-zero only in that
element. The basic method is then to seek the functions in a finite dimensional
space, spanned by a set of finite element basis functions, for which the functional
corresponding to a particular variational principle is stationary with respect to
variations in that space.

The parameters of the expansions are found by solving one or more sets of
equations, at least one set of which is non-linear. The non-linear equations are
solved using Newton’s method.

In Chapter 4, the algorithms for approximating time-independent quasi one-
dimensional flows in shallow water are presented. Several versions of two partic-
ular variational principles are considered and used to generate approximations to
continuous and discontinuous flows on fixed and adaptive grids. In the discontin-
uous case the positioning of the approximation to the discontinuity requires care.
This is because, although all of the equations governing the motion are either

implicit in the variational principle or derived as natural conditions, the jump



conditions are only generated as natural conditions by imposing specific condi-
tions on the variations. It is not clear how these conditions could be implemented
in practice and the algorithm used here is based on generating separate approxi-
mations to the continuous parts of the solution and coupling the approximations
at the discontinuity by using the jump conditions, in the process of which an
approximation to the position of the discontinuity is also found.

Chapter 5 deals with finding approximations to steady two-dimensional con-
tinuous shallow water flows, by extending the algorithms of Chapter 4.

In Chapter 6 two further applications of the variational principles are inves-
tigated. In an attempt to study the accuracy of the shallow water approxima-
tion to free surface flows a version of Luke’s principle for steady state flows is
used to generate approximations in this case. Finally an algorithm to generate
approximations to time-dependent quasi one-dimensional shallow water flows is

considered.



Chapter 2

Background Fluid Dynamics

In this chapter the equations governing the three-dimensional motion of an in-
compressible, homogeneous fluid under a free surface are given and adapted to
the various problems which will be considered later. An approximation to such a
three-dimensional motion can be devised by assuming that the fluid depth is small
compared with a typical horizontal length scale of the motion. This so-called shal-
low water approximation generates a simplified set of equations by removing the
vertical motion, at lowest order. Shallow water theory is often applied in channels

and this case only will be considered.

2.1 Free Surface Flows

In this section the equations governing the motion of a fluid under a free surtace
are given. The fluid is assumed to be incompressible and homogeneous and the
motion is assumed to be irrotational.

Let x, y, z be cartesian coordinates, with z measured vertically upwards from

the equilibrium position of the free surface, and let ¢ be the time. Consider the
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Figure 2.1: The domain of the free surface problem.
domain €2, extending over a fixed region D in the xy plane and enclosed by the
surfaces z = —h(x,y) and z = n(x,y,t), where h is the known undisturbed fluid
depth and 7 is the unknown height of the free surface above the reference level
z = 0, as shown in Figure 2.1.
In the domain ) the motion is governed by the laws of conservation of
mass and momentum. Let u = u(x,y,z,t) be the Eulerian velocity, where

u = (u,v,w). Then the conservation of mass requires
V.au=0, (2.1)

where the operator V is defined by

- g o0 0
V = (a_x7 a_y7 %) . (2.2)

Let p be the density of the fluid, a constant by assumption, let g be the acceler-
ation due to gravity, also assumed constant, and let p = p(x,y, z,t) be the fluid

pressure. Then the conservation of momentum equation is given by

Du 1. ~
— =—-—-Vp—-V 2.3
D L (92), (2.3)



is the derivative following the motion and is defined by

D
where i
DF  OF -
The flow is irrotational so that
u=Vy (2.5)

for some y = x(«,y, z,1), where y is called the velocity potential. Therefore the

conservation of mass equation for irrotational flow may be written as
(2.6)

@QX = 0.
The integrated version of the conservation of momentum equation for irrotational

(2.7)

flow is

1. .
+Xt—|-§VX.VX—|-gZ:0,

™ S

where the arbitrary function of ¢ arising on integration has been absorbed into the

Xt term. Equation (2.7) is called the Bernoulli equation of the flow; it represents

energy balance and determines p from y.
Equations (2.1), (2.3) and (2.5) govern the motion in the domain Q. Further

equation are needed at the boundaries of 2.
Bernoulli’s equation gives rise to the dynamic free surface condition. At the

free surface, z = 7, the fluid pressure p is assumed to be a constant, set to zero

for convenience. Thus Bernoulli’s equation gives
(2.8)

1. .
Xt—|—§V>(.Vx—|—g77:O on z =1.

At boundaries of ) across which there is no flow the conservation of mass

equation is replaced by a boundary condition, that is, if F(x,y,z,t) = 0 is the



equation of the boundary, at every point of this boundary the equation

DF—O (2.9)
Dt '

must be satisfied (Lamb (1932)).
The equation of the free surface is given by z —n = 0. Thus the kinematic

free surface condition is

D
=) =0
which may be rewritten as
Ny + un, +vn, —w =10 on z = 1. (2.10)

The equation of the fixed bed is given by z 4+ h = (. This gives the condition

of zero flow through the bed as
—(z+h)=0,
or
why +vhy +w =0 on z = —h. (2.11)

Equation (2.9) also applies at any lateral boundary across which there is no flow.
Equations (2.1), (2.3), (2.5), (2.8), (2.10) and (2.11) constitute the set of

equations governing three-dimensional flow in an arbitrary domain ).

2.2 The Shallow Water Approximation

Shallow water theory offers an approximation to free surface flows in circum-
stances where the water depth is much less than some characteristic length scale

of the motion, such as the radius of curvature of the free surface. It is essentially

10



an averaging process in which the fluid motion is replaced by a representative
motion in the horizontal spatial coordinates. Each particle can be thought of as

the aggregate of all the actual fluid particles lying in the same vertical line.

2.2.1 Derivation of the Shallow Water Equations

To lowest order, shallow water theory can be generated by assuming that the

fluid pressure is hydrostatic (Stoker (1957)). That is,

plx,y,2,t) = pg(n —z), (2.12)

where the constant surface pressure has been set to zero for convenience.
Equation (2.12) can be used to determine a vertically averaged replacement

for the pressure, p = p(x,y,t), defined by

1 rm
p= 7‘/ ﬁdZ,
pJ-n
from which it follows that

1
p= 594", (2.13)

where d(x, y, 1) is the fluid depth at location (z,y) and at time ¢, that is d = h+n.

Equation (2.12) implies that Vp is independent of z and so, from (2.3)1,2, the
acceleration of the water particles in the @ and y directions is also independent of
z. Thus, if the horizontal components of velocity, v and v, are independent of z at
any time, they will remain independent of z throughout the motion. Substituting
(2.12) into (2.3)s gives the result that, in lowest order shallow water theory, the
vertical acceleration of the fluid particles is zero, that is, negligible compared with

g. It is also negligible compared with v and v. These results can be summarised

11



as

u, =0, v,=0 and w=0. (2.14)

The equations of shallow water motion are derived by substituting (2.14) into
the equations governing the three-dimensional motion — (2.1), (2.3), (2.5), (2.8),
(2.10) and (2.11).

The effect of (2.14)3 on the irrotationality condition (2.5) is that the velocity
potential y(x,y, z,1) is replaced by the velocity potential ¢(x,y,?) and irrotation-

ality in shallow water is represented by
v =V, (2.15)

where v = v(x,y,1) is the velocity of the reduced problem, such that v = (u,v),

and the operator V is given by

V= (aax’ aay) . (2.16)

The hypothesis (2.12) implies that the first two components of the conserva-

tion of momentum equation (2.3) can be written as

vi+ (v.V)v =—gVn. (2.17)
For irrotational flow, where v satisfies (2.15), there exists the identity

1
(v.V)v = §V (v.v).
Therefore (2.17) may be written as
1
v+ §V (v.v) = —¢Vn,

or, alternatively, as
vi+ VE =¢Vh, (2.18)

12



where F is an energy per unit mass, referred to as an energy for short, defined
by

1
E=gd+ 5V (2.19)

Equation (2.18) is the equation of conservation of momentum in shallow water.
The integrated version of (2.18) is more common in the variational principles

which follow later and, for irrotational flow, this is given by

¢i + E = gh, (2.20)

where an arbitrary function of ¢ has been absorbed into ¢;. Equation (2.20) is
the Bernoulli equation for shallow water.
For the particular case where the equilibrium depth, A, is a constant, that is,

the bed is horizontal, the conservation of momentum equation is given by
v,+ VE =0. (2.21)
Integrating (2.21) with respect to x and y and using (2.15) yields
o+ F =0, (2.22)

where an arbitrary function of ¢ has again been absorbed into ¢;. Equation (2.22)
is consistent with (2.20) for the case h = constant. In (2.22) the constant term
gh has been absorbed into ¢; which is equivalent to moving the reference level
for potential energy in the coordinate system from z =0 to z = —h.

The conservation of mass equation for free surface flow (2.1) may be written

as

Uy + vy +w, = 0.

13



Integrating through the fluid depth at a point (z,y) gives
7
/ (uy + vy + w,) dz = 0. (2.23)
—h

Equations (2.14); 5 imply that u, and v, are independent of = so (2.23) may be

rewritten as
(2 + 0,)d + 0], = 0.
Then, substituting for w|, and w|_, using the kinematic boundary conditions of

zero flow through the free surface and the bed, (2.10) and (2.11), (2.23) becomes
dVv+v.Vh+v.Vyp+n =0.

Using h; = 0, the conservation of mass equation for shallow water can be written
as

d+Vv.Q=0, (2.24)

where

Q=dv (2.25)

may be called the mass flow vector since d plays the part of density by analogy
with gas dynamics, as will be indicated in Section 2.2.2.

Equations (2.15), (2.18) and (2.24) are the equations of motion for shallow
water flow. The variables of the flow, d, v, Q, F and ¢, are all functions of the
time, ¢, and of the horizontal spatial coordinates = and y.

Let D be the domain of the reduced problem, where D extends over a fixed
part of the horizontal xy plane. Let ¥ be the boundary of D). Then, for consis-
tency with conservation of mass, on any impenetrable portions of the boundary
the mass flow across the boundary must be zero, that is Q.n = 0, where n is the
outward normal to the boundary.

14



In the case of channel flow it is usual to define a boundary function, say

C(x,y,t), on ¥, such that

Qn=C on %, (2.26)

where ' = 0 on the fixed sides of the channel and at the inlet and outlet parts
of the boundary ' is an assigned mass flow.

Stoker (1957) uses the hydrostatic approximation (2.12) to derive the shallow
water equations and also derives the same equations by a perturbation expan-
sion method. In this latter case the flow variables in the exact equations, (2.1),
(2.3), (2.5), (2.8), (2.10) and (2.11), are expanded in terms of a parameter which
is small when the depth of fluid is much less than a typical horizontal length.
The shallow water equations are obtained by equating the lowest order terms.
The perturbation expansion method can also be used to generate higher order

approximations to free surface flows.

2.2.2 The Gas Dynamics Analogy

The fact that the equations of motion for shallow water can be written in the
same form as the equations of motion for a compressible gas flow is known as the
gas dynamics analogy (Stoker (1957)).

The irrotationality condition (2.15), the conservation of momentum equation
(2.18) and the conservation of mass equation (2.24) for shallow water can be

rearranged to give

v = Vo, (2.27)
1
vi+ (v.V)v = —8Vp +gVh, (2.28)

15



d+V.(dv) = 0, (2.29)

respectively, where the pressure, p, is given by (2.13). Equations (2.27)—(2.29)
may be regarded as the equations governing a two-dimensional gas flow in which
d plays the part of density and the term ¢gVh in (2.28) is thought of as a body
force or as a heat source. For the special case where the equilibrium depth, &, is a
constant, the forcing term ¢Vh in (2.28) is zero and (2.28) is the usual momentum
conservation equation for gas flow. Also, in gas dynamics terminology, equation
(2.13), which defines p as a function of the ‘density’ d, is an ‘adiabatic’ relation
(Courant and Friedrichs (1948)).

In Chapter 3 variational principles for shallow water flows are derived and
subsequently used, in Chapter 4, to generate numerical approximations to chan-
nel flows. Variational principles for compressible gas flows have been developed
previously by, for example, Bateman (1929), Sewell (1963) and Wixcey (1990).
The analogy of shallow water theory with gas dynamics provides a connection

between those principles and variational principles for shallow water.

2.3 The Quasi One-dimensional Shallow Water

Approximation

For certain flow domains the motion can be approximated by making the assump-
tion that it is dependent on one space dimension and time only.

Consider a channel which extends over the interval [z., x,] of the z-axis. Let
B(x) be the breadth of the channel, defined at each point = in [z, z,]. Assume

that the channel is of rectangular cross-section and that it is symmetric about

16



Figure 2.2: D for ., = 0,2, =10 and B(x) =6+ 4 (% — 1)2.

the x-axis so that the domain, D, of the problem is given by

D:{(x,y):xe[xe,xo];ye [—@,@H. (2.30)

Then, provided that the breadth is a slowly varying function of x, the flow is

quasi one-dimensional in the x-direction, to a first approximation.

Figure 2.2 shows D for the example . = 0,2, = 10 and B(z) = 644 (% — 1)2 :

The equations of quasi one-dimensional shallow water motion can be derived
from the full shallow water equations of Section 2.2.1 by assuming that the flow
variables are functions of x and ¢ only. Let the flow variables be of the form
d =d(x,t), ¢ = ¢(x,t), F = F(x,1), Q@ = Q(x,1) and v = v(x,t), where @ is
the one-dimensional mass flow and v is the velocity in the x-direction, the other
variables being depth, velocity potential and energy, as before. Although the
same symbols are used for depth, velocity potential and energy in one and two
dimensions, the context will always make clear whether the flow being studied is
quasi one-dimensional or two-dimensional. The operator V in (2.15) and (2.18)
is replaced by %. The term V.Q in (2.24) is replaced by %88—1’ (@B).

Thus, the quasi one-dimensional shallow water equations of motion are given

17



vo= ¢, irrotationality condition, (2.31)
v+ E, = gh, conservation of momentum, (2.32)
1 .
d; + 5 (BQ), = 0 conservation of mass, (2.33)

where the mass flow, ), is given by
Q = dv, (2.34)
and the energy, F. is given by
L
E=gd+ iv ) (2.35)
The integrated version of the conservation of momentum equation (2.32) is
o1+ FE = gh, (2.36)

where ¢ is related to v by (2.31).
Let the equilibrium depth, &, be constant. Then the conservation of momen-
tum equation is given by

v+ E, =0. (2.37)

Integrating (2.37) with respect to x gives
¢+ £ =0, (2.38)

where an arbitrary function of ¢ has been absorbed into ¢;. Equation (2.38) is
consistent with (2.36) when the reference level for potential energy in the vertical

is moved from z =0 to z = —h by redefining the velocity potential to be

¢ = ¢ — ght. (2.39)

18



The boundary conditions for quasi one-dimensional flow are given, for exam-

ple, by

Q = C. at @ = x,, (2.40)

Q = C, at @ = x,, (2.41)

for known functions C,(¢) and C,(t). Equations (2.40) and (2.41) can be derived
from the two-dimensional shallow water boundary condition (2.26) using the fact
that there is zero flow through the channel sides and that () varies only with «
and t and is constant across the channel breadth by assumption.

Equations (2.31)—(2.33) govern the motion of quasi one-dimensional shallow
water. Notice that the irrotationality condition (2.31) has become essentially

redundant.

2.4 Equations for Steady State Shallow Water

Flows

The equations of motion for steady state shallow water can be derived from the
time-dependent equations of Sections 2.2 and 2.3. In this section the steady state
equations are derived by assuming that all of the flow variables are independent
of time. The velocity potential ¢, however, is not a physical flow variable and
cannot be assumed time-independent, although its form can be deduced using

the equations of motion.
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2.4.1 Two-dimensional Flows

First assume that the flow variables do not vary with time, that is, d = d(x,y)
and v = v(x,y). Then £ = E(x,y) and Q = Q(x,y) by the definitions (2.19)
and (2.25).
The steady state versions of the conservation of momentum equation (2.18)
and the conservation of mass equation (2.24) can be immediately written as
VE = ¢gVh (2.42)
and v.Q = 0, (2.43)
respectively. The dependence of the velocity potential on ¢ can be deduced using
the irrotationality condition (2.15) and the integrated conservation of momentum
equation (2.20). Differentiating equations (2.15) and (2.20) with respect to time
gives
and ¢tt —I‘ Et = 07 (245)

respectively. By the steady state assumption v; = 0 and £; = 0. Thus, from

equations (2.44) and (2.45), ¢ satisfies
V¢t =0 and ¢tt =0. (246)

Therefore ¢ must be of the form

oy, 1) = fla,y)t + 6w, y), (2.47)
where q;(:zj, y) is an arbitrary function and f(x,y) is such that Vf = 0.
Using (2.47) to substitute for ¢ in (2.15) gives
v=Vo, (2.48)
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which is the irrotationality condition for steady flow.

Similarly, the integrated conservation of momentum equation for steady flow,
f+ E = gh, (2.49)

is obtained by substituting (2.47) into (2.20). Equation (2.49) implies that the
function f must satisfy f = —F+gh, where V (—FE + ¢gh) = 0 from (2.42). Thus,

in order to satisfy conservation of momentum, the potential must be of the form

o(x,y,t) = (=E(x,y) + gh(z,y))t + é(z,y), (2.50)

where q;(:zj, y) may be identified as the velocity potential for steady flow.
Let the equilibrium depth & be constant. Then the conservation of momentum

equation for steady flow is given by
VE=0. (2.51)

This implies that the energy F is in fact a constant, £ = E say, throughout the

whole domain. The integrated version (2.22) becomes
b+ E=0. (2.52)

Thus in order to satisfy conservation of momentum, the velocity potential ¢ must

be of the form
$x,y,t) = —Et + ¢(x,y). (2.53)

The irrotationality condition is then
v=V¢o (2.54)

and &(z,y) is identified as the velocity potential for steady flow in this case.
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The boundary condition for steady flow is given by
nQ=C onX,

where ¥ is the boundary of the domain D and C(x,y) is defined on ¥. For

consistency with conservation of mass the function €' must satisfy

/Ecczzzo.

Equations (2.42), (2.43) and (2.48) are the equations of motion for time-
independent shallow water flows. The equations for steady state quasi one-
dimensional flows can be derived from the corresponding time-dependent equa-

tions in a similar manner.

2.4.2 Quasi One-dimensional Flows

Following the derivation of the steady state equations in two dimensions, assume
that the flow variables are independent of time, that is, d = d(x) and v = v(x).
Then F = FE(z) and Q = Q(x) by the definitions (2.34) and (2.35). As in
Section 2.4.1, the dependence of the velocity potential on ¢ must be deduced
using the equations of motion.

Using d; = 0 and v; = 0, the steady state forms of the conservation of mo-

mentum equation and the conservation of mass equation can be written as

E = gk (2.55)

and (BQ) = 0, (2.56)

respectively, where ' represents the x derivative.
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Differentiating with respect to ¢ the irrotationality condition (2.31) and the

integrated conservation of momentum equation (2.36) gives

vy = Guy (2.57)

and ¢tt + Et = 0 (258)
respectively. Thus, using v; = 0 and F; = 0, the velocity potential must satisfy
¢xt =0 and ¢tt =0.

Therefore ¢ must be of the form

¢(z,1) = f(z)l + ¢(x), (2.59)

where ¢ is an arbitrary function and f’ = 0.

Thus, for steady quasi one-dimensional flow,
v=¢. (2.60)

The value of the constant function f in (2.59) can be deduced using the
integrated conservation of momentum equation (2.36). Substituting for ¢ in (2.36)
using (2.59) gives

where —FE + gh =constant from (2.55). Thus ¢ is given by

¢z, t) = (=E(z) + gh(x))t + ¢(x),

where qz(:zj) is identified as the velocity potential for one-dimensional steady flow.
Let the equilibrium depth, &, be constant. Then the conservation of momen-

tum equation for steady quasi one-dimensional motion is given by

E'=0
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which has the solution £ = E, where E is an arbitrary constant. The integrated

version of the conservation of momentum equation is

Thus the velocity potential for this case must satisty

d(x,t) = —Et + 6(x)
and
v=d.
where ¢(z) is now the velocity potential for these circumstances.

The boundary conditions for steady flow are given by
Q = C. atzx=uzx,
Q = C, atzx=uzx,

where C. and C, are given constants. In order to be consistent with the conser-

vation of mass equation (2.56), C. and C, must satisfy
CeBe = CoBm

where B. = B(z.) and B, = B(x,).
Equations (2.55), (2.56) and (2.60) are the equations of steady quasi one-

dimensional motion for shallow water.

2.5 The Flow Variable Graphs

In this section graphs are used to relate the flow variables — depth and velocity —
to the variations in energy and mass flow. The graphs are also used to illustrate

the notion of critical flow.
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Figure 2.3: ) as a function of v for constant F.

The definitions of mass flow, @), and energy, £, (2.34) and (2.35) can be used
to express each of the variables ), I/, d and v as functions of one or more of the
other variables. Furthermore, taking @) = |Q| and v = |v|, the relationships also
hold for two-dimensional flows.

Rearranging the definition of mass flow gives d = % Substituting this into

the definition of energy and rearranging gives

Q = g (E . %UQ) . (2.61)

The graph of the variation of () with v for a constant I is given in Figure 2.3.
Only the portion of the curve described by (2.61) which lies in the sector ) > 0
and v > 0 is considered relevant since the motion is assumed to be always in the
positive x direction.

Notice that the velocity v has the range 0 < v < V2E. If v exceeded V2F
then, from (2.61), the mass flow, @, would be negative. This would contradict

the assumption of positive flow and correspond to a non-physical negative depth
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as can be seen directly from (2.35). The value
v, =V 2k

is known as the limit velocity and is the maximum velocity attainable by a flow
with energy F.

3

Notice also that, for each E, the mass flow lies in the range 0 < ) < 51; (QE) 2.

The value

Q. = ; (Zf) (2.62)

of () is known as the critical mass flow. The value of the velocity at which the

critical mass flow occurs is the critical velocity and is given by

¢, = E (2.63)

A flow is termed subcritical or supercritical depending on whether v is less than

or greater than the critical velocity.

A similar graph is constructed by substituting v = % into the definition of £,

(2.35), to give an expression relating (), F and d. This may be rearranged to give
Q=(2(F—gd)2d. (2.64)

The graph of the variation of ) with d for a fixed F is given in Figure 2.4. The
portion of the line shown is such that () > 0 and d > 0, the remainder of the line
having no physical meaning.

Asin Figure 2.3, the mass flow in Figure 2.4 lies in the range 0 < ) < 51; (%) %

The depth of flow is always in the range 0 < d < %. It d exceeds % then, from

(2.64), @ is undefined. The value

@ |t
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Figure 2.4: () as a function of d for constant F.
is known as the limit depth and is the maximum attainable depth for a flow with
energy F. The value of the depth which corresponds to the critical mass flow ().,

defined by (2.62), is called the critical depth and is given by

2k
d, = —. (2.65)
39
The critical values of depth and velocity satisfy the relationship
2k

In fact, a flow is said to be critical if the velocity, v, and the depth, d, satisfy

v = \/gscl (2.67)

Substituting (2.67) into (2.35) yields the definitions of critical velocity and critical
depth, as given by (2.63) and (2.65).
From (2.35) a depth in the range d, < d < dj, corresponds to a subcritical
flow; otherwise, if the depth lies in the range 0 < d < d,, the flow is supercritical.
From Figures 2.3 and 2.4, when the mass flow, (), has attained its critical
value there is only one possible depth and one velocity — those which correspond

27



to critical flow. If ) is in the range 0 < () < (). there are two possible values of v

and d — one corresponding to a supercritical flow and one to a subcritical flow.

In the case of steady quasi one-dimensional shallow water motion the flow
variable graphs, Figures 2.3 and 2.4, can be used to deduce information about
the variations of depth and velocity in a channel of slowly varying breadth.

The equations of motion for steady quasi one-dimensional flow are given by

E = gh,

(BQ) = 0,

which are equations (2.55) and (2.56), that is, conservation of momentum and

conservation of mass. These equations may be integrated to give

E—qgh = E

and BQ = (B,

where £ and O are constants, to be defined, and B, = B(x,.).
Thus, if B(x) and h(x) are given for = in [z., x,], the values of energy E and

mass flow @) are known at each point in the interval [z.,z,]. That is,

E = E+4gh (2.68)
C'B,
Q = 5~ (2.69)

Solution values for the velocity lie on the surface of which Figure 2.3 is a cross-
section for constant £ and for the depth lie on the surface of which Figure 2.4 is
a cross-section for constant K. Thus as () and £ vary with x, the variations of

both velocity and depth can be deduced from these surfaces.

28



If the equilibrium depth of the fluid is constant the energy E given by (2.68)
is also constant and the solutions of v and d lie on the curves in Figures 2.3 and
2.4 for fixed F. Consider a channel whose breadth decreases to a minimum, By,
say, such that B(x) = By for some © € (2., 2,). An example of such a channel
is given in Figure 2.2. Moving along the channel, from the inlet at * = x_, as B
decreases () increases (using (2.69)) and so, from Figure 2.3, a subcritical v will
increase and a supercritical v will decrease in value. Once the point of minimum
breadth has been passed, () decreases as B increases so that the subcritical v
decreases and the supercritical v increases in value. Similarly, using Figure 2.4,
moving along the channel from = = z_ a subcritical d will decrease then increase
and a supercritical d will increase then decrease, in step with the increase then
decrease of mass flow ().

When A" # 0, less information about the flow can be obtained from the curves
given by (2.61) and (2.64). Consider the curve in Figure 2.3 to be a cross-section
for constant K. through the surface created by taking ) to be function of v and
FE in equation (2.61). The solution lies on the surface and, as ) and F vary
in accordance with equations (2.68) and (2.69), the values that v takes during
the motion can be traced on the surface. A similar surface representing () as
a function of d and E, as defined by equation (2.64), enables the variation of d
to be traced as () and E vary during the motion. As () varies in response to a
changing channel breadth it is not possible, in general, to determine whether the
velocity and depth of flow will increase or decrease, since this depends also on

the change in F as determined by the variation in h.
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For the energy K = E+ gh, assumed known, the mass flow in a channel of
breadth B(x) cannot exceed the value of the critical mass flow ., given by
(2.62). This bound on the maximum possible value of the mass flow imposes a
lower bound on the minimum breadth of the channel. From (2.69) the minimum

breadth, B(l‘) at each point x, for which a continuous flow is possible is

B(e) — CB. (2 (& —|-gh(:1;)))

_3
2

Q- 3
If B(z) < B(x) for any x in [z., ,] then the flow becomes blocked. If B(x) > B(x)
for all  in [z, z,] then the flow remains wholly subcritical or wholly supercritical
throughout the channel. If B(x) = B(l‘) at a particular point in [z., z,] then the
flow is critical at that point and there is the possibility of transitional flow.

It can be shown, using (2.68) and (2.69), that a flow with constant energy F
may be critical at a point, x. say, only if the breadth at that point is stationary
with respect to x, that is B’(x.) = 0. Using the definition of mass flow (2.34) and
the conservation of mass equation (2.33) it is possible to obtain an expression for

v" in terms of d’ and v. This is given by
vl = ——v— —u. (2.70)

Using (2.35) to substitute for F in (2.68) and differentiating with respect to x
gives

gd +vv' = gh'.

Then substituting for v’, using (2.70), and rearranging yields

/

2
B
gd (1 — ;)d) = gh' + §v2. (2.71)
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Equation (2.71) implies that when a flow is critical, that is, equation (2.67) is
satisfied, the breadth and equilibrium depth must be such that

B/
gh' + Evz = 0.

Thus for a domain with A’ = 0 critical flow occurs only at a point where B’ = 0.
Conversely, if i’ = 0 and B’ = 0 at a point then either v? = ¢d and the flow
is critical or d' = 0, that is, the fluid depth has reached either a minimum or a
maximum at that point. For a domain where h’ # 0 equation (2.71) provides
less information; for example, it is not possible in general to determine without
knowing the solution in advance where stationary points of the solution might lie

or whether, given appropriate conditions, the flow becomes critical.

One further flow variable graph is considered here. This involves a quantity
which is of particular use when considering discontinuous motions, namely, the
flow stress P. The reason for this utility is that the value of flow stress varies con-
tinuously even when the flow variables are discontinuous (in the sense of hydraulic

jumps) — as is described in Section 2.6. The flow stress is defined by
P=yp+dv? (2.72)

for quasi one-dimensional flow, where p is the pressure given by (2.13). Using the

definition of energy F, (2.35), to substitute for d = ; (E — %vz) and rearranging
gives
1 1 3
P:E—2)<E 2). 2.73
2% ( 2" oY (2.73)

Equation (2.73) can be used to draw a flow variable graph of P as a function of

E and v, but a more interesting relationship is that between P, () and FE.
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o
Figure 2.5: P as a function of ) for constant .
The flow variable graph in Figure 2.5 is created by regarding v as a parameter

in equations (2.61) and (2.73). In practice it is plotted by taking, for each fixed

E, 2n — 1 values of v in the permitted range, that is,

t—1 [2F .
v, = — v=1,...,n,

n—1V 3
_ 28 28

v = U VRE = w4 =4, 2 — 1.
n—1 3 3

Then the 2n — 1 points (Q;, P;), given by

i 1
Qi = U_<E__vi2)v
g 2

P = % (E — %vf) (E—I— gvf) ,
forz =1,...,2n — 1, trace the curve for P as a function of () for F fixed. The
cusp of the graph in Figure 2.5 is at the critical point, for each value of E. and
marks the division between the subcritical (upper) branch and the supercritical
(lower) branch of each curve.

The connection with discontinuous flow is discussed in Section 2.6.
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2.6 Discontinuous Flows

This chapter has, so far, dealt with the equations of motion for continuous flows.
In this section equations of motion for discontinuous flows in shallow water are
considered.

It is possible to control the depth and velocity, and therefore also the mass
flow and energy, of a flow at the inlet and outlet positions of a channel using, for
example, weirs or sluice gates. Thus a situation might occur where the imposed
inlet and outlet conditions cannot be achieved by a continuous flow in the channel.
In such circumstances a discontinuity may occur.

The differential equations of Sections 2.2, 2.3 and 2.4, which model the flow in
shallow water, are only valid for continuous solutions. At points of discontinuity
the differential equations no longer apply and other equations are needed to govern
the motion. These equations, known as jump conditions, relate the values of the
flow variables on one side of the discontinuity to their values on the other side.

In this thesis only time-independent discontinuous flows are considered, the
stationary discontinuity being known as a hydraulic jump. The jump conditions
for quasi one-dimensional and two-dimensional flows are given in Sections 2.6.1

and 2.6.2.

2.6.1 Discontinuous Flows in One Dimension

In quasi one-dimensional motion a hydraulic jump consists of a point (a value of
x) where the depth and velocity of the shallow water flow are discontinuous.
Consider the channel which extends over the interval [z.,x,] of the z-axis

and has slowly varying breadth B(x). Let x5 € (2., x,) be the position of the
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hydraulic jump. Then the equations of motion for continuous flow hold in the
two intervals (x.,x,) and (x4, x,). Thus in (., x,) U (24, 2,) the flow variables

satisfy

E = gk conservation of momentum, (2.74)

(BQ) = 0 conservation of mass, (2.75)

where () and E are defined by (2.34) and (2.35), as before.
At the position of the hydraulic jump, x,, the flow variables must satisfy the
jump conditions which are alternative statements of conservation of mass and

momentum, valid at a discontinuity. The jump conditions are given by

[P, = 0 (2.76)

Ts

and [BQl,, = 0, (2.77)

from Stoker (1957), where P is the flow stress defined by (2.72). The brackets
[ - ],. denote the jump in the value of the quantity at the point z,. That is, for

example, [P] = P| _— P| _, where + denotes the z, side of z, and — the z.

Ts

$S+ $S

side of x,. The third jump condition is given by

[, # 0,

which states that the energy FE is not conserved at a jump. Discounting the

possibility that there is an energy source at z, gives the inequality

[E]. <0, (2.78)

Ts

which is justified by the fact that, in reality, mechanical energy may be converted

into heat energy through turbulence at the jump.
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Equations (2.74)—(2.78) govern the motion of a quasi one-dimensional shal-
low water flow with a discontinuity at the point x,. In certain cases the jump
conditions (2.76)—(2.78) can be used to uniquely determine the position of the
hydraulic jump. This may be illustrated using the graph in Figure 2.5 which
relates flow stress, mass flow and energy.

The usefulness of the flow variable graph lies in the fact that equations (2.74)
and (2.75) can be solved for F and @), given a particular domain. Applying the
jump conditions (2.77) and (2.78) to the solutions of (2.74) and (2.75) gives the
variations of () and F throughout the channel, as follows.

Using equations (2.75) and (2.77) gives the variation of () in the channel as

CB.
Qx) Br) T € (X, ,). (2.79)
From equation (2.74)
E(x) — gh(x) = constant T € (xe,x5) U (25, 2,).

Assuming that [h], = 0 equation (2.78) gives

[El—gh]. <0.

Ts

Thus let

E—qgh = E. T € [z, ay)

and E —gh = Eo VIS (xsvxo]v

where E. and F, are constants such that £, > FE,.
In Figure 2.6, which shows the variation of P with () for two distinct values

of E,let By = E.+ gh(x,) and Fy = FE, + gh(x,). Then the point of intersection,
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E=E,

Q. Q
Figure 2.6: P as a function of ) for two distinct values of F.

where P = P, and ) = (@), is the point of discontinuity of a flow with energy
FE = E. 4 gh(x.) at inlet and energy £ = F, + gh(x,) at outlet. Notice that the
point of intersection occurs on the supercritical branch of the line corresponding
to K| and on the subcritical branch of the line corresponding to F,. The jump
condition (2.78) ensures that this is always true, that is, the flow on the inlet side
of a discontinuity is always supercritical and the flow immediately on the other
side of the discontinuity is always subcritical.

Let the undisturbed fluid depth, A, be constant. Then the discontinuous flow,
determined by F = E. + gh at inlet and £ = E, + gh at outlet, can be traced on
the curves corresponding to £y = F. + gh and Ey = E, 4+ gh in Figure 2.6. In
particular, given just F. and FE,, the mass flow at the discontinuity, (), can be
deduced. In this way the position of the discontinuity in the interval [z, x,] may

be found. From (2.79) the position of the discontinuity, x, satisfies

(B,

Ble) =75,

(2.80)

and, since the breadth function B(x) is known, the value of x; can be calculated.
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There are three possible situations arising.

1. x5 in (@, x,) is uniquely determined by inverting equation (2.80).

2. There is no value of « in (x.,x,) which satisfies (2.80).

3. There is more than one value of x in (z.,x,) which satisfies (2.80).

Case 1 yields the position of the hydraulic jump. In Case 2 there is no solution
containing a hydraulic jump to the problem with £ = F. 4+ gh at inlet and
E = F, + gh at outlet. In Case 3 there is more than one point in the channel
which satisfies the jump conditions (2.76)—(2.78). To avoid the possibility of
ambiguity conditions are sought under which Case 3 does not occur.

A unique solution could be achieved by defining B so that (2.80) is uniquely
invertible on (x.,x,). For the purpose of seeking numerical approximations to
discontinuous flows in this thesis converging/diverging channels, similar to that of
Figure 2.2, are used with boundary conditions which cause the flow to be critical
at the point of minimum breadth — the channel throat. In this circumstance
there may still be two distinct points in the channel, x; and x, say, such that
and x, satisfy (2.80). The shape of the channel ensures that one of these points
lies on the inlet side of the channel throat and the other on the outlet side. The
condition that the flow is critical at the channel throat forces the discontinuity
to lie in the diverging section of the channel. Otherwise, because of condition
(2.78), the flow would become blocked.

The flow path for this type of discontinuous critical flow is shown by arrows
in Figure 2.7. At inlet the mass flow is given by ().. For an initially subecritical

flow the solution moves along the F; curve, in the direction shown, as far as the

37



E=E,

Q Q. Q
Figure 2.7: Flow path for a discontinuous critical flow.
critical point where ) = (),. The flow must become supercritical here for the
discontinuity to occur so the solution tracks along the supercritical branch until
it reaches the position of the discontinuity. The solution point then switches to
the subcritical branch of the K,y curve until the mass flow equals the mass flow
(), at the outlet of the channel.

For the example with constant undisturbed fluid depth Figure 2.7 can be used
to define a range of possible outlet conditions, given an inlet condition for the
flow. For the case of a critical flow a hydraulic jump may occur anywhere in the
range (&, x,), where & is the position of the channel throat. Let F; be the energy
of the flow at inlet and let F, be the energy at outlet. A discontinuity at the
channel throat requires that the curves for £; and F3 intersect at the cusp of the
E, curve. This requires £y = FE; so that the discontinuity is of zero strength.
The value F = F; is the maximum energy at outlet that a discontinuous flow can
achieve. The minimum value of F at outlet is obtained when the discontinuity

lies right at the channel outlet. In Figure 2.7 let the curve corresponding to
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jump near throat

depth

distance along channel

Figure 2.8: Range of possible outlet depths.

E = FE; intersect with the curve corresponding to £ = F; at the point ) = @,.
Then the energy £ = F5 is the minimum energy at outlet which can be achieved
by a discontinuous flow. From (2.64), using the fact that the depth at outlet is
subcritical, the minimum and maximum values of £ give minimum and maximum
achievable outlet depths. Figure 2.8 shows an example of minimum and maximum
outlet depths for the channel shown in Figure 2.2.

Some similar properties can be deduced for specific domains with non-constant
equilibrium depths. Results are particular to each case since the solutions no
longer lie on the lines of constant energy FE. Discontinuous motions in such

domains are not considered in this thesis.

2.6.2 Discontinuous Flows in Two Dimensions

In two dimensions a hydraulic jump is a curve in the zy plane which marks a
discontinuity in the depth and velocity of the flow. Although hydraulic jumps

which terminate in mid-channel do exist, for example in supercritical flow at a
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concave bend, only hydraulic jumps which extend across the whole width of the
channel are studied here.

Consider a steady discontinuous shallow water flow in a channel D. Let ¥, be
the line where the velocity and depth of flow are discontinuous, that is, the hy-

draulic jump. Then, in D\X,, the flow variables satisfy the differential equations

v = Vo irrotationality, (2.81)
VE = ¢gVh conservation of momentum, (2.82)
vQ = 0 conservation of mass, (2.83)

where the energy and mass flow are defined by (2.19) and (2.25), as before.
At the curve ¥, the flow variables are related by the two-dimensional jump
conditions. Let n be the unit normal vector to the line ¥, and let 7 be the unit

tangential vector. Then the jump conditions

[Pl = 0, (2.84)
[Qnl],, = 0, (2.85)
v.rlg, = 0, (2.86)

[E]s, < 0, (2.87)

may be deduced from Chadwick (1976), where P is the two-dimensional flow
stress given by

P=p+d(vn), (2.88)

p being the pressure defined by (2.13). The symbol [ - ]s. denotes the change in
the value of the quantity on crossing the line X, that is, for example [P]; =
P|ES+ — P|ES—’ where + denotes the downstream side of the discontinuity and —
denotes the upstream side.
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X

Figure 2.9: Domain for two-dimensional discontinuous flows.

The first three of these conditions (2.84)—(2.86) state that the value of the
flow stress, the component of mass flow normal to ¥, and the component of
velocity tangential to X, are conserved on crossing the jump. Equations (2.84)
and (2.85) are the two-dimensional counterparts of the one-dimensional jump
conditions (2.76) and (2.77). Equation (2.86) is a ‘no shear’ condition.

The final jump condition (2.87), the two-dimensional counterpart of (2.78),
states that the energy F is not conserved on crossing the hydraulic jump.

Consider the domain D divided into two parts by the curve ¥, as in Figure 2.9.
Let D. be the subdomain of D on the inlet side of X, and let D, be the subdomain
of D on the outlet side. Then the equation of conservation of momentum in D,
is satisfied by

E=FE +gh,

41



where F. is a constant. The equation of conservation of momentum in D, is
satisfied by

E:Eo—l_ghv

where F, is a constant such that £, < F..
As in the one-dimensional case the flow is supercritical before the hydraulic

jump, that is in D,., and subcritical after the hydraulic jump, that is in D,.
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Chapter 3

Variational Principles

The purpose of this chapter is to present a collection of functionals which are
stationary for solutions of the equations of motion for free surface flows, particu-
larly those flows approximated using shallow water theory. The chapter starts by
establishing variational principles for three-dimensional free surface flows which
are then used to derive principles for shallow water flows. Time-dependent and
time-independent motions are considered as is quasi one-dimensional shallow wa-
ter flow. In the final section variational principles corresponding to discontinuous

shallow water flows are derived for the time-independent case.

3.1 Variational Principles for Free Surface

Flows

In this section the equations of irrotational motion of an inviscid, incompressible,
homogeneous fluid with a free surface are shown to be the natural conditions of

two variational principles which, although derived from different viewpoints, are,
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in fact, closely related.

Let x,y, z be cartesian coordinates, defined as in Chapter 2, and let ¢ be the
time. Let Q = D x (—h,n) be the spatial domain to be considered, where D is a
fixed region of the xy plane, h is the undisturbed fluid depth and 7 is the height

of the free surface above the equilibrium position, as shown in Figure 2.1.

3.1.1 Luke’s Principle

The Bernoulli equation (2.7) for free surface flows gives an expression for the fluid

pressure p as a function of the velocity potential y, that is,
. lg
p=—r (Xt +gz+ QVX-VX) ; (3.1)

where V is defined by (2.2).

Luke (1967) uses the expression (3.1), for p, as the Lagrangian density (the
integrand of the Lagrangian) in a variational principle. Luke’s principle was
stated for a constant equilibrium depth but can be generalised to allow for a
non-constant depth and, for the given three-dimensional domain €2, the modified

variational principle is

- to 1 -~ -
8J1(n,x) = 5{/ // /n —p (xt Lot QVX.VX) d= dx dy dt} _0. (3.2)
11 D J-h

Let the variations in y and 5 be such that 6y = 0 and é5 = 0 on the lateral
boundaries of € (that is, on the boundary of D for all z € [—h,n]) for each
constant ¢ € [t1,1;] and at the times ¢; and ¢, everywhere in . Then, using the

First Mean Value Theorem for Definite Integrals (Johnson and Reiss (1982)) to

identify the 67 contribution,
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- to 1 -~ -
61 = —p // {577 (Xt + 9z + VX-VX)
11 D 2

= (OX (e + Xale + Xymy — X2))|zyy — (OX (Xoha + Xy + X2))]2 ),

zZ=T

—/77 S\V2y dz} dz dy dt =0,
—h

which yields the natural conditions

Viy = 0 inQ, (3.3)

1. .
Xt + 9z + §V>(.VX = 0 onz=mn, (3.4)
Dot Xalle + Xyty =X = 0 onz=n, (3.5)
Xohs + Xyhy + X = 0 onz=—h, (3.6)

for ¢t € (t1,13). Equation (3.3) is the equation of conservation of mass for irrota-
tional flow, that is, (2.6). Equations (3.4)—(3.6) are equivalent to (2.8), (2.10)
and (2.11), where the irrotationality condition (2.5) has been assumed, and are
therefore the dynamic free surface condition, the kinematic free surface condition
and the condition of zero flow through the bed, respectively. Thus the variational
principle (3.2) generates the governing equations of a free surface flow. No at-
tempt is made at this stage to include boundary or initial conditions as natural
conditions.

Notice that using (3.1) to define the pressure in terms of the velocity potential
assumes conservation of momentum and that the flow is irrotational. In other
words, irrotationality and conservation of momentum, in the form of the energy
integral (3.1), are implicit constraints of the free variational principle (3.2), by
which is meant that they do not have to be applied as explicit constraints on
(3.2) nor do they belong to the set of natural conditions of (3.2).

Luke’s principle can be extended to deliver irrotationality as a natural condi-
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tion. The revised variational principle which achieves this is

5{/};2 //D /_nh (—p (Xt + gz + ;u.u) + Q. (u — 6)()) dz dx dy dt} =0, (3.7)

where Q = (Q1,Q3,Q3) is a Lagrange multiplier and u = (u, v,w) is the fluid

velocity. The functional in (3.7) depends on n, x, u and Q. The natural conditions

of (3.7) are
vVQ = 0
Q = pu iﬂ Q, (38)
W= Oy
1 . .
Pt Qs+ Qany — Qs = 0 onz =1, (3.10)

Qrhe + Qohy+Qs = 0 onz=—h,  (3.11)

for t € (t1,12), obtained using the same method by which (3.3)—(3.6) were derived
from (3.2). Equations (3.8) together are equivalent to (3.3); the multiplier Q is
identified by (3.8)2 as the three-dimensional mass flow vector. Using (3.8)y and
(3.8)3, (3.9)—(3.11) can be recognised as the dynamic free surface condition, the
kinematic free surface condition and the condition of no flow through the bed,

respectively.

3.1.2 Hamilton’s Principle

Hamilton’s principle, in its classical form, is given by

5{/:Ldt} — 0, (3.12)

where the Lagrangian L =T —V, T and V respectively denoting the kinetic and
potential energies of the mechanical system being considered. Thus, if the ¢ th
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particle of an n-particle system has mass m; and position x;(?) at a time ¢,
I & .o
T =— Z mX;. Xy,
2 =1

V =V(xy,...,%,)is a given function and therefore L. = L(xy,...,X,, Xy,...,X,).
The principle (3.12) produces the usual Lagrange equations of motion.

A direct application of Hamilton’s principle to fluid flow requires the use of
Lagrangian coordinates, in which the position of a fluid particle at time ¢ is
denoted by x = x(X,?), where X is the initial location of that particle. The
label X effectively replaces the label ¢ in the point mass system above, and the
summation is correspondingly replaced by an integration over the domain initially
occupied by the fluid.

For compressible flows, Seliger and Whitham (1968) have shown that this way
of applying Hamilton’s principle to a continuum is correct, in that it produces
the momentum balance equations in Lagrangian form.

From a practical point of view, the Eulerian framework is more useful than
the Lagrangian system. Salmon (1988) discusses the translation of Hamilton’s
principle from one framework to the other. Here, a direct way of using Hamilton’s
principle in the Eulerian context is sought. The key point is that conservation
of mass is implicit in the Lagrangian setting because integration is carried out
over all the mass in the system. In Eulerian coordinates, however, where the
flow through a domain fixed in space (by lateral boundaries and the bed for free
surface flows) is considered, conservation of mass is not automatic and must be
enforced. One way of doing this is to apply conservation of mass constraints to
the continuum version of the variational principle (3.12).

For the free surface problem, the difference in kinetic energy and potential
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energy for the flow in the given domain is

//D /_nh (;pu.u — pgz) dz dz dy. (3.13)

The functional (3.13) is evidently the Lagrangian L in this case. Luke (1967)
refers to this form of the Lagrangian and mentions that the difference between
his variational principle and Hamilton’s principle is related to conservation of
mass.

The variational principle for free surface flow, based on Hamilton’s principle,
uses (3.13) as the Lagrangian, subject to the constraint that conservation of mass
is satisfied. The constraint may be incorporated into the functional by using
Lagrange multipliers.

In the fixed domain €2 conservation of mass is given by Vau=0 (equation

(2.1)). The kinematic free surface condition in the form

(e + un, +vny, —w)|__ =0, (3.14)

z=n
guarantees that there is no flow across the free surface and the condition of no

flow through the bed is
(uhy + vhy + w)|Z:_h = 0. (3.15)

These conditions must also be enforced in the variational principle being con-
structed.

The conservation of mass requirements are met by adding (2.1), (3.14) and
(3.15) into the functional as constraints using the Lagrange multipliers v =
viz,y,2,t), A = Ma,y,t) and p = p(x,y,t). The extra terms to be added to
the functional (3.13) are

vV.u
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integrated over Q and (t1,%2), and

A (e + umy + oy — w)|zzn + p (uhe + vhy +w0)| __

integrated over D and (#;,t;). The variational principle based on Hamilton’s

principle is therefore

oJa(n,u A, p,v) = 5{/: //D (/_nh (p (;u.u — gz) + y%.u) dz (3.16)

+ A (g + une +ony, —w)|_ 4 p(uhy +ohy + w)|zz_h) dx dy dt} = 0.

As in the case of Luke’s principle (3.2) the variations are assumed to vanish on
the lateral space boundaries and on the time boundaries. The natural conditions

of (3.16) are given by

in €, (3.17)
Vu = 0
3 1 3
A+ V.(Au)—p (2u.u — gz) —vVau = 0 onz=y, (3.18)
ne+un, +on, —w = 0 onz=nrn, (3.19)
(v=MNV(z=n) = 0 onz=n, (3.20)

wh, +vh,+w = 0 onz=—h, (3.21)

(V—ﬂ)%(z—l—h) = 0 onz=—h, (3.22)

for t € (t1,13). The fluid is homogeneous by hypothesis. Therefore, identifying
“ as the velocity potential, equations (3.17)—(3.22) together are equivalent to
(3.8)—(3.11) and hence to (3.3)— (3.6). For consistency of notation the Lagrange
multiplier v is relabelled as v = py, so that (3.17), gives the usual irrotationality
condition (2.5). Then, using (3.20) and (3.22), the Lagrange multipliers A and p

may be identified as A = px|._, and p = px|.__,.
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Equation (3.16), with A, ¢ and v as defined above, can be shown to be the
same as equation (3.7), except for terms on the lateral boundary of © and at
times ¢; and t5. The variational principle (3.16), with A, g and v as stated, can

be rearranged to give

5{/://13 (/lp(gz—l—;u.u—l—u. (ﬁx—u)—ﬁ(xu)) d=

— (px (netuns+ony—w))| _, — (px (whetvh,+w))| __, ) dedydt} =0.

Using the divergence theorem,

12 - t2
1 :/ // /77 pV . (xu)dz dx dy di :/ / pyu.ndo dt,
tl D —h tl g

where ¢ is the whole boundary of 2. The parts of o of interest here are the

surfaces z = n and z = —h, which contribute to I the terms

t2
/t // (px (une + vy —w))|._, — (px (whe + vhy + w))|zz_h) dx dy dt.

It follows that if ¥ denotes the lateral boundary of Q and Q is defined by (3.8),

then (3.16) becomes

{/ ([ ] (o (xitost jun) 4@ (u-9y)) dedody
—I-//pxunda)dt—l—// [/ pxdz] dxdy}:o,

which is just (3.7) with added boundary terms. The variations are assumed to
vanish on ¥ and at times ¢; and ¢, so the boundary terms may be neglected.
Moreover, if (3.16) is constrained to satisfy the irrotationality condition by sub-
stituting u = Vy into the integrand, the resulting principle can be shown to
be the same as Luke’s principle (3.2), to within boundary terms which may be

neglected, as before.
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Thus Hamilton’s principle can be adapted to give (3.16) which, on relabelling
v = px and using (3.20) and (3.22) to identify the Lagrange multipliers A and g,
has as its natural conditions the irrotationality condition and the conservation of
mass equation in the domain €2 and boundary conditions on the free surface and
the bed.

The adaptation of Hamilton’s principle to fluid flow is given by Seliger and
Whitham (1968) for compressible flows. In that case the conservation of mass and
two other constraints on the principle are necessary, the other constraints being
related to energy balance, in the form of entropy conservation for a particle, and
conservation of particle identities. In the current problem of irrotational free
surface flows, the entropy does not appear and conservation of particle labels is

apparently not required.

3.2 Shallow Water Flows

Variational principles for shallow water flows can be considered from two points
of view. The principles in Section 3.1 for free surface flows can be modified, by
applying the shallow water approximation to the variables, or Hamilton’s principle
can be applied directly to the variables of shallow water theory, using the gas

dynamics analogy of Section 2.2.2. This section deals with the first method.
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3.2.1 Shallow Water Principles from Free Surface Prin-
ciples

Consider the two variational principles for free surface flows — the ‘pressure’ prin-
ciple (3.7) and the ‘Hamilton’ principle (3.16). The effect of applying the shallow
water approximation to these principles is to replace the variables by their two-
dimensional counterparts. The velocity potential v = v(x,y, z,1) reduces to a
function ¢ = ¢(x,y,t), u = Vy is replaced by v = V¢, where V is defined
by (2.16), and the Lagrange multiplier Q is replaced by Q = (Q1,Q2), where
Q= Q(z,y,1).

Making these substitutions in the functional of the ‘pressure’ principle (3.7)

and evaluating the integral over z yields the functional J1(Q, d, v, ¢) defined by

J, = /j //D p (;gdz _d (qﬁt 4 ;v.v +gd— gh) +Q.(v— Vqs)) dx dy dt.
(3.23)
where d = h + 3 is the total fluid depth.
Assuming that variations vanish on the boundary of D and at #; and ,, the

natural conditions of 6.J; = 0 are

v—V¢p = 0 .
in D, (3.24)
Q—-dv =0
d,+V.Q = 0

where D = D x (t1,12). These equations are respectively the integrated con-
servation of momentum equation (2.20), the irrotationality condition (2.15), the
definition of mass flow (2.25) and the conservation of mass equation (2.24) for

shallow water flow.
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Now consider (3.16) — the ‘Hamilton’ principle. Under the conditions of the
shallow water approximation the integral over z can be carried out and the terms
evaluated at z = —h and z = 5 can be combined since, from (2.14), u and v take

the same values at these levels. The result is the functional J, = Jy(d, v, ¢) given

by

t2 1 1
J, = / // ) <2dv.v — S0+ gdh + 6 (d, + V. (dv))) dedydt.  (3.25)
1 D

Assuming that the variations vanish on the space and time boundaries, the natural

conditions of 6J; = 0 are

o+ gn+v.Vo— %V.V =0

V-Vé = 0 in D, (3.26)

di+V.(dv) = 0

which together are equivalent to (3.24).
Thus the ‘pressure’ and ‘Hamilton’ free surface principles reduce to ‘shallow
water’ principles when the variables are approximated using shallow water theory.
By using the divergence theorem and integration by parts, the functional

(3.23) can be rearranged to give

le/: //Dp<<Q—;dv) .v—;gd2—|—gdh—|—¢(dt—|—V.Q)) dx dy dt

= [ [osuas - [[ (pae)i: doay.

that is, for Q = dv the two functionals (3.23) and (3.25) are the same, to within

boundary terms.
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3.2.2 Further Functionals

Before considering variational principles with boundary conditions as natural con-
ditions the ‘pressure’ and ‘Hamilton’ functionals for unsteady shallow water mo-
tion are rewritten in different variables. The variational principles with boundary
terms, generated using the modified functionals, can then be related to two fur-
ther variational principles.

First consider (3.23), which was derived from the free surface principle based
on an expression for the pressure. As the fluid is assumed homogeneous, the
density p can be set equal to unity without losing generality. As a further sim-

plification of notation, the term
1

may be written as

o1+ E — gh.

This suggests the use of F as a new variable. From the definition of E, (2.19),

we have

d:1<E—1V.V),
g 2

which allows for the definition of a new function p(v, E') obtained by substituting

for d in the ‘pressure’ %gdz. Thus

(v, E) = ;g (E - ;v.v)z. (3.27)

The integrand of the functional being constructed is now

PV, E) —d (60 + E — gh) + Q. (v = V§), (3.28)
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which is the integrand of (3.23) after making the substitutions outlined above. A
functional with integrand (3.28) will be referred to as a ‘p’ functional for unsteady
shallow water flow.

The ‘Hamilton’ functional (3.25) is rewritten similarly. The density p is taken
to be unity as before, the change of variable made is from v to Q using a re-

arrangement of (2.25), that is v = Q " and the function r(Q,d) is defined to

d
be
_1QQ 1,
r(Q,d) = 5 g di . (3.29)

Making these substitutions in the integrand of (3.25) yields the expression

r(Q,d) +gdh + ¢ (d; + V.Q). (3.30)

A functional with integrand (3.30) will be referred to as an ‘r’ functional for
unsteady shallow water flow.
The structures of the integrands of the ‘p’ and ‘r’ functionals are similar in

that they may both be expressed in the form

function 4+ multiplier x conservation law.

For the ‘p’ functional (3.28) is

conservation of irrotationality
p + multiplier x + multiplier x ,
momentum condition

and for the ‘v’ functional (3.30) is

r 4+ gdh + multiplier x conservation of mass.

These forms for the integrands of the ‘p” and ‘r” functionals suggest obvious

ways of constraining the variational principles based on these functionals. For
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example, if a ‘p’ variational principle is constrained to satisfy the conservation
of momentum equation, by setting £ = gh — ¢,;, and irrotationality, by setting

v = V¢, the expression (3.28) becomes

p(VQﬁ,gh - ¢t> ’

which depends on the variable ¢ alone. Constrained variational principles are
dealt with in more detail in Sections 3.5, 3.6 and 3.7.

In Section 3.5 boundary terms will be added to the ‘p” and ‘r’ functionals so
that variations which do not necessarily vanish at the space and time boundaries
are allowed. Two further functionals, whose integrands are related to (3.28) and
(3.30) by a closed quartet of Legendre transforms will also be constructed.

It is evident that there exists a number of constrained and unconstrained
variational principles related to time-dependent shallow water flows. To avoid
deriving separately the natural conditions of each variational principle a func-
tional of the general form of the time-dependent shallow water functional can
be used to generate the natural conditions of a general shallow water variational
principle. Then the natural conditions for each different case can be obtained
immediately. This general variational principle, along with those for steady state
and quasi one-dimensional shallow water flows, is considered in Section 3.3. The
natural conditions of general variational principles for time-independent discon-

tinuous flows are derived in Section 3.4.
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3.3 Continuous Variables

In this section the natural conditions of a general form of variational principle
which includes the cases of shallow water flows are derived. All of the variables
are assumed to be continuous.

The general variational principles are referred to as being for one or two di-
mensions, by which it is meant that the corresponding principles for shallow
water theory are for flows in one or two space dimensions. In both cases an extra

coordinate is added to allow for time-dependent flows.

3.3.1 General Variational Principles for
One-dimensional Flow

Let the domain of integration of the problem be {(xz,t) : « € [xq, 21];1 € [to, t1]}-
In shallow water theory the = coordinate will represent a single space dimension
and t will represent the time.

Let uy(x,t),...,u,(x,t) be aset of functions which will subsequently be iden-
tified with the variables of shallow water theory. The u; are assumed to be dif-
ferentiable functions of « and ¢, since this is all the smoothness required for the
shallow water principles.

Consider a general functional of the form

11 xr1
]1(u1,...,um):/ / Fla b un, ooy Uiy Uy v ey Uiy Uigy v vy Upg )t dE
1o xro

T

t1
+/ gt ) d 4 [ [t un)] da, (3.31)

10 o]

Ju;
ot

where u;, = 881;"

and u;; = for e = 1,...,m. Let the functions ¢ and h be

differentiable and f be twice differentiable with respect to their arguments.
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Using Taylor series and integrating by parts, the first variation of (3.31) may

be written as

sn= [ [ {i fur = () <f%>x)6ui}dxdt

=1
m T m t1
[Z (G, + ) m] di + / [Z b, + fu”)(Sui] da.
to =1 ) 1=1 to

Thus the natural conditions of §/; = 0 are

ouit fuy — (fui,), — (fu,), =0 2 € (20,21)5 1 € (Lo, t1),  (3.32)
5Ui|x] : (gu, + fum)|x] =0 J=0,1;1t€ (to, 1), (3.33)

5ui|t] : (huz + fuit)|t] =0 J=0,1;2¢ (xovxl)v (3-34)

for ¢ = 1,...,m. Equations (3.32) are the Euler equations of the variational
principle and equations (3.33) and (3.34) are natural boundary conditions.

The functions w;(x,t) which cause the functional (3.31) to be stationary
with respect to variations in the w; also satisfy equations (3.32) in the domain
{(x,t): @ € (xg,21);t € (to, 1)} and the boundary conditions (3.33) and (3.34).
In Section 3.7 variational principles are derived which have as their natural con-

ditions, deduced using (3.32)—(3.34), the equations of time-dependent quasi one-

dimensional motion in shallow water.

The general form of a functional for steady state quasi one-dimensional shallow

water flow is

1
L(uy, .. uy,) = / flryug, oy up,uly o ul Y de + [g(x,ug, . ,um)]ié ,
zo

/_dul

where the general functions u; now depend on x alone and u} = %%.
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The first variation of (3.35) may be written as

[l oo [ e]

=1 i=1 0
using Taylor series and integration by parts. The natural conditions of 615 = 0

are therefore

ou;: fu, — %fu; =0 x € (29, 1), (3.36)

suil, (9w + fut) i

=0 j=0,1, (3.37)

J

fore=1,...,m.

3.3.2 General Variational Principles for
Two-dimensional Flow

The domain D in two-dimensional flow is a simply connected open set in the xy
plane. For the general time-dependent case a third coordinate ¢ is added, where
t lies in the interval [to,?1]. Let wi(x,y,t),..., un(x,y,t) be m scalar variables
and let vi(z,y,1),...,v,(x,y,1) be n vector variables, where v; = (v;1,v;y) for
¢ = 1,...,n. The variables u; and v; are assumed to be differentiable functions
of x, y and .

Consider a functional of the form

t1
I3(u, vy) :/t //D F(z,y, t,u;, Vg, uy, Vi, V.ovi, Vi) do dy di

t1
+ [ Gyt v dSdt+ [ [ HG gt vl dedy, (339)
1o ) D

where : = 1,...,m, k=1,...,n and ¥ is the boundary of D. Let the functions
G and H be differentiable with respect to their arguments and let I be twice
differentiable with respect to its arguments.
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Using Taylor series, the divergence theorem and integration by parts the first

variation of the functional (3.38) may be written as

t m
513:/150 /] {;(FM—V.FVM—(FW)Q 5u;

+3 (R - Vg, - (kat)t) -5Vk} da dy di

k=1

-|-/t;1 /E {i (Gui + Fvui.n) ou; + kZi:l (Gvk + FV.vkn) .5vk} dY dt

1=

t1

+ //D lz (Hy, + Fo) 6w+ Y (Hy, + Fyy,) .5vk] dz dy,
i=1 k=1

to

where the unit vector n is the outward normal to the boundary ¥ and the following

notation is used.

v T Juyg Ougy ) Quig? Ougy

Fu —_ 9F Fu” = oOF Fvu = ( oF  OF ) ]

_ ¥ ¥ — ¥ ¥ — ¥
ka = (avm’ 8Uk2) ’ kat = (avku’ 8vk2t) ’ FV~Vk = a(V.vk)'

The natural conditions of 613 = 0 are given by

Sui: F, —V.Py, —(F.,),=0 (2,9)€D;t€ (to,hh), (3.39)

t

ovy s Iy, — VFV.Vk - (kat)t =0 (z,y) € D;t€(to,l1), (3.40)

duils Gy + Py, n=0 (x,y) € Xt € (lo,11), (3.41)
oVl Gy, +Fy,n=0 (x,y) € Xt € (lo, 1), (3.42)
5Ui|t] : (H,, + Fu”)|tj =0 J=0,1;(x,y) € D, (3.43)
5V, (Hy, + Fy,,) , =0 j=0,1;(z,y) €D,  (3.44)
for v = 1,...,m and k& = 1,...,n. Equations (3.39) and (3.40) are the Eu-

ler equations of the variational principle and equations (3.41)-(3.44) are natural
boundary conditions.

The functions u; for ¢ = 1,...,m and v; for &k = 1,...,n which cause I3 to
be stationary with respect to variations in its arguments also satisfy equations
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(3.39)—(3.44). In Sections 3.5.1 and 3.5.2 variational principles are derived whose
natural conditions, given by (3.39)-(3.44), are the equations of motion for time-

dependent shallow water flows.

The general form of a functional for steady state shallow water flow is
Ly(ug, vy) = // F(z,y,u;, Vug, v, Vovg) da dy —I—/ Gla,y,u;,viy)dE, (3.45)
D b2

where the general variables u; for ¢ = 1,....,m and vi for k¥ = 1,...,n are
functions of  and y only.
Using Taylor series and the divergence theorem the first variation of (3.45)

may be written as

514:// {f: _V.Py, )5u—|—2(vk—VFV ).5vk}d:1;dy
=1
-I-/ {i (Gui + Fvui.n) ou; + Z (Gvk + FV.vkn) .5vk} dy,
= k=1

=1

which yields the natural conditions

Sui: Fu,—V.Pg, =0 (z,9)€D, (3.46)
ovi: I, = Vig, =0 (x,y) € D, (3.47)
ouilg : Gy + by, n=0 (z,y) €L, (3.48)
oVilg: Gy, + Py, n=0 (z,y) €L, (3.49)
fore=1,....mand k=1,...,n

Using the results of this section the natural conditions of any variational prin-

ciple for continuous shallow water motion can be written down immediately.
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3.4 Discontinuous Variables

In this section general versions of the shallow water variational principles allowing
for discontinuous variables are studied. Only time-independent discontinuous
flows will be considered so the extra coordinate of Section 3.3, which is identified

with the time, is no longer used.

3.4.1 General Variational Principles for
One-dimensional Flow

Let the interval [z¢, 2] of the a-axis be the domain over which the integrand of
the general functional is integrated and let x; be a point in the interior of this
interval. Let u;(x) ¢ = 1,...,m be a set of functions defined on [z, ], as before.
Assume that all of the u; are continuous in [zg, x5) U (2, 21]. This allows for one
or more of the u; to be discontinuous at the point w;.

Consider a functional of the form

A Ta 1
]2(U1,...,um,$5):</ —I—/ )f(:z;,ul,...,um,ull,...,u;n)dx
zo Te

+g(z,ur, . un)i . (3.50)

Using Taylor series the first variation of Iy is given by

st = ([ [V b+ i o
Zo Ts =1

1

+ [Zgui&“] + o f|x_ — o, f|x+ ) (3'51)
=1 . ) )

0

where the superscript — denotes the xy side of x, and + denotes the x; side of
zs. The first three terms are due to the variations of the u; and the last two are
due to the variation of the position of the discontinuity, x;.
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Applying integration by parts to the éu) terms of (3.51) yields

(L) )

+ li (90 + 1) 5“2’] + li fu;&u} " e, . (3.52)

i=1 =1 ot

The total variation 5Aui of the variable u; at the point x; is given by

5u2'

= buyl, Lt ui(wge)oay,

T 4

which is the first order term in the expansion of

l’si+5l’5 .

The only variations considered are those for which the total variations on either

side of the discontinuity are equal for each variable, that is,

5ui = (5u2

T —

= (5u2
l’s+

b
Ts

say, and, in the case of shallow water, the coefficients of these terms in the

variational principle give rise to the required jump conditions. Substituting for

du;| - in (3.52) yields

T 4

i (L) -

+ li (u: + fur) 5%1 L ij (], Sui|, + lf - i fu;u;»] (3.53)

=1 0 Ts

where the brackets [-],.. denote the change in the argument on crossing z,; from
the zy side to the z; side. That is, for example, [f]., = fl.._ — flo ., where —
denotes the the xg side of x; and 4+ the x; side, as before.

Thus, from (3.53), the natural conditions of §I, =0 are

Su; fu; — %fu; =0 x € (2o, x5) U (x5, 21), (3.54)
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Sul, © (gu+fu)] =0 =01, (3.55)

Ty

A

5ui

1] =0, (3.56)

T T

oz [f — ifu;u;] =0, (3.57)

for i =1,...,m. Equations (3.54) are the Euler equations and (3.55) are bound-
ary conditions at xo and x;. Equations (3.54) and (3.55) are identical to the
corresponding natural conditions for continuous variables, derived in Section 3.3.
Equations (3.56) and (3.57) are due to the discontinuities in the u; at the point
x,. It is possible that there is a number of such points of discontinuity in the
interval (zq,x1). If so, then there are equations of the form (3.56) and (3.57)
corresponding to each of these points. In this case the Euler equations (3.54) are

derived for the interval (¢, 1) excluding all points of discontinuity.

3.4.2 General Variational Principles for
Two-dimensional Flow

The natural conditions of a variational principle with discontinuous variables,
defined in two dimensions, are derived in this section. The method is similar
to that of the one-dimensional case in Section 3.4.1. The difference is that in
two dimensions the variables are discontinuous across a curve in the domain of
integration instead of at an isolated point.

Let D be the domain in the xy plane over which the integrand of the functional
is to be integrated and let X be the boundary of D, as before. Let ¥, be a smooth,
non self-intersecting curve which divides D into two distinct regions, D~ and D™,

as in Figure 3.1.
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Figure 3.1: The two-dimensional domain.
Let w; = u;(a,y) fori = 1,...,m and v; = (vi1(x,y), vip(x,y)) fori =1,....n
be the scalar and vector variables. The u; and v; are assumed to be continuous
in the domains D~ and D* but may be discontinuous across the curve ;.

Consider a functional of the form

]A(uz,vk, (//_ —I-// ) x,y, uy, Vug, vy, Vovg) de dy
* (/2— +/§;+) G,y uiy Vi) d, (3.58)

where 1 = 1,...,m, k= 1,...,n, X~ is the part of ¥ which bounds D~ and X7
is the part which bounds DT.

The first variation of I is given by

siv= ([ + [, {5 (Rws g, 9 0u)

=1

+ Zn: (ka-5Vk + FV.ka' ((5Vk)) } dx dy
(/E_ +/ ) {ZGul(Su + ZGvk 5vk} dx
+//5DF‘d:r:dy—//6DF+dxdy+/62G—dz— GRS, (3.59)
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Figure 3.2: Variation of ¥;.

where 6D is the region of D enclosed by Y, and its variation ¥, + 63, — see
Figure 3.2 — and 0% is the change in the length of ¥~ caused by the variation of
Y. The superscripts — and + indicate that the functions are evaluated on the
D~ or D7 sides of X, respectively.

Applying the divergence theorem to the V(éu;) and V.(6vy) terms in (3.59)

yields

o= (], 1) S (- wre) o

n

+3 (ka _ VFv.vk) .5vk} dz dy

k=1
(/E_+/ ){ S (G, + Py, ) bu, —|—Z(Gvk—|—FVv ).m}dz
+// F‘d:z;dy—// F+d:1;dy—|—/ Gds — [ ards
§D §D 5% 5%
+ /ES {; F%ui.n ou; + ]; F%.vkn.(Svk
N FE nbu, — jgas n.5vk} dX.
Consider a point on the curve ¥,. Let én be the displacement of this point,

under the variation, in the direction of n, the unit normal on the surface ¥, with

direction out of the subdomain D~. Then the integral over the domain 6D can
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be written in terms of an integral along ¥; and the variation on, that is,

/ Fd:z;dy:/ Fénds.
§D Y

As in the one-dimensional case equations relating the values of the variables
on either side of the discontinuity are obtained by using the total variations. Let
07 be the displacement of a point on X, under the variation, in the direction
of 7, the unit tangent vector at the point. Then the total variations of the flow

variables on the curve X, are given by

~ x + .
S = Sut —|—8“z (5 —|—8“z h) t=1.....m
2 E 1 E E 2 2 2
+ + +
_ + avk avk —
(5vk2 —5vk‘2—|— \Esén+W \ES& k=1,...,n,
where = denotes differentiation in the direction of n an ifferentiation in
h — denotes diff tiati the directi f d 5~ diff tiati

the direction of 7. As in the one-dimensional case, only variations whose total

variations are equal at the discontinuity are considered, that is,

N -|— A — A
ou;, | = ou, = ou,|_
by
. . :
N -|— A — N
ov = v = ovy| .
k k 5
. . s

Thus the first variation of 14 can be written as

o= (ff, ) (v

+ znj (7v, - Vig,,) .5vk} dz dy

k=1

+ (/2— + 2+) {i (Gu,‘ + Fvui.n) Su; + kZ: (Gvk + Fv.vkn) .5vk} dy
G

=1

+[ (G -a*)ax
(- re G - rg, o (via) o
9

F.
Uy
=1
St n
o Jdu;
Us

(F-I- 3 no - > Fe.Vk 5 (V,;"n)) on

1= =1



The natural conditions of (5j4 =0 are

ou;r By —V.hyg, =0 (z,y) € D~ U DT, (3.60)
ovi: By, —VIiyg, =0  (z,y) € D-UDY, (3.61)
ou;r Gy + Py, n=0 (z,y) € ¥-UXH, (3.62)
ovp: Gy, +Fg,n=0 (z,y) € X" UXT, (3.63)

e ou; & 0
on: |F =) g, . YR — (V- =0 3.64
n [ ; Vo n on kzz:l Vv, on (Vk n)] . ) ( )
o7 : 'y . 3 — (vp. =0 3.65
' LZ:; Vuig; + kZ::l Vovior (Vi H)L 7 (3.65)
Su; - [Py, n] =0, (3.66)
vy Py, =0 (3.67)
for i = 1,....,m and k = 1,...,n, where the brackets [-]x, denote the change

in the quantity enclosed on crossing ¥, from D~ to D*. The sets of equations

(3.60)—(3.63) are the same as the natural conditions for continuous variables, as

derived in Section 3.3.2 although, instead of being valid on the whole of D or

¥, (3.60) and (3.61) are valid on D~ and D™ separately and (3.62) and (3.63)

are valid on ¥~ and X7F separately. Equations (3.64) and (3.65) arise from the

variation in the position of the line of discontinuity ¥, and equations (3.66) and

(3.67) are the result of matching the coefficients of the total variations in the

variables at this line.

63



3.5 Time-dependent Shallow Water Flows

The previous two sections have dealt with generating general expressions for the
natural conditions of certain types of variational principles. These are used in
this section and the remaining sections of this chapter to deduce the natural
conditions of variational principles for shallow water flows.

The derivation of variational principles for time-dependent motion in shallow

water is continued here using the functionals created in Section 3.2.2.

3.5.1 Boundary Conditions

The variational principles for shallow water flows considered so far have all been
such that the variations vanish at the boundaries of the domains of integration.
In this section boundary terms are added to the functionals of Section 3.2.2 and
variations which are not necessarily zero on the space and time boundaries are
allowed. In this way boundary conditions for shallow water flows are derived.
First consider the functional with the integrand (3.28) — the ‘p’ functional.
If we examine the associated variational principle and allow variations which
do not vanish at the boundaries, the variables Q and ¢ will appear in terms
integrated around the space boundary of the domain and d and ¢ will appear in
terms evaluated at the initial and final times ¢; and #5. This can be seen using
the natural conditions (3.41)—(3.44) of the general two-dimensional variational
principle in Section 3.3, where the function [ is taken to be the integrand of
the ‘p’ functional and G and H are, as yet, unspecified boundary functions.
With this motivation the boundary ¥ of domain D is divided into two parts, say

Y =34+, where boundary conditions for ¢ are sought on ¥, and for Q on Xg
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for t € (t1,12). Similarly the domain is divided into two parts, say D = Dy + Dy,
and conditions at the time boundaries #; and ¢, are sought for d in D, and for ¢
in Dy.

In this way it is possible to construct a ‘p’ functional with boundary terms.

Let the functional I1(FE,Q,d, v, ¢) be given by

h:Lf/ﬂﬁm“ﬂu—d@f+E—W0+Q«v—Vw»dx@dt
+tf4@6¢d2ﬁ4j£aéJ¢—f)Qnd2ﬁ
[, (@6 =R, = (@d(6 = h))L,) dedy
#J[,, (6o = ély ) o 569

where f = f(xz,y,t) and C = C(x,y,t) are given functions on ¥, and Xg respec-
tively and ¢; = gi(x,y) and h; = hi(x,y) for ¢ = 1,2 are given functions in Dy
and Dy respectively.

The natural conditions of the revised ‘p’ principle 6I; = 0, deduced using

equations (3.39)—(3.44), are

pv‘I‘Q =0
pp—d = 0
d,+VvV.Q = 0 in D,

C — Qn = 0 on ZQ for t € (t17t2)7

f—o =0 on E<b fOI’tE(tlth)v

—qg;, = 0 in Dy for:=1,2,

—h; = 0 in Dy fores =1,2,
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where D = D x (ti,12),

0 v 1 0 1 1
pvgai:—g<E—2v.v) and pEEa§:g<E—2V.V).

Thus the first two conditions in D) are

1 1 1
—V<E—V.V)—|—Q:0 and(E—v.v)—d:(),
g 2 g 2

which together give
Q=dv and F =gd+ ;V.V,

so that the last three natural conditions in [ are the conservation laws and the
irrotationality condition. The last four natural conditions are space and time
boundary conditions. The first of these is a condition on the normal component
of mass flow on Xy and the second is a condition on the velocity potential on
Y¢, both for t € (#1,t2). The remaining conditions are for depth and velocity
potential, in Dy and D, respectively, at the initial and final times. These last
conditions are not desirable in a practical sense since they require knowledge of
the solution at the final time.

Consider now the ‘r” functional — that with integrand (3.30). The domain
and domain boundary are again divided into two, as for the ‘p’ principle, to
provide a choice of boundary conditions. Using the same functions, f = f(x,y,1),
C =C(x,y,t), ¢; = gi(z,y) and h; = hy(x,y) for i = 1,2, a second functional

12(Q, d, ¢) can be derived, namely,
12:/:/ (r(Q.d) + gdh + ¢ (d; + V.Q)) da dy dt
/ (C —Qun) dS di — /t [ fQuasd
—// o= g))l,, = ((d—g1))l,) dody
—// d|,, hy — d|,, hy) dedy. (3.69)
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The natural conditions of the ‘r” principle 61, = 0 may be deduced using

(3.39)—(3.44) and are given by

TQ—V(/§ =0 ian

C — Qn = 0 on ZQ for t € (t17t2)7

f—¢ =0 on for t € (ty,12),

=9 =0 in Dy for:=1,2,

—h =

jam)

¢

in Dy foro =1,2.

t;

The first two natural conditions in the domain may be rewritten as

1Q.Q

_ Q
2 &

d

—gd+gh—¢,=0, -Vo=0

so that, using (2.25), the equations of motion and the irrotationality condition
have again been derived. The boundary conditions are identical to those of the
‘p’ principle.

Thus there exist two functionals, (3.68) and (3.69), whose natural conditions
of the first variation are the equations of motion in the domain of the problem
together with prescribed conditions on mass flow and velocity potential on the
boundary of the domain, and conditions on the depth and velocity potential over

regions of the domain at the initial and final times.

3.5.2 A Quartet of Functionals

A sequence of Legendre transforms can be used to generate a quartet of func-
tionals which have as natural conditions of their first variations the equations of
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time-dependent motion in shallow water. Two such functionals — based on the p
and r functions — have already been described and were independently derived
from the ‘pressure’ and ‘Hamilton” functionals for three-dimensional free surface
flows. Two further functionals are now sought.

By applying the divergence theorem and integration by parts, the ‘p’ func-

tional (3.68) can be expressed in the form

I :/j //D (p(v, E) — Ed+ Qv + gdh + 6 (d, + V.Q)) dx dy dt
+/}552/2Q¢(0—Q.n) dZdt—/: [ JQuad
[ (6@ =gl ~ (@ =g)l,) dedy
_//D¢ dl,, by — dl, hy) drdy. (3.70)

Comparing this with Iy, as given by (3.69), suggests that there is a relationship

between the two functions p(v, £) and r(Q, d) such that

r(Q,d) =p(v, B) — BEd+ Qv

in value, which can be confirmed directly using (2.19) and (2.25). The relation is
in fact a Legendre transformation as is now shown.
The Legendre transform R(v,d) of p(v, F), with E and d as dual active vari-

ables and v passive, is defined by
R(v,d) = Ed—p(v, F) (3.71)
and is such that
RV:_pV ) Rd:E
Using (2.19) R can be constructed from (3.71) and is
1 5, 1
R(v.d) = igd + idv.v. (3.72)
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Notice that R is equal to the total energy of a fluid particle.
The function R is also a Legendre transform of r(Q,d), with Q active and d

passive, in that, using (2.25), we may write
R(v,d)=Q.v —r(Q,d) (3.73)
with the first derivatives
Ry=—-ry , Ry =Q.

Equations (3.71) and (3.73) imply the required connection, that
HQ.d) = Qv — R(v,d) = p(v, I}) — Ed + Qv

in value.
The intermediate function R can be bypassed and p and r may be connected
directly by a Legendre transform. Since py = —Q and pg = d, then if v and £

are both active variables, the transformation of p is
r(Q,d)=Q.v— FEd+ p(v,E) (3.74)
and
rq=v , rq=—FL.

A fourth function P(Q, E') completes a closed quartet of functions related by
Legendre transforms and is derivable from p, r and R by using appropriate active
variables. P cannot be given explicitly, but is defined by eliminating v and d

from

1 1
PQ,F) = §gd2 +dvv , Q=dv , E=gd+ V-V, (3.75)

and has the values of flow stress. The function P is related to p and r by

p(v,E)— P(Q,E) = —Quv (3.76)
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r(Q,d)— P(Q,F) = —Fd. (3.77)

The functions P and R can be used as bases for functionals, the natural
conditions of the first variations of which include the equations of motion in
shallow water. The functionals may be generated by substituting for p and r in
the integrands of (3.68) and (3.69). The process is to use (3.76) to substitute for p
in the integrand of (3.68) and (3.73) to substitute for r in the integrand of (3.69)
by what is essentially a change of variables using the definitions of £ and Q,
(2.19) and (2.25). Although (3.71) could be used to substitute for p in (3.68) and
(3.77) could be used to substitute for r in (3.69) it would not change the nature
of the functionals being generated. For instance integration by parts and the

divergence theorem can be used on the ‘P’ functional generated by substituting

(3.77) into (3.69) to give the functional formed by substituting (3.76) into (3.68).

The ‘P’ Principle
Let the functional I3(E, Q, d, ¢) be defined by
I3 = /t // —Q.Vo—d(¢;+ E —gh)) dedydt
t2
+/ / C¢d2dt+/ / (6= f)QundS dt
t1 JEg t1 JYg
[ (@6 =Rl = (@(6 = h))L,) dedy
+//D ly, 92 — 9l 91) dx dy. (3.78)
d
Then the natural conditions of the ‘P’ principle 613 = 0 are
Pq—-V¢o =0
Pg—d =0
in D
¢+ E—gh =0

d,+V.Q = 0




C — Qn = 0 on ZQ for t € (t17t2)7

f_¢ =0 on E(b fortE (t17t2)7

=9 =0 in Dy for:=1,2,

—h; = 0 in Dy foro =1,2.
The first condition in D is
v—Vo¢o=0.

Thus if equations (2.19) and (2.25) are assumed, the ‘P’ principle yields the
conservation laws and the irrotationality condition as natural conditions in D,
and gives the same boundary conditions on ¢ and Q at space boundaries and on

d and ¢ at time boundaries as are obtained from the ‘p” and ‘r’ principles.

The ‘R’ Principle
Now consider a principle based on the function R. Let the functional I,(Q,d, v, ¢)
be given by
t2
I, = /t // R(v,d) + Qv+ gdh + 6 (di + V.Q)) da dy dt
t2
/ $(C — Q) dS dt — / fQ.ndx di
11 E¢
- // o(d=g))l, = (@(d—g1))l,,) dudy
_// dl,, hy — d],, hi) dzdy. (3.79)
Dy

The natural conditions of the ‘R’ principle 61, = 0 are

—-Ry+Q =0
—Rg+gh—¢: = 0 .
in D,

v—V¢ = 0

+V.Q =0




C — Qn = 0 on ZQ for t € (t17t2)7

f_¢ =0 on E(b fortE (t17t2)7

=9 =0 in Dy for:=1,2,

—h; = 0 in Dy foro =1,2.
The first two conditions in D may be written as
1
—dv+ Q=0 and — gd— §V.V—|—gh—q§t:0.

Thus the natural conditions of the ‘R’ principle include the equations of motion
in shallow water and the same boundary conditions as obtained previously from

the ‘p’, ‘v” and ‘P’ principles.

So there exists a quartet of functionals (3.68), (3.69), (3.78) and (3.79), based
on the four functions p, r, P and R, from which the shallow water equations can
be derived as the natural conditions of the first variations. Figure 3.3 shows the

relations between the p, r, P and R functions.

o PQE) &

A% _Q -E

o

o
P
=
vy
~"
| <
=0

r(Q,d)

d ~ R(v,d) v

Figure 3.3: A quartet of Legendre transforms.
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3.5.3 Constrained and Reciprocal Principles

Variational principles can be constrained by allowing only variations which satisfy
one or more of the natural conditions. The principles constrained in this way will
have the remaining natural conditions as natural conditions (Courant and Hilbert
(1953)). There are several ways in which the variations of the ‘p’, ‘t’, ‘P’ and ‘R’
principles of Sections 3.5.1 and 3.5.2 can be constrained; only those constraints
which produce variational principles which are reciprocal, in a sense to be defined

shortly, are studied here.

Reciprocal ‘p’ and ‘r’ Principles

The functional (3.68), used in the ‘p’ principle, has an integrand which contains
the integrated conservation of momentum equation and the irrotationality condi-
tion explicitly. It seems natural to constrain the ‘p’ principle to satisfy these two

conditions. This can be done by specitying

E = —¢;+gh
, (3.80)

v = Vo
which results in the functional [; reducing to a functional I7(Q,d, ¢). The con-

strained principle is given by

51;:5{[2//;3( d:z;dydt—l—/ / Cbds di

+/t1 / (6—f) QndZdt—l—// 4(6 = ha))l,, = (d(é— h))l,,) d dy
+ //Dd o, 92 — 0l 91) dx dy} =0, (3.81)

where
R 1 1 2
#(6) = p(V6,~6gh) = 5 (60— gh+ L V6.99)
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The natural conditions are

(—; (60— gh+ ;ww))

t

1
g

1
g

(; (60— gh+ ;V6.96) + d)

1
g

¢l,,

(qﬁt —gh+ ;Vqﬁ.Vqﬁ)

(qﬁt —gh+ ;Vqﬁ.Vqﬁ) Véon+C = 0

<¢t —gh+ ;VqﬁVqﬁ) Vén+Qn = 0

+g: = 0

LV (—; (qﬁt —gh+ ;w.w) vqs) ~ 0

in D

Y

on Yg for t € (t1,1,),

on Y, for t € (11,12),

o—f =0 on Yy for t € (t1,1,),
=0 in Dy for 1 =1,2,
t;
—h; = 0 in Dy for 1 =1,2,
in Dy for 1 =1,2,

the first of which may be recognised as conservation of mass, written in terms of

¢, in the domain. Boundary conditions are given for ¢, d and Q.

If ¥g = ¥ and Dy = D then (3.81) becomes

o{[* [ poracayar+ [ [ coasars [[ (o], 0.~ 6|, ) dedy} =0

(3.82)

in which the functional depends on the variable ¢ alone.

A constrained ‘r” principle can be constructed to satisfy conservation of mass

by specifying
d

Q

V.3
, (3.83)
—,

for some vector ¢ = ¥ (x,y,t), and substituting into equation (3.69). The re-

sulting functional depends on ® and ¢ and the variational principle is given by
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y { [+ g sy dedyait [7 o0 m) s
+/tt /E¢ fb,ndSdt — //D ((6(Vep = g, = (6(Vep —g1))l,,) da dy

—//m (V-iﬁlm hy = V.4l hl) dx dy} =0, (3.84)
where
14, 1 ,
M) =r(—¢, V)= ;@Zt —59(V$)

The natural conditions are

A

1
-, +V (gVﬂ,b —gh+ ZW.W) =0 in D,

C -+ ’(Ibt‘n =0 on ZQ for t € (t17t2)7
1
— ¢y — Egjgj —gVap+gh = 0 on Xg for t € (t1,13),

1
—f - Egjgj —gVap+gh = 0 on Y, for t € (11, t2),

VY|, —g =0 in Dy for:=1,2,
Vol +¥|,. =0 in Dy fori1=1,2,
Vhi+ W], =0 in D, for i =1,2,
¢l, —hi = 0 on g NX;fore=1,2,
ol — ¢, = 0 on Yg N, fore=1,2,
fly—hi = 0 on ¥y MY, fori=1,2,
fly, =9, = 0 on Y4 N Yy fore=1,2,

where X5 is the boundary of Dy and X is the boundary of Dy and, for neatness,
¥ represents the term v,/ V.4).

The natural condition in D is recognisable as the equation of conservation
of momentum — not the integrated form usually generated. The irrotationality
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condition can be derived as a consequence of the conservation of momentum and
the boundary conditions which specify that the flow is irrotational at ¢t = #;.
If ¥, =Y and Dy = D, (3.84) reduces to a variational principle involving a

functional of ¢ alone, namely,

5{/; //D (#(2p) + gV .4ph) dx dy dt +/:/Ef¢t-nd2dt
~ [ (V- be = V], ) de dy} = 0. (3.85)

The variational principles (3.82) and (3.85) can be described as reciprocal.
We use this term to mean that the constraints satisfied in the domain by the
variations in one principle are the natural conditions, in the domain, of the other
principle. The boundary conditions also exhibit reciprocity in that the natural
boundary conditions of (3.82) are given for mass flow, as a function of ¢, on ¥
and depth, as a function of ¢, in D for t = ¢, , {5 whereas in (3.85) conditions are
for the energy, as a function of ¢, on ¥ and velocity, as a function of ¥, in D for

t:tl,tg.

Reciprocal ‘P’ and ‘R’ Principles

Now consider the other two variational principles — based on P and R. The

integrands of the ‘P’ and ‘R’ functionals are not expressible in either of the forms

function of (Q, d) + multiplier x conservation of mass  or

conservation of irrotationality
function of (v, £') + multiplier x + multiplier x \

momentum condition

which are the structures that allow the ‘p’ and ‘r’ variational principles to be

constrained to depend on only one variable. There is no corresponding way of
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constraining the ‘P’ and ‘R’ principles and the functionals cannot be reduced to

depend on one variable. However, the following structure can be deduced.
Consider the ‘P’ functional (3.78). Let ¥g = X and D; = D, and constrain

the variables to satisfy conservation of momentum using the first of (3.80). Then

the variational principle becomes

5{/; /] (P(Qa—@-l-gh)—Q.Vqﬁ)dxdydt{-/:/chgdzcﬁ
+ //D (¢l,, 92 — @l,, 91) du dy} =0, (3.86)

where the variables are Q and ¢. The natural conditions are given by

Pq—-Vé = 0
inD

(P—¢t+gh)t tV.Q =0

C — Qn =0 on > for ¢ € (t17t2)7

9i — P-gipgnl, = 0 in D for:=1,2.

The first two conditions may be rewritten as

v—V¢p = 0
in D
d;+V.Q =0
which are the irrotationality condition and the conservation of mass equation.
In the ‘R’ functional (3.79) let ¥, = ¥ and Dy = D and constrain the

variations to satisfy conservation of mass by imposing (3.83). Then the variational

principle becomes

{/:// R(v,V.9) ¢tv‘|’gv’¢h)d$dydt—|-/ /f%ndEdt
a //D V|, hy = Vbl ) da dy} =0, (3.87)
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which involves a functional of v and . The natural conditions are given by

_Rv - ,(Ibt = 0 .
in D,

Av4 (RV¢ —gh) +v, = 0
_RV’('b _|_gh—ft = 0 OHZfortE(t17t2)7

Vhi—v|. =0 in D fori=1,2,

[

—h; = 0 on Y for:=1,2.

t;
The first two equations are

—(Vy)v—9¢, = 0 o
in D
v, +V (gV.¢ —gh+ %V.V) =0
the second of which is conservation of momentum. This, together with the natural
condition in D for ¢y, implies the irrotationality condition in D for ¢ € [t;,1,].
The constrained ‘P’ and ‘R’ principles (3.86) and (3.87) are reciprocal since
the constraint of conservation of momentum in (3.86) is a natural condition of

(3.87) and the conservation of mass constraint in (3.87) is a natural condition of

(3.86). The irrotationality condition is a natural condition of both principles.

3.6 Time-independent Shallow Water Flows

The discussion so far has concerned derivation of variational principles whose
natural conditions include the time-dependent shallow water equations of motion.

We now seek to apply these principles to steady state conditions.
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3.6.1 Steady Principles from Unsteady Principles

In Chapter 2 the equations of motion for time-independent shallow water flows are
deduced from the equations for time-dependent motion by making the assumption
that all of the flow variables — mass flow, energy, depth and velocity — are
independent of time. The potential ¢ is not a flow variable and is not assumed

to be independent of time although its general form is deduced as

o(2,y.1) = =Bt + oz, y) (3.88)
(equation (2.50)), where the constant energy F is the steady counterpart of £—gh.

The variational principles for time-independent motion can be derived from
the variational principles for time-dependent motion of Section 3.5 in a similar
way. That is, by assuming that the flow variables are independent of time and
that ¢ is of the form (3.88). With appropriately modified boundary functions the
integrals with respect to time in the principles for time-dependent flow can be
evaluated.

Consider the four functionals (3.68), (3.69), (3.78) and (3.79). The boundary
functions C'(x,y,1), f(x,y,1), ¢;(x,y) and h;(x, y) for ¢ = 1,2 must be treated with
care in transforming from unsteady to steady motion. In the natural conditions
the function C' will be used to provide a boundary condition for the mass flow on
Y. As mass flow is now assumed independent of time, C' must be replaced by
a function C’(:L', y). The function f will be used to provide a boundary condition
for ¢ on ¥,. The variation of ¢ with time is known from (3.88) and so, for
consistency, f must be replaced by f(z,y,t) = —Et + fi(z,y). The functions ¢
and ¢, are the time boundary conditions on the depth in domain Dy but since
the depth does not vary with time we must have gy = ¢go = §(x, y). The functions
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hy and hs give time boundary conditions on ¢ in Dy, and from (3.88) we know

that

8, — dl, = —E(ty —t;) = —ET,

where T' = t5 — t1. Therefore h; and hy must be specified so that hy — hy = —ET
for consistency.
First consider the ‘p’ principle. The functional [;, given by (3.68), under

steady state conditions becomes

Is = // p(v, E) +Q(v—v¢))dxdy+/ (/fqﬁdt)dE
4 E¢(/1 (6 - f)dt)QndZ // T4E de dy,

where I7 = I7(Q, v, ¢). To simplify this define

Flayy) = filz,y) — SE(t + 1)

DO | —

so that

/j Flay,t)dt = | fi(z,y)t — ;Eﬂ] - (fl(:p,y) _ ;E(tl + t2)) — Tf(z,y).

Also, let

so that

[ otevyar = [pewyt - Loe] " =1 (3 - Lo ) = 1é(e)

t1

and V(gg = V¢. Then

= // p(v,E) + Q. (v—v¢))dxdy+/ TCddy
/ (- /) Quds - // ToE de dy. (3.89)
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Notice that the final term in (3.89) is a constant and so it may be discarded.
Also, throughout the functional there is a constant non-zero multiplier T' which
may be set equal to unity. Finally, for neatness, the " notation is suppressed and

the ‘p’” functional for use in the steady state variational principle is written as

I = //D (p(v, E) + Q. (v — Vqﬁ))d:z;dy—l—/EQ C¢d2+/2¢ (6 — f)Q.nd,
(3.90)
where L1 = [1(Q, v, ¢) and F is the known function F = E + gh, for consistency
with conservation of momentum (2.42).
By the same process steady state forms of (3.69), (3.78) and (3.79) can be
generated, and using the method by which (3.90) was deduced from (3.89) the

steady state ‘t’, ‘P” and ‘R’ functionals may be written

L, = //D (r(Q.d) + Ed + ¢V.Q) dx dy

+/EQ 6(C — Qun)dx — /m /Qnds,  (3.91)
Ly = [[ (PQ.E)+6V.Q)dudy

+/2Q 6 (C' = Qun)dy — /m fQnds,  (3.92)
Ly = //D(—R(v,d)—|—Q.v—|—Ed—|—q§V.Q)d:z;dy

+/EQ¢(0 —Qun)dy — /E¢fQ.n s, (3.93)

where Ly = Ly(Q,d, ¢), Lz = L3(Q,¢) and Ly = L4(Q,d, v, ).

The natural conditions of the steady state variational principles 611 = 0,
0Ly =0,6L5 =0and 6 L4 = 0 are expected to include the shallow water equations
of motion (2.43) and (2.48) and possibly (2.25) or (2.19). Equation (2.42) is
satisfied exactly since the energy F is regarded as a known function £ = E + gh,

where F is a given constant.
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The natural conditions of 6L; = 0, the ‘p’ principle, are

pv+Q =0
V—V(/ﬁ =0 ian
v.Q = 0

C—-Qn = 0 on Xg,

f—o =0 on Y,
the first equation being

|
—V<E—v.v)—|—Q:0 in D.
g 2

The natural conditions of 6Ly = 0, the ‘t” principle, are

TQ—qu =0
Td—I-E = 0 ian
v.Q = 0

C—-Qn = 0 on Xg,

f—o =0 on Y,

the first two equations being

Q@ vy =0
in D.

189 i1 E = 0

The natural conditions of 6Lz = 0, the ‘P’ principle, are
Pq—-V¢ =0

v.Q = 0



the first equation being

v—-V¢=0  inD,

where v is a function of Q and E using (2.25) and (2.19).

The natural conditions of 6L, = 0, the ‘R’ principle, are

—-Ry+Q =0

—R;,+F = 0
in D,

v—V¢p = 0

vVQ =0

C—-Qn = 0 on Xg,

f—o =0 on Yy,

the first two equations being

—dv+Q =0
in D.

—gd — %V.V—I—E =0
Thus the natural conditions of the variational principles for steady state mo-
tion, derived from the principles for unsteady motion, include the steady state
equations in shallow water — (2.43) and (2.48). In order that the equations are
expressed in the forms of (2.43) and (2.48) it is necessary to assume in the ‘p’
principle that d = é(E — 1v.v), in the ‘v7 principle that v = % and in the ‘P’

principle that £ = ¢gd + %V.V and Q = dv.

Incidentally the same ‘p” and ‘r’ functionals (3.90) and (3.91) can be derived
from the ‘pressure’ and ‘Hamilton’ free surface functionals by a different route.
Instead of applying the shallow water approximation and then considering steady

flow the assumption of steady state conditions can be made first. The method
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is dependent on the addition of appropriate boundary terms to the free surface
functionals for unsteady flow in the same way that boundary terms were added

to the functionals for unsteady flow in shallow water in Section 3.5.

3.6.2 Constrained and Reciprocal Principles

The variational principles for steady motion can be constrained in the same way
as the ones for unsteady motion were in Section 3.5. The variational principles
for time-dependent motion have three natural conditions which can be used as
constraints — singly or in pairs — conservation of mass, conservation of momen-
tum and the irrotationality condition. For the variational principles for steady
flow there are just two — conservation of mass and the irrotationality condition

— since conservation of momentum is satisfied implicitly.
Reciprocal ‘p’ and ‘P’ Principles

Consider the integrands of the functionals (3.90)-(3.93). In Section 3.5 emphasis
was placed on the structure of the integrands of the ‘p’” and ‘r” functionals — they
were expressed as a function of (Q,d) or (v, E) plus a multiple of a conservation
law or the irrotationality condition. For steady flows the ‘p’ and ‘P’ functionals
exhibit a similar property, that is, the integrands can be expressed as functions
of Q or v plus a multiple of conservation of mass or the irrotationality condi-
tion, since F is a known function. Thus the ‘p’ principle will be constrained by
irrotationality and the ‘P’ principle by conservation of mass.

Let ¥g = 3. Then the ‘p’ principle constrained by irrotationality is a func-

tional of ¢ alone and is given by

5{//17 p(Vo, E) de dy—|—/2(]q$d2} _ 0, (3.94)
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with the natural conditions

v (; (E - ;qu.Vqﬁ) Vqs) — 0 D,

! (E - ;qu.Vqﬁ) Vén—C = 0  on¥,
g

the first of which is conservation of mass in D.
Let ¥g = ¥ and Q.n = C on Y. Then the constrained ‘P’ principle is a

functional of Q alone and is given by

5{//D P(Q, E) da dy} — 0, (3.95)

where Q is constrained by V.Q = 0 in D and by Q.n = ' on . The variational
principle (3.95) has as its only natural condition the irrotationality condition.

Thus the ‘p” and ‘P’ steady principles display the same relationship as the ‘p’
and ‘t’ principles for unsteady flow (3.82) and (3.85) — they are both functionals
of one variable and are reciprocal in the sense defined earlier.

The particular relationship between the ‘p” and ‘v’ principles (3.82) and (3.85)
for unsteady flow has not survived the transition to principles for steady flow.
The ‘p” and ‘r’ functionals (3.90) and (3.91) cannot be constrained so that they
each depend on just one function and have reciprocal constraints and natural
conditions. The relationship of the ‘p” and ‘r’ principles in unsteady motion is a

result of the integrands being expressible in the form
function of (Q,d) or (v, E) + multiplier x conservation law

and once the variables are constrained to satisfy the relevant conservation law and,
in the case of the ‘p’ principle, irrotationality, the functions of (Q,d) or (v, F)

can each be written in terms of one variable. In the steady motion functional
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(3.90) the pressure function p is still expressed as a function of v and E but,
since F is a known function and no longer a variable of the problem, p is in fact a
function of v alone. The flow stress P is also a function of one variable so that the
constrained ‘p’ and ‘P’ principles for steady motion exhibit the same relationship
as the constrained ‘p’ and ‘r’ principles for unsteady motion in terms of being
reciprocal and depending on just one variable.

For the case of constant equilibrium depth %, where the energy F is a constant,
the constrained ‘p” and ‘P’ principles (3.94) and (3.95) are examples of Bateman’s

functions (Bateman (1929)), using the gas dynamics analogy.

Reciprocal ‘r’ and ‘R’ Principles

The function r depends on Q and d and cannot be written as a function of one
variable by requiring the irrotationality condition or conservation of mass to be
satisfied. The function R also depends on two variables and cannot be reduced to
a function of one variable. However the ‘t’ and ‘R’ principles for steady motion
can be constrained to give reciprocal principles.

Let ¥y = ¥. Then constraining the ‘R’ principle to satisfy the irrotationality

condition gives

{// R(Vé,d) + Ed)de dy +/ cqsdz} 0 (3.96)
which depends on ¢ and d. The variational principle (3.96) has natural conditions

—R;+FE = 0

V. (Ry,) = 0

Rv(b.n—C:O on X,

in D
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the second of which is conservation of mass in the form
V. (dV¢) = 0.

Let ¥g =Y and Q.n = C on ¥. Then constraining the ‘v’ principle to satisty

conservation of mass gives

5 {//D (r(Q, d) + Ed) dx dy} 0, (3.97)
where V.Q = 0, which has as natural conditions
Tq —|— E = 0

and the irrotationality condition in D.

The ‘v’ and ‘R’ principles are reciprocal since the constraint of one principle
is a natural condition of the other. Unlike the constrained ‘p” and ‘P’ principles
though, the ‘r” and ‘R’ principles are functionals of two variables which yield a

second natural condition for each.

3.7 Quasi One-dimensional Shallow Water

Flows

In the same way that variational principles for time-dependent shallow water
flows were derived from principles for free surface flows in Section 3.2, by making
the shallow water approximation, the quasi one-dimensional approximation can
be applied to (3.68), (3.69), (3.78), (3.79) and (3.90)—(3.93) to give functionals
whose corresponding variational principles have as their natural conditions the

equations of unsteady and steady quasi one-dimensional motion.
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The domain of the problem is the channel

)

D:{(x,y):xe[xe,xo];yEl— 5

as in Section 2.3.

3.7.1 Time-dependent Flows

Consider the functionals (3.68), (3.69), (3.78) and (3.79) for time-dependent shal-
low water flows. Corresponding functionals for quasi one-dimensional flows may
be derived from these by assuming that all of the flow variables are independent
of y, that is, by substituting £ = F(x,t), Q = Q(x,t), d = d(z,t), v = v(x,1)
and ¢ = ¢(x, 1) for their two-dimensional counterparts. Then, after replacing the
operators by their one-dimensional versions, that is, replacing V.Q by % (BQ),
in (3.69) and (3.79) and V¢ by ¢, in (3.68) and (3.78), the integrals with respect
to y can be evaluated.

The boundary functions must also be independent of the y coordinate. In the
two-dimensional functionals C' = C(x,y,t) and f = f(x,y,t) are defined on g
and X, respectively, where ¥ = ¥ + X, is the boundary of D. In the natural
conditions of the corresponding variational principles the function (' is identified
as the normal component of mass flow on Yg, thus ¢’ must be zero on any portion
of ¥¢ which lies on the channel sides across which there is no flow. Therefore the
boundary conditions are much simplified by letting ¥ include all parts of the
boundary across which there is no flow, in fact we take ¥g = 3. The boundary
function ' must be of the form C(z.,t) = C.(t) at inlet, C'(x,,t) = C,(t) at
outlet and C(x,t) = 0 elsewhere.

For the boundary terms evaluated at t; and ¢, in the functionals (3.68), (3.69),
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(3.78) and (3.79) the boundary functions are ¢; = ¢;(x,y) and h; = hi(z,y)
for ¢« = 1,2 which, in the natural conditions of the variational principles, yield
boundary conditions for d and ¢ respectively at ¢; and ¢5. Let D = Dy so that in
the one-dimensional case only the boundary function for d, given by ¢; = ¢;(x)
in D for ¢ = 1, 2, exists.

Making the above substitutions into (3.68), (3.69), (3.78) and (3.79) and inte-

grating with respect to y yields the one-dimensional functionals K1(FE,Q,d, v, ¢),

K3(Q,d, ¢), K5(E,Q,d, ¢) and K4(Q,d,v,¢) given by

Ky = /j/ d(¢i+ E— gh) +Q (v —¢,)) Bdedt

+ [(co B, - C. (o), ) it + /w (6l 92 = 0l 1) B, (3.95)
K, = /t/ ( (Q,d) —|—gdh—|—q§<dt (BQ)x))dedt

+ [ ((Bo(C- Q) — (BO(C.~ Q). de

- / o(d—ga))l,, = (6(d = g)l,) Bz, (3.99)
Ag_/t/ —Qéy —d(ds + E — gh)) Bdu dt
+ e o, = . Bo), ) i+ [ 6l 0. = 6, 1) B d. (3.100)

[&4—/:/ ( R(v,d) —I—gdh—l—Qvﬁ—(/ﬁ(dt (BQ)w))Bd:z:dt
+ [ ((BolC, = QUL - (Bo(C. - Q)L ) de

_/ 6(d—g:))|, — (6(d—g1))l,,) Bdx. (3.101)

The functions p(v, F), r(Q,d), P(Q, F) and R(v,d) are the one-dimensional
counterparts of p(v, F), r(Q, d), P(Q, ) and R(v,d) (defined by (3.27), (3.29),

(3.75) and (3.72)), namely,

p(v, E) = o (E - ;v2)2, (3.102)



r(Q,d)

R(v,d)

and P(Q, F) is defined by eliminating v and d from

1
Pzigdz—l—dvz, Q =dv, E:gd—|—§v2.

5 59’ (3.103)
1 2 1 2
S9d* + Svtd (3.104)
1
(3.105)

The natural conditions of 6Ky = 0, 0Ky =0, 0K3 = 0 and 6 K4 = 0 may be

deduced from the general formulae (3.32)—(3.34) and are as follows.

For the ‘p” principle 6 K7 = 0,
po+@=0

di+ 5 (BQ), =0

¢+ E—gh=0
v— ¢, =0
CO_Q|1’O =
C.-Q|, =
gi_dti =

For the ‘r’ principle 6 Ky = 0,
re — ¢+ gh=0
rQ — Qﬁgg =0

di+ 5 (BQ), =0

CO—Q|1’O =
Ce_Qxe =
gi_dti =

in (x.,x,) for t € (t1,1,),

for t € (ty,13),
for t € (t1,1t2),

in (z.,x,) fore=1,2.

in (xe,x,) for t € (t1,12),

for t € (t1,1t2),
for t € (ty,13),
in (z.,x,) fore=1,2.
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For the ‘P’ principle 6 K3 = 0,

PQ_¢x:0
Ps—d=0
in (x.,x,) for t € (t1,1,),

CO_Q|% = 0 fort € (ty,t),

CB_Q

= 0 fort € (t1,t2),

Te

g —d, = 0 in (z.,z,) fori=1,2.

t;

For the ‘R’ principle 6 Ky = 0,

R4 Q=0

—Rqg— ¢y +gh =0
in (z.,x,) for t € (t1,1,),

v_¢1’:0

di+ £ (BQ), =0

CO_Q|% = 0 fort € (ty,t),

CB_Q

= 0 fort € (t1,t2),

Te

g —d, = 0 in (z.,z,) fori=1,2.

t;

Thus each set of natural conditions includes the equations of motion for time-
dependent quasi one-dimensional shallow water flow. The conservation of mass
equation (2.33) is explicit in each set. The conservation of momentum equation,
in its integrated form, is explicit in the natural conditions of the ‘p’ and ‘P’
principles but for the ‘r” principle the relations () = dv and F = gd + %vz are
needed and for the ‘R’ principle the relation F = ¢gd + %vz is required. The
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boundary conditions in each case are the same, that is, on the mass flow at inlet

and outlet, for ¢ € (#1,t3), and on the depth in (z.,x,) at t = 1y, 1.

3.7.2 Constrained and Reciprocal Principles

The variational principles for unsteady quasi one-dimensional flows can be con-
strained in the same ways as the corresponding variational principles for two-
dimensional flows. In particular, constrained ‘p’ and ‘r’ principles which are re-
ciprocal to one another and constrained ‘P’ and ‘R’ principles which are reciprocal

to one another can be derived.

Reciprocal ‘p’ and ‘r’ Principles

The ‘p’ principle corresponding to the functional (3.98) can be reduced to a
principle which depends on just one variable by constraining the variations to
satisfy the conservation of momentum equation, in its integrated form, and the

one-dimensional version of the irrotationality condition, that is, by specifying

E = —¢;+gh
(3.106)
Vo= ¢

The constrained ‘p’ principle is given by

i =o{ [ [“iopasar+ [7(C.(Bo)l,, - C.(Bo),) i

t1

_I_/:o (¢|t2 gy — ¢|t1 91) Bd:z;} =0, (3.107)

where K{ = K{(¢) and
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The natural conditions of 6 K{ = 0 are

(s (- 52)) + 5 (-2 (o—aheget) o) = o

in (z.,x,) for t € (t1,12),

= 0 fort € (t1,t2),

@tgm+;%)m)
(6=t + 362) 0.

+ ; (aﬁt —gh+ ;qﬁi)

Lo

= 0 fort € (t1,t2),

Q| — Q|

Te

= 0 in (a.,x,) fori=1,2,

t;
which correspond to conservation of mass in the domain and boundary conditions
on ¢.

The ‘v’ principle, corresponding to the functional (3.99), may be constrained
to satisfy conservation of mass by specifying

d = %
Bt (3.108)

- _¥
Q= %

for some function ¥ (x,t). The constrained ‘r’ principle depends on ¢ and ¢ and

is given by

{/t/ ( h)Bd:z;dt
: m(( o(ers %));(%(Ce“ﬁ))%)ﬁ
L)) o]

L[
=5 (15 o5)

The natural conditions of (3.109) are given by

where

1
_\I;t + (2\112 + 77? _ gh) = 0 n (we, ) for ¢ - (tl,tg)
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C,+ % = 0 fort € (t1,t2),
B v
C.+ % = 0 fort € (ty,t),
B v
1 v
(—¢t—2q}2—g¢)B—|—gh) ) =0 fOI’tE (tl,tz),
1 -
(—4515 — 5\112 —ng —I-gh) ) = 0 fort € (t1,t2),
g — 2 = 0 in (a.,) fori=1,2,
B,
(6o + V), = 0 in(2.,z,)fori=12,
where U = :ﬁ—; The first of these conditions is the conservation of momentum

equation in the domain. The equation v = ¢, is not derived but is essentially
redundant anyway in quasi one-dimensional flow.

The variational principles (3.107) and (3.109) are reciprocal in that the natural
condition in D of (3.107) is the constraint of (3.109) and the natural condition in

D of (3.109) is the constraint of (3.107).

Reciprocal ‘P’ and ‘R’ Principles

The ‘P’ principle constrained to satisfy conservation of momentum by specifying

(3.106); is

s =6 { [ [ (P(Q. =6+ 9h) = Qo) Be

+ [*(c. (Bo)l, ~C. (Bo),) dt+/:o(¢|t2 -6l ) B dx} —0, (3.110)

t1
which has the natural conditions

in (xe,x,) for t € (t1,12),

(Pegitgn), + S(BQ), =0

CO—Q|% = 0 fort € (t1,t),
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CB_Q

= 0 fort € (t1,t2),

Te

gi — P = 0 in (z.z,) fori=1,2,

the second of which is the equation of conservation of mass.
The ‘R’ principle constrained to satisfy conservation of mass by specifying

(3.108) is

S = 5{ [ (_R@ oy
of (el 5))]
L (5 -=)),

which has the natural conditions

L —I—g%h) Bdzxdi

({3
L)

)

e

t ) de} =0, (3.111)

in (z.,x,) for t € (t1,12),

G+ 0 forte (huty),
Bl
Cor Y 20 forte (i),
B,
(—qﬁt—R% +gh)| = 0 fort€ (i),
(—qﬁt—R%—l-gh) = 0 fort€ (t, 1),
(O

= 0 in (a.,) fori=1,2,

= 0 in (a.,) fori=1,2,

the second of which is the equation of conservation of momentum.

Thus the constraint on (3.110) is one of the natural conditions of (3.111) and
the constraint on (3.111) is one of the natural conditions of (3.110), that is, these
constrained ‘P’ and ‘R’ principles are reciprocal in the sense defined earlier.
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3.7.3 Time-independent Flows

Functionals for time-independent quasi one-dimensional flows can be derived ei-
ther from the functionals for time-dependent one-dimensional flows (3.98)—(3.101)
or from the functionals for steady two-dimensional flows (3.90)-(3.93). In both
cases the procedure is to assume that the physical flow variables are functions of «
alone and in the time-dependent one-dimensional case to deduce the dependence
of ¢ on z and ¢, as was done for the two-dimensional case. The integrals with
respect to ¢ in (3.98)-(3.101) and with respect to y in (3.90)—(3.93) can then be
evaluated.

The functionals for time-independent quasi one-dimensional shallow water

flows, derived in either of these ways, may be written as

M, = /Q:O (p(v, EY+ Q(v—9¢")) Bde + CB. (é(z,) — ¢(x.)), (3.112)
My = [T (0(Qd) + Ed = Q4 Bda+ CB.(9(x) = olr.)). (3113)
My = [T(PQ.E) - Q4) Bdr + CB, (¢(x,) ~ o(x.)),  (3.114)

M, = /;O(—R(v, d)+Q(v—¢')+ Ed) Bdx+CB, (¢(x,)—¢(x.)),(3.115)

where Ml = MI(U7Q7¢)7 M2 = M?(d7Q7¢)7 M3 = MS(Q7¢) and M4 =

M4(d7 v, Qv ¢)

The boundary function C' = C(x,y,t) is now defined to have the values

Clx,y,t) = C at * = x,
Clx,y,t) = OB—B: at * = z,,
and Clz,y,t) = 0 otherwise,

for consistency with conservation of mass, where B, = B(z.) and B, = B(x,).

The energy E is the known function E = E + gh, where E is a given constant,
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in order to satisfy conservation of momentum.
The natural conditions of 6M; = 0, 6M, =0, 6Ms = 0 and 6 M, = 0 may be
deduced from the general formulae (3.36) and (3.37) and are as follows.

For the ‘p’ principle 6 M; = 0,

pv"’Q:O

v—¢ =0 in (z.,z,),

(BQ) =0

C_ Q(xe) = 07

CB.—Qz,)B, = 0.

For the ‘r” principle 6 M, = 0,

rQ — ¢/ =0
rq + £=0 in (xeva)v

(BQ)' =0

C—-Qx.) = 0,
CB.—Qz,)B, = 0.
For the ‘P’ principle 6 M5 = 0,
Py—9¢'=0

in (2, 2,),

(BQ) =0
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For the ‘R’ principle 6 My = 0,

"R+ Q=0

—R;+FE=0

in (., z,),

v—0¢' =0

(BQ)' =0

C— Q(xe) = 07

CB.—Qz,)B, = 0.

Thus each set of natural conditions contains the conservation of mass equation,
the formula v = ¢, expressed in different variables in the cases of the ‘p” and ‘r’

principles, and also the boundary conditions Q(x.) = C and Q(z,) = CBJie, that

is, the equations of motion, as required. Conservation of momentum is implicit

from using K = B + gh.

3.7.4 Constrained and Reciprocal Principles

The variational principles for steady quasi one-dimensional flows can be con-
strained in the same way as the two-dimensional versions.

Constrained ‘p’ and ‘P’ Principles

The ‘p’ principle based on the functional (3.112) can be constrained to depend
on only one variable by substituting v = ¢’ into the integrand. The constrained

‘p” principle is given by

SME = 6 {/ o(&, EYBde + OB, (¢(x,) — qb(:z;e))} — 0, (3.116)
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where My = M (), which has the natural conditions
1 Lo\ o) ,
(E—qu )qu = 0 in (x,),
g
] 1,
_ - E ot ) /
o ()]
OB, — (; (E - ;qs'?) qS’B)

the first of which is the conservation of mass equation.

= 0,

Te

0,

To

The ‘P’ principle may be constrained to satisfy conservation of mass by spec-

ifying QB = CB, in [x.,z,]. The constrained ‘P’ principle is given by

SME = § {/ P(Q,E)B d:z;} -

e

where () = 0113367 which has no natural conditions since both () and F are known

functions.

b

Constrained ‘r’ and ‘R’ Principles

Following the derivation of the two-dimensional reciprocal principles, the ‘t” prin-

ciple can be constrained to satisfy conservation of mass by specifying ) = Cge

and the ‘R’ principle can be constrained by substituting v = ¢ into the integrand

of the functional. The constrained principles are given by
5M§:5{/% (r(Q,d)—|—Ed)Bd:z;} - (3.117)

where () = 0113367 which has the natural condition

ra + £ =0 in (z.z,),
defining E as a function of ) and d, and

SM: = § {/ (—R(¢',d) + BEd) Bde + CB. (¢(x,) — (/S(:z:e))} 0,
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which has the natural conditions

(BRy) =0
in (., z,),
—R;,+E=0
CB.— (BRI, = 0,
CB.— (BRI, = 0,

that is, conservation of mass and the definition of F as a function of ¢ and d in

the domain and boundary conditions on the mass flow.

The reciprocity of the constrained variational principles that occurred in two-
dimensional flows and time-dependent one-dimensional flows has not survived to
the steady one-dimensional case since there is essentially only the one equation

(the conservation of mass equation) which can be used as a constraint.

3.8 Discontinuous Flows

The variational principles considered so far are only valid for continuous shallow
water flows since, in deriving the natural conditions using integration by parts
and the divergence theorem, the variables have been assumed to be differentiable.
In this section variational principles for time-independent discontinuous flows in
one and two dimensions are derived.

In the variational principles of Sections 3.6 and 3.7 for steady state shallow
water flows the conservation of momentum equation is satisfied implicitly by
specifying E = E + gh in D, where E is a constant and E is the energy defined
by either (2.35) or (2.19), depending on whether the flow being considered is one-
dimensional or two-dimensional. For discontinuous flows there is a jump in the
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value of F on crossing the discontinuity and this property is used in generating
the variational principles for discontinuous flows.

Let the domain be of the form

2 72

D= {(x,y) € fxe, w0y € [—B(x) B(l’)] }

that is, a channel, where there is flow into the channel at + = x. and out of the
channel at z = z,.

Consider a discontinuous flow in D which has energy I/ = E, at inlet and F =
FE, at outlet, where F. and FE, are constants such that £. > F,. Let the channel
bed be horizontal so that the undisturbed fluid depth % is a constant for = €
[z, 2,]. Then, for a time-independent flow, £ = E, everywhere on the inlet side
of the discontinuity and £ = E, everywhere on the outlet side. Substituting these
values for the energy into the functionals (3.112)—(3.115) and (3.90)-(3.93) and
allowing the variables to be discontinuous yields functionals whose corresponding
variational principles have as natural conditions the equations of discontinuous

motion in one and two dimensions.

3.8.1 Two-dimensional Flows

Let ¥, be the line in D across which the flow is discontinuous. Assume that it
divides D into the two regions D, and D,, where D. borders the inlet boundary
and D, the outlet boundary.

The functionals for discontinuous flows in two dimensions, derived from

(3.90)—(3.93), are
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Ny = //D (p(v, B.) + Q. (v — Vo)) de dy
+ //D (p(v,E,) + Q. (v — V¢))de dy

+/ C¢d2+/00¢d2, (3.118)
N, = // d) + E.d— Q.Vé)de dy

+// )+ E,d— Q.Vé) de dy

+/ O¢d2+/ Céd, (3.119)
No= [ p ~Q.Vo)dedy

+// _Q.V¢)dudy

+/ O¢d2+/ Céds, (3.120)
Ny= // R(v,d) + Q.(v — V&) + E.d) de dy

+// R(v,d) + Q.(v — V) + E,d) dx dy

+/Ee C¢d2+/zo(]q§d2, (3.121)

where Ny = Ny(v,Q,6,5,), Ny = No(d, Q. 6,5,), N = Na(Q, 6,5,) and N, =

Ny(d,v,Q, ¢,%,). The section of the boundary ¥ in the functionals (3.90)-
(3.93) is taken to be ¥, the whole boundary of D, and the boundary function C
is set to zero on the parts of the boundary across which there is no flow; . is
the inlet boundary and ¥, is the outlet boundary.

The natural conditions of 6Ny = 0, 6N, = 0, 6N3 = 0 and 6V, = 0 may be
deduced from the general formulae (3.60)—(3.67).

The natural conditions of the ‘p” principle 6 Ny = 0 are

pv+ Q=20

v—Vé=0 in D.UD,,

vV.Q=0

107



C—-—Qn = 0 onX U,
0
lp+Q-V—Q.T¢] = 0,
s,

0¢ B
lQ.naT] . = 0,

[Q.n]zs = 0,

where the brackets []s, = «|s , —+[s _, + denotes the downstream side of X, and
— the upstream side. The first four of these conditions are the same as for the
continuous case but are valid separately in D, and D, and on Y. and ¥,. Using
the v = V¢ natural condition the last three natural conditions can be rewritten

as

[Q'H]ES = 07

which are the required jump conditions (2.84)-(2.86) for discontinuous shallow
water flows.
The natural conditions of the ‘t” principle 6 Ny = ( are
rq—Vo=0
ry+ E =0 in D.UD,,

vV.Q=0

C—-—Qn = 0 onX U,

r+Ed—Q.V¢+Q.naﬂ _—
on |

¢ S B
g, - o
[Q.n]zs = 0.
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The natural conditions of the ‘P’ principle 6 N3 = 0 are

Pq—V¢=0
in D.UD,,

vV.Q=0

C—Qmn = 0 onX.UX,

[P —Q.Vé+ Q.naﬂ = 0,
Y

on .
0¢ B
lQ.naT] . 0,
[Q.n]zs = 0.

The natural conditions of the ‘R’ principle 6 Ny = 0 are

—Ry+Q=0

—R;+FE=0
in D, UD,,

v—V¢p=0

v.Q=10

C—-—Qn = 0 onX U,

—R—I—Q.(v—VqS)—I—Ed—I—Q.ngf] = 0,
X,
0¢ B
o5, -
[Q.n]zs = 0

Using the relationships between p and r, P and R, (3.74), (3.76) and (3.71),
the last three natural conditions of 6 N; = 0, 6N3 = 0 and 6Ny = 0 can be
seen to be the same as the last three natural conditions of 6 Ny = 0. Thus
the variational principles based on the functionals (3.118)—(3.121) have as their
natural conditions the equations of shallow water motion, including the jump
conditions at the discontinuity.
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3.8.2 One-dimensional Flows

Let 2, be the position of the discontinuity in (z.,z,). Then the functionals for
discontinuous flow in one dimension, derived from (3.112)~(3.115), are
Sy—/“<< E)+Q(v—¢) Bda
+ [0 B+ Q- ) Bda
YOB. (6(z,) — (x.)) (3.122)
So= [ Q)+ Bud = Q9') Bda

Lo

[ 0(Qud) + Eid — Q4 B

+COB (¢(x,) — ¢(xc)) (3.123)
so= [T (PIQ.E) — Qi) B

+ [P B) - @4 Bdo

+OB: (¢(x,) — d(xe)) (3.124)
Sy = /( R(v,d) + Q (v — ¢') + E.d) Bda

+/ R(v,d)+ Q (v — &) + Eyd) Bdx

+OB. (¢(x,) — o(xe)) (3.125)

where 8, = Si(v, Q. é,2,), Sy = So(d, Q, b, 2,), S5 = S5(Q, é,x,) and Sy =
Si(d, v, Q. b, ).

The natural conditions of §5; = 0, 65, = 0, §S5 = 0 and §S; = 0 may be
deduced using (3.54)~(3.57) and are as follows.

For the ‘p” principle 65, = 0,

P+ Q=0
v—¢' =0 in (l’e,xs)U(l's,xo),
(BQ) =
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CBe_Q(wo)Bo = 07
[BQl., =0,

[(p+Quv)B],. = 0,

where [], — |+ _, the + denotes the z, side of z, and the — the x side;

s |73S+

F is given the value F. in [z., ;) and E, in (x5, 2,).

For the ‘r’ principle 65, = 0,

TQ—¢/:O

rg+F =0 in (l’e,l’s)U(l‘s,xo),

(BQ)' =0

C— Q(xe) = 07
CBe - Q(xo)Bo = 07
[BQ,, = 0,

[(r+ FEd)B], = 0.

For the ‘P’ principle 655 = 0,
Py—9¢'=0

in (x.,x,) U (g, 2,),

(BQ)' =0
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For the ‘R’ principle 654 = 0,

—R,+0Q =0

—R;+FE =0
in (ze,25) U (x5, 2,),

v—¢' =0

(BQ) =0

CBe_Q(wo)Bo = 07
[BQ,, = 0,

(—R+Qu+ Ed)B], = 0.

Thus the natural conditions include the equations of shallow water motion in
(2., 2,) and (x4, z,) and boundary conditions on the mass flow at x. and x,. The
first jump condition in each case is the condition of no jump in the mass flow
(2.77). Using one-dimensional versions of the equations (3.74), (3.76) and (3.71),
which relate p to r, P and R, the second jump condition in each case can be
recognised as the condition of no jump in the value of the flow stress, defined by

(2.72), on crossing the point of discontinuity x, that is condition (2.76).
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Chapter 4

Approximations to Quasi
One-dimensional Shallow Water

Flows

The variational principles of Section 3.7 have as natural conditions the equations
of steady state quasi one-dimensional motion in shallow water. This chapter is
concerned with using some of these variational principles to generate approxima-
tions to the variables of shallow water flows in channels.

The equations of motion for quasi one-dimensional flow are satisfied by func-
tions for which the functionals of the variational principles of Section 3.7 are
stationary. Solutions of the shallow water equations can be approximated by
finding the functions for which the functionals are stationary with respect to
variations in a finite dimensional space. In this chapter the variables of shallow
water are expanded in terms of finite element basis functions, defined on a grid

of points extending over the domain of the problem.
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The particular variational principles used here are the ‘p’ and ‘r’ principles
based on the functionals (3.112) and (3.113). The constrained versions of these
principles, (3.116) and (3.117), both depend on only one variable and are used to
develop algorithms for generating approximations, defined on fixed grids, to the
velocity and depth of flow in a channel. The constrained ‘p’ principle is also used
to generate approximations on adaptive grids.

The final section of this chapter is concerned with deriving approximations to
discontinuous flows in channels. The constrained ‘r’ principle is used to generate
approximations to the depth on a grid with one moving node which is placed at
the position of the discontinuity. This algorithm is extended to give a method for
approximating discontinuous depth profiles on adaptive grids.

The domains of the problems to be considered are channels with breadth B(x)
for @ € [z, x,] and undisturbed fluid depth h(x) for x € [z.,z,], where B and h

are functions to be defined later.

4.1 The Constrained ‘r’ Principle

The ‘t” principle based on the functional (3.113), with variations constrained to
satisfy the conservation of mass equation, can be used to generate approximations
to the depth of fluid for shallow water flow in a channel.

The functional of the constrained principle (3.117) is given by
M(d) = [ ((Q. d) + Bd) B de, (4.1)

where () and FE are known functions of x, namely,

Q(z) = g(B;e) for = € [z, x,), (4.2)
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from the conservation of mass constraint, and
E(x) = E + gh(x) for x € [z., z,), (4.3)

corresponding to conservation of momentum. In practice the constants C' and E
are calculated from given values of two of the three variables mass flow, depth
and velocity at the inlet boundary. Given the values of two of these variables at

x = x. the value of the third can be deduced from (2.34). Then, using (2.35),

¢ = Q(z.)

~ 1
and E = gd(z.)+ iv(:pe)z — gh(z.).

For a continuous flow to exist notice that C' and £ must satisfy

2(F + gh
OBegl(( d
g 3

)\’
B(z) for x € [z, x,), (4.4)
using (2.62) and (2.56).
The function d which satisfies 6 M5 = 0 is the depth of fluid in the channel.

The nature of the stationary value of M5 can be determined by considering the

second derivative

d* M o
W; = ‘/l’e TddB de’
From the definition of r, (3.103),
2
Tdd = B 9, (4.5)

which is positive if g—; > gd, that is (using (2.34)), if v? > gd and the flow is
supercritical and negative if g—; < gd, that is, if the flow is subcritical. Thus, if
the flow is supercritical in the whole of [z, z,], the function d satisfying 6 M = 0

minimises MS and, if the flow is subcritical in the whole of [z, z,], the stationary
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function d maximises MS. If the flow is critical at isolated points in the channel
then these statements still hold but, if both subcritical and supercritical flows
exist in the channel, it is not possible to say whether the stationary function

minimises or maximises Ms.

4.1.1 The Algorithm

The method used here for generating approximations to d is to substitute into
the functional (4.1) finite element expansions for d and to find the parameters
of the expansions for which M is stationary with respect to variations in the
parameters.

Let the interval [z., z,] be divided into n — 1 regular intervals by the points

Ty,y...,T, given by
—1
;= < )(l’o—we)—l-l'e 1=1,...,n. (4.6)
(n—1)
Let aq(x), ..., an(x) be finite element basis functions, defined on the grid given

by (4.6), and let
d"(x) = > diai(x) (4.7)
=1
be the approximation to d, where the d; (¢ = 1,...,n) are parameters of the

solution, to be determined.

Consider the finite dimensional version of the functional (4.1),

L(d) = / (@, d") + £d") Bz,

1
where d = (dy,...,d,)T and Q and E are given by (4.2) and (4.3).

The parameters d for which (4.7) is an approximation to d are such that
L is stationary with respect to variations in d. They are found by solving the
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non-linear set of equations

L e
Fi(d):a':/ (rgn + E)a:Bde =0 i=1,....n. (4.8)

There is more than one solution of the set of equations (4.8). One possible
solution involves negative values of d; and is not considered since it has no physical
meaning. In the case of approximations to non-critical flows there are two other
solutions — one which approximates subcritical flow and one which approximates
supercritical flow. In the case of flows which become critical at a point in the
domain there is a further possibility, that is, an approximation to transitional
flow.

In the present work (4.8) is solved using Newton’s method. The Jacobian J

is given by

J(d) = {J;} = {ggj} _ {agjgdz} _ {/: rdhdhoqongdx}, (4.9)

and is the Hessian of L.

Given an approximation d* to the solution d, Newton’s method provides an

updated approximation

d*t! = d* + 6d”, (4.10)

where

J(d¥)sd* = —F(d"). (4.11)
This yields a sequence of approximations to d. The process is repeated until
max ‘5df‘ < tolerance. (4.12)

Then d; = d¥ for 2 = 1,...,n are the values of the parameters in the approxi-

mation (4.7) which make L(d) stationary. The Jacobian J and the vector F are
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calculated using five point Gaussian quadrature, where it is assumed that the
error introduced by the numerical integration is sufficiently small that the finite
element solution, for a particular tolerance in (4.12), is unaffected.

Let d satisfy F(a) = 0 and let v > 0 be such that the domain S =
{d : Hd—aH < ’y} C R" contains the point d, where [|]| is an appropriate
norm. Assume that the first derivatives of J are continuous in S and that J
is non-singular in S. Then, there exists € > 0 such that Newton’s method is
quadratically convergent whenever Hdo — &H < € (Johnson and Riess (1982)).

From (4.9) J has the form of a weighted mass matrix, where Brggn is the
weight function. Using (4.5) it can be seen that, if the approximate solution in
[€1, z,,] is subcritical throughout the Newton iteration, J is negative definite and
the solution of (4.8) maximises L. Alternatively, if the approximate solution is
supercritical in [z, 2] for all iterations, J is positive definite and the solution of
(4.8) minimises L.

Thus, given values for E and C, it is possible, using Newton’s method, to
generate finite element approximations to the depth of flow in a channel for
continuous flows which are either supercritical in the whole domain or subcritical
in the whole domain. The success of the method relies on choosing the initial
approximation d° to d such that the approximations d*, calculated from (4.10)
and (4.11), have either all subcritical components or all supercritical components.
For each set of conditions, £ and C', two approximations will be considered — one
corresponding to subcritical flow and the other to supercritical flow; the choice
of d° determines which solution is found by the algorithm.

If the flow for which an approximation is being sought includes both subecritical

118



and supercritical motion and if an approximation, to the approximate solution,
at an iteration step has both subcritical and supercritical values the Jacobian is
indefinite and Newton’s method may fail to converge to the solution.

The algorithm is implemented on the equi-spaced grid given by (4.6), with
. =0, z, = 10 and n = 21. Two sets of basis functions are considered; the
first, ol for 7 = 1,...,n, leads to continuous piecewise linear approximations
and the second, af for z = 1,...,n — 1, gives discontinuous piecewise constant

approximations. The basis functions are defined by

Lo — X
l T € |1, 23]
aj(z) = § 270 :
0 € € [1’1, 1’2]
T — Tj—
el SRS [2i_1, 2]
T, — T
af(e) = § THTE e ri] i=2,...,n—1, (4.13)
Tiy1 — X
0 r & [Tic1, Tiga]
T — T
LI (X1, 2]
I
0 &€ € [xn—17xn]

and

1 z€ (J/’Z',J}H_l) | (4 14)
e — 1, .

0 @ ¢ (vi,7i41)

and are shown in Figure 4.1.

For the basis functions defined by (4.13), J is tridiagonal and (4.11) is solved
quickly for 6d* using Gaussian elimination and back substitution. For the basis
functions defined by (4.14), J is diagonal and (4.11) is easily solved.

The method is used to find approximations to flows in a number of different
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a) o,(x) oci(x) i=2,...,n-1 ol,(x)

0
X X, Xi1 X; Xivi X1 X
c ;
b) o(x) i=1,.,n-1
1 -
0] — -~
xi xi+1

Figure 4.1: One-dimensional basis functions @) piecewise linear and b) piecewise

constant.

channels. Several breadth functions are considered. These are

r—x,

k
Big(z) = 6+4 (1 -2 ) in [z, x,], for k=2,4,6,8, (4.15)

Ty — T¢

6+ 4 (1 — (M)U) in [z, V]

V—Te 1 3
By, (2) = , foro=—,1,-,2. (4.16)
’ oL 2772
6—|—4(1—(§Z—:f) ) in [v, z,]
Moving the reference level for potential energy from z =0 to z = —h(x,) is

equivalent to redefining the equilibrium depth to be h(x) := h(a) — h(x.), so that
h(z.) = 0, and the constant F to be E := I + gh(z.). This is now assumed to

be the case. The equilibrium depth functions considered here are

hi(z) = 0 in (@, x,), (4.17)

hao(z) = Hi‘_i in [z., 2., (4.18)
(v —x.) (2, — ) .

hs(z) = 4H 5 in |z, ). 4.19

() el o) (119)



The energy E is given the value 50. In order to guarantee that a continuous

solution exists the value of mass flow at inlet ' must satisfy

c<t (2 (E+gh(x>)) * B(x)
< ;

in [@.,2,),

B.

from (4.4). For the case h = hy this is just

C<l @ Bmin7
Tg\3 B.

where

Bmin = min _B(z).

1’6[1’671’0]

Thus, for the given breadth functions (4.15) and (4.16), C' must have a value such
that ¢ < O, where

C, = 7 (4.20)

A value of C' = C, yields flows which are critical at the point of minimum breadth.
A value of €' =10 is used to give examples of non-critical flows.

The initial approximation d° to the solution d determines whether the finite
element solution is an approximation to subcritical or to supercritical flow. In
practice subcritical approximations are obtained by specifying 9 > d, for ¢ =
1,...,n, where d. is the critical depth, given by (2.65). In this case, for h = hy,
d. = % ~ 3.33. Supercritical approximations are obtained by specifying d? < d,
for 2 = 1,...,n. Transitional flows are not considered because of problems with
the convergence of Newton’s method with an indefinite Jacobian.

Let the tolerance on the Newton iteration be 1072, Consider the channel with
breadth B = Bjgs. Using the piecewise linear basis functions (4.13) Newton’s
method converges to the supercritical approximation from the initial approxima-

tion d = 1 for ¢ = 1,...,n in 15 iterations for critical flow and 7 iterations
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depth
N
T
breadth
T

Figure 4.2: a) Piecewise linear depth approximations on a fixed grid and b)
By g().

for non-critical flow. Subcritical approximations are obtained, using d? = 4 for
¢t =1,...,n,1in 10 iterations for critical low and 3 iterations for non-critical flow.
Figure 4.2a shows the finite element approximations to the depth for the critical
and non-critical flows generated under these conditions. The top two lines are
the approximations to the subcritical flows and the other two approximate the
supercritical flows, for the two values of mass flow at inlet ' = 10 and C' = (.,
where C, is defined by (4.20). Figure 4.2b shows a linear interpolation to the
breadth function using the 21 grid points given by (4.6). The sides of the channel
are almost parallel for part of its length at the narrowest part so the depths of the
two critical approximations are close to the critical depth value for some distance
around the point z = 5.

Figure 4.3 shows corresponding results for B = By 5 with v = 7.5.

Using the piecewise constant basis functions (4.14), in the channel with B =
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depth
N
(@)}
l
breadth
T

Figure 4.3: a) Piecewise linear depth approximations on a fixed grid and b) B, 5(x)
with v = 7.5.

By and h = hy, the supercritical approximation, using d? = 1 for i = 1,...,n,
is found after 14 iterations for critical flow and 7 iterations for non-critical flow
while the subcritical approximation, using d¥ = 4 for ¢ = 1,...,n, is found after
10 iterations for critical flow and 3 iterations for non-critical flow. Figure 4.4a
shows these approximations and Figure 4.4b is the channel breadth.

Consider the channel with B = By, and h = hy for H = 0.2. Figure 4.5a
shows the subcritical and supercritical piecewise linear approximations for ¢' = 10
and C' = 7.7. The dashed line shows the position of the channel bed. Notice that
the depth profiles are no longer symmetric about the line + = 5. The breadth
By is shown in Figure 4.5b. With &Y = 1 for ¢ = 1,...,n the supercritical
approximations are found after 6 iterations in the C' = 10 case and 5 iterations in
the C' = 7.7 case. Using d? =4 for¢ = 1,...,n the subcritical approximations are

found after 3 iterations in the €' = 10 case and 3 iterations in the C = 7.7 case.
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Figure 4.4: a) Piecewise constant depth approximations on a fixed grid and b)

By o(x).
a) b)
50~ 10—
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Figure 4.5: a) Piecewise linear depth approximations for B = By, and h = hy

with H = 0.2 and b) By a(x).
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4.1.2 Error Bounds
An error bound for the piecewise constant approximations to d can be calculated.
Proposition The piecewise constant approximations, defined using (4.7) and

(4.14) and generated from (4.8), converge linearly to the shallow water depth for

wholly subcritical or wholly supercritical flows.

Proof The parameters of the approximation d” are defined as those which sat-

isfy (4.8), that is,

/;n(rdh—l—E)oszdx:O i=1,...n—1 (4.21)
The exact depth d satisfies the equation

ot B =0,

from the definitions of r (3.103), mass flow (2.34) and energy (2.35). Thus

/;n(rd—l—E)oszdx:O i=1,....n—1. (4.22)
Subtracting (4.22) from (4.21) gives

/;n(rdh—rd)oszd:Jc:O i=1,....,n—1,
and so

/w”l(rdh—rd)de:o i=1,...n—1, (4.23)

using (4.14).
Both d and d" are differentiable on each interval [z;, ;11] and thus, using the

Mean Value Theorem,

Tgh —Tq = (dh - d) T¢¢(Q, ¢)|¢:€7 (4'24)
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for 8(z) between d"(x) and d(z), where 1, = %—g, from (3.103). Thus if d"* and
d are completely supercritical ry, > 0 and if d" and d are completely subcritical

ryy < 01n [z;,2,41]. Therefore, substituting (4.24) into (4.23) to give

/jm (d" = d) ryp(Q,)]mg Bz =0,

implies that d"—d = 0 at at least one point (say = #) in (z;, 7,4 ) for completely
subcritical or supercritical flows, since B > 0.

Now d" is constant on [z;, 7;41] so, for @ € [z;, 2;41],

/f (o) do = / (d(0) = d"(0)) do = [d(o) — d"(o)]" = d(x) — d"(a).

z z z

Thus
To41 Ti41 T 2
/ * (d(:z;)—dh(x))zdx = / * (/ d’(a)da) dx
l ;’i+1 2
< / <($¢+1 — ilfi)f%&X |d/|) da
= (2ip1 — ) max '
where max |d'|° = max |d'(z)|*.
I; TE[25, 25 41]

Therefore the square of the Ly error is
|a-a'|] = / (d—d")’ da (4.25)

= Z/%d d")’ da

< T (o - z;)” max |d'|
=1
< m;ax(:z;i_l_l— )’ maX ' Z Tipq —

el’el’o

= max (T —:1;2')2 max |d’| (x, — x.),
? l’e[l’eyl’o]

that is,

Hd—dh‘ < Az max |d’|(:1;o—:1;e)%,

1’6[1’671’0]

where, for the equi-spaced grid (4.6), Az = Ze=2e,

n—1
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critical flows non-critical flows
n | Ax | subcritical | supercritical | subcritical | supercritical
3 2 16.028 x 107" | 8.608 x 107" | 2.687 x 107" | 5.097 x 107"
5 12 1 1.870 x 107" | 3.521 x 107" | 1.188 x 107" | 2.654 x 107"
9 19 7.249 %1072 | 1.550 x 107" | 4.882 x 107% | 1.218 x 107!
17 1213198 x 1072 | 7.249 x 1072 | 2.192 x 1072 | 5.772 x 1072
33 1211504 x 1072 | 3.504 x 1072 | 1.038 x 1072 | 2.805 x 1072
65 1917293 x 1077 | 1.722 x 1072 | 5.050 x 1072 | 1.382 x 107
129 | 32 | 3.592 x 1072 | 8.539 x 107 | 2.491 x 1072 | 6.860 x 1077
257 | 19 | 1782 x 1072 | 4.252 x 107 | 1.237 x 1072 | 3.417 x 107°
513 | 13 | 8.878 x 107* | 2.121 x 107 | 6.164 x 107* | 1.705 x 107°
1025 | o5 | 4.431 x 107* | 1.060 x 1072 | 3.077 x 107" | 8.520 x 10™*

Table 4.1: L4 errors for piecewise constant depth approximations.

Thus the piecewise constant depth approximation converges linearly with n to

the solution d.

The Ly error is calculated for piecewise constant approximations on grids
with different numbers of nodes for the example B = By 5, defined by (4.15), and
h = hy, defined by (4.17). The energy E = 50 and both ¢ = (., defined by
(4.20), and C' = 10 are considered. The results are given in Table 4.1, from which

it can be seen, more especially for larger n, that as the interval length Az halves

the Ly error also halves.

The Ly errors for the corresponding piecewise linear approximations are given

in Table 4.2. It can be seen that the convergence is almost quadratic.
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critical flows non-critical flows

n | Ax | subcritical | supercritical | subcritical | supercritical

3 11178 x 1071 [ 9.217 x 1072 | 1.087 x 1072 | 3.975 x 1072
3 19 12,087 x 1072 | 2.084 x 1072 | 6.606 x 1072 | 9.668 x 1073
9 1014.395x 1073 | 5.122 x 1073 | 1.155 x 1072 | 1.769 x 1073
17 | 22 19.825 x 107 | 1.235 x 1073 | 2.842 x 107* | 4.714 x 1074
33 | 1212304 x 107 | 3.135 x 107* | 6.858 x 107" | 1.249 x 10~*
65 | 20 15595 % 107% | 7.657 x 107° | 1.651 x 107> | 3.976 x 107>

129 | 121 1.280 x 107" | 2.234 x 107> | 4.401 x 107% | 1.453 x 10~°

Table 4.2: L, errors for piecewise linear depth approximations.

4.2 The Unconstrained ‘r’ Principle

Finite element expansions for the mass flow and the velocity potential, as well as
for the fluid depth, can be obtained using the unconstrained ‘r’ principle, based
on the functional (3.113). The method used here is a simple extension of the
algorithm in Section 4.1.
Consider the grid defined by the points (4.6), with . = 0, 2, = 10 and n = 21.
Let
Q"(x) = > Qi) d"(z) = > diai(x), o"(x) = > () (4.26)
=1 =1 =1
be approximations to the mass flow, depth and velocity potential, respectively,

where the o; (1 = 1,...,n) are finite element basis functions. Substituting (4.26)
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into the functional (3.113) yields the finite dimensional version

Tn

1Q.d.¢)= [

T

(r(Q"d") + Ed" = ¢"'Q") Bda + CB. (¢(2.) — ¢(a1))

(4.27)
where Q = (Qy,...,Q,)". d = (dv,...,d,)T, p=(¢1,...,6,)" and E(z) = E +
gh(x). The parameters Q, d and ¢ are calculated by solving

o, on_, o
0Q; 7 0d; 7 0y

=0 fori=1,...,n. (4.28)

Let the «; be the piecewise linear basis functions defined by (4.13). Then

equations (4.28); yield
— /% Q"B dx 4 CB. (a;(x,) — ag(x1)) =0 i=1,...,n,

which may be rewritten as

2 o
ZQ]/ aja;Bdr = —CB,,
i=1 .
it+1 Tit1
ZQ]/ adla;Bdx = 0 t=2,...,n—1,
7=1—1 Ti-1
Z Q]/ ala;Bder = CB,,
j=n—1 Tn—1

or as,
40Q = Cq, (4.29)

where Ag is a constant n x n matrix and Cg is a constant n x 1 vector with only
first and last entries non-zero. The matrix Ag is of rank n — 1 and is singular
but, using the boundary condition @)1 = C, the solution of (4.29) is unique. Ag is
tridiagonal and Q is calculated using Gaussian elimination and back substitution.

Fquations (4.28), yield
/xn(rdh+E)Oéin$ =0 2=1,...,n,
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which, once Q" is known, can be solved for d” by the method of Section 4.1.

Equations (4.28), give

wnrh— MYaBde =0 i=1,....n
[ (ror =)o et

1
which may be written as

T2

2 .
Z@/ ozloz;B de = / rona B dz,

1 1

i+1 Tit1 , Tit1 )
Z qb]/ a;a;Bdr = / ror;Bdr 1 =2,...,n—1,

7=1—1 Ti—1 1—1
n Tn ; Tn
Z o / a,a;Bdr = / rona, B dz,
j:n—l Tn—1 Tn—1

or as

Ay = C (4.30)

where Ay is an n x n matrix and Cy is an n x 1 vector. Once Q" and d" are
known ¢ can be calculated directly. The matrix A, is of rank n — 1 and singular
but ¢ is a potential function and the important quantity is its gradient so one of
the values, say ¢1, is specified arbitrarily. This procedure is equivalent to setting
the arbitrary constant in ¢ by assigning its value at the boundary.

Results for critical flow in a channel with B = By 4, defined by (4.15), and
h = hy, defined by (4.17), are shown in Figure 4.6. The energy E is taken to be
50. The piecewise linear approximation to the mass flow is shown in Figure 4.6a.
The piecewise linear approximations to the velocity potential and depth for a
supercritical flow are given in Figures 4.6b and 4.6¢, respectively. Figure 4.6d
shows the piecewise constant approximation to the supercritical velocity derived
by taking the gradient of the piecewise linear velocity potential approximation

in each interval [z;, z;44] for : = 1,...,n — 1. The Newton iteration to find d"
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Figure 4.6: a) Mass flow, b) velocity potential, ¢) depth and d) velocity approxi-

mations for B = B, 4 — supercritical case.

converges after 13 iterations, using d¥ = 1 for ¢ = 1,...,n, with a tolerance of
1072,

Corresponding results for the subcritical flow are given in Figure 4.7. The
Newton iteration converges from d9 = 4 for ¢ = 1,...,n in 8 iterations.

Notice that the velocity approximation is not quite symmetric about the line
x = 5, even though the breadth and equilibrium fluid depth functions are. This is
probably a consequence of using approximations to mass flow and depth in (4.30).
By increasing the number of grid points the approximations can be improved —
Figure 4.8 shows the supercritical solutions for n = 61.

Thus, although approximations to all of the variables can be generated using

the unconstrained ‘v’ principle, in the case of the velocity potential (and therefore
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the velocity) it is not ideal. However a variational principle exists which depends
on the velocity potential alone, that is, the ‘p’ principle, based on the functional
(3.112), constrained by v = ¢'. In using this constrained principle to seek an
approximation to ¢ (and therefore v) no other approximations are made and

more accurate results might be expected.

4.3 The Constrained ‘p’ Principle

The functional of the constrained ‘p’ principle (3.116) is given by

Mi(6) = [ plel B)Bdz + OB, (6(z,) — o(x) (431)

where E(x) = E+ gh(x) and the constants E and C' are prescribed.
The velocity potential of a shallow water flow is the function ¢ which satisfies
O0M; = 0. The nature of the stationary value of M7 can be deduced by considering

EM; e
W/; :‘/x p¢/¢/B dl’

From the definition of p, (3.102),

1/3 )
g =—| =0 =K. 4.32
b= (50 (132)

Thus, from (4.32), if the flow is supercritical in the whole of [z, x,] then the
solution ¢ of 6 M{ = 0 minimises M; and if the flow is subcritical in the whole of

[, 2,] the solution maximises M;.

4.3.1 The Algorithm

The algorithm for generating an approximation to the velocity potential using

(4.31) is similar to that of Section 4.1.
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Let the ; (¢ = 1,...,n), given by (4.6), define the grid. Let the finite element

approximation to the velocity potential be given by

where the «a; are the piecewise linear basis functions (4.13) and the ¢; are param-
eters of the solution. Thus the finite dimensional version of the functional of the

constrained ‘p’ principle is given by

L(g) = [ p(6" E)Bda + CB, (¢"(x,) = " (a1)).

where E(z) = E—I—gh(:z;) and ¢= (¢1,...,¢,)T. The approximation to the velocity
potential is determined by the ¢ which causes L to be stationary, that is, the ¢

which satisfies

L o
§¢, =/ pywciBdr + CB, (ei(x,) — ai(z1)) =0 i=1,...,n.

Fi(¢) =
(4.33)
The solution of the non-linear set of equations (4.33) is found using Newton’s

method. The Jacobian is given by

300 = 1) ={ G b = {5 g = ([ paaatat s},

which is the Hessian of L and has the form of a weighted mass matrix, with

weight pgnyn B. From (4.32) J is negative definite for wholly subcritical flows
and positive definite for wholly supercritical flows.
Given an initial approximation ¢° to the solution ¢ Newton’s method pro-

. . ke
duces a sequence of approximations ¢” from

" = ¢" + 89", (4.34)
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where
J(¢") 60" = —F(g"). (4.35)

The sequence ends when

max ‘(Mf
K3

< tolerance. (4.36)

The Jacobian and the vector F are integrated exactly. The Jacobian is tridiagonal
and (4.35) is solved by Gaussian elimination and back substitution. The initial

approximation ¢@° is given by

I
—

op =(i—1" i

0

where v” is assigned a value which determines whether the approximation be-

ing calculated is an approximation to subcritical or to supercritical flow. Let

cmin = xe%jgn]c*7 where ¢, is defined by (2.63). Then, if v° < Z2=Zicmin the
approximation will be subcritical. Let ¢M* = I[HELX ]c*. Then, if 0¥ > Za=fLemax,
TE(T1,Tn

the approximation will be supercritical.

The algorithm is implemented on the grid (4.6), with . = 0, 2, = 10 and
n = 21. The energy F is again taken to be 50. Approximations to flows in
channels with breadths given by (4.15) and (4.16) and fluid depths below the
level z = 0 given by (4.17) and (4.18) are considered.

For h = hy the value of mass flow at inlet C' = C,, where C, is given by (4.20),
is used to give examples of critical flows and C' = 10 is used to give examples of
non-critical flows.

Consider the channel with breadth B = B; g and let the tolerance in (4.36)
be 1073. The method converges to the subcritical approximation in 4 iterations,
using v = 1, and to the supercritical approximation in 5 iterations, using v° = 5,
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Figure 4.9: a) Velocity potential and b) velocity approximations for B = By g and
h = hy.
for non-critical flows. For critical flows the method converges to the subcritical
approximation in 7 iterations, using v° = 1, and to the supercritical approxi-
mation in 8 iterations, using v° = 5. Results for the critical flows are shown
in Figure 4.9. Figure 4.9a¢ shows the piecewise linear velocity potential approxi-
mations, the top line corresponding to supercritical flow and the bottom line to
subcritical flow. Figure 4.96 shows the piecewise constant velocity approxima-
tions derived from the gradients of the velocity potential approximations in each
element. Notice that the velocity approximations are approximately symmetric
about the line x = 5 as is expected for flows in a channel whose breadth and
equilibrium depth functions are symmetric about this line.

For B = By, and i = hy with H = 0.2 Figure 4.10a shows the piecewise

linear approximations to the velocity potential for subcritical and supercritical
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Figure 4.10: a) Velocity potential and b) velocity approximations for B = B

and h = hy with H = 0.2.
flows with ' = 10. The corresponding piecewise constant approximations to the

velocity are given in Figure 4.100.

4.3.2 Errors

The L, error of the approximations to the velocity, derived in Section 4.3.1, is

defined by
([ o) )

Table 4.3 shows the L, errors for piecewise constant velocity approximations

oo

in the channel with B = B;; and h = hy. The energy E is given the value
50, C' = C,, defined by (4.20), is used to derive the critical approximations and
C' = 10 produces the non-critical approximations. It can be seen that, as the grid

. / . .
is refined, the convergence of ¢* to v is linear.
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critical flows non-critical flows

n | Ax | subcritical | supercritical | subcritical | supercritical

3 1213266 x 10° | 2.744 x 10° | 1.933 x 10° | 1.444 x 10°

5 1211582 % 10° | 1.352 x 10° | 8.914 x 107" | 6.549 x 107"

9 19| 7782 x 1071 | 6.653 x 107" | 4.449 x 107" | 3.261 x 107!
17 12 13.861 x 107" | 3.296 x 107! | 2.227 x 107" | 1.632 x 107"
33 1211923 x 107" | 1.640 x 107! | 1.114 x 107" | 8.164 x 1072
65 11 9.597 x 1072 | 8.179 x 1072 | 5.569 x 1072 | 4.082 x 107
129 | 22 | 4.794 x 1072 | 4.084 x 1072 | 2.784 x 1072 | 2.041 x 1072
257 | 19 12396 x 1077 | 2.041 x 1072 | 1.392 x 1072 | 1.021 x 102
513 | 33 | 1.198 x 1072 | 1.020 x 107% | 6.961 x 107% | 5.103 x 107°
1025 | 5 | 5.987 x 1072 | 5.100 x 1072 | 3.481 x 107 | 2.552 x 107?

Table 4.3: Lo errors for piecewise constant velocity approximations.

4.4 The Constrained ‘p’ Principle — Adaptive
Grid

The approximations derived so far in this chapter have all been defined on the

fixed regular grid given by the points (4.6). In this section a method of generating

irregular grids using the constrained ‘p’ principle (3.116) is investigated.

The method of generating irregular grids and the corresponding approxima-
tions to the velocity potential using (3.116) is similar to the method of Section 4.3
in that a finite element expansion for the velocity potential is substituted into

the functional (4.31) and the values of the parameters of the expansion are found
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such that the functional is stationary with respect to variations. The difference
here is that the positions of the internal grid points are also allowed to vary.

Let the domain of integration [z.,z,] be divided initially into n — 1 regular
intervals [v;,x,41] (¢ = 1,...,n — 1) by the points «; (¢ = 1,...,n) defined by
(4.6). Then let

n—1

¢h(x7x) = ¢1O{1($, L1, 1’2) + Z ¢Z'Oé2'($, Ti1,Tq, xi—l—l) + ¢nan(x7 Lpn—1, xn)

=2
be the finite element expansion of the velocity potential ¢, defined on this grid.

The «; are the piecewise linear basis functions given by

Lo — X
T € |11, 2]
Oél(l’,l'l,l'z) = 2T ’
0 T & |11, 2]
T — T
Tl e [wio1, ]
T; — Tj-1
ai(@, 2 g, 2,04) = LT T [, 2ig1] 1=2,....,n—1,
Tit1 — T4
0 v & (w1, i
T = Ty
Oén(l', Lpn—1, xn) = Tn = n-1 s
0 Z € [xn—lv l’n]
the ¢; are the values of the approximation at the grid points and x = (1, ..., 2,)"

is the vector of grid points.
The discrete version of the functional of the constrained principle, in this case,

L(gx) = ( [Tt ) p(&" E)B da + CB. (6 (20 %) — 6" (ar, %))

where ¢= (¢y,...,6,)7, o = % and £ = I + gh. The initial finite element
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solution for the velocity potential is found by solving

oL T2 Tp
Fi(qb,x):aqs’:(/x +---+/x )p¢h/agBd:1;—|-CBe[ozi]Z:0 i=1,...,n

(4.37)

for ¢ with the z; fixed and given by (4.6). This is done using Newton’s method,

as in Section 4.3.

New positions for the internal grid points are then found by solving

oL
Gi(¢7x) = ax

B z2 Tn a¢h/ a¢h “n B
= —[pB],, + (/M-F"'—l-/m_l)p(bh'axinl‘—l-CBe [6:1:2 . =0

i=2....n—1, (438

for z; (1 = 2,...,n—1), by Newton’s method. The Jacobian is the (n—2) x (n—2)

matrix given by

J(é,x) = {Jif}:{axajgxi}

h/ h/
b

J z; g x;

T Tn a¢h’ a¢h’ 82¢h/
+ (~/x1 +- ~/xn—1) (p¢h/¢h/81}jaaii —I_p(bh/ial‘jaxi Bdx

82¢h Tn

which is tridiagonal so that the equation
J(.x") 6x" = —G(¢,x")

is solved for éx* by Gaussian elimination and back substitution. A sequence of
approximations to x is generated using
x"M = x4 6x*,
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The process is repeated until

< tolerance. (4.39)

max ‘5:1;Zk
K3

The procedure is to return to (4.37) and find ¢ on the new grid, using the
solution for ¢ on the previous grid as the initial approximation ¢°. Equations
(4.38) are then solved again to modify the grid further, the initial approximation
x" being given the values of the solution x at the previous iteration.

This process is repeated until
max (|, [G:)) (1.40)

changes by less than some percentage between successive iterations on the posi-
tions of the grid nodes.

The energy F is assigned the value 50. The two values of mass flow at inlet C' =
C., given by (4.20), which generates critical flows, and C' = 10, which generates
examples of non-critical flows, are considered. The criterion for convergence using
(4.40) is that (4.40) changes by less than 5% between two successive iterations.

Results are given for the channel with z. = 0, z, = 10 and breadth B = Bs,
where

Bs(x) =8+ 2cos (?) ,
which is shown in Figure 4.11. The fluid depth below the reference level z = 0 is
h = hy (equation (4.17)).

The tolerance on the Newton iteration for ¢ is taken to be 1077 and on (4.39)
to be %10_4, where n is the number of grid points. The approximations to
subcritical and supercritical velocities for ' = (', , derived as the gradients of the
piecewise linear approximations to the velocity potential, for n =5, 7 and 11 are
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Figure 4.11: The breadth function Bs(x).

shown in Figure 4.12. The dots represent the final positions of the grid points.
The subcritical approximation with n = 5, Figure 4.12a, requires 28 sets of iter-
ations to converge and the grid points have moved from their initial equi-spaced
positions. The subcritical approximations with n = 7 and 11, Figures 4.12¢ and
4.12e respectively, both converge after one set of iterations, the grid points have
moved slightly towards the line @ = 5, although this is not obvious from the
figure. The supercritical approximations with n = 5, 7 and 11, Figures 4.12b,
4.12d and 4.12f respectively, all converge after one set of iterations; there is no
discernible motion of the grid points in these cases.

Table 4.4 gives the Ly errors of the approximate solutions for various n, in
the same channel and with the same conditions as above. For comparison, the
corresponding L, errors for approximations generated on fixed, equi-spaced grids
are also given. For the supercritical approximations there is a slight improvement

in the Ly error with n = 5, 7 and 9. For the subcritical approximations the
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Figure 4.12: Velocity approximations for a) and b) n =5, ¢) and d) n = 7 and )

and f)n =11
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fixed grids adaptive grids
n | Az | subcritical | supercritical | subcritical | supercritical
30 213322 10° | 2730 x 10° | 3.322 x 10° | 2.730 x 10°
5 4 [1.826 x 10° | 1.574 x 10° | 1.608 x 10° | 1.572 x 10°
7|2 ] 1.212x10° | 1.054 x 10° | 1.208 x 10° | 1.053 x 10°
9 | 2 [9.045x 107" | 7.876 x 107 | 9.030 x 107" | 7.875 x 107!
11| & | 7211 x 107" | 6.280 x 107" | 7.204 x 107" | 6.280 x 107"
21 | 22 13576 x 107" | 3.111 x 107" | 3.575 x 107" | 3.111 x 107!
31| &2 2377 x 107" | 2.066 x 107" | 2.376 x 107 | 2.066 x 107!
Table 4.4: Comparison of Lo errors for piecewise constant velocity approxima-

tions.
improvement is more pronounced with n = 5, 7 and 9 but is only slight for

n = 11 and negligible for n = 21 and 31.

4.5 Discontinuous Flows — The Constrained
‘r’ Principle

In this section the ‘r” principle, based on the functional (3.113), constrained to
satisfy the conservation of mass equation is used to generate approximations to
the depths in discontinuous shallow water flows. In order to achieve an accurate
finite element approximation to the depth one of the grid nodes must be positioned
at the point of discontinuity; this requires the use of irregular grids.

The functional of the ‘v’ principle for discontinuous flow (3.123), constrained
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to satisfy conservation of mass, is

Ts

si(d,,) = |

Te

(1(Q, d) + E.d) B de + / (M(Q,d) + E,d) Bde,  (4.41)

where Q(x) = ggf). The equilibrium fluid depth & is assumed constant so that

the energy F, defined by (2.35), has the constant value E. in [z, xs) and the
constant value F, in (x4, x,]. The values of F, and F, are deduced from boundary
conditions and, from (2.78), are such that F. > F,. The natural conditions of

the first variation of S5 are

rq+E. = 0 in (x.,z,),
ra+FE, = 0 in (x5, 2,), (4.42)

[r+ Ed, = 0,

Ts

where the coefficients of the total variation of d on either side of z, have been

equated, that is, the equation

od|,  +d|, Sy =4d|, +d

T, T -

Sy (4.43)

is assumed satisfied. It is not obvious how, in practice, it might be possible to
construct variations that satisfy (4.43). It is the assumption that (4.43) is true
which gives rise to the natural jump condition (4.42)s. So, if variations satisfying
(4.43) cannot be found then, in order to generate approximations to the depth in
discontinuous shallow water flows, (4.42)s must be enforced in some way.

The method of finding approximations is based on that of Section 4.1 in
that finite element expansions for d in the regions of the domain before and
after the discontinuity are substituted into a finite dimensional version of (4.41).
Then the node which separates the pre- and post-discontinuity approximations
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must be repositioned in order to satisfy (4.42)s. An algorithm based on this is
given in Section 4.5.1. The method is then extended in Section 4.5.2 to give an
algorithm generating approximations on grids where all of the internal grid nodes

are positioned using (4.42)s.

4.5.1 Grid with One Moving Node

Let the domain of the problem [z, z,] be divided into n — 1 adjacent regular
intervals [x;, #;11] by the points x; (¢ = 1,...,n) defined by (4.6). One of these
nodes must be chosen as being the initial approximation to the position of the
discontinuity and the number of the node nearest to the actual position of the
hydraulic jump needs to be deduced. Let xzy be the initial guess for the jump
position.

The method requires that approximations to the flow in front of and behind
the jump are generated separately and coupled, by means of a discontinuity, at
the position of the hydraulic jump.

Let the approximation to the depth in the pre-jump region [z, xx] be

N
d(z) = ;dfaf(l‘),
where

Lo — T

T € |1, 23]
Ty — X7

0 x & |11, 23]

T — T;_
T, — T
af(x) = it — U v € [, vit1] 1=2,....N—1,
Tit1 — Xy
0 x & [Ti1, Tig]
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0 z & [rn_1,2N]
Let the approximation to the depth in the post-jump region [z, z,] be

n

Zdoo

=N
where
T —x
SNHL T e (2N, Tn1]
a(z) = { Tve T ,
0 v & [rn, *Nqa]
T — T,_
T; — i1
al(x) = Ligr T v € [2s, 2it1] i=N+1,...,n—1,
Tip1 — T4
0 T € [51?2'—1751?2'4-1]
T — X,_
el s S [Tn_t, Tn]
agfa) = § e
0 € €[ Tp_1,T ]

The algorithm is in two parts. Firstly the two finite element approximations
d® and d° are derived by finding the values of d® = (d¢,...,d%)T and d° =
(d%, .- .,d2)T such that

TN

L(d,d°) = /

T

(r(@Q. de)+Ed6)Bd:z;+/ (r(Q. d°) + B,d°) Bdx

is stationary with respect to variations in d® and d°. This requires solving the

two sets of equations

oL . oL
8df_0 t=1,...,N and 5

k3

=0:=N,...,n

using Newton’s method, as described in Section 4.1. The initial approximation to
d® must be supercritical in order that the supercritical flow in the region before
the jump is approximated and the initial approximation to d° must be subcritical.
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The second stage of the algorithm is to alter the position of xx by employing
the jump condition (4.42)3. If x, is the exact position of the jump and d is the

exact solution then, from (4.42)s,
(@) + Bd)l,_ — (@) + B, , = 0.
If the approximation satisfies

(1@, d°) + Eod)],,, = (r(Q,d°) + Eod)], | < tolerance, (4.44)

for some specified tolerance, then the approximate solution has been found and
xx is the approximate position of the hydraulic jump. If (4.44) is not satisfied
then a new approximation to the jump position is found using the jump condition,
as follows.

The equation

r(Qy, dsy) + Eodsy — #(Qy, &) — EydSy = 0 (4.45)

is solved for (),, the value of the mass flow which would occur at the jump if
d% and d%; were the actual depths of the flow before and after the jump. The

conservation of mass constraint gives

Q(z)B(x) = CB, x € [xy, 2,

and, since B(z) and C are to be specified, this can be used to find the point z¥
in the channel where the mass flow is (J;. From the discussion in Chapter 2 only

flows which are critical at the channel throat will be considered so that

(4.46)

N

s *

can be solved, by bisection, to give a unique value for =
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The process which occurs on solving (4.45) is explained more fully in the
following pages and then the algorithm for positioning a node at the point of

discontinuity is completed.

Let 2, be an approximation to the exact position x; of the hydraulic jump.

From the conservation of mass equation the mass flow at &, can be calculated to

N

be @), = Bc(';f). The flow on the inlet side of the jump must be supercritical and

on the outlet side must be subcritical. Assume this to be the case here. Then
the values of the depth at points immediately either side of &, can be calculated
using the definitions of mass flow (2.34) and energy (2.35).

Let d= be the supercritical solution of

2
E.=gd + =

L(Q,
2\d- )’
that is, the root which lies between 0 and %. Let d* be the subcritical solution

of

A2
1/Q
E,=gd"+ ==

2E,
3g

that is, the root which lies between and %. In the approximation method, if

N = T, d is an approximation to d~ and d; is an approximation to d*.
In Figure 4.13 the graphs of flow stress P, defined by (2.72), against mass
flow ) for £ = E. and £ = F,, with F, < E., are drawn in solid lines. The two

dotted lines are the curves

P(Q)=r(Q,d") + Ed,

N

which touches the supercritical branch of the F, curve at Q) = (), and

PHQ) =7(Q.d") + E,d*,
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Figure 4.13: Intersection of PT and P~ for QS < Q

which touches the suberitical branch of the E, curve at Q = Q,. If d% and d%; are
the exact values of d~ and d* then, solving equation (4.45) for @),, is equivalent

to finding the value of ) at which the two curves P~ and P* intersect.

For any value of QS, lying in the range 0 < QS < 517 (

2k,
3

)%, it can be shown
that the curve P~ lies above the supercritical branch of P(Q) for F = E., except
at the point () = QS where the two curves are tangent. It can also be shown that
P7* lies below the subcritical branch of P(Q) for ¥ = E,, except at the point
Q= QS where the two curves are tangent to one another.

In Figure 4.13 QS is less than the actual value of mass flow Q at the jump and
in these circumstances the value () = (), at the point of intersection of P~ and
Pt always lies between QS and Q and thus is an improvement on QS. Repeating

the process by letting QS = (), generating the corresponding curves P~ and
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Figure 4.14: Intersection of PT and P~ for QS > Q

P* and finding the point of intersection yields a sequence of values of (), each
lying between the previous value of (), and Q Thus this iteration will eventually
converge to give the exact value of the mass flow at the jump, from which, using
the conservation of mass equation, can be deduced the position of the jump.
Figure 4.14 gives an example of the graph for QS greater than Q In these
circumstances if the P~ and PT curves intersect at a value of Q = @, then
Qs < Q It is not possible to prove that a value of (), > 0 exists for which
P=(Qs) = PT(Qs) and, even if such a value does exist, the mass flow might never
achieve the value () in a particular flow. If such a (), does exist and is achieved

at a point in the domain then, letting QS = (J,, gives the situation in Figure 4.13.

The situation is slightly different in the approximation case. Equation (2.64)
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gives an expression for () as a function of d, that is,

Q =dy2(F — gd).
Let

Q° = dy+\/2(E. —gdy) and Q° =dy\/2(F, — gd%),

where d5 is the approximation to d on the x. side of xx, the approximation to

the jump position, and df; is the approximation on the z, side of zx. Let

PAQ) = r(Q,dy) + Edy

and PQ) = r(Qd%) + Eudsy.

Figure 4.15 shows a sketch of the curves P¢ and P° on a graph of P as a function
of @) for two different values of £, F, < E.. Notice that P° touches the F. curve

at () = Q° and P?° touches the £, curve at () = (Q°. Note also that neither ()¢ nor

CB.

Blen)" The point of intersection

()° is necessarily equal to the mass flow Q(xn) =
of the P¢ and P° curves gives the value of (); equivalent to solving (4.45). There

are four possible situations arising.
1. Q° < Q and Q° < Q so that Q > Q, > max(Q°, Q°).
2. Q° < Q and Q° > Q so that Q > Q, > Q°.
3. Q6>QandQ°>Qsothath<Q.
4. Q6>QandQ°<Qsothath<Q.

These properties are deduced using the facts that P° is tangent to the F. curve
at () = Q° and always lies on or above the supercritical branch and that P? is

tangent to the F, curve at () = )° and always lies on or below the subcritical
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Figure 4.15: Intersection of P¢ and P° curves.

branch. In cases 1 and 2, although Q¢ < @, < Q, it does not necessarily mean
that Q(zy) < @, < Q The convergence of the iteration using (4.45) depends
on this being true, which it will be if d% is close to the supercritical solution
of . = gd + %(@)2 so that Q° is close to Q(xy). In cases 3 and 4 if
(s > 0 exists, and is achieved in a particular flow, solving (4.45) to give a further
approximation to the mass flow at the jump may improve the approximation,
although this cannot be shown. In practice the values of ()¢ and ()¢ are sufficiently
close together so that situations 2 and 3 occur only when the approximation to

the jump position is very close to the actual jump position.

The algorithm for positioning a node at the jump is in two parts. Firstly,
beginning with N = n — 1, the corresponding value of 77! is found using (4.45)

and (4.46). Then, stepping backwards along the channel to the n — 2 th node,
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the value of 2772 is found. If (z,—y — 277 !)(x,_9 — 277?) < 0 then z; lies between
x,_1 and z,_,. Otherwise the process is repeated until the node j is found, where
(2; — 28)(x;j_; — 2971) < 0. Then, if |z; — 27| < |z, — 227!, the number N of
the node to be moved to the jump position is j; otherwise N = j — 1.

Once the number of the node to be moved to the jump position has been
established in this way, 2 is moved to . The finite element approximations
d® and d° are recalculated on the modified grid and, if (4.44) is still not satisfied,
(4.45) and (4.46) are used to reposition xy and the process is repeated until
(4.44) is satisfied. The approximate solution has then been found and xy is an
approximation to the jump position.

The algorithm is applied to a grid with z. = 0, z, = 10 and n = 21. The
energy at inlet /. is given the value 50 and the mass flow at inlet ' = C, where
C. is defined by (4.20), to give a critical flow in a channel with breadth B = By 4,
defined by (4.15). The depth at outlet d, is given for each case and is used to

deduce the value of F,, using the definitions of mass flow (2.34) and energy (2.35).

From the conservation of mass equation Q(z,) = Bc(fe), which yields
1( OB\’
E,=gd,+=-|——] .
.43 (5 )

The piecewise linear approximation to the discontinuous depth profile with
d, = 4.69 and breadth B = B4 is given in Figure 4.16a. For a tolerance on
the Newton iteration of 107 and on the jump condition (4.44) of 1072, the
method converges in 3 iterations on the position of the discontinuity, once the
node to be placed at the discontinuity has been found; in this case it is node
number 16. These iterations require 15, 8 and 8 Newton iterations. The initial
approximation on the original regular grid is given the valuesd: =1 (: = 1,...,N)
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Figure 4.16: «) Piecewise linear depth approximation for d, = 4.69 and b) By ¢(x).

and d? =4.69 (: = N,...,n). Once the number of the node to approximate the
jump position is found subsequent approximations to the finite element solutions
use the approximation on the previous grid as the first guess in Newton’s method
to find the approximation on the new grid. Figure 4.16b shows the breadth B g.

The piecewise linear approximation for d, = 3.86 is shown in Figure 4.17.
This converges in 3 iterations on the position of node 20, which is selected by the
algorithm to be moved to approximate the jump position, requiring 15, 4 and 4

Newton iterations.

The algorithm in this section generates approximations to the depth for dis-
continuous flows in channels, where the approximations are defined on grids in
which all of the grid points except one are fixed. The one movable grid point is
positioned, using the jump condition (4.42)3, in such a way that (4.42)3 is ap-

proximately satisfied. In Section 4.5.2 this method is extended, by allowing all of
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Figure 4.17: Piecewise linear depth approximation for d, = 3.86.

the internal grid points to move, in order to generate irregular grids.

4.5.2 Adaptive Grids

The domain of the problem [z, z,] is divided into n — 1 regular intervals by the
points a; (¢ = 1,...,n) defined by (4.6). Finite element approximations to the
depth are generated separately on each interval [z;, x;41] and the jump condition
(4.42)3 is used at each internal node to reposition the node. Instead of having
just two finite element approximations coupled at a point, as in Section 4.5.1,

there will be n — 1 approximations coupled at the n — 2 internal grid points.
Let

d(x) = dPal () + dPal(2) (1.47)

be the finite element approximation to d in the ¢ th element [, ;11], where

Tig1 — X
f T € [$i,$i+1]
OéL(J}) = Lit1 — i i=1,...

0 x & [, 2i44]
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r —X;
! T &€ [J/’Z',J?H_l]

0 v & (i, Tip]

OéR(l') = Titr — & r=1,...

Let N be the number of the node chosen to be the initial approximation to

the position of the hydraulic jump. Then, in the element [z;, z;,4],

E=FE, ife4+1 <N

and E=F, ife >N,

where F_ is the value of the energy E at inlet and £, is the value at outlet.

The finite element solution on each element is given by the values of d; =

(dL dR) such that

[ K3

L(dy,....d, 1) = fKA%XNQﬂHiMﬂBM)

1= ¢

T (/+ (T<Q7d?>+Eod?)de),

where Q(z) = gg;), is stationary with respect to variationsind; (z = 1, ..

The solutions of the n — 1 sets of non-linear equations

oL oL
ey e
adr " 9dR T

each with two unknowns, are found using Newton’s method.

n—1).

Once the d; have been calculated on the initial grid the jump condition is

applied at each internal node. If

- (T(Qv dﬁ—1) + E2d?—1)

T T

where

ElZEQZEe lfl<]\/v7
E,=E, E,=EFE, ifi=N,

EleQZEO lfl>]\/v7
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forall2 = 2,...,n—1 and a specified tolerance, the required approximate solution

has been found. If (4.48) is not satisfied for a particular value of ¢ then
r(Qy, d¥) + Eydr — r(Q;,d ) — Eyd? | =0 (4.49)

is solved for (); and the new position of the grid point z; is found from @); using
the conservation of mass law and bisection.

The grid point closest to the jump position in the regular grid defined by
(4.6) is found in the same way as in Section 4.5.1. The approximation xx to the
jump position is initially taken to be x,_;; equation (4.49) then yields the new
approximation z”~!. The process is repeated using x,_, as the approximation to
the jump position and then stepping backwards along the channel to each grid
point in turn until (z;_; — 2971 (x; — 24) < 0 for some j. Then, if |z; — 2J| <
|z;_1 — 247, N = j is the number of the node which will be used to approximate
the jump position; otherwise N = 5 — 1.

With N fixed the n — 1 finite element approximations (4.47) are calculated
on the new grid, using the solutions on the previous grid as the initial guess in
Newton’s method. If (4.48) is not satisfied for some ¢ in the range 2,...,n — 1,
the internal grid points are repositioned using (4.49). The process is repeated
until (4.48) is satisfied for all 7 in the range 2,...,n — 1. An approximation to
the depth for discontinuous shallow water flow has then been found.

The algorithm is applied in a channel where z. = 0, x, = 10 and n = 21.
The breadth B = By is given by (4.15). The energy at inlet £, is given the
value 50 and the mass flow at inlet is given the value which causes the flow to
be critical at the channel throat, that is C' = C\, where C. is defined by (4.20).

The initial approximations to the depth used in Newton’s method has the value
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Figure 4.18: Piecewise linear depth approximations for a) d, = 3.86 and b) d, =
4.6.

1 at the nodes on the inlet side of xx and the value of the outlet depth d, at the
nodes on the outlet side of zp.

Figure 4.18a shows the result for B = B, ¢ and the outlet depth d, = 3.86.
The dots on the z-axis show the final positions of the grid points, grid point 20
approximates the jump position. For a tolerance on the Newton iteration of 107°
and on the jump condition (4.48) of 107 the algorithm converges in 3 iterations
on the positions of the grid nodes. Figure 4.18b shows the corresponding result
for d, = 4.6. Here node 18 approximates the jump position and, for the same
tolerances, the algorithm converges in 3 iterations on the positions of the grid

nodes.
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Chapter 5

Approximations to Continuous
Two-dimensional Shallow Water

Flows

In this chapter the constrained variational principles derived in Section 3.6.2 are
used to generate approximations to two-dimensional shallow water flows. The
method is an extension of the method used in Chapter 4 to approximate one-
dimensional flows.

The functionals of the constrained variational principles for steady state flows,

(3.94), (3.97), (3.95) and (3.96), are

L3(6) = //Dp(VqS,E)dxdy—l—/ECqﬁdZ, (5.1)
15Qud) = [[ ((Qud) + Ed) de dy,

15Q) = [[ P@Q.E)ydady.

L(g,d) = // R(V,d) +Ed)d:z;dy—|—/(]q§d2, (5.2)
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where, in L5 and L5, the mass flow Q is required to satisty V.Q = 0 in D
and n.Q = C on Y, for the given boundary function ', and, in L{ and L, the
constraint v.= V¢ has been applied. The energy F is the function E(x,y) =
E+ gh(x,y), where E is a known constant.

In the variational principles based on L§ and L§ the variations, 6Q, of Q must
satisfy V.(Q +6Q)=0in D and n.(Q 4+ 6Q) = C on ¥, that is, V.6Q = 0 in
D and n.6Q = 0 on X. This can be achieved in practice by introducing a new
variable ¢ = ¢(z,y), such that, Q = (v, —t,). Then 6Q = (61, —61),) where
n.(6t,, —6t,) =0 on X.

In this chapter the functional L{ is used to generate approximations to the
velocity potential ¢, from which approximations to the velocity v are deduced
using v = V¢, and L] is used to generate approximations to the depth d and to
¢ (and hence also to v). The variational principles based on L{ and L§ do not
require the variations to satisfy any boundary conditions.

Let the domain of the problem be the channel

2]}

D:{(%y)iwe[%axo]5y€[_ )

where B(x), the breadth of the channel, is a function to be defined. The channel

has an axis of symmetry along the line ¥y = 0 and so only the half of the channel

D= {(:fc,y) px €z, o]y € [0’ B(;)H

is considered, the flow over the region D\ D being deduced using the symmetry
property. The function h(x,y) is the depth of the fluid below the level z = 0, in
line with the definition of the one-dimensional version of h.

The boundary function €' is taken to be zero on the lateral sides of D and is
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Figure 5.1: Example of triangular grid for n =9 and m = 7.

assigned values on the inlet section ¥, (at = x.) of the boundary ¥ and on the

outlet section ¥, (at @ = x,) such that
/ s+ [ cas=o,

for consistency with conservation of mass.

The domain D is discretised into a triangular grid using the / = mn points

Tip(-nn = oy (20— x) + e, 5.3
Yirmn = et BEiGonn),
for i = 1,...,n and j = 1,...,m. The region D" covered by the grid is an
approximation to D. An example of a grid for n = 9 and m = 7 is given in
Figure 5.1.

The approximation method is similar to that in one dimension. The ap-
proximate velocity potential and depth functions are expanded in terms of finite
element basis functions and substituted into the functionals L{ and Lj. The finite
dimensional versions of the functionals, generated in this way, are to be made sta-

tionary with respect to variations in the parameters of the approximations. The
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Figure 5.2: A two-dimensional piecewise linear basis function.
basis functions considered here are two-dimensional piecewise linear. The basis
function corresponding to a particular node is of magnitude one at the node,
zero at all other nodes and linear over each triangular element. An example of a

typical basis function for an internal grid node is given in Figure 5.2.

5.1 The Constrained ‘p’ Principle

The functional Lj, defined by (5.1), is used to generate approximations to the
velocity potential ¢. By considering the matrix of second derivatives of L it
can be shown that L{ is maximised by subcritical solutions of the shallow water
equations and has a saddle point for supercritical solutions.

Let the approximation to the velocity potential be

¢h(x7y) = Z:gbzgl(xvy)v (54)

where the 3; are the two-dimensional piecewise linear basis functions defined on
the grid given by the points (5.3) and the ¢; are the values of ¢" at the nodes of
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the grid.
Substituting (5.4) into (5.1) gives the finite dimensional version of the func-

tional, that is,

L() ://th(VqSh,E)dxdy—l—/Ee c¢hdz+/zoc¢hdz,

where ¢ = (¢1,..., 017, E(z,y) = E+ gh(x,y) and D is approximated by D",
the region covered by the triangular grid. The finite element solution is given by

the ¢ which satisfies

aL
Fg)=2-=[] Vdedy+ [ CdS+ [ Cpds =0
(()b) a¢2 Dh pV¢h 6 € y—l_ o 6 —I' o ﬂ
for e = 1,...,1 and is found using Newton’s method in the same way as before.

The Jacobian is given by

J(@) = {Jij} = {22} - {aZjaL@} ={ ] Vrv i Videdy},

where

2
—E+1vehveh 4 gt 0y
pv(bh V¢h = , R
h ih IR v h h
and is negative definite for wholly subcritical flow and indefinite for wholly su-
percritical flow.

Given an initial approximation ¢° to the solution ¢ a sequence of approxima-

tions is generated, using Newton’s method, from

¢" = ¢ + 69", (5.5)

where

J(¢")6¢" = ~F("). (5.6)



The process is continued until

max ‘(Mk

7
7

ok

< tolerance. (5.7)

max
Using the piecewise linear basis functions, defined on a triangular grid, the in-
tegrands of the Jacobian J and the vector F = ([, ..., F})T are constants over
each element so J and F are integrated exactly.

The Jacobian is no longer tridiagonal, as it was in the one-dimensional exam-
ples, although it is symmetric and banded. Equation (5.6) may still be solved
efficiently for 6¢* using a pre-conditioned conjugate gradient method (Golub
and Van Loan (1989)), provided that .J is not indefinite. The matrix J is pre-
conditioned by its diagonal entries, that is, by the matrix P = diag(Jyy,. .., Jy).
The system

P~ (¢%) J(¢") PN (") 69" = —P7' (¢") F(")
is solved for 63" by the conjugate gradient method. Then the solution 6¢* of
(5.6) is given by
59" = P (") oy
The effect of this pre-conditioning should be to improve the convergence rate
of the conjugate gradient iteration. If PV 40 W o is a constant in D" then pre-
conditioning the system using the matrix P will improve the convergence rate of

the conjugate gradient iteration (Wathen (1987)).

The initial approximation to ¢ is given by

qﬁ?:(xi_xl)vo P=1. (5.8)

Ty — 1

where v°

is assigned a value which determines whether the solution being calcu-
lated is an approximation to subcritical or to supercritical flow. The energy E is
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taken to be 50.

The boundary function C' is given the value C(z.,y) = —K, where K is a
constant, on the inlet boundary ¥, and C(xz,,y) = % on the outlet boundary

Y., this is consistent with conservation of mass. The use of this boundary function
implies that the flow is uniform across the inlet and outlet boundaries. Therefore
it should ideally be applied to an infinitely long channel which has straight parallel
sides and a horizontal bed for all but a finite section of its length. In order to
investigate the effects of applying this boundary function at the ends of a channel
of finite length, let the domain D be such that B and h vary only on the interval
[0,10] of the x axis and are constant on [z.,0] and [10,x,], where ., = —L and
r, = 10 4+ L, for some number L. By using several different values of L any
inconsistencies caused by using the boundary function ' defined above can be
studied. The constant K is given the value 10.

The breadth functions used here are

6+1(1—-2) eo,10]

By(z) = : (5.9)
10 v € [—L,0]U[10,10 + L]
10 x €[—L,0]

Bs(z) = { 6+44(1-2) ze[o.8] 7 (5.10)

6+4(2)°  wel8,10+ 1]

6+1(1—2) 2e[0,3

Bs(r) = Q 6+44(2-2)" we 3,10 . (51

10 x € [—L,0]U[10,10 4+ L]
The depth of fluid below the reference level z = 0 is taken to be identically zero,

corresponding to a horizontal channel bed.
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Let the grid of points be defined by (5.3) with n = 5 and m = 3. Consider the
channel with breadth B, and let L = 0. Newton’s method, with a tolerance in
(5.7) of 1072, converges to the subcritical approximation in 4 iterations, requiring
7,7, 7 and 4 conjugate gradient iterations, with a tolerance of 107*. On a refined
grid with n = 9 and m = 7, and using the same tolerances, Newton’s method
converges to the subcritical approximation in 4 iterations requiring 29, 27, 24 and
7 conjugate gradient iterations. In both cases ¢° is given by (5.8) with v° = 0.

" can be generated from the

A piecewise constant velocity approximation v
velocity potential approximation ¢" using v = V¢" on each triangular element.
The velocity approximations for the above two cases are shown in Figure 5.3, the
length of the arrow in each element being directly proportional to the magnitude
of v. Both of the approximations exhibit the property of the exact solution that
the speed increases as the breadth decreases. They also approximately satisfy
the boundary conditions of zero flow across the channel side, y = @ for z €
[, 2,], and across the axis of symmetry, y = 0. The change in the speed, as
the breadth decreases then increases, is represented better on the more refined
grid, in particular the maximum speed has increased (from 4.00 to 4.42) and the
minimum speed has decreased (from 2.48 to 2.33).

Figure 5.4 shows corresponding results for breadth Bs with L = 0. The
approximation on the grid with n = 5 and m = 3 converges in 4 Newton iterations,
requiring 14, 14, 12 and 1 conjugate gradient iterations. The approximation for
n =29 and m = 7 also converges in 4 Newton iterations, requiring 40, 38, 27 and

16 conjugate gradient iterations. In both cases ¢ is given by (5.8) with v° = 0

and the tolerances are 107 for the Newton iterations and 10™* for the conjugate
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Figure 5.3: Subcritical piecewise constant velocity approximations in a channel

with breadth By and L =0for a) n =5and m =3 and b) n =9 and m = 7.
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Figure 5.4: Subcritical piecewise constant velocity approximations in a channel

with breadth Bs and L =0 for a) n =5and m =3 and b) n =9 and m = 7.
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Figure 5.5: Subcritical piecewise constant velocity approximations in a channel

with breadth By for a) L =5, b) L =10 and ¢) L = 15.

gradient iterations.

In order to investigate the effects of applying the given boundary function ' on
a channel of finite length, approximations to flows in channels which have different
values of L are generated. Consider the channel with breadth Bs. Approximations
for L = 5, 10 and 15 are given in Figure 5.5. It can be seen that increasing L
from 5 to 15 has very little effect on the approximation in the region between the
lines * = —5 and o = 15. Also notice that the velocity in the regions between
x = —15 and = —5 and between z = 15 and = = 25 is virtually uniform and is
parallel to the channel sides.

It should be possible to generate approximations to supercritical flows by
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taking v” in the range £e=%=¢l® < o0 < £2=%= min V2F in (5.8), where ¢ is
(z,y)€D

the maximum critical speed in a particular channel for a flow with given values of

K and E. However, the Jacobian J is indefinite for supercritical approximations

and (5.6) must be solved for §¢" by an alternative to the conjugate gradient

method, such as can be found in Golub and Van Loan (1989).

5.2 The Constrained ‘R’ Principle

The functional of the constrained ‘R’ principle, given by (5.2), is used to generate
approximations to the velocity potential and to the depth of flow. By considering
the matrix of second derivatives of Lj it can be shown that L§ is maximised by
subcritical solutions of the shallow water equations and has a saddle point for

supercritical solutions.

Let
I
= Zqﬁzﬂz(:p,y) and dh (x,y) Zdﬂ (x,y) (5.12)
=1
be approximations to the velocity potential and the depth, where the §; are the
two-dimensional piecewise linear basis functions defined earlier and the ¢; and
the d; are parameters of the solutions whose values are to be determined.

Substituting (5.12) into (5.2) gives the finite dimensional version of the func-

tional, that is,

// RV, dh)—l—Edh)d:z;dy—l—/ O dz+/ Coh ds,

where ¢ = (¢1,...,)7, d = (dy,...,d;)T and D" is an approximation to D.

The parameters of the approximation are those values of ¢ and d for which L is
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stationary with respect

oL
F(¢.d) = Do -
oL
Fia(g.d) = Y
fore=1,...,1L

Y

The solution is foun

where

JZ']'

Ji it

it

Jivijti

to variations, that is, ¢ and d satisty

—// Rwh.V@dxdw/ C@dz+/ OB ds = 0,
Dh Ye Yo

], (B = £) B da dy =,

d using Newton’s method. The Jacobian is given by

J(o,d) = {J;},

— /Dh Rg yn 740 V 3i.V 3 da dy,
_//D V BBy g 3 e dy,
_//Dh ﬂszhV(thﬂ] dx dyv

~ [, Biftinn; da dy.

fore=1,....,land 5 =1,...,1L
Given initial approximations ¢° and d° to ¢ and d Newton’s method yields

a sequence of approximations,

¢k—|—1 ¢k ¢k
- ) :
dk-|—1 dk dk
where
k
J(g",d") — _F(¢*,d"). (5.13)
dk
The sequence ends when
max ‘(Mf max ‘5df‘
‘ — < tolerance  and : — < tolerance, (5.14)
max | ¢; max |d;
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for some specified tolerance. The Jacobian and the vector F are evaluated using
7 point Gaussian quadrature for integrating over triangles.

The Jacobian is symmetric and banded and (5.13) is solved, when J is not
indefinite, using a pre-conditioned conjugate gradient method, with the pre-
conditioning matrix P = diag(Jyy,. .., Joa).

The initial approximation ¢° to ¢ is given by (5.8) and the initial approxima-
tion d° to d is given by &% = cZ, fore=1,...,[, where d is a constant. The values
of d and 0% in (5.8), must be consistent with one another, that is, if d is assigned
a value corresponding to a subcritical depth then v® must be given a value in the

Lomleemin where ¢™M = min_c, and ¢, is defined by (2.63). If d

range 0 < 0¥ < fe=Zeoim .
(z,y)eD

has a value corresponding to a supercritical depth then v° must lie in the range

Lo=Ze max - 30 < Zo=Ze mip /2F, where ¢ = max c,.
n—1 % n—1 = ? * =
(z,y)€D (z,y)€D

The constant F is given the value 50. The boundary function C' is defined in

_ KB.
= B,

the same way as in Section 5.1, that is, C(z.,y) = —K on X, and C(z,,y)
on X,; K is taken to be 10. The channel breadths considered here are those given
by (5.9), (5.10) and (5.11). The depth of fluid below the reference level z = 0 is
taken to be identically zero.

Consider the channel with breadth B, and let L = 5. Then, with n = 9 and
m = 3, Newton’s method, with a tolerance of 107% in (5.14), converges in 26
iterations, with a tolerance on the conjugate gradient iterations of 5x 107%. On a
refined grid with n = 17 and m = 5 Newton’s method converges in 32 iterations,
with the same tolerances as before. In both cases the initial data is d = 4.5 and
0 = 0.

The results for n = 9 and m = 3 are given in Figure 5.6. Figure 5.6a shows
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Figure 5.6: Subcritical approximations for n = 9 and m = 3 a) piecewise linear

depth and b) piecewise constant velocity.

the piecewise linear depth approximation and Figure 5.6b the piecewise constant
velocity approximation, calculated using v = V¢, where the arrows show the
approximate flow directions, the lengths being directly proportional to the mag-
nitude of v* in each element. The depths lie in the range 4.14 to 4.78 and the
speeds lie in the range 1.89 to 3.89.

Figure 5.7 shows the corresponding results for n = 17 and m = 5. The depths

lie between 4.03 and 4.85 and the speeds lie between 1.66 and 4.31.

Supercritical approximations may be generated by using an appropriate
¢k

method to solve (5.13) for é , where J(@*, d*) is indefinite, and by choos-
dk

ing consistent values for d and vY, corresponding to supercritical data.
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Figure 5.7: Subcritical approximations for n = 17 and m = 5 a) piecewise linear

depth and b) piecewise constant velocity.

In this chapter two algorithms are given which can be used to generate approx-
imations to two-dimensional shallow water flows, where the flows are subcritical.
Both methods yield approximations to the velocity of the flow and these approx-
imations can be compared as follows.

Consider the ¢ th triangular element of the discretised domain and let A;
be the area of the element. Let vf be the speed in element i of the velocity
approximation generated, as in Section 5.1, by using the ‘p’ principle based on

(5.1). Let vl be the speed in element i of the corresponding approximation
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generated, as above, by using the ‘R’ principle based on (5.2). Then

p R
v, —U;

A

>

=1

T
o (0F + o) A

=1

c = 5

where [ = 2(n—1)(m — 1) is the number of elements in the domain, is a measure
of the difference between the two velocity approximations.

Consider the channel with breadth By(x), given by (5.9), where L = 5, and
let the fluid depth below the reference level z = 0 be identically zero. The values
of e for grids with different values of n and m are given in Table 5.1. The results
suggest that, as the number of elements increases, the differences between the

approximations derived from the two principles decrease.

n m (&

9 | 3 ]49x1073

1315 |36x107°

1715 |32x107?

Table 5.1: Values of e for various n and m.
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Chapter 6

Further Applications

In Chapters 4 and 5 the variational principles for steady state shallow water
flows in one and two dimensions, derived in Chapter 3, are used to generate
approximations to the corresponding flows. There are, however, other variational
principles in Chapter 3 which can be used to generate approximate solutions to
other problems. Two such problems are considered here.

The approximations generated so far have all been for solutions of the shallow
water equations, in which it is assumed that the component of velocity per-
pendicular to the xy plane, that is the vertical component, is negligible, see the
statement (2.14). The variational principle (3.7), based on Luke’s principle (Luke
(1967)) is satisfied for solutions of the equations of time-dependent free surface
flows of an inviscid, homogeneous fluid in three dimensions. If an approximation
to three-dimensional flow can be generated then it can be used to investigate the
accuracy of the assumption that, under the conditions of shallow water theory,
the magnitude of the vertical component of the velocity is negligible.

In Section 6.1 the functional of (3.7) is reduced to a functional whose cor-
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responding variational principle has as its natural conditions the equations of
time-independent free surface flow in two dimensions, that is, the solutions of
these equations are functions of the vertical coordinate z and the one horizontal
coordinate . An attempt is made to extend the algorithms of Chapter 4 to
generate approximations to free surface flows using the new functional.

In Section 6.2 the ‘p’ functional for time-dependent quasi one-dimensional
shallow water flow (3.98) is used in an attempt to seek approximations to time-
dependent flows in a channel of slowly varying breadth. The problems caused by

using the functional (3.98) are also mentioned.

6.1 Two-dimensional Free Surface Flows

The functional of the modified version of Luke’s principle (3.7) is given by

/2:2 //D /_nh/’{_ (Xt +9z+ ;U.u) + u. (u — 6)()} dzdx dy dt, (6.1)

where n = n(x,y,t), h = h(z,y), x = x(x,y,2,1), u = u(x,y, z,1) and V is
defined by (2.2). The functional (6.1) is used in Section 6.1.1 to derive a functional
which has as its natural conditions of the first variation the equations of time-

independent motion in the  and z directions.

6.1.1 The Functional

The required functional is generated from (6.1) by first making the assumption
that the flow variables are independent of time and evaluating the time integral
and then assuming that the domain is a channel of slowly varying breadth so that

the variables are functions of the coordinates  and z only and the integral with
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respect to y can be evaluated. It is also necessary to add in boundary terms so
that variations can be allowed which do not necessarily vanish on the inlet and

outlet boundaries of the channel.

Time-independent flows

First make the assumption that the free surface flow does not vary with time.
Then the flow variable u and the height of the free surtface above the reference
level z = 0 are independent of time, that is, u = u(x,y,z) and n = n(x,y). The
variation of the velocity potential y with respect to time needs to be deduced.

The flow is assumed to be irrotational so, from (2.5),
u=Vy.

By assumption u; = 0 and so

%Xt =0,
which implies that y is of the form
Xy, 2,t) =X (2, y,2) + (1),
for arbitrary functions xy and f, where
Vy=Vy and = f.
Let
b= [t =~ (1) - (1),

where T' = ty — #1. Then, making these substitutions into the functional (6.1)

and integrating with respect to time gives

A 1 .
// /77 pT (E — gz — -u.u+u. (u — V)%)) dz dx dy. (6.2)
D J-h 2
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Two-dimensional flows

Let D be the domain

)

D= {(x,y) cx € [we, m,],y € l— 5 '
where B(x), for @ € [z., x,], is the breadth of the channel and is a slowly varying
function of x. Let h, the depth of fluid below the reference level z = 0, depend
on the x coordinate alone.

Now make the assumption that, in this domain, all of the variables are inde-
pendent of the y coordinate and redefine the variables as follows. The velocity
u(x,y, z) becomes u = u(x, z), where u = (u, w), the velocity potential x(x,y, 2)
becomes Y(x,z) and n(x,y) becomes n(x). The operator V is replaced by its
two-dimensional counterpart V= (8%, 8%).

Making these substitutions in (6.2) and integrating with respect to y gives
Lo n A 1 A
/ / pT (E—gz—u.u—l—u. (u—Vf())ded:Jc.
Te —h 2
Boundary terms

As the final stage in the construction of the required functional, boundary terms
must be added so that variations of the functional do not necessarily have to
vanish at the ends of the channel, that is, at * = . and = = z,.

The required functional is

Lo A 1 A
J(n,u,x):/gc /_nh (E—gz—Qu.u—l—u. (u—Vx))ded:Jc

n(wo) n(ze)
—I_/ CO X|x dZ - / Ce X|x dZ? (63)
—h(zo) ’ —h(ze) -

where the constant pT' has been set equal to unity and the " notation on the

velocity potential has been dropped for simplicity.

179



The natural conditions of 6.J = 0 are given by

u— ﬁX =0
for x € (xevxo); KBS (_h(x)vn(x))v
V.(Bu) =0
un, —w = 0 onz=rn(x)for x € (2, x,),
uh,+w = 0 onz=—h(x)forax e (z.,z,),
Ce— Bz u ., = 0 forze (—=h(xe), n(z.)),
Co — B(xo) ul,, = 0 forze (=h(x,),n(z,)),

A

1 n
E—gz+ Fuu— uVy = 0 onz=nz)forz € (z.,),

which are, respectively, the irrotationality condition and the conservation of mass
equation for © € (x.,x,) and z € (—h(x),n(x)), the condition of no flow across
the free surface, the condition of no flow through the channel bed, boundary
conditions on the horizontal component of velocity at the inlet and outlet bound-
aries and the dynamic free surface condition, as required. Notice that the first
six natural conditions are due to variations in the variables y and u, while the

last natural condition is due to the variation in 7.

6.1.2 The Algorithm

The basic finite element technique, as used in Chapters 4 and 5, can only be
applied to functionals in which the integration is over a fixed region. Various
algorithms (for example, Aitchison (1979), Ikegawa and Washizu (1973)) have
been developed to approximate flows in domains where the position of the free
surface is allowed to vary; the differences are mainly in the treatment of the

variation of the free surface. The method used here to position the free surface
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is based on the method used to approximate the position of a hydraulic jump in
Section 4.5.

The functional (6.3) depends on the three functions n(x), u(z, z) and y(«, 2).
A functional depending on only two functions can be derived by making the

substitution u = Vy in (6.3), giving

A To ~ 1 N n
J(n,x) :/ /_Wh (E—gz— ZVX.VX)BdZdJ}

(o) n(we)
—I—/ Co x|, d= —/ Ce x|, dz. (6.4)
—h(wo) ’ —h(we) ‘

The variational principle corresponding to (6.4) is equivalent to the variational
principle for (6.3), constrained to satisfy the irrotationality condition. The natu-

ral conditions of 6J = 0 are

V. (Bﬁx) = 0 fora € (x.,2,); 2 € (=h(x),n(x)), (6.5)

Nele — Y. = 0 onz=p(x)forz € (a0, .), (6.6)
Vohe £ X. = 0 onz=—h(z) for z € (a0, .), (6.7)

Co— Bla) Xal,, = 0 for z € (—h(z.),n(x.), (6.8)
Co— Bla) val, = 0 for = € (—h(x).n(x)), (6.9)

B ge - ;@X.@X — 0 onz=y(a)for € (a,,). (6.10)

Let
() = ﬁ;maxx) (6.11)

be an approximation to n(z) and let

X2, 2) = ;Xzﬂi(l’,z) (6.12)

be an approximation to x(x, z), where the «; are the one-dimensional piecewise
linear basis functions (4.13), the 3; are two-dimensional piecewise linear basis
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z=-h
X=X, X=X

Figure 6.1: Example of a triangular grid for n = 11 and m = 5.

functions, an example of which is given in Figure 5.2, and the n; forz =1,...,n

and the y; for2 = 1,...,[ are parameters of the solution and are to be calculated.

The domain of integration in (6.4) is discretised into triangular elements using

the following set of [ = mn points.

1 —1

Lit(G-1)n = n—1 (xo — 7c) + 2,
Zik(-n = (77 (Tit(j-1yn) + ($i+(j—1)n)) — h(Zi(j-1)n),
fore=1,...,nand y =1,...,m. An example is given in Figure 6.1. Notice that

the grid depends on the unknown function n*. Let h be defined by
hx) = Z h(x;)og(x).
Substituting (6.11) and (6.12) into (6.4) gives the finite dimensional version

of the functional, that is,
it le v
r1 —h
n m
‘|‘/ CO Xh dz — / Ce Xh
—h(zn) Tn —h{z1) z

where 7 = (1,...,7,)7 and x = (x1,...,x1)’. The parameters p and x are

dz,

sought such that L is stationary with respect to variations.
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Let

L L N .
Gi(n.x) = g - = —/ /UA Vxh.Vﬂinzdx
X 1 —h

Tin m
+/ C, ixdz—/ C.Bil de i=1,...,1,(6.13
" Gt [T Cl, (6.13)

then the vector G = (G4, ..., G)T may be written as

G(n,x) = —A(n)x + b(n),

where
Tn h ~ ~
An) = {/ /”A V3.V 5B d= d:z;} (6.14)
T1 —h
is symmetric, positive definite and banded and b = (by, ..., b;)T where

m

by = [ CoBl,, de— [ G, de, (6.15)

—h(zn) —h(z1)
The functional L is stationary with respect to variations in x if G = 0, that
is, if
A(m)x = b(n). (6.16)
Therefore, for a fixed 1, x can be calculated from (6.16). Let n = 5" in (6.4).
Then the solution x of (6.16) gives an approximation to the function y satisfying
(6.5)—(6.9), for the given domain, since these natural conditions are due solely to
the variations of y in §J =0.
The problem remains to find 5", that is, to find 1 such that L is stationary
with respect to variations in 1. This could be done by adapting the method in
Aitchison (1979), which is for a functional written in terms of a stream function.

The finite dimensional version of the functional (6.4) can be written as

L(n,x) = —;XTA(W)X + b (n)x + c(n),
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where A(n) and b(n) are defined by (6.14) and (6.15) and
Tn 77h ~
c(n) :/ / EBdzdx.
T1 —-h
Then, substituting for x using (6.16) gives

Em) = b7 () A (m)b(n) + (),

and n may be found by solving 8% =0forz=1,...,n.

In this thesis the technique used in Section 4.5 to approximate the position of
a hydraulic jump is adapted to the free surface case. In Section 4.5 the natural
condition which is generated by the variation in the jump position is used directly
to position the approximation to the jump. In the free surface case the natural
condition (6.10) is due to the variation in the position of the free surface and an
attempt is made to use (6.10) to find the approximation to the free surface.

Let % be an approximation to 5. Then, using (6.16), an approximation x*

to x can be calculated from
A(m*)x" =b(n"), (6.17)

by the conjugate gradient method.
An updated approximation to 1 is generated using (6.10), as follows. Consider
the node of the grid at the position (x;, z;), where z; = 5¥ for some 7 in the range

1,...,n. Consider the elements of the grid which neighbour node j and let

where [ is the number of elements surrounding node j,
!
. ke
X(xv Z) = Z X 62(1;7 Z)
=1
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is an approximation to y" and /A\; is the area of element i. Then w; is in some
way representative of the approximate speed of flow at node j. The position of

nf is updated by

L7, 1
k+1 2 k k
n; —(9<E—2uj)—77j)7—|-77j,

where 0 < v <1 is a relaxation parameter. Notice that if v =1 then nf"’l is the
height of the free surface above z = 0 where the speed at the point (z;,z;) is u;,
from (6.10). The approximation x**! can now be calculated from (6.17) and the

process is repeated until

max ‘nf — nf"’l‘ < tolerance,

for some specified tolerance.

The initial approximation 1° to 7 is given by
n) = d"(z;) — h(z;) fori=1,...,n,

where d" is the approximation to the shallow water depth d in the given domain,
calculated using the constrained ‘r’ principle (3.117), as in Section 4.1.

The algorithm is implemented in the domain
{(l’,Z) RS [_20730]7 z € [_h(x)vn(x)]}v

where

“H  xe[-20,0]U[10,30]
h(z) =

~H(1-%) «e[o10]

The breadth function is defined by B(z) = 10 for € [~20,30]. The constant £

TR _ __100 _ 100
is given the value 50, C, = AF+h(eT) and C, = ()
The algorithm appears to work initially with max ‘nf — nf"’l‘ decreasing as k
J

increases. On closer inspection however max ‘nf — pht!
J

; ‘ does not decrease much
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Figure 6.2: Piecewise constant velocity approximation for a subcritical free sur-
face flow.

below approximately 1072, for the value v = 0.05 of the relaxation parameter.
The method perhaps should not be expected to generate approximations for any
specified accuracy since #; may not be a very good approximation to the speed
of flow at the position (z;, z;).

Figure 6.2 shows the piecewise constant approximation to the velocity in the
given domain, with / = 0.3, at the stage in the algorithm where max ‘nf — nf"’l‘
reaches its minimum value of 7.0 x 1072, It can be seen that the approximation to
the velocity appears to satisfy approximately the conditions of no flow through the
free surface and through the channel bed. The maximum magnitude of the ratio
|uw]

Tl in any element is 0.1, that is, in this approximation the vertical component of

velocity is less than one tenth of the horizontal component in magnitude.
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6.2 Time-dependent Quasi One-dimensional

Flows

In this section a constrained version of the ‘p’ principle based on (3.98) is used
to develop an algorithm for generating approximations to time-dependent quasi
one-dimensional flows in shallow water.

The functional of the constrained ‘p’ principle (3.107) is given by

Kio) = [ [T dedr+ [7(CL (B, - C.(Bo),) di

t1

+ /Q:O (qb|t2 o — q$|t1 gl) Bdx, (6.18)

where

6= o (- b+ 561)
B(x) for « € [x.,x,] is the breadth of the channel, C.(?) and C,(t) are boundary
functions for the magnitude of the mass flow at . and z,, respectively, and g, ()
and go(x) are time boundary functions for the depth of fluid at times ¢; and ¢,
respectively.

An approximation to the velocity potential ¢ is generated by adapting the

algorithms of Chapter 5. Let the domain of the problem,
{(x,t) s @ € [xe, 2] T € [, 1]},

be discretised into regular triangular elements using the grid of points defined by

1 —1

e = s 4
7 —1
TivG-1yn = —] (ty —t1) + 1y,

fore=1,....,nand y =1,...,m.
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Let
!

¢h($at) = Z@ﬂi(l‘,t), (6.19)

=1

be an approximation to ¢, where the 3; are two-dimensional piecewise linear
basis functions, as in Figure 5.2, the ¢; are parameters of the solution, to be
determined, and [ = nm. The finite dimensional version of (6.18) is generated by

substituting (6.19) for ¢ in (6.18) to give

/ / "B dx dt + (Co (Bqﬁh) ‘xn —C. (B¢h)
+~/9L’1 <¢h‘Tl 92 — ¢h‘T1 91) Bdzx,

)dt

where ¢ = (¢1,...,6)".

The approximation for ¢ is given by (6.19), where ¢ satisfies

Fi( / /%1(@ h+;¢ﬁ2) (aﬁ aﬂ)Bd:pdt

+/T (c.B, mn — CB B, ) dt+ [ (Bl 92— By, 1) Bde =0, (6.20)

fore=1,...,1L

One way of solving (6.20) is by using Newton’s method. Given an approxi-

mation ¢* to ¢ an updated approximation is obtained from
¢k+1 — ¢k _|_5¢k7
where

J(¢") 89" = —F(¢") (6.21)

and

o= Lo e i) (G 43

1 9p; 0B
+(¢?—gh+2¢§2) ai] ai]dedt}.
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The Jacobian J is symmetric and banded and (6.21) is solved, when .J is not
indefinite, using the pre-conditioned conjugate gradient method, with the pre-
conditioning matrix P = diag(Jyy,...,J;;). Both J and F = (F,..., F))T are
evaluated exactly. The process is continued until

max ‘(Mf

&

< tolerance, (6.22)

max
for some specified tolerance.
The initial approximation ¢° is given by

¢o:uv0+(Ti_TI)E i=1,...,1, (6.23)

T gy —

for some constants v° and F.
Let x, = 0, z, = 10, {; = 0 and ¢, = 10. The algorithm is implemented in
a channel with B(z) = 10 and h(xz) = 0 for « € [0,10]. The boundary functions
Ce(t), Co(t), g1(x) and go(x) also need to be prescribed. There is an obvious
difficulty with defining ¢;(x), the depth for « € [0,10] at the time ¢;. Here g, (x)
and ¢x(x) are defined by ¢1(x) = go(x) = ci, where d > 0 is either the subcritical

or the supercritical root of
73 SR
gd® — Ed” + §C =0,

where E is given the value 50 and C' = 10, that is, g; and ¢, are the depths in
the channel for a steady state flow with energy £ = 50 and mass flow at inlet

C = 10. The functions C.(t) and C,(t) are defined by

10-Ct t€10,2)
Ct) = §10-C(4—1t) te[2.4] -
10 t e [4,10]
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10—Ct t€10,2]

Colt) = §10-C4—1t) te[2.4] -

10 t € [4,10]

where (' is a given constant in the range 0 < ¢ < 10.

Thus, in this example, any time-dependence of the resulting flow is due to the
changes in the mass flow at inlet and outlet with time. The conditions given above
could be generated in practice by taking an initial steady flow with energy 50,
and values of mass flow at inlet and outlet of 10, where these values are controlled
by using a weir or a sluice gate. The values of the mass flow at inlet and outlet
could be altered for t € [0,4] and then returned to their original values. The flow
might then be expected eventually to return to a steady state.

Let n =9 and m = 9. Then the algorithm converges to a subcritical approx-
imation in 4 Newton iterations for ' = 0, in 5 Newton iterations for C =1 and
in 5 Newton iterations for (' = 3, for a tolerance in (6.22) of 1072, The initial
approximation @° is, in each case, given by (6.23), with v* = 2.5 and £ = 50.

The value of ¢" in each element may be thought of as being an average of
the velocity taken over the time period covered by the element. The piecewise
constant velocity approximations for n =9 and m = 9, in the three cases C = 0,
¢ =1 and C' = 3, are shown in Figure 6.3. The length of the arrow in each
element is directly proportional to the approximate velocity, ¢”, in that element.

Notice that in Figure 6.3a¢ the flow is uniform, as is expected for the given
channel shape and for the boundary conditions €. and €', which are independent
of time. In Figure 6.3b it can be seen that the effect of decreasing the mass flow

at inlet and outlet for ¢ € [0,4] is to reduce the velocity during this time. The
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effect is more pronounced in Figure 6.3¢, where the reduction in the mass flow at
inlet and outlet is larger.

The success of the algorithm is heavily dependent on choosing boundary con-
ditions which are consistent with one another. In particular, for certain choices,
there may be no solution at all or the solution may be discontinuous, in which
case, the given algorithm will be unsuccessful since in using the functional (6.18)
an assumption is made that the variables are continuous.

Supercritical approximations may be generated by using an appropriate

method to solve (6.21) for 6¢", where J(@)* is indefinite.
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Chapter 7

Concluding Remarks

The central part of the work described in this thesis can be thought of as hav-
ing two distinct components. The first component deals with the derivation of
variational principles for free surface flows while in the second part a selection
of these variational principles is used to generate numerical approximations to
free surface flows. Variational principles for three-dimensional free surface flows
are stated in Chapter 3 and used to derive principles for shallow water flows.
Approximations to shallow water flows are generated in Chapters 4, 5 and 6, and
Chapter 6 also contains an algorithm for approximating three-dimensional steady
flows in a channel of constant breadth.

Two variational principles for general three-dimensional flows are used — one
based on Hamilton’s principle, (3.12), and the other based on Luke’s principle
(Luke (1967)). By approximating the variables by their shallow water counter-
parts, performing the integration with respect to the vertical coordinate z and
adding on appropriate boundary terms, these two principles are reduced to give

variational principles for shallow water. The process of changing variables in the
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functionals of the two shallow water principles derived in this way then allows the
integrands to be expressed in terms of the p and r functions, defined by (3.27)
and (3.29) respectively, and multiples of the conservation laws, (2.20) and (2.24),
and the irrotationality condition, (2.15).

The function p has the values of vertically averaged pressure while r may be
thought of as a Lagrangian density since its value at a point is the difference
between kinetic and potential energy of a particle at that point. By recognising
that p and r are related by means of a Legendre transform, two further functions
— denoted by P and R — are constructed, so that p, r, P and R constitute a
quartet of functions related to one another by a closed set of Legendre transforms,
as shown in Figure 3.3. The function P has the values of flow stress and the value
of R at a point is the total energy of a particle at that point.

Benjamin and Bowman (1987) consider conservation laws and symmetry prop-
erties of Hamiltonian systems, including shallow water, for which they derive four
functions, two of which — identified by them as a Hamiltonian density and a flow
force — have the values of the functions R and P respectively, apart from constant
multipliers. The approach described here is more direct.

A set of four functionals — based on the p, r, P and R functions — is com-
prised of the two functionals derived from the variational principles for three-
dimensional free surface flows and the two functionals generated by substituting
P and R for p and r, respectively, in these functionals using the Legendre trans-
forms. By making the assumption that the flow is independent of time, functionals
for steady state flows are derived. Then, constraining the variations in the ‘p’

principle for steady flow to satisfy irrotationality, giving (3.94), and constraining
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the variations in the ‘P’ principle for steady flow to satisfy the conservation of
mass equation and a boundary condition on the mass flow, giving (3.95), the
gas dynamics analogy may be invoked to identify (3.94) and (3.95) as examples
of Bateman’s functions (Bateman (1929)). Sewell (1963) re-examined the rela-
tionships between these principles, in the context of Legendre transforms, for
three-dimensional steady flows in perfect fluids. Use has been made of these vari-
ational principles, by, for example, Lush and Cherry (1956) and Wixcey (1990),
to generate approximate solutions to the equations of motion for compressible
gas flows.

For the case of shallow water there exist the extra variational principles —
the ‘v’ and ‘R’ principles and all of their constrained versions — which may be
used to approximate solutions of the shallow water equations. These principles
are of particular value since they contain functionals of the depth of flow and
can thus be used directly for generating approximations to the depth, unlike the

constrained ‘p’ and ‘P’ principles.

The implementation of variational principles for finding approximations to time
dependent flows reveals several inherent problems, which are discussed below.
Therefore, with one exception, the numerical methods are applied to variational
principles for steady state flows.

The constrained ‘v’ principle (3.117) for steady quasi one-dimensional flow
depends on only one variable — the depth of flow — which makes it a nat-
ural candidate for developing an algorithm to generate approximations to the
depth function. The constrained ‘p’ principle for steady flow (3.94) and the ver-

sion of the wvariational principle for steady quasi one-dimensional flow
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are useful too since they also depend on only one variable each — the veloc-
ity potential. Other variational principles are used as well, namely, the uncon-
strained ‘r’ principle for steady quasi one-dimensional flow, which depends on the
depth, mass flow and velocity potential functions, the ‘R’ principle for steady flow
constrained to satisfy irrotationality, which depends on the depth and velocity po-
tential functions, the constrained ‘p’ principle for unsteady quasi one-dimensional
flow and a version of Luke’s free surface principle (Luke (1967)), which depends
on the velocity potential and the height of the free surface.

The same basic algorithm is applied to all of the variational principles and is,
on the whole, successful. The variables in the variational principles are expressed
as expansions in terms of finite element basis functions — piecewise linear and
piecewise constant basis functions in one dimension and piecewise linear basis
functions in two dimensions. The parameters of the solutions are determined as
the values which cause the functionals of the variational principles to be stationary
with respect to variations in the finite dimensional space spanned by the finite
element basis functions. In each case this leads to one or more sets of equations,
at least one of which is non-linear.

The method chosen to solve these non-linear sets of equations is Newton’s
method, which has quadratic convergence to the approximate solution, given
an initial guess sufficiently close to the solution. The Jacobian in each case is
symmetric and banded and, in fact, tridiagonal for the equations generated from
the functionals for steady quasi one-dimensional flow. For tridiagonal Jacobians
the update to the approximation is found using Gaussian elimination and back

substitution, while for non-tridiagonal positive or negative definite Jacobians the
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update is found using a pre-conditioned conjugate gradient method.

In this way it is possible to find approximations to the shallow water variables
in cases where the flow is continuous.

A slightly different approach is taken in order to approximate discontinuous
flows and in using a version of Luke’s principle for free surface flows to approx-
imate flows which do not necessarily satisfy the assumptions of shallow water
theory. The constrained ‘r’ principle for steady quasi one-dimensional flow is
used to generate approximations to discontinuous depth functions. In both cases
the flow variables — depth in the ‘v’ principle case and velocity potential in the
version of Luke’s principle — are expanded in terms of the finite element basis
functions and the values of the parameters are found for which the functionals
are stationary with respect to variations in the parameters. The positioning of
the hydraulic jump in the discontinuous case and the free surface in the case of
Luke’s principle is carried out by a direct application of the appropriate natural
conditions of the corresponding variational principles. The method appears to
work well in approximating discontinuous depth functions but is less successful in
approximating the height of the free surface for a low which does not necessarily
satisfy the assumptions of shallow water theory. In this last case the method
seems initially to be converging to a solution and then the method diverges. This
may suggest that the solution algorithm is only capable of converging to the solu-
tion from one direction so that, if the algorithm causes an approximation to the

solution to overshoot the solution, it will not converge.

The constrained ‘r’ principle for steady quasi one-dimensional flow is used in

Section 4.1.2 to derive an error bound on the piecewise constant approximation to
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the depth function. The piecewise constant approximation is found to converge
linearly, in the Ly norm, to the depth of flow. Numerical experiments show that
the piecewise linear approximation to the depth, generated using the constrained
‘t’ principle, is quadratically convergent, in the Ly norm, to the exact solution.
The error in the piecewise constant approximation to the velocity, derived from
the piecewise linear approximation to the velocity potential generated using the
constrained ‘p’ principle for steady quasi one-dimensional flow, is considered in
Section 4.3.2. The piecewise constant approximation can be seen to converge
linearly, in the Ly norm, to the velocity of the flow, using numerical experiments.

The availability of the exact one-dimensional solution for flow in a channel,
which can be found by solving (2.55) and (2.56) to give the values of energy and
mass flow at each point and then solving (2.34) and (2.35) simultaneously to give
the values of the depth and velocity at each point, enables the above conclusions
to be drawn about the accuracies of the approximations generated from ‘p” and ‘r’
functionals for steady quasi one-dimensional flow. The exact solutions of the two-
dimensional shallow water equations are not known and so the two-dimensional
approximations cannot be analysed in this way.

The usual method of finding error bounds for finite element approximations,
such as in Strang and Fix (1973) and Hughes (1987), depends on identifying a
norm, in which the distance between the exact solution and the finite dimen-
sional space spanned by the finite element basis functions is minimised by the
approximation derived as being the function that either minimises or maximises
a particular functional. In the shallow water case it has not been possible to iden-

tify such a norm using either the functional of the constrained ‘p” principle or the
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functional of the constrained ‘R’ principle, both of which are used in Chapter 5
to generate approximations to the flow variables in two dimensions. However the
two principles each give rise to approximations for the velocity and, by comparing
the velocity approximations over several different grids, it can be seen that, as
the grid is refined, the difference between the two approximations decreases.

An algorithm is presented in Section 4.4 which uses the constrained ‘p’ prin-
ciple for steady quasi one-dimensional flow to generate approximations to the
velocity potential on an adaptive grid. The approximation is the finite element
expansion such that the ‘p’ functional is stationary with respect to variations in
the parameters of the expansion and with respect to variations in the positions
of the internal nodes of the grid on which the expansion is defined. The L, error
of the velocity approximation, generated from the approximation to the velocity
potential, is shown to be reduced, but only slightly, when compared with the
corresponding error for an approximation defined on a fixed regular grid with the

same number of nodes.

In Chapter 6 an algorithm is described for generating approximations to time-
dependent velocity potential functions using the constrained ‘p’ principle for time-
dependent quasi one-dimensional flow. While some success is achieved, that is,
for a particular set of prescribed boundary functions approximate solutions are
generated, the success is very dependent on defining the boundary functions in a
consistent way. In particular the boundary functions must be such that a solution
actually exists and, if an approximation is to be found using functional (6.18),
this solution must be continuous.

The boundary functions required are the values of mass flow at the inlet and
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outlet points of the channel, over the whole time interval being considered, and
values of the depth at every point in the channel at the initial and final times.
In order to prescribe this last condition the solution at the final time must be
known in advance of solving the problem. This difficulty is overcome in Chapter 6
by assuming that the flow is initially time-independent and that it returns to its
original steady state before the end of the time interval. The boundary functions
for the mass flow must then be defined consistently with this, in particular, it
is necessary that, over the period of time considered, the same amount of mass
leaves the channel as has entered.

A practical problem which might be posed is to find the subsequent flow as
a function of time, given the depth of the fluid initially and the variations of the
mass flow at inlet and outlet with time. Unless the depth function at the end
of the time interval can be deduced from this data the finite element method
using the functionals for time-dependent flow derived in Chapter 3 is of little use.
One possibility is to consider a very long time interval and to set the boundary
function for depth at the final time equal to the asymptotic solution, given as
t — oo. However, this would be computationally expensive because of the size of
the domain which would be necessary to accommodate a sufficiently long time.

The problem does not just suddenly appear; it is present in Hamilton’s prin-
ciple (3.12). In its general form, Hamilton’s principle, with variations vanishing
at the initial and final times, gives rise to differential equations of motion. Once
these equations have been integrated any boundary and initial conditions may be
applied. In the same way the variational principles for shallow water, deduced

from Hamilton’s principle and Luke’s principle, give rise to the equations of mo-
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tion for shallow water flows in the domain of integration, assuming that variations
vanish at the initial and final times so that the time boundary terms also vanish
(the solutions are assumed known on the time boundaries and so these terms are
constants).

In order to use the variational principles for time-dependent shallow water to
generate time-dependent approximations, boundary terms are added in Chapter 3
so that non-zero variations are allowed on the time boundaries and no assumption
need be made about knowing the solution at the final time. However, it can be
seen that this only rephrases the basic problem since the solutions at the ends of
the time interval are precisely the functions which are required for the boundary

terms.

The numerical methods employed in this thesis have been successful in gen-
erating approximations to continuous steady flows which are wholly subcritical,
for both quasi one-dimensional and two-dimensional flows, or wholly supercrit-
ical, for quasi one-dimensional flows. Success is also achieved in approximating
discontinuous steady quasi one-dimensional flows. However, as described above,
the application of the methods to the time-dependent case presents difficulties.

In order to investigate the accuracy of the shallow water approximation to
free surface flows it would be useful to have finite element approximations to free
surface flows. The algorithm given in Section 6.1, which attempts to generate
such an approximation, fails but by adapting other methods, for example those
of Aitchison (1979) and lkegawa and Washizu (1973), it should be possible to
obtain some approximations for comparison.

Other possibilities for future work include generating supercritical approxi-
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mations to two-dimensional flows and approximations to discontinuous flows in
two-dimensions. In the first case, if an attempt is made to solve the non-linear
set of equations obtained from the finite dimensional versions of the functionals
by Newton’s method, the Jacobian is indefinite so that a more sophisticated tech-
nique for solving a system with an indefinite matrix must be investigated; there
is also a possibility that the Jacobian may go singular. An algorithm to approx-
imate discontinuous flows in two dimensions could be based on the method for
approximating discontinuous flows in one dimension, that is, by generating two
continuous solutions — one subcritical and one supercritical — and coupling them
at a curve, whose position is determined using the two-dimensional jump condi-
tions. Any such algorithm using the variational principles of Section 3.8 would
only be able to generate approximations to flows with a discontinuity which does
not terminate inside the domain, since, in deriving these variational principles,

this assumption is made.

202



References

Aitchison J. M. (1979). A variable finite element method for the calculation of

flow over a weir. Rutherford Laboratory, Chilton, Oxon.

Bateman H. (1929). Notes on a differential equation which occurs in the two-

dimensional motion of a compressible fluid and the associated variational

problems. Proc. R. Soc. Lond. A 125 599-618.

Benjamin T. B. and Bowman S. (1987). Discontinuous solutions of one-

dimensional Hamilton systems. Proc. R. Soc. Lond. B 413 263-295.

Chadwick P. (1976). Continuum Mechanics. George Allen and Unwin Ltd.,

London.

Courant R. and Friedrichs K. O. (1948). Supersonic Flow and Shock Waves.

Interscience.

Courant R. and Hilbert D. (1953). Methods of Mathematical Physics Vol. 1.

Interscience.
Goldstein H. (1980). Classical Mechanics (2nd ed.). Addison-Wesley.

Golub G. H. and Van Loan C. F. (1989). Matriz Computations (2nd ed.). The

John Hopkins University Press, Baltimore, Maryland, U.S.A.

Hughes T. J. R. (1987). The Finite Element Method. Linear Static and Dynamic

Finite Element Analysis. Prentice Hall, Englewood Cliffs, N. J.

Ikegawa M. and Washizu K. (1973). Finite element method applied to analysis
of flow over a spillway crest. Int. J. Num. Meth. Eng. 6 179-189.

203



Johnson L. W. and Riess R. D. (1982). Numerical Analysis (2nd ed.). Addison-

Wesley.

Lamb H. (1932). Hydrodynamics (6th ed.). Camb. Univ. Press.

Luke J. C. (1967). A variational principle for fluid with a free surface. J. Fluid

Mech. 27 395-397.

Lush P. E. and Cherry T. M. (1956). The variational method in hydrodynamics.

Quart. J. Mech. Appl. Math. 9 6-21.

Miles J. and Salmon R. (1985). Weakly dispersive non-linear gravity waves.

J. Fluid Mech. 157 519-531.

Salmon R. (1988). Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20

225-256.

Seliger R. L. and Whitham G. B. (1968). Variational principles in continuum

mechanics. Proc. R. Soc. Lond. A 305 1-25.

Serrin J. (1959). Mathematical principles of classical fluid mechanics. Handbuch

der Physik VIII-1125-263 Springer-Verlag.

Sewell M. J. (1963). On reciprocal variational principles for perfect fluids.

J. Math. Mech. 12 485-504.

Sewell M. J. (1987). Mazimum and Minimum Principles. Camb. Univ. Press.

Stoker J. J. (1957). Water Waves. Interscience.

Strang G. and Fix G. J. (1973). An Analysis of the Finite Element Method.
Prentice Hall, Englewood Cliffs, N. J.

204



Wathen A. J. (1987). Realistic eigenvalue bounds for the Galerkin mass matrix.

ILM.A. J. Numer. Anal. T 449-457.

Wixcey J. R. (1990). Stationary principles and adaptive finite elements for

compressible flow in ducts. Ph.D. Thesis, Univ. of Reading.

205



	Sl_wakelin_a
	Sl_wakelin_b
	Sl_wakelin_c
	Sl_wakelin_d
	Sl_wakelin_e
	Sl_wakelin_f
	Sl_wakelin_g
	Sl_wakelin_h
	Sl_wakelin_i

