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Abstract

The evolution of a species is modelled in two dimensions by a
Lotka-Volterra equation system in which the random motion of indi-
viduals is biased so as to increase their expected rate of reproduction.
The system is solved numerically in a fixed finite region using a mov-
ing mesh finite element method in which the mesh movement is driven
by local conservation. With random seeding the population is seen to
form clusters which depend on parameters representing diffusion and
the size of a local survival region.

1 Introduction

In [3, 4] Grindrod noted that the derivation of many dispersion models rests
on the assumption that the dispersal of individuals is due solely to random
diffusive motion. However, it is readily apparent that in the real world indi-
viduals group together to improve their chances of survival, do not voluntarily
overcrowd themselves to death, and deliberately avoid predators. Grindrod
therefore proposed a dispersion model in which the random motion of individ-
uals is biased by an optimal velocity in which the population is on average
dispersing so as to increase an individual’s expected rate of reproduction.
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Results obtained in [4] from this model for a single population in one dimen-
sion demonstrated that from an initially random seeding of individuals local
clusters are formed.

In this paper we demonstrate the clustering phemonenon numerically in
two dimensions using a moving mesh finite element method based on con-
servation. The numerical approximation uses linear finite elements moving
with a conservation velocity, for which weak forms of the balance equation
and conservation laws are derived. The algorithm is implemented and results
discussed for a number of two-dimensional scenarios.

1.1 A clustering model

Following [4] a standard population balance equation is augmented by a term
describing the projected net rate of reproduction per individual, constructed
in a manner comparable to the logistic term in a Lotka-Volterra equation.
The crucial difference compared to the standard model is that it is assumed
that individuals seek to maximise their chances of survival and so move
towards a optimum.

The projected net rate of reproduction is defined as

E = average birth rate - average death rate

Overcrowding or loneliness means a death rate higher than birth rate and in
between there is an optimum population density. As in [3, 4] it is assumed
that E depends only on the population density u(x, t), and an optimal ve-
locity ν(x, t) is constructed as a local average of ∇E(u). For convenience
the optimal velocity is assumed to be derived from a potential q(x, t), that
is ν = ∇q. Following [3, 4] we define the relationship between E(u) and q to
be

E(u) = −ε∇2q + q. (1)

where ε is a parameter. Conceptually, in (1) the potential q(x, t) is a measure
of the attractiveness of the location of an individual, taking into account not
just survival chances at that point but also the local area. The size of the
area defined as local is important and is controlled by the parameter ε.
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2 Model equations for a single species

In order to emphasise clustering effects we assume that births or deaths occur
on a much longer time scale than clustering, so are neglected here.

The single species population balance equation for the population density
u(x, t) in a region Ω is then

∂u

∂t
= −∇ · (uv) (2)

where the velocity v is the sum of the optimal velocity ν = ∇q and a diffusive
velocity −δ (∇u)/u, leading to

∂u

∂t
= δ∇2u−∇ · (u∇q), (3)

x ∈ Ω, t ≥ 0 where δ is a diffusion coefficient. Boundary conditions on u
and q are the reflective conditions

∂u/∂n = 0, ∂q/∂n = 0, x ∈ ∂Ω, t ≥ 0. (4)

Note that a consequence of (3) and (4) is that the total population∫
u(x, t)dx (5)

is constant in time.
Given E(u) and the population density u(x, t) at any given time, we can

obtain q(x, t) from (1) and use (3) to determine the evolution of u. Following
[3, 4] we take E(u) to be of the form

E(u) = (1− u)(u− a) (6)

where a = 0.2.

3 Solution procedure on a moving domain

We follow a procedure in which the interior of the domain Ω is allowed
to deform in time so as to preserve and track a distribution of the local
population.
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We write (2) as
∂u

∂t
+∇ · (uv) = 0, (7)

an Eulerian conservation law equivalent to constancy in time of the (La-
grangian) local mass ∫

Ω(t)

u dx (8)

when the points of the domain Ω(t) move with velocity v(x, t).
We solve (3) numerically using the moving-mesh finite element procedure

based on conservation described in [1, 2, 5], as follows. Comparing (7) with
(3), the velocity v satisfies

−δ∇2u+∇ · (uν) = ∇ · (uv) (9)

Having found v(x, t) from (9), a deforming coordinate x̂(x, t) is found by
integrating the differential equation

∂x̂

∂t
= v̂(x̂, t) (10)

where v̂(x̂, t) = v(x̂(x, t), t). The local population density u(x̂, t) at any time
is then deduced from the constancy of the local population (8) in the form∫

Ω̂(t)

u(x̂, t) dx =

∫
Ω(0)

u(x, 0) dx

where the right hand side is calculated from the initial condition at t = 0.

3.1 A distributed conservation principle

In order to construct a finite element method we define a distributed con-
servation principle and weak forms. For any positive weight function w(x, t)
the distributed population, ∫

Ω

w(x, t)u(x, t) dΩ, (11)

is constant in time (consistent with (5)), inducing a distributed velocity
v(x, t). Differentiating the constant mass (11) with respect to time using
the Reynolds Transport Theorem,

d

dt

∫
Ω(t)

w(x, t)u(x, t) dΩ = 0
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=

∫
Ω(t)

∂

∂t
(wu) dΩ +

∮
∂Ω

w(x, t)u(x, t)v(x, t) · n̂dS,

yielding∫
Ω(t)

[
w(x, t)

∂u

∂t
+ u(x, t)

∂w

∂t
+ w(x, t)∇ · (uv) + u(x, t)v(x, t) · ∇w

]
dΩ = 0.

(12)
Assuming that the weight functions w(x, t) move with the velocity v(x, t) of
the points of the domain,

∂w

∂t
+ v(x, t) · ∇w = 0,

so that equation (12) reduces to∫
Ω(t(

[
w(x, t)

∂u

∂t
− u(x, t)v(x, t) · ∇w

]
dΩ = 0

After integration by parts using the boundary condition (4) we obtain the
weak form

−
∫

Ω(t)

w(x, t)∇ · (uv) dΩ =

∫
Ω(t)

w(x, t)
∂u

∂t
dΩ, (13)

Then, substituting the weak form of the driving PDE (3) into (13),

−
∫

Ω(t)

w(x, t)∇ · (uv) dΩ =

∫
Ω(t)

w(x, t)(δ∇2u−∇ · (u∇q)) dΩ

After integration by parts using the boundary conditions (4), we obtain the
weak form

−
∫

Ω(t)

∇w · (uv) dΩ = δ

∫
Ω(t)

∇w · ∇u dΩ−
∫

Ω

u(x, t)∇w · ∇q dΩ

for the velocity v(x, t).
For a unique v(x, t) we introduce a velocity potential φ(x, t) such that

v(x, t) = ∇φ, leading to the weak form∫
Ω(t)

u(x, t)∇w·∇φ dΩ = −δ
∫

Ω(t)

∇w·∇u dΩ+

∫
Ω(t)

u(x, t)∇q·∇w dΩ, (14)
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for φ(x, t), given u(x, t) and q(x, t). Equation (14) has a unique solution
for φ(x, t) given the boundary conditions (4), apart from a constant which
differentiates out.

Before (14) is solved for φ(x, t) we obtain the function q(x, t) from a weak
form of equation (1),∫

Ω(t)

w(x, t)E(u) dΩ = −ε
∫

Ω

w(x, t)∇2q dΩ +

∫
Ω(t)

w(x, t)q(x, t) dΩ.

Integrating the right hand side by parts using the boundary condition (4),
we obtain the weak form

ε

∫
Ω(t)

∇w · ∇q dΩ +

∫
Ω(t)

w(x, t)q(x, t) dΩ =

∫
Ω(t)

w(x, t)E(u) dΩ, (15)

for q(x, t), given u(x, t).
The solution procedure for the velocity v(x, t) is therefore to obtain q(x, t)

from (15) and (1), deduce φ(x, t) from (14) and hence the velocity v(x, t)
from a weak form of the relation v −∇φ = 0.

3.2 Finite elements

Finite elements are applied on a mesh of triangles within a 2-D polygonal
region. Let w be a standard piecewise-linear finite element basis function
Wi(x̂), (1 ≤ i ≤ N), on the mesh (the full set forming a partition of unity).
The total distributed mass is constant in time through the imposition of zero
Neumann natural boundary conditions (4).

A piecewise-linear population density û(x̂, t) is given by the expansion

U(x̂, t) =
∑
j

Uj(t)Wj(x̂) (16)

The distributed conservation principle (11) then becomes∫
Ω(t)

Wi(x, t)U(x, t) dΩ = C(Wi), (17)

constant in time, where

C(Wi) =

∫
Ω(0)

Wi(x, 0)U(x, 0) dΩ
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is obtained from the initial conditions (at t = 0)
We take q and E(u) to be the piecewise-linear finite element functions Q

and E having expansions

Q =
∑
j

Qj(t)Wj(x, t), E =
∑
j

Ej(t)Wj(x, t),

respectively. Note that although E(u) is a nonlinear function of u we cal-
culate discrete values of E at the nodes and accept a linear approximation
between nodes. The weak form (15) then becomes

N∑
j=1

[∫
Ω(t)

WiWj dΩ

]
Ej(t)

= ε
N∑
j=1

[∫
Ω(t)

∇Wi · ∇Wj dΩ

]
Qj(t) +

N∑
j=1

[∫
Ω(t)

WiWj dΩ

]
Qj(t). (18)

In terms of mass and stiffness matricesM and K we can write equation (18)
as

εKQ+MQ =ME
for the vector Q with entries Qi, where the vector E has entries Ei. Rear-
ranging, we find

Q = (εK +M)−1ME (19)

3.3 The velocity potential

We now take the velocity potential φ in v = ∇φ to be the piecewise-linear
function with expansion

Φ(x, t) =
∑
j

Φj(t)Wj(x, t)

so that, from equation (14),

N∑
j=1

[∫
Ω(t)

U(x, t)∇Wi · ∇Wj dΩ

]
Φj(t)

= −δ
N∑
j=1

[∫
Ω(t)

∇Wi · ∇Wj dΩ

]
Uj(t) +

N∑
j=1

[∫
Ω(t)

∇Wi · (U∇Wj) dΩ

]
Qj(t),
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in matrix form
K(U)Φ = −δKU +K(U)Q (20)

where Φ is a vector with entries Φi(t) and K(U) is the weighted stiffness
matrix with entries ∫

Ω(t)

U(x, t)∇Wi · ∇Wj dΩ.

with U given by (16).

3.4 The velocity

Once Φ has been determined we obtain a piecewise linear-velocity from the
expansion

V(x, t) =
∑
j

Vj(t)Wj(x, t)

using the projection∫
Ω(t)

Wi(x, t)V(x, t) dΩ =

∫
Ω(t)

Wi(x, t)∇Φ dΩ

of v = ∇φ, giving

N∑
j=1

[∫
Ω(t)

WiWj dΩ

]
Vj(t) =

N∑
j=1

[∫
Ω(t)

Wi∇Wj dΩ

]
Φj(t)

or in matrix form,
MV = BΦj (21)

where V is the vector containing the entries Vj(t). The matrix B is an
asymmetric matrix with entries∫

Ω(t)

Wi∇Wj dΩ

3.5 The moving nodes

In order to advance the nodes in time we approximate the differential equa-
tion (10), in the form

dX̂i

dt
= V̂i(X̂, t),
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where V̂i(X̂, t) = Vi(X̂(x, t), t) by the explicit Euler scheme

X̂n+1
i = X̂n

i + ∆t V̂n
i (22)

where ∆t is the time step. The time step is chosen sufficiently small to avoid
instability.

3.6 The moved solution

Having found the mesh points X̂i at time tn+1 we recover the population
density U(x̂, t) at time tn+1 at the new time step from (16) expanded in
terms of Wj(x̂) as

U(x̂, tn+1) =
N∑
j=1

Un+1
j Wj(x̂),

using the weak form of the conservation principle (17), obtaining

N∑
j=1

[∫
Ω(t)

W n+1
i Wj

n+1 dΩ

]
, Un+1

j = C(Wi) (23)

where C(Wi) is given from the initial conditions by

C(Wi) =

∫
Ω(0)

Wi(x, 0)U(x, 0) dΩ (24)

Equation (23) is equivalent to the matrix system

M(x̂)Un+1 = C (25)

where Un+1 is the vector having entries Un+1
i , C is the vector having entries

C(Wi), and M(x̂) is the mass matrix evaluated at x̂.

4 Algorithm

Summarising, the algorithm for the moving mesh finite element solution of
the single species aggregation model defined by equations (3), (1) and (6)
on a mesh in 2-D in a region with fixed boundaries and with internal nodes
moved by conservation is as follows.

From the initial mesh Xi(x, 0) and initial conditions U(x, 0) obtain the
constant-in-time values of C(Wi) from (24). Then, at each time step,
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1. Calculate the nodal values of the piecewise-linear function E(x, t) from
equation (18),

2. Obtain Q(x, t) from equation (19),

3. Find the velocity potential Φ(x, t) from equation (20),

4. Deduce the node velocities V(x, t) from equation (21),

5. Determine the moving coordinates X̂i(x, t) at the next time-step from
(22),

6. Recover the solution U(x̂, t) on the moved mesh at the next time step
from equation (25).

5 Results

We use a random seeding to provide the initial conditions for the model,
selected from a normal distribution with a mean of 0.3 and a standard de-
viation of 0.01. We are able to run the model sometimes to a blow up and
sometimes to a solution where population growth and decline become ap-
proximately balanced, depending on the initial values of u, and also on the
parameters δ and ε. The parameter δ controlling the rate of diffusion has a
smoothing effect while from the definition contained within (1) it is apparent
that ε defines the scale of the clusters that are expected to form. We can see
this scaling effect in the results, with the number and size of clusters reduced
as ε increases.

An example solution is given in figure 1, for parameters ε = 0.005 and δ =
0.01. This choice produces four clusters from the initially random seeding.
The clusters are under development in this snapshot and the calculation
has not yet reached an approximately balanced population. We can see
the difference that an alternative choice of ε produces in figure (2). With
ε = 0.001 and δ = 0.01 we observe six clusters forming. If the model is allowed
to continue we reach an approximately steady-state solution (figure 3). We
observe that the reproductive potential E(u) is very low in the centre of the
clusters, due to overcrowding. This low E(u) tends to disperse individuals
away from the centre of the cluster. However, the population densities at the
edges of the cluster are low enough to draw individuals in, and so eventually
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the two effects become balanced and the approximately balanced solution is
observed.

Figure 1: A solution of the 2D population equations after 350 time steps at
t = 0.35, with ε = 0.005 and δ = 0.01.

Figure 2: A solution of the 2D population equations after 10 time steps at
t = 0.01, with ε = 0.001 and δ = 0.01.
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Figure 3: An approximately balanced solution of the 2D population equa-
tions, with ε = 0.001 and δ = 0.01, plotting (from left to right) u, q and
E(u). Whilst there is overcrowding in the centres of the clusters, giving a
dramatically negative E(u), the rate of the resulting population decline is
balanced by the attraction of the cluster to individuals nearby. These two
effects mean that the shape of the solution does not evolve further, with only
minor local effects observed.

6 Conclusions

We have examined the effect of an aggregating term based on a survival strat-
egy in a population balance equation for a single species and built a moving
mesh finite element method for its approximate solution in two dimensions,
exhibiting clustering behaviour for sample parameters. In particular we ob-
served that the reproductive potential is very low in the centre of the clusters,
due to overcrowding which tends to disperse individuals away from the centre
of the cluster, whereas the population densities at the edges of the cluster
are low enough to draw individuals in. Eventually the two effects balance
out and an approximately balanced solution is observed.

It would be interesting to compare the behaviour of the model against an
empirical data set. The model easily lends itself to adaptions in the sizes and
shapes of the domain, alterations to the logistic terms and of course changes
to parameters, without the need for further theory, which means there are a
wide range of potential biological and ecological systems on which the models
could be tested to validate the model behaviour. Further research will focus
on collaboration to understand the particular modelling requirements of real-
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world systems which can be described in a similar manner to this model. The
aim should be to understand the requirements from both a mathematical and
value perspective. Subsequent development will be in the direction of the
research requirements of those ecological systems which would most benefit
from a study which has access to this modelling capability.
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