

Department of Mathematics and Statistics

Preprint MPCS-2019-09

14 October 2019

Non-tangling moving-mesh methods for
PDE problems in one and two dimensions

II: problems with prescribed
boundary fluxes

by

M.J. Baines

School of Mathematical, Physical
and Computational Sciences

Non-tangling moving-mesh methods for PDE

problems in one and two dimensions II:

problems with prescribed boundary fluxes

M.J.Baines

Department of Mathematics and Statistics,
University of Reading, P.O.Box 220, Reading, RG6 6AX, UK

Abstract

Non-tangling moving-mesh algorithms based on local conservation
for scalar PDE problems with prescribed boundary fluxes are derived
in one and two dimensions, in the latter case on a linear simplex. Mesh
tangling is prevented for any time step by applying an explicit sign-
preserving exponential time-stepping scheme to intervals in 1-D or
edges/areas in 2-D. The nodes are found in a separate step respecting
the integrity of the mesh.

1

1 Introduction

Moving-mesh methods for the approximate solutions of time-dependent par-
tial differential equations (PDEs) are potentially more powerful than fixed
mesh methods, capable of providing high resolution locally, sustaining scale
invariance and propagating self-similarity [12, 8].

In the velocity-based conservation method of [1, 4, 16] a velocity field is
determined from a local Eulerian conservation law which is used to deform
the domain, finding the moved solution by local Lagrangian conservation.
Applications can be found in [1, 2, 3, 4, 14, 17, 15, 16, 9, 5, 6, 10, 7, 18]. The
method inherits the scale-invariance of the PDE problem, handles flux-driven
moving boundary conditions, whether external or internal, in a natural way
without the need for interpolation, and is capable of propagating self-similar
scaling solutions at the nodes.

Numerically, the default time-stepping scheme has been explicit Euler.
However, it is a requirement of the conservation method that the solution
remains positive and the mesh untangled ,which in many cases demands a
very small time-step, therefore limiting the practicality of the method.

In this paper a variant of the method is described which ensures a positive
solution on an untangled mesh for any time step. This is achieved by applying
a sign-preserving exponential time stepping scheme to intervals in 1-D and to
edges or areas of a simplex in 2-D, with the nodal positions found a separate
step.

The paper is organised as follows. In section 2 the relative conserva-
tion method is reviewed in one dimension, a semi-discrete scheme analysed,
and a fully discrete version described that uses an explicit exponential time-
stepping scheme on interval lengths, leading to sign-preserving solutions on
ordered meshes for any time step and culminating in the algorithms given in
section 2.4.3.

In section 3 the two-dimensional conservation method is reviewed and
the features described in 1-D generalised to 2-D on a simplex of triangles by
applying the sign-preserving exponential time-stepping scheme to either edge-
lengths or triangle-areas. The nodes are found by an averaging procedure
which retains the integrity of the simplex and solutions on the moved mesh
obtained from relative Lagrangian conservation. The algorithms are given in
section 3.3.5.

Conclusions are drawn in section 4.

2

2 The relative conservation method in 1-D

Suppose that the function u(x, t) satisfies the generic PDE

ut = Lu, (1)

in an interval (a(t), b(t)), where L is a purely spatial operator, with given
flux boundary conditions. Such problems occur for example in the study of
nonlinear diffusion with evaporation, for example.

Define the total mass in the domain to be

θ(t) =
∫ b(t)

a(t)
u(ξ, t) dξ (2)

and intrduce a relative density function

u(x, t) =
u(x, t)

θ(t)
(3)

satisfying ∫ b(t)

a(t)
u(ξ, t) dξ = 1 (4)

from (2). By Leibnitz’ Integral Rule the rate of change of the total mass θ(t)
is

dθ

dt
= θ̇ =

d

dt

∫ b(t)

a(t)
u(ξ, t) dξ =

∫ b(t)

a(t)
ut dξ +

[
u

db

dt

]
−
[
u

da

dt

]
(5)

which is known from (1) and the flux boundary conditions.
At any time t let the points x(t) of the domain (a(t), b(t)) move with

velocity v(x, t) so as to satisfy the partial Lagrangian conservation law

∫ x(t)

a(t)
u(ξ, t) dξ = c(x), independent of t, (6)

consistent with (4) if c(b) = 1.
In an Eulerian form equivalent to the relative conservation law (6), the

function u(x, t) satisfies

ut + (uv)x = 0 =
1

θ(t)
ut −

θ̇

θ(t)2
u(x, t) +

1

θ(t)
(uv)x, (7)

3

where v(x, t) is the Eulerian velocity and θ̇ is given by (5). Thus, from
equations (1), (7) and (3), at any time t the velocity v(x, t) satisfies the ODE

− d

dx
(uv) = − θ̇

θ(t)
u(x, t) + Lu (8)

After integration from an anchor point, (taken to be a(t) without loss of
generality) to a general point x, equation (8) yields

− (u(x, t)v(x, t)|xa(t) =
∫ x

a(t)

(
− θ̇

θ(t)
u(χ, t) + Lu

)
dχ

using (3), so that

v(x, t) = v(a(t), t) +
1

u(x, t)

θ̇

θ(t)

∫ x

a(t)
u(χ, t) dχ− 1

u(x, t)

∫ x

a(t)
L(u) dχ (9)

provided that u(x, t) > 0, in which v(x, t) = v(a(t), t) at x = a(t) (sufficient
for uniqueness of v(x, t)). Using (6) we may simplify (9) to

v(x, t) = v(a(t), t) + c(x)θ̇ − 1

u(x, t)

∫ x(t)

a(t)
L(u) dχ (10)

2.1 A reference space

Introduce a Lagrangian moving coordinate x̂(ξ, τ), where ξ is a fixed reference
coordinate, such that

∂x̂

∂τ
= v̂(ξ, τ), τ = t, (11)

where
v̂(ξ, τ) = v(x̂(ξ, τ), τ)

By the chain rule
v̂(ξ, τ) = v(x̂(ξ, τ), τ)

We consider two equations in the reference space. 1. Differentiating (11)
with respect to ξ,

∂x̂ξ
∂τ

= v̂ξ (12)

from which the moving coordinate x̂(ξ, t) is retrieved from x̂ξ using

x̂(ξ, τ) = x̂0 +
∫ ξ

ξ0
x̂ξ′ dξ′ (13)

4

2. The Lagrangian conservation form (6) transforms to

1

θ(τ)
û(ξ, τ) |x̂ξ| = ĉ(ξ), independent of τ (14)

for all ξ, where û(ξ, τ) = u(x̂(ξ, τ), τ) and x̂ξ is the Jacobian of x̂ with respect
to ξ. The sign of x̂ξ is determined by (12).

2.2 An initial value problem

Substitution of û(ξ, τ) from (14) into (12) yields an ODE system for x̂ξ and
θ(τ). Given initial conditions on x̂ and û at τ = τ 0 (and hence ĉ(ξ) together
with (5), equations (12) and () then constitute an initial value problem for the
two unknowns x̂ξ and θ(τ) possessing a unique solution under the conditions
of Picard’s Theorem.

From equation (12),
∂ log x̂ξ
∂τ

=
v̂ξ
x̂ξ

= vx (15)

since v̂ξ/x̂ξ = vx. Integrating (15) from τ 0 to τ , equation (15) has the formal
solution

x̂ξ = x̂0
ξ exp

{∫ τ

τ0
vx dτ ′

}
(16)

where x̂ξ = x̂0
ξ at τ = τ 0. The solution û(ξ, τ) on the moved domain is then

generated from (14) by

1

θ(τ)
û(ξ, τ) |x̂ξ| = ĉ(ξ) =

1

θ(τ 0)
û0(ξ) |x̂0

ξ | (17)

where ĉ(ξ) is independent of τ (therefore defined by the initial data), ensuring
conservation of mass. The sign of x̂ξ is determined by the sign of x̂0

ξ from
(16). The total mass θ(τ) is found by integration of dθ/dt in (5).

The relative conservation method determines v (thus vx) from (10), ob-
tains x̂ξ from (16) (thus x̂ from (13)), θ(τ) from (6), and finds û from (17).

2.2.1 Scale-invariance and self-similarity

If the PDE problem is scale-invariant such that the scaling transformation

t→ λt′, x̂→ λβx′, û→ λγu′, θ → λβ+γθ′ (18)

5

leaves the problem invariant [11], it is straightforward to verify that the
solution of the initial value problem maintains the same scale invariance.

Self-similar scaling solutions are found by seeking an ansatz of the form

x̂(ξ, τ) = τβξ, û(ξ, τ) = τ−βη(ξ), θ(τ) = τβ+γϑ (19)

where η(ξ) satisfies an ODE derived from (1) and ϑ is constant.
From (19),

v̂(ξ, τ) =
∂x̂

∂τ
= βτβ−1ξ

so that v̂ξ = βτβ−1, leading to vx = v̂ξ/x̂ξ = β/τ, independent of ξ.
Hence, from (16) and (17),

x̂ξ = x̂0
ξ exp

{∫ τ

τ0
(β/τ ′)dτ ′

}
⇒ x̂ξ(ξ, τ)

τβ
=
x̂ξ(ξ, τ

0)

(τ 0)β

û(ξ, τ) =
ĉ(ξ

|x̂ξ|
θ(τ)

θ(τ 0)
û0(ξ) exp

{
−
∫ τ

τ0
(β/τ ′)dτ ′

}
⇒ û(ξ, τ)

τ γ
=
û(ξ, τ 0)

(τ 0)γ
,

so that self-similar solutions are propagated iexactly n time.
Summarising, for PDEs of the form (1) with prescribed flux boundary

conditions, the relative conservation method in the form presented here pre-
serves the signs of x̂ξ, û, and θ, is scale-invariant and propagates self-similar
scaling solutions exactly in time.

We now consider a semi-discrete-in-time approximation by applying the
procedure over a time step.

2.3 A semi-discrete-in-time scheme

Discretising the time variable τ as τn = n∆τ where ∆τ is the time step and
n = 0, 1, 2, . . ., define

x̂n(ξ) = x̂(ξ, τn), x̂nξ = x̂ξ(τ
n), v̂nξ = v̂ξ(ξ, τ

n), vnx = v̂nξ /x̂
n
ξ

The velocity v remains equal to (10) and ĉ(ξ) is as in (14).
In the conservation-based scheme of [1, 4, 16] the moving coordinate x̂n(ξ)

is advanced in time from equation (11) using the first-order-accurate explicit
Euler scheme. While this scheme moves the nodes correctly to first order,
there is no control over the positivity of x̂ξ (thus monotonicity of x̂(ξ)) and

6

the method can break down for a required time step. In this paper we
use a modified time-stepping scheme, the sign-preserving exponential scheme
applied to mesh intervals, which preserves the monotonicity of x̂n(ξ) and
avoids node overtaking for any time step.

Approximating the integrand in (16) by its value at τn, an explicit first-
order-accurate exponential scheme for x̂nξ is

x̂n+1
ξ = x̂nξ exp{∆τ (vx)}n (20)

The moving coordinate x̂n+1(ξ) is obtained at time step τn+1 using (13) in
the form

x̂(ξn+1) =
∫ ξn+1

ξ0
x̂ξ′ dξ′ (21)

where ξ0 is an anchor point necessary for uniqueness. From (20) the time
evolution of x̂ξ is completely characterised by (vx)

n.
Note that the scheme (20) preserves the sign of x̂ξ over a time step irre-

spective of ∆τ or (vx)
n.

The scheme (20) may also be obtained by applying the first-order-accurate
explicit Euler scheme to (15), i.e.

log x̂n+1
ξ = log x̂nξ + ∆τ (vx)

n (22)

The total mass θn+1 is found from the corresponding explicit exponential
scheme

θn+1 = θn exp{∆τ θ̇n/θn}, (23)

preserving its sign.
Equation (14) is time-independent and ensures that

1

θn+1
ûn+1(ξ) |x̂ξ|n+1 =

1

θn
ûn(ξ) |x̂ξ|n (24)

yielding ûn+1. The sign of (x̂ξ)
n+1 is determined by the sign of (x̂ξ)

n in (20).
Once (vx)

n has been found from (10), equation (20) (with (21)) determines
x̂n+1(ξ), equation (23) yields θn+1 and equation (24) gives ûn+1(ξ).

It is straightforward to verify that the scale invariance (18) is inherited
from the PDE problem by the semi-discrete schemes (20) and (24). However,
the argument in section 2.2.1 for the propagation of self-similar solutions no
longer holds over a time step, since vx is no longer proportional to 1/τ . Self-
similar solutions are therefore propagated over a time step only to order ∆τ .

We now state the semi-discrete-in-time algorithm.

7

2.3.1 A semi-discrete-in-time algorithm

Algorithm 1

At time τn, given x̂n(ξ) and ûn(ξ), the semi-discrete algorithm is as fol-
lows.

At each time step

Algorithm 1

• obtain vn(x) from (10) and hence (vx)
n

• calculate θ̇ from (5) and hence θn+1 from (23)

• determine x̂n+1
ξ from (20) and hence x̂n+1(ξ) from (21)

• deduce ûn+1 from (24)

The algorithm is sign-preserving in x̂nξ , ûn and θ over a time step irrespec-
tive of ∆t or the accuracy of vnx . It is conservative (a seen) by integration of
(24) over the domain, inherits scale-invariance from the PDE problem, and
propagates self-similar solutions over a time step to order ∆τ .

We now extend the algorithm to spatial approximation.

2.4 Spatial approximation

Suppose that at time level n the domain (an, bn) is discretised using mesh
points

an = x̂n0 < x̂n1 < . . . < x̂nN = bn

with corresponding nodal solutions ûni (i = 0, ..., N), and define

x̂ni = x̂n(ξi), ûni = ûn(ξi), v̂ni = v̂n(ξi),

Also let δ(·)k denote the difference in the argument across an interval k. At
the initial time, node-based û0

i and x̂0
i are obtained by sampling the initial

data, while at later times ûi and x̂ni are given by the method itself.
In preparation we compute the approximate total mass θn in the domain

at time tn from (2) using a composite trapezium rule, and determine θ̇n in
the same way from (5).

8

Approximate relative masses ĉk (kept constant over the time step) are
found in each interval k between points x̂ni and x̂ni−1 from the trapezium rule

ĉk =
1

θ

1

2
(ûi + ûi−1)(x̂i − x̂i−1)

An approximate velocity vni at each point x̂ni is found from a composite
trapezium rule approximation applied to (10). We approximate vx in each
interval k using finite differences as

(vx)k =
(δv)k
(δx̂)k

2.4.1 Fully discrete numerical schemes

Fully discrete forms of the schemes (20) and (24) are then

(δx̂k)
n+1 = (δx̂k)

n exp{∆τ (vx)k}, (25)

and
1

θn+1
(ûk)

n+1 |δx̂k|n+1 =
1

θn
(ûk)

n |δx̂k|n, (26)

where θn+1 is given by (23) and ûk is an interval-based value of û, yet to be
assigned to an end of the interval. The sign of (δx̂k)

n+1 is determined by the
sign of (δx̂k)

n in (25).
For problems where u(x, t) is specified at one boundary, the endpoint

of the interval to which (ûk)
n+1 is assigned to the endpoint of the interval

pointing away from that boundary. For problems in which u(x, t) is specified
at both boundaries (26) is replaced by

1

θn+1
(ûi)

n+1 |δx̂i−1/2 + δx̂i+1/2|n+1 =
1

θn
(ûi)

n |δx̂i−1/2 + δx̂i+1/2|n (27)

for all interior nodes, yielding a node-based ûn+1
i directly.

It follows from (25) and (26) or (27) that the signs of δx̂k, ûi, and θ are
preserved over a time step.

In order to obtain the node-based coordinate x̂n+1
i from the interval-based

(δx̂)n+1
k in (25) we use the discretised form of equation (21),

x̂n+1
i±1 = x̂n+1

i ± (δx̂i±1/2)n+1 (28)

9

When applied in successive intervals away from an anchor point x̂0 (needed
for uniqueness), equation (28) yields all the x̂n+1

i exactly. Since the signs of
the δx̂k are preserved the x̂i remain ordered in a time step.

Another way of calculating the nodes x̂i from the intervals δx̂k with the
same outcome as the recursive step (28) (one that we shall later generalise
to 2-D) is to solve the set of equations

x̂i+1 − x̂i
δx̂i+1/2

=
x̂i − x̂i−1

δx̂i−1/2

(29)

for all interior i (both sides equal to unity). Boundary conditions for (29) are
either Neumann, imposed by setting the left or right hand side of (29) equal
to unity, or Dirichlet, using node locations calculated from known boundary
velocities. Equation (29) can be rewritten as the barycentric interpolant

x̂i =
(δx̂i−1/2)−1x̂i−1/2 + (δx̂i+1/2)−1x̂i+1/2

(δx̂i−1/2)−1 + (δx̂i+1/2)−1
(30)

for all interior i, its solution ensuring continuity when one of the δx̂i±1 is
vanishingly small. The averaged position x̂i in (30) always lies between the
midpoints of adjacent intervals so there can be no node overtaking.

Given (vx)
n
k , equation (25) yields (δx̂i)

n+1, equation (23) gives θn+1, and
equations 28) or (30) lead to (x̂i)

n+1. The moved solution (ûi)
n+1 is given

either by equation (26) (with assignment to an adjacent node) or equation
(27) directly.

2.4.2 Scale invariance and similarity

Equations (25), (23), (26), (27), and (28) inherit the scale invariance of the
original problem.

In the case of a self-similar scaling solution the argument for the prop-
agation of a self-similar scaling solution over a time step to order ∆τ relies
on the approximation to vx being independent of x. In the fully discrete
meethod, although vx is accurately represented by the discretisation, the
temporal approximation remains of order ∆τ .

We now state the fully discrete algorithm.

10

2.4.3 Fully discrete 1-D algorithm

Algorithm 2

At each time step τn, given x̂ni and ûni ,

• obtain a discrete velocity v̂ni from a numerical approximation of (10)
and deduce (vx)k = (δv̂)k/(δx̂)k

• calculate θ̇ from (5) and hence θn+1 from equation (23)

• find (δx̂k)
n+1 from (25) and hence x̂n+1

i from (28)

• determine (ûk)
n+1 from (26), then

(a) for problems in which u is given at one boundary only, assign un+1
k

to ûn+1
i , working away from the boundary where the condition is given,

(b) for problems in which u is given at both boundaries, determine
interior nodal values (ûi)

n+1 directly from (27).

The algorithm is order-preserving in x̂i and preserves the sign of ûi.
In case (a) of the step determining ûn+1 it is conservative by summing

(26) over all intervals, in the sense that(∑
k

ûk |δx̂k|
)n+1

=

(∑
k

ûk |δx̂k|
)n

(31)

where ûk is assigned to an endpoint of the k’th interval. In case of (b) it is
conservative by summing (27) over all intervals, in the sense that(∑

i

ûi |δx̂i−1/2 + δx̂i+1/2|
)n+1

=

(∑
i

ûi |δx̂i−1/2 + δx̂i+1/2|
)n

(32)

The algorithm is scale-invariant under the transformation (18), and propa-
gates self-similar scaling solutions over a time step to order ∆τ .

11

2.5 1-D summary

Analytically, the method is sign-preserving in û, θ and x̂ξ (therefore monotonicity-
preserving in x̂) for arbitrary v. It is conservative, inherits scale invariance,
and propagates self-similar solutions exactly in time.

In the semi-discrete-in-time case the algorithm of section 2.3.1 is explicit,
first-order-in-time, and sign-preserving in û, θ, and x̂ξ over a time step for ar-
bitrary ∆τ and v. It is conservative, inherits scale-invariance, and propagates
self-similar solutions over a time step to order ∆τ .

In the fully-discrete case the algorithm of section 2.4.3 is explicit, first-
order-in-time, non-tangling in x̂i and sign-preserving in ûi over a time step
for arbitrary ∆t and vx. The algorithm is conservative in the sense of (31) or
(32), propagates a self-similar scaling solution to order ∆τ .The algorrithm is
conservative in a particular sense, inherits the scale invariance of the problem
and propagates a self-similar scaling solution to order ∆τ .The algorithm is
conservative in a particular sense, inherits the scale invariance of the problem
and propagates a self-similar scaling solution to order ∆τ .

Computations confirm the predictions of the theory.

As with any time-stepping scheme, temporal accuracy is undermined for
large ∆τ . However, even if ∆τ is large and vi inaccurate, in a time step the
ûi keeps the same sign and the x̂i remain ordered.

2.6 Oscillations

Although (δx̂)k remains positive it is not necessarily monotonic and approxi-
mation errors may lead to spurious oscillations in vx (see (22). By smoothing
vx we introduce extra numerical diffusion to counteract the oscillations at the
expense of spatial accuracy.

The introduction of a Laplacian smoother,

1

4
{(vx)k+1 + 2(vx)k + (vx)k−1}

to (vx)k suppresses sawtooth oscillations in (vx)k and is equivalent to adding
second order numerical diffusion. More than one application of the smoother
may be required to render vx monotonic and suppress the oscillations.

The positivity of the moved solution and the ordering of the mesh are
unaffected by the smoothing.

12

3 The relative conservation method in 2-D

Suppose that the function u(x, t) is a solution of the generic PDE

ut = Lu, (33)

in a moving domain R(t), where L is a purely spatial operator, with given
flux boundary conditions.

Define the total mass to be

θ(t) =
∫
R(t)

u(ξ, t) dx (34)

and introduce the relative density function

u(x, t) =
u(x, t)

θ(t)

satisfying ∫
R(t)

u(ξ, t) dx = 1 (35)

from (34). By the Reynolds Transport Theorem the rate of change of the
total mass θ(t) is

dθ

dt
= θ̇ =

d

dt

∫
R(t)

u(ξ, t) dx =
∫
R(t)

ut dx +
∮
∂R(t)

∂(uv)

∂n
dS (36)

which is a known quantity from (33) and the normal flux boundary condi-
tions.

At any time t let the points x(t) of the domain R(t) move with a velocity
v(x, t) so as to satisfy the local Lagrangian conservation law∫

Ω(t)
ut dx = c(x), independent of t (37)

of the relative conservation law (35), consistent with (35) since c(R) = 1.
Equivalently, u(x, t) satisfies the Eulerian form of the relative conserva-

tion law 37), i.e.

ut +∇ · (uv) = 0 =
1

θ(t)
ut −

θ̇

θ(t)2
u(x, t) +

1

θ(t)
∇ · (uv) (38)

13

where v(x, t) is the Eulerian velocity, in which θ̇ is given by (36) and θ(t) by
its integral. Then, from equations (33), (38) and (34), the velocity v satisfies
the time-independent PDE

−∇ · (uv) = − θ̇

θ(t)
+ Lu

in R(t).
For uniqueness put v = ∇φ, where φ(x, t) is a velocity potential satisfying

the Poisson equation

−∇ · (u∇φ) = − θ̇

θ(t)
+ Lu (39)

For positive u equation (39) has a unique solution for φ(x, t) (and hence
v(x, t)) under suitable Dirichlet or Neumann boundary conditions on φ.

3.1 A reference space

Introduce a Lagrangian moving coordinate x̂(ξ, τ), where ξ is a fixed refer-
ence coordinate and τ = t, such that

∂x̂

∂τ
= v̂(ξ, τ) = v(x̂(ξ, τ), τ) (40)

Equation (40) cannot be differentiated in the same way as in (12) in 1-D
since (11) is unidirectional, but we can obtain a multidimensional equivalent
of (14).

The local Lagrangian conservation law (37) is expressed in terms of ξ and
τ as

1

θ(t)
û(ξ, τ) |J(x̂, ξ)| = ĉ(ξ), independent of t (41)

where J(x̂, ξ) is the Jacobian of the transformation generated by (40), thus
generalising (14). Given a funcion û(ξ, τ) at any time τ , equation (41) leads
to a Monge-Ampere equation for a function x̂(ξ, τ), using a different potential
function [13].

In spite of the difficulties with generalisation of (40) and (41), if we specify
that the 2-D mesh is a linear simplex we may build spatial approximations
for edges and areas that allow us to take advantage of the 1-D properties.

14

3.2 Spatial approximation in 2-D

Let the time variable τ be discretised as τn = n∆τ , n = 0, 1, 2, ..., where ∆τ
is the time step, and define

x̂ni = x̂(ξi, τ
n), ûni = û(ξi, τ

n), v̂ni = v̂(ξi, τ
n)

In the conservation-based scheme of [1, 4, 16] the moving coordinate x̂ni
is advanced in time from equation (40) using the first-order-accurate explicit
Euler scheme. Although the nodes are moved in the correct direction to first
order in time there is then no control over mesh tangling or positivity of the
solution and the scheme may break down for required time steps. Instead, in
this paper we use the explicit sign-preserving exponential scheme of section
2 which is sign-preserving and prevents node tangling in 1-D for any time
step. There are two ways of doing this on a 2-D simplex, either through edge
lengths or triangle areas.

3.3 Spatial discretisation on a 2-D simplex

Consider a 2-D simplex consisting of non-overlapping triangles of area Ak(τ),
(k = 1, ..., K) and moving nodes x̂i(τ) with corresponding moved solution
values ûi(τ), (i = 1, ..., N).

We begin by deriving a finite volume approximation to the velocity poten-
tial Φi(τ) at the nodes of the simplex from (39) in the case where Lu = ∇· f
where f is a flux function and g is a source term.

3.3.1 Approximating the velocity potential

Assuming that Lu takes the form ∇ · f + g where f is a flux function and
g is a source term, in a finite volume approach by integrating (39) over the
boundary of a patch of triangles Πi surrounding node i,

∫
Πi

∇ · (u∇φ)− f) dx =
∫

Πi

(
g +

θ̇

θ(t)

)
dx (42)

Using the divergence theorem equation (42) can be approximated by

∑
eij

{
−um

(Φj − Φi)

δŝij
− fn

}
δsij =

∫ (
g +

θ̇

θ(t)

)
dx (43)

15

where Φi is the value of φ sampled at the node xi; eij is the edge joining
node xi to node xj; um is the midpoint value of u on the edge eij; fn is the
component of f at xj in the direction from xi to xj and δsij is the average of
the lengths of the boundary edges opposite node xi either side of node xj.

The linear system consisting of (43) for all interior nodes is square and
sparse and, given boundary conditions on φ or ∂φ/∂n, is solved for the interor
Φ values by a standard method. Boundary conditions on φ correspond to
specifying tangential velocities and those on ∂φ/∂n to normal velocities.

3.3.2 Approximating triangle velocities

Having found Φi at the nodes, we calculate an approximation to the velocity
Vk in a triangle as the gradient of a piecewise linear function through Φi

values at the vertices. In a triangle k having values Φ1, Φ2, Φ3 at vertices
(x1, y1), (x2, y2), (x3, y3), the velocity is

Vk = (∇Φ)k =
1

2Ak


∣∣∣∣∣∣∣

1 1 1
Φ1 Φ2 Φ3

y1 y2 y3

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

1 1 1
x1 x2 x3

Φ1 Φ2 Φ3

∣∣∣∣∣∣∣

k

(44)

where Ak is the area of the triangle given by

Ak =
1

2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣
k

(45)

3.3.3 Approximating the nodal velocities

The velocities vi at the nodes are then obtained from the gradients Vk =
(∇Φ)k of Φ in triangles k surrounding node i with areas Ak by the barycentric
interpolant

vi =

∑
k A
−1
k Vk∑

k A
−1
k

(46)

where the sum is over all triangles k surrounding node i, having the property
of continuity at a node when one of the Ak is vanishingly small.

Summarising the calculation of the nodal velocities, from the velocity
potential Φ given by (43) we obtain triangle-based velocities Vk from (44)
and node-based velocities vi from (46).

16

3.3.4 Moving the nodes

In order to combat mesh tangling, instead of moving the nodes by the nodal
velocities (46) directly, we update local edge lengths or triangle areas using
their rates of change, enabling implementation of the sign-preserving prop-
erties of the explicit exponential time-stepping scheme seen in section 2.

Edge-length velocities
Consider an edge e of the simplex having a coordinate ŝ measured along

the edge, and denote by δ(·) the difference in the argument along the edge
(so that δŝ is the length of the edge).

At each end of the edge define ve to be the component of the velocity v
at an end of the edge in the direction of the edge coordinate ŝ, and let δve
be the difference between the two ve’s at the endpoints of the edge.

Then the explicit exponential time-stepping scheme for updating the edge
length δŝ is

(δŝ)n+1 = (δŝ)n exp {∆τ (δVe/δŝ)}n , (47)

which preserves the sign of the edge length δŝ over a time step irrespective
of ∆τ or δVe/δŝ (and therefore that of ŝ).

Since all the edge lengths remain of the same sign, mesh tangling is
avoided.

Triangle-area velocities
Alternatively, we can use triangles instead of edges. The rate of change

of the triangle area Ak, given by (45) for a triangle with vertices (x1, y1),
(x2, y2), (x3, y3), is

Ȧk =

(
∂A

∂t

)
k

=
1

2


∣∣∣∣∣∣∣

1 1 1
U1 U2 U3

y1 y2 y3

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

1 1 1
x1 x2 x3

V 1 V 2 V 3

∣∣∣∣∣∣∣

k

(48)

where (U1, V 1), (U2, V 2), (U3, V 3) are the components of the vertex velocities
v1, v2, v3 in the two Cartesian coordinate directions.

Discretising (48) in time by the explicit exponential scheme, we obtain
the update

An+1
k = Ank exp{∆t Ȧ/A}nk , (49)

thus preserving the sign of Ak over a time step irrespective of ∆t or (Ȧ)k
(and therefore Vk).

17

Since all the triangle areas remain of the same sign, mesh tangling is
avoided.

The rate of change of the total mass θ̇ is given by (5), then the total mass
θn+1 obtained from the explicit exponential scheme

θn+1 = θn exp{∆t θ̇n/θn} (50)

3.3.5 Finding the node locations

It remains to locate the nodes from either the edge lengths or the trian-
gle areas at the new time level τn+1. Unlike in one dimension, there is no
unique mesh that is consistent with given edge lengths or triangle areas, each
problem being overdetermined in general.

We generalise the approach of (30) to 2-D using either edge-lengths or
triangle-areas, as follows.

Edge-lengths
Suppose that the interior node xi of the simplex is connected to Ji nodes

xj, (j = 1, . . . , Ji), then generalisations of (29) and (30) to 2-D are

Ji∑
j=1

(x̂m − x̂i)

δŝij
= 0 and x̂i =

∑Ji
j=1(δŝij)

−1x̂m∑Ji
j=1(δŝij)−1

(51)

for all interior nodes x̂i, where the x̂m are the midpoints of the edges joining
x̂i to x̂j and δŝij is the (positive) length of the edge connecting node i to
node j. Positivity of the weights in the second of (51) ensures that x̂i lies in
the convex hull of the midpoints x̂m of the edges through x̂i, thus preventing
tangling.

Triangle-areas
Similarly, if k = 1, . . . , Ki denote triangles surrounding node xi with

centroids xg, then generalisations of (29) and (30) are

Ki∑
k=1

(x̂g − x̂i)

Ak
= 0 and x̂i =

∑Ki
k=1 A

−1
k x̂g∑Ki

k=1 A
−1
k

(52)

where the A−1
k are the (positive) inverse areas of the triangles surrounding

node i (acting as spring constants). Positivity of the weights in the second of
(52) ensures that x̂i lies in the convex hull of the centroids x̂g of the triangles
containing x̂i, also preventing tangling.

18

Boundary nodes
Boundary nodes are treated either as Dirichlet conditions by moving the

nodes with the known boundary velocities vi of (46), or as Neumann condi-
tions by applying modified forms of (51) or (52), as follows. In the case of
edges, the boundary node equation (51) is modified to

Jb∑
j=1

x̂m − x̂b
δŝbj

=
Jb∑
j=1

ẽj

where Jb is the number of edges emanating from boundary node b and ẽj is
the unit vector from xb to xm, while in the case of areas the boundary node
equation (52) is modified to

Kb∑
k=1

x̂g − x̂b
Ak

=
Kb∑
k=1

ẽg

where Kb is the number of triangles k that contain the boundary node and
ẽg is the unit vector from x̂b to the centroid x̂g of triangle k.

3.3.6 Solving for the nodal positions

Because of the overlap of the patches each of the square sets of equations
(51) or (52) leads to a sparse nonlinear matrix system for the x̂i, which can
be solved by standard methods, either direct or iterative.

An iteration for the second of (51) in the case of edges (where p is the
iteration index) is

x̂
(p+1)
i = x̂

(p)
i +

(∑Ji
j=1(δŝij)

−1(x̂m − x̂i)∑Ji
j=1(δŝij)−1

)(p)

=

(∑Ji
j=1(δŝij)

−1x̂m∑Ji
j=1(δŝij)−1

)(p)

, (53)

while in the case of areas the second of (52) has the iteration

x̂
(p+1)
i = x̂

(p)
i +

(∑Ki
k=1 A

−1
k (x̂g − x̂i)∑Ki
k=1A

−1
k

)p
=

(∑Ki
k=1 A

−1
k x̂g∑Ki

k=1A
−1
k

)(p)

(54)

The solutions x̂i of (51) or (52) (or their iterates x̂
(p+1)
i of (53) or (54)) ,

together with the boundary node equations, lie in a non-overlapping subpatch
(either the convex hull of midpoints of edges or the convex hull of centroids
of surrounding triangles) of each patch, thus avoiding mesh tangling.

19

3.4 Finding the moved solution

Having obtained locations of the nodes at time τn+1, the moved solution ûn+1

at these nodes is found from approximations to the Lagrangian conservation
law (41), as follows.

From edges:
An approximate form of the Lagrangian conservation law (6) along an

edge e is
1

θn+1
(ûm δŝe)

n+1 = ĉe =
1

θn
(ûm δŝe)

n (55)

where m is the midpoint of the edge and ĉe is time-independent, leading to

(ûm)n+1 =
θn+1

θn
(δŝe)

n

(δŝe)n+1
ûm (56)

where θn+1 is given by (50). The moved solution ûn+1
i at the node xi is then

the barycentric interpolant

ûn+1
i =

ΣJi
j=1((δsj)

n+1)−1 ûn+1
m

ΣJi
j=1((δsj)n+1)−1

(57)

of the ûn+1
m over those edges containing node xi, (cf . (29)), preserving the

sign of ûn+1
i and ensuring continuity of the δun+1

i when one of the (δsj)
n+1

is vanishingly small.

From areas:
An approximate form of the Lagrangian conservation (6) in a triangle k

is
1

θn+1
(ûgAk)

n+1 = Ĉk =
1

θn
(ûgAk)

n (58)

where Ĉk is time-independent and ûg is the value of û at the centroid of
triangle k, leading to

(ûg)
n+1 =

θn+1

θn
(Ak)

n

(Ak)n+1
(ûg)

n+1 (59)

The moved solution ûn+1
i at the node i is then the barycentric interpolant

ûn+1
i =

ΣKi
k=1(An+1

k)−1 ûn+1
g

ΣKi
k=1(An+1

k)−1
(60)

20

of the ûn+1
g over triangles containing node xi, (cf .(29)), preserving the sign

of ûn+1
i and ensuring continuity of the δun+1

i when one of the)Ak)
n+1 is

vanishingly small.

3.5 Fully discrete 2-D algorithms

The 2-D algorithm for the solution of the PDE problem with prescribed flux
boundary conditions on a simplex is as follows.

Algorithm 3

At each time step:

1. Determine the velocity potential at the nodes from (43) and the nodal
velocities from (44) and (46),

2. advance the edge-lengths δs or triangle-areas A in time from (47) or
(49), preserving their sign, and construct the nodes from (51) or (52),

3. calculate θn+1 from (50),

4. evaluate ĉe or Ĉk from the right hand side of (55) or (58) and retrieve
the solution on the moved mesh using (56) and (57) or (59) and (60).

Note that, due to the calculation of the nodes, the ĉe or Ĉk, although held
constant over a time step, are recalculated at the beginning if each step.

The algorithm is non-tangling in x̂i and positivity-preserving in ûi, irre-
spective of ∆t or the accuracy of ∇2Φ. It is also conservative in the sense
that, for edge lengths from (55), ∑

j

ûm δse

over all edges is constant over a time step, or for triangle areas, from (58),∑
k

ug Ak

over all areas is constant over a time step.

21

3.6 2-D summary

The difficulties in discretising the Lagrangian conservation law or in gen-
erating an untangled mesh when applying the velocity-based conservation
method in 2-D are avoided by applying a sign-preserving time stepping
scheme to edge lengths or triangle areas of a 2-D simplex to calculate positive
updates, followed by their transfer to nodes by a projection, preserving the
integrity of the simplex. The algorithm is explicit, first-order-in-time, sign
preserving in ûi and non-tangling in x̂i for arbitrary ∆t and Φ.

Computations confirm the predictions of the theory.

3.7 Oscillations

Although there is no mesh tangling for any time step the edge-lengths or
triangle-areas may not be sufficiently smooth spatially and numerical approx-
imations may lead to spurious oscillations in the moved solution ûi through
oscillations in ∇2

xφ. By smoothing ∇2
xφ until it is monotonic, numerical

diffusion can be introduced to counteract the oscillations. More than one
application of the smoother may be required to suppress the oscillations.

The sign of the moved solution is preserved and the mesh remains untan-
gled in a time step under second-order smoothing.

4 Conclusions

In this paper we have described a variant of the velocity-based relative con-
servation method for scalar PDEs with prescribed flux boundary ocnditions
in one and two dimensions which, unlike the standard approach, ensures that
the mesh remains untangled and the sign of the moved solution is preserved
for any time step.

The essence of the paper is the replacement of the explicit Euler time
stepping used in most implementations of the method by an explicit ex-
ponential time-stepping scheme, preserving the signs of moving intervals in
1-D or moving edge-lengths/triangle-areas on a simplex of triangles in 2-D.
Transfer to nodes is by an additional step which preserves the integrity of
the mesh.

We began in 1-D with an analysis of the relative conservation method, de-
riving ihe procedure from a mapping between fixed and moving domains and

22

exhibiting the properties of exact propagation of scaling invariance and self-
similarity. We then introduced discretisation in time, superseding the stan-
dard explicit Euler scheme by an explicit exponential time stepping scheme
that preserves the monotonicity of the mesh and the sign of the solution, as
well as keeping scale invariance and propagating self-similarity to first order
in the time step Lastly we carried out spatial approximation using finite dif-
ferences, applying the explicit exponential time stepping scheme to intervals
rather than nodes, ensuring preservation of node-ordering and the sign of the
solution. The nodes were retrieved uniquely from the intervals, either by a
simple recurrence or by the solution of a second order equation. The fully
discrete algorithm was stated in section 2.4.3.

In section 3 we reviewed the relative conservation method in 2-D in an-
alytic form and highlighted the limitations in the numerical implementation
of the method in higher dimensions. We then specialised the mesh to a 2-D
simplex and applied the exponential time stepping scheme to the evolution of
edge lengths and triangle areas using a projection to map these facets to the
nodes without disturbing the integrity if the mesh, in this way generating a
fully-discrete explicit method with a non-tangling mesh and a sign-preserving
solution for any time step. The algorithm was stated in section 3.5.

Further work includes the generalisation of the approach to PDEs with
general boundary conditions, to finite element approximation, and to three
dimensions.

References

[1] M.J.Baines, M.E.Hubbard, and P.K.Jimack, A moving-mesh fi-
nite element algorithm for the adaptive solution of time-dependent par-
tial differential equations with moving boundaries, Appl. Numer. Math.,
54, pp. 450-469, 2005.

[2] M.J.Baines, M.E.Hubbard, P.K.Jimack and A.C.Jones, Scale-
invariant moving finite elements for nonlinear partial differential equa-
tions in two dimensions, Appl. Numer. Math., 56, pp. 230-252, 2006.

[3] M.J.Baines, M.E.Hubbard, P.K.Jimack and R.Mahmood, A
moving-mesh finite element method and its application to the numerical

23

solution of phase-change problems, Commun. Comput. Phys., 6, pp.
595-624, 2009.

[4] M.J.Baines, M.E.Hubbard, and P.K.Jimack, Velocity-based
moving mesh methods for nonlinear partial differential equations, Com-
mun. Comput. Phys., 10, pp. 509-576, 2011.

[5] M.J.Baines, Explicit time stepping for moving meshes, J. Math Study,
48, pp. 93-105 (2015).

[6] M.J.Baines, The numerical propagation of scaling symmetries of
scale-invariant partial differential equations: the S-property for mass-
conserving problems Mathematics Report 2/2016, Department of
Mathematics and Statistics, University of Reading, UK (2016).

[7] M.J.Baines, A positivity- and monotonicity-preserving moving-mesh
finite difference scheme based on local conservation, Mathematics Re-
port 1/2017, Department of Mathematics and Statistics, University of
Reading, UK (2017).

[8] M.J.Baines and N.Sarahs, A moving-mesh finite difference scheme
that preserves scaling symmetry for a class of nonlinear diffusion
problems. J. Comp. Appl. Maths, 340, 380-389, ISSN 0377-0427,
doi.org/10.1016/j.cam.2018.02.040 (2018).

[9] N.Bird, High Order Nonlinear Diffusion, PhD thesis, Department of
Mathematics and Statistics, University of Reading, UK, (2015).

[10] B.Bonan, M.J.Baines, N.K.Nichols, and D.Partridge, A
moving-point approach to model shallow ice sheets: a study case with ra-
dially symmetrical ice sheets The Cryosphere, 10, 1-14, doi: 10.5194/tc-
10-1-2016, (2016).

[11] C.J. Budd and M.D. Piggott, Geometric integration and its appli-
cations, Found. Comput. Math., Handbook of Numerical Analysis XI,
ed. P.G. Ciarlet and F. Cucker, Elsevier, pp. 35-139, 2003.

[12] C.J. Budd, W. Huang, and R.D. Russell, Adaptivity with moving
grids, Acta Numerica, 18, pp. 111-241 (2009).

24

[13] C.J. Budd and J.F. Williams, Moving mesh generation using the
parabolic Monge–Ampère equation, SIAM J. Sci. Comput., 31 (5), pp.
3438-3465 (2009).

[14] T.E.Lee, Modelling time-dependent partial differential equations using
a moving mesh approach based on conservation, PhD thesis, University
of Reading, UK, (2011).

[15] T.E. Lee, M.J. Baines S. Langdon, and M.J. Tindall, A mov-
ing mesh approach for modelling avascular tumour growth, Appl. Nu-
mer, Math., 72, pp 99–114, (2013).

[16] T.E. Lee, M.J. Baines, and S. Langdon, A finite difference mov-
ing mesh method based on conservation for moving boundary problems,
J. Comp. Appl. Math, 288, pp.1-17 (2015).

[17] A.V. Lukyanov, M.M. Sushchikh, M.J. Baines, and T.G. The-
ofanous, Superfast Nonlinear Diffusion: Capillary Transport in Par-
ticulate Porous Media, Phys. Rev. Letters, 109, 214501 (2012).

[18] A.R Watkins, A Moving Mesh Finite Element method and its Ap-
plication to Population Dynamics. PhD thesis, University of Reading,
UK (2017).

25

	Cover_19-09
	mass_conserved_1Dand2D_41_non

