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LONG TIME L∞(L2) A POSTERIORI ERROR ESTIMATES

FOR FULLY DISCRETE PARABOLIC PROBLEMS

OLIVER J. SUTTON

Abstract. Computable estimates for the error of finite element discretisations of parabolic problems in

the L∞(0, T ;L2(Ω)) norm are developed, which exhibit constant effectivities (the ratio of the estimated
error to the true error) with respect to the simulation time. These estimates, which are of optimal order,
represent a significant advantage for long-time simulations, and are derived using energy techniques
based on elliptic reconstructions. The effectivities of previous optimal order error estimates in this norm

derived using energy techniques are shown numerically to grow either in proportion to the simulation
duration or its square root, a key disadvantage compared with earlier estimators derived using parabolic
duality arguments. The new estimates form a continuous family, almost all of which are new, reproducing

certain familiar energy-based estimates well suited for short-time simulations and not available through
the parabolic duality framework. For clarity, we demonstrate the technique applied to a linear parabolic
problem discretised using standard conforming finite element methods in space coupled with backward
Euler and Crank-Nicolson time discretisations, although it can be applied much more widely.

1. Introduction

An unavoidable fact of life when simulating physical phenomena is that the approximate solutions
produced by discrete schemes, such as finite element methods and their relations, will not perfectly match
the true solutions of the model, resulting in some discretisation error. A natural question this raises, and
one into which a breathtaking quantity of work has been invested, is whether this discretisation error
can be quantified for a given simulation, knowing only the problem data and computed approximate
solution. Such computable a posteriori error estimates can then be used to determine how faithful the
discrete solutions are to the model, thus providing an indication of the reliability of the simulation and
opening the door to the development of rigorous adaptive algorithms. Although the derivation of such
error estimates for models based on systems of elliptic partial differential equations is by now rather
mature (we refer to [AO00, BS08, Ver96], for instance), interesting open questions still remain for models
based on parabolic and hyperbolic partial differential equations.

For linear second order parabolic problems there are two particularly natural norms in which to measure
the error, the L2(0, t;H1(Ω)) norm and the L∞(0, t;L2(Ω)) norm (a description of the notation we use
here for Sobolev spaces and their associated norms is given in Section 2; for further details on these and
Bochner spaces see [AF03]), both of which arise through conventional energy arguments. Optimal order a
posteriori estimates for the error in the L2(0, t;H1(Ω)) norm may be proven using direct energy arguments,
as shown by [Pic98] and [CF04]. Although the same arguments provide a bound for the (higher order)
error in the L∞(0, t;L2(Ω)) norm, the resulting estimators are in fact of suboptimal order.

Optimal order estimates for the L∞(0, t;L2(Ω)) norm error were first proven by [EJ91, EJ95] using
duality techniques. A significant recent breakthrough, however, was the introduction of the elliptic recon-
struction technique by [MN03], allowing optimal order error estimates to be derived in the L∞(0, t;L2(Ω))
norm via energy arguments by introducing ‘elliptic reconstructions’ of the discrete solution. The role
these reconstructions play in the derivation of the error estimates may be seen as an a posteriori counter-
part to the role of the Ritz projection in the derivation of optimal order a priori error estimates in the
L∞(0, t;L2(Ω)) norm, first deployed by [Whe73]. This splits the error into an elliptic component, which
is treated using a posteriori error estimates derived for the associated elliptic problem, and a parabolic
component which satisfies a differential equation with data which may be controlled at optimal order.
In the fully (space and time) discrete setting, these a posteriori error bounds are typically proven by
combining the elliptic reconstruction in space with a suitable piecewise polynomial time reconstruction. An
overview of this methodology is given by [Mak07], and the combination of space and time reconstructions
has shown itself to be very flexible in many settings. For instance, optimal order L∞(0, t;L2(Ω)) error
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estimates have been proven using this technique for standard conforming finite element methods, coupled
with backward Euler [LM06], Crank-Nicolson [LPP09, BKM12, BKM13], fractional θ-step [Kar12], and
general hp discontinuous Galerkin [GLW17] time-stepping schemes, to name but a few.

A problem plaguing the above L∞(0, t;L2(Ω)) norm error estimates derived using energy techniques
with elliptic reconstructions, however, is that their effectivity, the ratio of the estimated error to the
true error (a measure of the quality of the estimate), grows with the simulation time. In Section 5, we
demonstrate through numerical examples that this growth typically occurs at rate t or

√
t for a simulation of

length t. Since this growth is independent of the discretisation parameters it does not prevent the estimates
being of asymptotically optimal order, but it is less than desirable from the perspective of obtaining good
estimates of the discretisation error, particularly for long time simulations. It is interesting to note that
this growth does not occur for the duality-based L∞(0, t;L2(Ω)) error estimates of [EJ91, EJ95], and
the cause of this problem can be directly attributed to the way in which the terms of the error estimate
accumulate with time. The true error accumulates through time in an L∞(0, t) fashion, which is mimicked
by the duality-based estimates where the various estimator components also accumulate through time
in an L∞(0, t) manner. Estimators derived through energy arguments, however, typically involve terms
measuring the various sources of discretisation error accumulating through time in L1(0, t) or L2(0, t)
norms, leading to error estimators which grow rapidly even when the error itself may not. The inherent
problem with such an estimate can be seen by considering the situation where equally large errors are
committed on each time step of the simulation: in this case, an L1(0, t) or L2(0, t)-type accumulation
of the error will grow with t, while an L∞(0, t)-type accumulation will remain constant. It is this gap
between rates of accumulation which manifests itself as ever-growing effectivities.

The main result of this paper, Theorem 4.11, addresses this shortcoming. New estimates are introduced
for the error in the L∞(0, t;L2(Ω)) norm, in which the individual estimator terms are permitted to
accumulate through time in Lp(0, t) norms for any p ∈ [1,∞]. The derivation of these estimates is based
on energy techniques through elliptic reconstructions and, to the best of our knowledge, their structure
is completely novel, providing a wide variety of different bounds simultaneously, almost all of which
are new. In particular, this family includes the familiar elliptic reconstruction-based estimates built on
L1(0, t) and L2(0, t)-type accumulations, whilst also allowing counterparts to the duality-based estimators
incorporating L∞(0, t)-type accumulations to be derived using energy techniques. The key advantage of
this is that, since the estimator terms can therefore accumulate through time in the same norm as the
error, they exhibit effectivities which in practice appear to remain bounded with respect to the simulation
length, typically tending to some constant value. As such, these estimates are very well suited for long
time simulations.

The technique for deriving these estimates is fairly simple and essentially due to the structure of the
partial differential equation. Ultimately, it mirrors a classical trick, well known from the a priori error
analysis of discretisations of parabolic problems, of using a Poincaré-Friedrichs inequality to remove the
H1 norm of the error from the left hand side of the error equation derived by energy techniques, providing
instead a bounded exponential factor on each term of the estimate, cf. [Tho97, Chapter 1] for the a priori
viewpoint, or Lemma 4.10 for its manifestation here. We note that an outwardly similar exponential factor
appears in the final time error bounds in the L2(Ω) norm of [LMP14, §6] and the final time L∞(Ω) norm
bounds of [KL13, KL17]. The difference is in how this exponential factor is used; here, it allows us to
apply a Hölder inequality over the time domain (cf. Lemma 4.9), producing an estimate with general
Lp(0, t)-type accumulations, while in the aforementioned final time bounds it provides a ‘forgetfulness’
property to the estimator which is broadly associated with the smoothing properties of the differential
equation.

The technique is demonstrated here applied to numerical schemes comprised of backward Euler and
Crank-Nicolson time-stepping schemes coupled with conforming finite elements in space, using fixed spatial
and temporal discretisations. We do not, however, foresee any extra significant difficulties in applying the
technique to other classes of discretisations or associated adaptive schemes. As an example, we refer the
reader to [Sut17b] where the technique is applied in the context of an adaptive algorithm for very general
polygonal meshes built on a spatial discretisation using a virtual element method [BdVBC+13, CGPS17,
Sut17a] with backward Euler time-stepping. The assumption here of a fixed spatial mesh, however, allows
us to remove a layer of technicalities, and thus present a slightly simplified version of the quadratic
time discretisation used to derive optimal order L∞(0, t;L2(Ω)) estimates for Crank-Nicolson schemes
by [AMN06, LPP09, BKM12, BKM13]. We further refine the results of [BKM12, BKM13] by deriving
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estimates in which the data approximation term is of optimal order even when the forcing term is non-zero
on the boundary of the domain. This loss of optimality was due to the fact that the data approximation
terms of the previous estimates involved the projection of the forcing data onto discrete functions which
satisfy zero boundary values, which is suboptimal when the forcing function is non-zero on the boundary.

We begin by introducing our model parabolic problem in Section 2, and its discretisation in Section 3.
The new class of a posteriori error estimates is then derived in Section 4 and their practical performance
is assessed through a set of numerical examples in Section 5. Finally, we present some conclusions in
Section 6.

2. Model problem

Let T > 0, and let Ω ⊂ Rd be a bounded open domain with d = 2, 3. For simplicity, we assume that the
domain Ω is a convex polygon, although the results we present could be extended to non-convex domains
with reentrant corners through careful application of weighted estimates; see, for example, [Wih07].

The model problem we consider is to find u : Ω× [0, T ]→ R satisfying

ut(x, t)−Au(x, t) = f (x, t) for (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ].

Here A is a symmetric positive definite linear second order elliptic operator of the form

Av = ∇ · (A∇v)− µv,
where µ ∈ L2(Ω× [0, T ]) with µ(x, t) ≥ 0 for almost every (x, t) ∈ Ω× [0, T ], and A : Ω× [0, T ]→ Rd×d is
symmetric and positive definite for almost every (x, t) ∈ Ω× [0, T ]. Let a : H1

0 (Ω)×H1
0 (Ω)→ R denote

the bilinear form

a(v, w) = (A∇v,∇w) + (µv,w),

where (v, w) ≡
∫

Ω
vw dx denotes the L2(Ω) inner product. Further, for ω ⊂ Rm and an integer m > 0, we

use ‖·‖Wk,p(ω) and |·|Wk,p(ω) to denote the standard norm and seminorm on the Sobolev space W k,p(ω)

for k > 0 and p ∈ [1,∞] (for further details see [AF03], for example). For the special case of ω = Ω, we
shall denote the L2(Ω) norm by ‖·‖ and the Hk(Ω) norm by ‖·‖k.

We note that a induces a norm on H1
0 (Ω), which we denote by a(v, v) = |||v|||2. We further observe

that a is continuous in this norm, and under the assumptions above |||·||| is equivalent to the standard
H1(Ω) norm, i.e. there exists a constant γ ∈ R such that

γ−1‖v‖1 ≤ |||v||| ≤ γ‖v‖1, (2.1)

for all v ∈ H1
0 (Ω).

The problem can therefore be written in the weak form: find u ∈ L2(0, T ;H1
0 (Ω)) with ut ∈ L2(0, T ;H−1(Ω))

such that

(ut(t), v) + a(u(t), v) = (f (t), v) for all v ∈ H1
0 (Ω) and a.e. t ∈ [0, T ]. (2.2)

Standard arguments ensure that this problem posesses a unique solution, cf. [Eva10].

3. Finite element discretisation

We now recall the ingredients of a conventional conforming finite element discretisation of (2.2).

3.1. Discrete function space. Suppose {tn}Nn=0 forms a partition of [0, T ], with tn = nτ for n = 0, . . . , N ,
where τ = T

N . Let Mh be a shape-regular partition of the domain Ω ⊂ Rd into non-overlapping elements
which are either d-dimensional simplicies or hypercubes. To avoid extra technicalities, we suppose that
the elements in the mesh are either all simplicies or all hypercubes. We denote by Γh the skeleton of the
mesh Mh; for Ω ⊂ R2 this is the set of element edges, while for Ω ⊂ R3 it is the set of element faces. We
further introduce the mesh dependent norms

‖·‖Mh
:=
( ∑
K∈Mh

‖·‖2L2(K)

)1/2

and ‖·‖Γh :=
( ∑
s∈Γh

‖·‖2L2(s)

)1/2

,
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and the piecewise constant mesh size function h : Ω → R such that h|K = diam(K) for each K ∈ Mh

and h|s = diam(s) for each s ∈ Γh.
The conventional conforming finite element function spaces with respect to Mh are then given by

V h = {v ∈ H1(Ω) : v|K ∈ V hK ∀K ∈Mh} and V h0 = V h ∩H1
0 (Ω),

where

V hK :=

{
PKk if K is triangular,

QKk if K is quadrilateral.

Here, PKk denotes the space of polynomials of total degree k on K, and QKk denotes the space of tensor-
product polynomials of maximum degree k on K.

The assumptions on the mesh and discrete space above ensure the existence of a Clément-type interpo-
lation operator, satisfying the following approximation estimate.

Lemma 3.1 (Clément-type interpolation estimate, cf. [Clé75]). For any v ∈ H1
0 (Ω) there exists vI ∈ V h0

such that

|vI |H1(K) ≤ Cclem|v|H1(K̂)

‖h−1(v − vI)‖K ≤ Cclem|v|H1(K̂)

‖h−1/2(v − vI)‖s ≤ Cclem|v|H1(ŝ)

for all K ∈Mh and s ∈ Γh, where Cclem is a positive constant depending only on the shape regularity of

Mh. Here, K̂ and ŝ denote the usual finite element patch of K and s, respectively, formed of all mesh
elements with which they share a vertex.

Finally, for quantities which may be discontinuous across the mesh skeleton, we define the jump
operator J·K across a mesh interface s ∈ Γh as follows. If s ∩ ∂Ω = ∅, then there exist K+ and K− such
that s ⊂ ∂K+ ∩ ∂K−. Denote by v± the trace of the vector valued function v on s from within K± and
n±s the unit outward normal on s with respect to K±. Then, JvK := v+ · n+

s + v− · n−s . On the other
hand, if s ∩ ∂Ω = ∅ then JvK = 0.

3.2. Discrete differential operators. We define the discrete spatial operator Ah : V h0 → V h0 to satisfy

(Ahwh, vh) = −a(wh, vh) ∀vh ∈ V h0 ,

and, for each n ∈ {1, . . . , N}, the discrete time derivative ∂n : V h → V h, defined for a set of functions
{wnh}Nn=0 ⊂ V h by

∂nwnh :=
wnh − wn−1

h

τ
.

For the remainder of the article, we shall use the shorthand notation ∂ ≡ ∂n for brevity. We also introduce
the L2(Ω)-orthogonal projectors P : L2(Ω)→ V h and P0 : L2(Ω)→ V h0 , which satisfy

(Pv − v, vh) = 0 ∀vh ∈ V h and (P0v − v, vh) = 0 ∀vh ∈ V h0 ,
respectively. The key difference between these is that the latter imposes zero Dirichlet boundary data.

3.3. Discrete numerical schemes. We now introduce the backward Euler and Crank-Nicolson schemes
for computing discrete approximations to the solution of (2.2). With clear ambiguity we shall refer to the
solutions obtained at the time nodes tn using either method as {Un}Nn=0 ⊂ V h0 , since throughout it shall
be clear from the context which we are referring to.

3.3.1. Backward Euler time discretisation. The backward Euler method for approximating solutions
to (2.2) may be expressed as: find the sequence of finite element functions {Un}Nn=0 ⊂ V h0 satisfying

U0 = Iu0,

(∂Un, vh) + a(Un, vh) = (fn, vh) for all vh ∈ V h0 and n = 1, . . . , N,
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where fn := f (tn) and I : L2(Ω)→ V h0 is a suitable interpolation or projection operator into the finite
element space. Using the definition of the discrete spatial operator, this numerical scheme may equivalently
be written in the pointwise form: find {Un}Nn=0 ⊂ V h0 with U0 = Iu0, and

∂Un −AhUn = fnh0,

for n = 1, . . . , N .

3.3.2. Crank-Nicolson time discretisation. The Crank-Nicolson method for finding approximate solutions
of (2.2) may be expressed as: find {Un}Nn=0 ⊂ V h0 satisfying

U0 = Iu0,

(∂Un, vh) +
1

2
a(Un + Un−1, vh) = (fn−

1
2 , vh) for all vh ∈ V h0 and n = 1, . . . , N,

where fn−
1
2 = f

(
tn+tn−1

2

)
and I : L2(Ω)→ V h0 is a suitable interpolation or projection operator into the

finite element space. As with the backward Euler method, we may write this scheme in the equivalent
pointwise form: find {Un}Nn=0 ⊂ V h0 with U0 = Iu0, and

∂Un − 1

2
AhUn −

1

2
AhUn−1 = f

n− 1
2

h0 ,

for n = 1, . . . , N .

4. A posteriori error estimation

To derive the L∞(0, t;L2(Ω)) error estimates for the backward Euler and Crank-Nicolson schemes of
Theorem 4.11, we proceed in several stages. We begin in Section 4.1 by introducing the space, time, and
space-time reconstructions of the discrete solutions which will be required to derive the error estimates.
These are used in Section 4.2 to derive differential equations satisfied by the error which have controllable
right hand sides and thus form the basis of our error estimates. Some tools for producing error estimates
composed of very flexible varieties of time accumulation are discussed in Section 4.3, and in Section 4.4
these are applied to the error equations of Section 4.2 to derive estimates on the parabolic component of
the error. Finally, in Section 4.5 we put the pieces together to derive estimates on the total error.

4.1. Space-time reconstruction operators. The forthcoming analysis rests on the use of various
reconstruction operators in space and time, which we define here. We begin by defining the spatial
reconstruction we use, which is the celebrated elliptic reconstruction operator of [MN03].

Definition 4.1 (Elliptic reconstruction). Let R,Rn : V h0 → H1
0 (Ω) denote the elliptic reconstruction

operators, respectively satisfying

a(Rwh, v) = (−Ahwh, v) and a(Rnwh, v) = (−Ahwh + fnh − fnh0, v)

for all v ∈ H1
0 (Ω).

We note that the definitions of R and Rn coincide when fnh |∂Ω = 0, since in this case fnh − fnh0 = 0.
When fnh |∂Ω 6= 0, however, the second definition is required to ensure that the data oscillation term in
the final error estimate is of optimal order.

The key property of the elliptic reconstruction operator is that any wh ∈ V h0 can now be seen as
satisfying the finite element discretisation of the elliptic problem satisfied by Rwh. This allows us to
utilise the well developed literature on a posteriori error estimates for elliptic problems in order to derive
bounds on quantities of the form ‖wh −Rwh‖. To demonstrate this, in Lemma 4.2 we provide an example
of a residual-type a posteriori error estimate, which may be proven using standard techniques (see, for
example, [AO00, Ver96], etc.). It is worth stressing that the choice of a residual-type bound here is by
no means the only possibility — a great strength of the elliptic reconstruction technique is that any
methodology for designing a posteriori estimates for elliptic problems can be applied here.

Lemma 4.2 (Elliptic reconstruction error estimate). There exists a constant Cellip, depending only on
the domain Ω, the problem data, and the regularity of the mesh Mh, such that for any wh ∈ V h0 , the
elliptic reconstruction operators R and Rn satisfy

‖wh −Rwh‖ ≤ E (wh) := Cellip

(
‖h2(Ahwh −Awh)‖Mh

+ ‖h3/2JA∇whK‖Γh
)
,
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and

‖wh −Rnwh‖ ≤ E (wh) := Cellip

(
‖h2(Ahwh + fnh0 − fnh −Awh)‖Mh

+ ‖h3/2JA∇whK‖Γh
)
,

respectively.

To introduce the time reconstructions which will also be required for the final error estimates, we first
introduce the so-called temporal hat functions, continuous linear functions `n : [0, T ] → [0, 1] for each
n = 0, . . . , N satisfying `i(tj) = δij , where δij is Kronecker’s delta. These are defined as

`n(t) =


t−tn−1
τ for t ∈ [tn−1, tn],

tn+1−t
τ for t ∈ [tn, tn+1],

0 otherwise,

and will be used to patch together the nodal discrete solutions Un provided by the discrete schemes, through
the piecewise-polynomial time and space-time reconstructions given in Definition 4.3. The quadratic
reconstruction we adopt here is a slight simplification of the ‘two-point reconstruction’ studied by [AMN06,
LPP09, BKM12, BKM13].

Definition 4.3 (Time and space-time reconstructions). Let {Un}Nn=0 ⊂ V h0 denote the set of discrete
approximate solutions produced by either the backward Euler or Crank-Nicolson scheme. We let U ,Q :
[0, T ]→ V h0 denote the linear and quadratic time reconstructions, given by

U (t) = `n(t)Un + `n−1(t)Un−1 and Q(t) = U (t)− τ2

2
`n(t)`n−1(t)∂(AhUn + fnh0),

respectively, where t ∈ [tn−1, tn] for each n ∈ {1, . . . , N}. We further let UR , QR : [0, T ]→ V h0 denote the
linear and quadratic space-time reconstructions, given by

UR(t) = `n(t)RnUn + `n−1(t)Rn−1Un−1 and QR(t) = UR(t)− τ2

2
`n(t)`n−1(t)R∂(AhUn + fnh0),

respectively, where t ∈ [tn−1, tn] for each n ∈ {1, . . . , N}.
We remark that all of these reconstructions are continuous in time. Indeed, for each n ∈ {0, . . . , N}

the time reconstructions satisfy U (tn) = Q(tn) = Un, while the space-time reconstructions satisfy
UR(tn) = QR(tn) = RnUn.

4.2. Error equations. The final error estimate of Theorem 4.11 will be proven by splitting the error
into components using the triangle inequality with the reconstructions of Definition 4.3, and controlling
each term separately. For the backward Euler method, this splitting is

‖u− U ‖L∞(0,t;L2(Ω)) ≤ ‖u− UR‖L∞(0,t;L2(Ω)) + ‖UR − U ‖L∞(0,t;L2(Ω)), (4.1)

while for the Crank-Nicolson method the splitting is

‖u− U ‖L∞(0,t;L2(Ω)) ≤ ‖u−QR‖L∞(0,t;L2(Ω)) + ‖QR −Q‖L∞(0,t;L2(Ω)) + ‖Q − U ‖L∞(0,t;L2(Ω)). (4.2)

The first component in each case is known as the parabolic error, and measures the error between the true
solution u and the reconstruction. The focus of this section is to derive an appropriate error equation, a
differential equation satisfied by the parabolic error, which will be used to bound the first term of each
splitting. This is performed separately in Section 4.2.1 for the backward Euler scheme and in Section 4.2.2
for the Crank-Nicolson scheme. The second term of each splitting, known as the space reconstruction
error, measures the difference between a discrete solution and its reconstruction, and may be bounded
using Lemma 4.2. Finally, the third term of the Crank-Nicolson splitting measure the time reconstruction
error, which is bounded by directly using the definition of the quadratic time reconstruction.

4.2.1. Backward Euler method. Invoking the definition of the discrete Laplacian and linear time recon-
struction, we observe that the discrete solutions produced by the backward Euler scheme satisfy

Ut(t)−AhUn = fnh0,

or, using the definition of the elliptic reconstruction,

(Ut(t), v) + a(RnUn, v) = (fnh , v) ∀v ∈ H1
0 (Ω). (4.3)
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We observe that the effect of including projections of the forcing data in the definition of the reconstruction
is that right hand side of this differential equation no longer involves the projection of f onto functions
with zero boundary data, a fact which is crucial for obtaining error estimates with optimal order data
approximation terms.

Subtracting (4.3) from the weak form (2.2) of the PDE, we deduce that the backward Euler parabolic
error ξ(t) := u(t)− UR(t) satisfies the error equation

(ξt, v) + a(ξ, v) = (Ut −RUt, v) + a(RnUn − UR(t), v) + (f − fnh , v) (4.4)

for any v ∈ H1
0 (Ω).

The terms on the right hand side of (4.4) may be controlled by the (computable) error estimator
functionals given in Definition 4.4, as shown in Lemma 4.5. To keep the notation from becoming too
obscure, we denote each component of the estimator by the first letter of its name in a calligraphic font,
with the subscript ‘BE’ to indicate that it relates to the backward Euler method.

Definition 4.4 (Terms of the backward Euler error estimate). Let n ∈ {1, . . . , N} and t ∈ [tn−1, tn]. We
define the space error estimator and elliptic reconstruction error estimator as

SBE(t) = E (Ut(t)), and EBE(t) = E (U (t)),

respectively, with E denoting the elliptic error estimator from Lemma 4.2, the time error estimator as

TBE(t) = τ‖∂(AhUn − fnh + fnh0)‖,
and the data approximation error estimators for time and space as

DT,BE(t) = ‖f (t)− fn‖, and DS,BE(t) = Cclem‖h(fn − fnh )‖,
respectively.

Lemma 4.5 (Estimates for individual backward Euler error equation terms). Let n ∈ {1, . . . , N} and
t ∈ [tn−1, tn]. Then, the terms of the Crank-Nicolson error equation (4.4) may be bounded with separate
contributions from the spatial and temporal errors

((U − UR)t(t), v) ≤ SBE(t)‖v‖, and a(RnUn − UR(t), v) ≤ TBE(t)‖v‖,
respectively, and the data approximation error

(f (t)− fnh , ρ) ≤ DT,BE(t)‖v‖+DS,BE(t)|||v|||.
Proof. The first term on the right hand side of (4.4) is bounded by applying the Cauchy-Schwarz inequality
and Lemma 4.2. Since `n−1(t) = 1− `n(t) for t ∈ [tn−1, tn], the second term of (4.4) may be rewritten as

a(RnUn − UR , v) = `n−1(t)a(RnUn −Rn−1Un−1, v) = −τ`n−1(t)(∂(AhUn + fnh0 − fnh ), v),

and the result follows by applying the Cauchy-Schwarz inequality and using the fact that `n−1(t) ≤ 1.
The final term of (4.4) may be bounded by adding and subtracting fn, recalling that fnh = Pfn, and

exploiting the L2(Ω) orthogonality of the projector P to introduce the Clément interpolant vh ∈ V h0 of v,
providing

(f − fnh , v) = (f − fn, v) + (fn − fnh , v − vh).

The result then follows by applying Cauchy-Schwarz inequality and the bounds of Lemma 3.1. �

4.2.2. Crank-Nicolson method. The definition of the quadratic time reconstruction operator Q ensures
that it satisfies the differential equation

Qt(t)−AhU (t) = fh0(t) + (f
n− 1

2

h0 − fh0(tn−
1
2 )),

where fh0(t) = `n(t)fnh0 + `n−1(t)fn−1
h0 , and the elliptic reconstruction operator therefore implies that

(Qt(t), v) + a(UR(t), v) = (fh(t), v) + (f
n− 1

2

h0 − fh0(tn−
1
2 ), v) ∀v ∈ H1

0 (Ω), (4.5)

with fh(t) = `n(t)fnh + `n−1(t)fn−1
h .

Taken together, the weak form (2.2) of the PDE and relation (4.5) imply that the Crank-Nicolson
parabolic error ρ(t) := u(t)−QR(t) satisfies the error equation

(ρt, v) + a(ρ, v) = ((Q −QR)t, v) + a(UR −QR , v) + (f − fh, v) + (f
n− 1

2

h0 − fh0(tn−
1
2 ), v) (4.6)
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for any v ∈ H1
0 (Ω).

The terms on the right hand side of (4.6) may be controlled by the error estimator functionals defined
in Definition 4.6, as shown in Lemma 4.7. Once again, we denote each of the estimators by the first letter
of its name in a calligraphic font, this time with the subscript ‘CN’ to indicate that it relates to the
Crank-Nicolson method.

Definition 4.6 (Terms of the Crank-Nicolson error estimate). Let n ∈ {1, . . . , N} and t ∈ [tn−1, tn]. We
define the space error estimator and elliptic reconstruction error estimator as

SCN (t) = E (Qt(t)), and ECN (t) = E (Q(t)),

respectively, with E the elliptic error estimator from Lemma 4.2, the time error estimator as

TCN (t) = Cclem
τ2

8

(
|||∂(AhUn + fnh0)|||+ ‖hAh∂(AhUn + fnh0)‖

)
,

the quadratic time reconstruction estimator as

QCN (t) =
τ2

8
‖∂(AhUn + fnh0)‖,

and the data approximation error estimators for time and space as

DT,CN (t) = ‖f (t)− `n(t)fn − `n−1(t)fn−1‖+ ‖fn−
1
2

h0 − fh0(tn−
1
2 )‖,

DS,CN (t) = Cclem‖h(`n(t)(fn−1 − fn−1
h ) + `n−1(t)(fn − fnh ))‖,

respectively.

Lemma 4.7 (Estimates for individual Crank-Nicolson error equation terms). The terms of the Crank-
Nicolson error equation (4.6) may be bounded with separate contributions from the spatial and temporal
errors

((Q −QR)t(t), v) ≤ SCN (t)‖v‖, and a(UR(t)−QR(t), ρ) ≤ TCN (t)|||v|||,
respectively, and the data approximation error

(f (t)− fh(t), ρ) + (f
n− 1

2

h0 − fh0(tn−
1
2 ), v) ≤ DT,CN (t)‖v‖+DS,CN (t)|||v|||.

Proof. The proof for the space and data approximation errors are broadly similar to the proofs given in
Lemma 4.5, so are omitted. For the bound on the time error, we first observe that

a(UR −QR , v) =
τ2

2
`n(t)`n−1(t)a(R∂(AhUn + fnh0), v).

Letting vh ∈ V h0 denote the Clément interpolant of v, we obtain

a(R∂(AhUn + fnh0), v) = a(R∂(AhUn + fnh0), v − vh) + a(R∂(AhUn + fnh0), vh)

= −(Ah∂(AhUn + fnh0), v − vh) + a(∂(AhUn + fnh0), vh).

The result then follows from continuity of a, the approximation and stability properties of the Clément
interpolant laid out in Lemma 3.1, and the fact that `n(t)`n−1(t) ≤ 1

4 . �

4.3. Time accumulations. We now introduce some machinery which will be required to derive a wide
variety of new error estimates. We first introduce the accumulation control coefficients, increasing bounded
functions of time which control the rate at which error accumulates and have a significant effect on the
estimate at early times, as demonstrated in Section 5.

Definition 4.8 (Accumulation control coefficients). Let p ∈ [1,∞], λ ∈ [0, 1], and let r ∈ [0, T ]. We
introduce the accumulation control coefficients

cp,r := ‖βr‖Lq(0,r) =


(1− e−qαλr

qαλ

)1/q

for p ∈ (1,∞],

1 for p = 1,

where q satisfies 1
p + 1

q = 1, βr(s) = eαλ(s−r), and αλ = 2(1−λ)
(γCPF)2 .
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The rationale for introducing these accumulation control coefficients is demonstrated by Lemma 4.9.
Here, one should think of the term F as representing some estimator term accumulating with the simulation
time, and ν as the error which we are trying to bound (either in the L∞(L2) or a weighted L2(H1) norm).
The terms being bounded in each case are typical terms which we shall encounter in the subsequent error
analysis, cf. Lemma 4.10.

Lemma 4.9 (Exponentially weighted time accumulations). Let r ≥ 0 and suppose that F ∈ Lp?(0, r) for
some p? ∈ [1,∞], with F (t) ≥ 0 for a.e. t ∈ [0, r]. Then, for ν ∈ L∞(0, r;L2(Ω)), the estimate∫ r

0

eαλ(s−r)F (s)‖ν(s)‖ ds ≤ min
p∈[1,∞]

cp,r‖F‖Lp(0,r) max
s∈[0,r]

‖ν(s)‖, (4.7)

holds, and for ν ∈ L2(0, r;H1(Ω)), the estimate∫ r

0

eαλ(s−r)F (s)|||ν(s)||| ds ≤ min
p∈[2,∞]

(c p
2 ,r

)1/2‖F‖Lp(0,r)

(∫ r

0

eαλ(s−r)|||ν(s)|||2 ds
)1/2

, (4.8)

holds. The accumulation control coefficients cp,r are defined in Definition 4.8.

Proof. We begin by proving (4.7). Taking the maximum of ‖ν(t)‖ and applying Hölder’s inequality for
some p ∈ [1, p?], we find∫ r

0

eαλ(s−r)F (s)‖ν(s)‖ ds ≤ max
s∈[0,tm]

‖ν(s)‖
∫ r

0

eαλ(s−r)F (s) ds ≤ ‖βr‖Lq(0,r)‖F‖Lp(0,r) max
s∈[0,tm]

‖ν(s)‖.

where βr(t) = eαλ(t−r) and q satisfies 1
p + 1

q = 1. The result follows from the fact that p is arbitrary, and

the observation that cp,r = ‖βr‖Lq(0,r).
To prove (4.8), we argue similarly. Applying the Cauchy-Schwarz inequality, we find∫ r

0

eαλ(s−r)F (s)|||ν(s)||| ds ≤
(∫ r

0

eαλ(s−r)|||ν(s)|||2 ds
)1/2(∫ r

0

eαλ(s−r)(F (s))2 ds
)1/2

.

Hölder’s inequality, applied to the second term for some p ∈ [1, p?], then implies that(∫ r

0

eαλ(s−r)(F (s))2 ds
)1/2

≤ ‖βr‖1/2Lq(0,r)‖F‖L2p(0,r),

where q once again satisfies 1
p + 1

q = 1. The result then follows from the definition of cp,r and the fact

that p is arbitrary. �

A few comments on this result are in order at this point. Firstly, we note that if F is constant on each
interval, say F (t) = Fn ≥ 0 on t ∈ (tn−1, tn), then the accumulation becomes

‖F‖Lp(0,tm) =

{(∑m
n=1 τ

(
Fn
)p)1/p

for p ∈ [1,∞)

maxn∈{1,...,m} F
n for p =∞,

which, for p = 1, 2, yields the time accumulations familiar from conventional L∞(0, T ;L2(Ω)) error
estimates such as those in [LM06, LPP09, BKM12, BKM13, Kar12, GLW17], for instance.

We next observe that while both bounds (4.7) and (4.8) allow for L∞-type time accumulations of F , only
the former supports L1-type accumulations. As we shall demonstrate in Section 5, L1-type accumulations
are generally preferable for short time estimates. In most situations, one has a choice which of the terms
bounded in Lemma 4.9 will appear in the error equation, the latter often coming with an extra power
of h (for instance, observe the bound of the data approximation term in Lemma 4.10). In this light, the
choice may be seen as an alternative perspective on the conventional tradeoff between powers of h or τ.
Since the aim of this work is to present long time estimates, we shall not trouble ourselves too much on
this point, although it is worth bearing in mind.

Finally, we remark that it is possible to subdivide the domain [0, r] used in Lemma 4.9, and apply
different types of accumulations on each sub division. For instance, if r0 = 0, rM = r, and ri−1 < ri for
i = 1, . . . ,M , we could obtain a bound of the form∫ r

0

eαλ(s−r)F (s)‖ν(s)‖ ds ≤ max
s∈[0,r]

‖ν(s)‖
M∑
i=1

(
min

pi∈[1,∞]
cpi,[ri−1,ri]‖F‖Lpi (ri−1,ri)

)
,
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where, here only, we use the notation cp,[a,b] = ‖βr‖Lq(a,b) for a, b ∈ [0, r], with βr and q defined as in

Definition 4.8. It is clear that this bound is tighter than the bound (4.7), and could allow very general
error estimates. In the interests of clarity, however, this is not something we pursue any further here.

4.4. Estimates for the parabolic error. We now draw together the tools of Lemmas 4.5, 4.7 and 4.9
to provide an estimate for the parabolic error in each method. While the previous lemmas provided
spatial estimates for individual terms, in some sense, this lemma provides a temporal estimate and is
the key point of departure in the proof from conventional L∞(L2) error estimates as it is here that the
role of the new varieties of time accumulation first appear. The first step of the argument, in which a
Poincaré-Friedrichs inequality is applied, is a well known technique for deriving a priori error estimates
for this class of problem, cf. [Tho97], and appears to have been first applied in an a posteriori setting in
a slightly different way to ultimately derive the final time L2(Ω) error estimate of [LMP14, §6].

Lemma 4.10 (L∞(0, T ;L2(Ω)) parabolic error estimates). For any r ∈ [0, T ], the backward Euler parabolic
error ξ and Crank-Nicolson parabolic error ρ satisfy

max
s∈[0,r]

‖ξ(s)‖ ≤ ‖ξ(0)‖+
√

2
(

min
p∈[1,∞]

cp,r‖SBE‖Lp(0,r) + min
p∈[1,∞]

cp,r‖TBE‖Lp(0,r)

+ min
p∈[1,∞]

cp,r‖DT,BE‖Lp(0,r) + min
p∈[2,∞]

(c p
2 ,r

)1/2‖DS,BE‖Lp(0,r)

)
,

and

max
s∈[0,r]

‖ρ(s)‖ ≤ ‖ρ(0)‖+
√

2
(

min
p∈[1,∞]

cp,r‖SCN‖Lp(0,r) + min
p∈[2,∞]

(c p
2 ,r

)1/2‖TCN‖Lp(0,r)

+ min
p∈[1,∞]

cp,r‖DT,CN‖Lp(0,r) + min
p∈[2,∞]

(c p
2 ,r

)1/2‖DS,CN‖Lp(0,r)

)
,

respectively.

Proof. We prove the Crank-Nicolson estimate, and the backward Euler estimate follows similarly.
To begin, we select v = ρ in (4.6), apply the estimates of Lemma 4.7 to the terms on the right hand

side individually. We therefore find that for any n ∈ {1, . . . , N} and t ∈ [tn−1, tn],

1

2

d

dt
‖ρ(t)‖2 + |||ρ(t)|||2 ≤

(
SCN (t) +DT,CN (t)

)
‖ρ(t)‖+

(
TCN (t) +DS,CN (t)

)
|||ρ(t)|||.

The Poincaré-Friedrichs inequality and the norm equivalence (2.1) imply that, for any λ ∈ [0, 1],

1

2

d

dt
‖ρ(t)‖2 + α‖ρ(t)‖2 + λ|||ρ(t)|||2 ≤ 1

2

d

dt
‖ρ(t)‖2 + |||ρ(t)|||2,

where α ≡ αλ = 2(1−λ)
(γCPF)2 (as in Definition 4.8; we omit the subscript here for brevity), and therefore

1

2

d

dt

(
eαt‖ρ(t)‖2

)
+ λeαt|||ρ(t)|||2 ≤ eαt

(
SCN (t) +DT,CN (t)

)
‖ρ(t)‖+ eαt

(
TCN (t) +DS,CN (t)

)
|||ρ(t)|||.

Integrating over s ∈ [0, r], we thus obtain

1

2
‖ρ(r)‖2 + λ

∫ r

0

eα(s−r)|||ρ(s)|||2 ds ≤ 1

2
‖ρ(0)‖2 +

∫ r

0

eα(s−r)
(
SCN (s) +DT,CN (s)

)
‖ρ(s)‖

+ eα(s−r)
(
TCN (s) +DS,CN (s)

)
|||ρ(s)||| ds.

Invoking Lemma 4.9 with ν = ρ on each term of the integral, we thus obtain

1

2
‖ρ(r)‖2 + λ

∫ r

0

eα(s−r)|||ρ(s)|||2 ds ≤

1

2
‖ρ(0)‖2 + max

s∈[0,r]
‖ρ(s)‖

(
min

p∈[1,∞]
cp,r‖SCN‖Lp(0,r) + min

p∈[1,∞]
cp,r‖DT,CN (s)‖Lp(0,r)

)
+
(∫ r

0

eα(s−r)|||ρ(s)|||2 ds
)1/2(

min
p∈[2,∞]

(c p
2 ,r

)1/2‖TCN‖Lp(0,r) + min
p∈[2,∞]

(c p
2 ,r

)1/2‖DS,CN‖Lp(0,r)

)
.
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We next apply Young’s inequality, which states that if a, b ≥ 0, then ab ≤ ε
2a

2 + 1
2εb

2 for any ε > 0. Picking
ε = 2λ applying the inequality with a and b as the final two factors on the second line of the bound, we
obtain

1

2
‖ρ(r)‖2 ≤ 1

2
‖ρ(0)‖2 + max

s∈[0,r]
‖ρ(s)‖

(
min

p∈[1,∞]
cp,r‖SCN‖Lp(0,r) + min

p∈[1,∞]
cp,r‖DT,CN (s)‖Lp(0,r)

)
+

1

4λ

(
min

p∈[2,∞]
(c p

2 ,r
)1/2‖TCN‖Lp(0,r) + min

p∈[2,∞]
(c p

2 ,r
)1/2‖DS,CN‖Lp(0,r)

)2

.

Since the right hand side of this bound is a non-decreasing function of r, it also provides a bound on
maxs∈[0,r] ‖ρ(s)‖2. The result then follows by applying Young’s inequality once again, taking square roots,

and selecting λ = 1
4 . �

We note that it is necessary to apply Hölder’s inequality (in the guise of Lemma 4.9) in the proof of
Lemma 4.10 before one may derive a bound for maxs∈[0,r] ‖ρ(s)‖. This is because a quantity of the form

G(r) =

∫ r

0

eαλ(s−r)|g(s)|ds

can be a decreasing function of r, since the exponential weight in the integral possesses a ‘forgetfulness’
property: for fixed s the function eαλ(s−r) decreases as r increases. Hence, as r increases, less weight is
assigned to the early part of the integral, and G(r) can therefore decrease. This means that an estimate of
the form of G is well suited for a final time estimate (cf. [LMP14, §6]), although not for a maximum norm
estimate. Upon applying Hölder’s inequality, however, this problem is alleviated since the exponential
weight and the function g are integrated separately.

4.5. Final error estimates. Finally, we are in a position to provide optimal order estimates for the
L∞(L2) error for the backward Euler and Crank-Nicolson methods. These are based on using the split-
tings (4.1) and (4.2) of the error, and applying the estimates of Lemmas 4.2 and 4.10 for each component.

Theorem 4.11 (L∞(0, T ;L2(Ω)) error estimates). Let r ∈ [0, T ]. If {Un}Nn=0 denotes the backward Euler
approximations of u at the time nodes, then

‖u− U‖L∞(0,r;L2(Ω)) ≤ ‖u0 − Iu0‖+ ‖EBE‖L∞(0,r)

+
√

2
(

min
p∈[1,∞]

cp,r‖SBE‖Lp(0,r) + min
p∈[1,∞]

cp,r‖TBE‖Lp(0,r)

+ min
p∈[1,∞]

cp,r‖DT,BE‖Lp(0,r) + min
p∈[2,∞]

(c p
2 ,r

)1/2‖DS,BE‖Lp(0,r)

)
,

where the individual terms are defined in Definition 4.4.
If {Un}Nn=0 denotes the Crank-Nicolson approximations of u at the time nodes, then

‖u− U‖L∞(0,r;L2(Ω)) ≤ ‖u0 − Iu0‖+ ‖ECN‖L∞(0,r) + ‖QCN‖L∞(0,r)

+
√

2
(

min
p∈[1,∞]

cp,r‖SCN‖Lp(0,r) + min
p∈[2,∞]

(c p
2 ,r

)1/2‖TCN‖Lp(0,r)

+ min
p∈[1,∞]

cp,r‖DT,CN‖Lp(0,r) + min
p∈[2,∞]

(c p
2 ,r

)1/2‖DS,CN‖Lp(0,r)

)
,

where the individual terms are defined in Definition 4.6.

Proof. For the backward Euler scheme, we apply the triangle inequality to observe that

‖u− U ‖L∞(0,r;L2(Ω)) ≤ ‖u− UR‖L∞(0,r;L2(Ω)) + ‖UR − U ‖L∞(0,r;L2(Ω)).

These two terms are then bounded using Lemmas 4.2 and 4.10 respectively to provide the desired result.
Similarly, for the Crank-Nicolson scheme, we find that

‖u− U ‖L∞(0,r;L2(Ω)) ≤ ‖u−QR‖L∞(0,r;L2(Ω)) + ‖QR −Q‖L∞(0,r;L2(Ω)) + ‖Q − U ‖L∞(0,r;L2(Ω)).

The first and second terms are once again bounded using Lemmas 4.2 and 4.10 respectively, and we
observe that, for t ∈ (tn−1, tn],

Q(t)− U(t) = −τ
2

2
`n(t)`n−1(t)∂(AhUn + fnh0),

so that ‖Q− U‖ ≤ QCN , and the result follows. �
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5. Numerical experiments

In this section, we present some numerical experiments demonstrating the practical behaviour of
the estimators. We begin with an investigation into the different types of time accumulations, before
considering approximating solutions to certain benchmark PDEs. To produce results presented here, the
methods and estimators described above were implemented using the open source deal.II finite element
library [BHK07].
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(a) Qn = 1 for all n.
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(b) Qn specified randomly in [0, 10].
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(c) Qn as above, but with Q1 = 30.

Figure 1. The behaviour of the accumulations
cp,t‖F‖Lp(0,t) for different choices of Qn and var-

ious indicative values of p, with τ = 0.1.

5.1. Comparison of accumulations. First, consider
the accumulation of a term F such that Fn = 1 for all
n. In this case, for p ∈ [1,∞), we have

‖F‖Lp(0,tm) =
( m∑
n=1

τ(Fn)p
)1/p

=
( m∑
n=1

τ
)1/p

= (tm)1/p,

and ‖F‖L∞(0,tm) = 1. It is clear, therefore, that for finite

values of p the accumulation will grow unboundedly,
while for p =∞ the value will remain constant. Despite
this, for tm < 1, the choice p = 1 clearly provides the
smallest accumulation. Thus, we find that

min
p∈[1,∞]

‖F‖Lp(0,tm) =

{
tm when tm ≤ 1,

1 otherwise,

implying that the L1-type accumulation is best for short
time computations (i.e. with T ≤ 1), while the L∞-type
accumulation is best for long time computations.

The situation is different, however, if we include the
accumulation control coefficients cp,t, introduced in Def-
inition 4.8. In this case, the growth of the different
weighted accumulations cp,t‖F‖Lp(0,t) is depicted in Fig-

ure 1, under the supposition that the constant αλ = 1.
Figure 1(a) shows the growth of the different accumula-
tions in the case when Fn = 1 for all n, and in this case
it appears that the control coefficients have a levelling
effect, in that the L∞-type accumulation is always the
smallest. This is no longer true in the more practically
relevant situation when Fn varies randomly in the in-
terval [0, 10], depicted in Figure 1(b). In this case, it is
still clear that the L1-type accumulation grows much
larger than the others, while the L∞-type accumulation
grows the slowest. The actual minimum, however, ap-
pears to be somewhere in between and changes through-
out the time interval. For much longer times, however,
it is expected that the minimum will ultimately be the
L∞-type accumulation since in this case this is known
to be bounded above by 10.

Figure 1(c) shows the accumulations applied to the
same data set but with F 1 = 30. This makes little dif-
ference to the L1-type accumulation, although has a
dramatic effect for larger values of p. In such a situation,
therefore, the L∞-type accumulation will not be mini-
mal until t becomes very large. Instead, in this situation
it may be preferable to use a combination of different accumulation types on different subintervals of the
time domain, as described in Section 4.3.
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5.2. Implementing Lp-type accumulations. To evaluate the estimator using the optimal accumulation
for each term, we note that it is possible to store the contributions to each term from each time step,
and then implement a numerical optimisation procedure to systematically find the optimal value of p.
However, such an algorithm would be expensive in terms of both memory (to store the data from every
time step) and computation (to find the minimal accumulation). Instead, we propose to evaluate the
estimator using just a small number of accumulations for each term, for instance for p ∈ {1, 2, 4, 8, 16,∞}.
Computing the estimator like this only requires storing six numbers, as the degree p accumulation can be
updated on each step using the update rule

‖F‖Lp(0,tn) =

{(
‖F‖pLp(0,tn−1) + τ (Fn)p

)1/p
for p ∈ [1,∞)

max{‖F‖Lp(0,tn−1), F
n} for p =∞.

This is the approach taken for evaluating the estimator in all of the numerical experiments presented
below.

5.3. Benchmark numerical examples. We now investigate the behaviour of the estimator when applied
to a sequence of example problems. For these examples we take A to be the d × d identity matrix and
µ = 0. The results are computed over the domain Ω = (0, 1) × (0, 1) with T = 15, using a sequence of
progressively finer meshes consisting of uniform square elements and polynomial degree k = 1. Unless
otherwise stated, the mesh sequence consists of meshes with 22i elements, where i ∈ {2, 3, 4, 5, 6}. The
mesh size may therefore be computed in each case as hi = 21/2−2i.

For each example problem on each sequence of meshes we plot a composite figure of the resulting data.
Subfigure (A) of each demonstrates the behaviour of the L∞(0, t;L2(Ω)) error and the total estimator,
computed by taking the minimum of a subset of the accumulations as described in Section 5.2, with
the simulation on each mesh being shown as a separate line on the plot (solid lines indicate the results
computed on the finest mesh). Beneath each of these, we plot the convergence rate with respect to i as a
function of time, computed for a quantity F i by

ratei(t) =
log(F i(t))− log(F i−1(t))

log(hi)− log(hi−1)
.

Since the timestep τi is a specified function of hi in each case, this provides a meaningful definition of
convergence rate. Next to these we plot the effectivity of the estimator, computed as

effectivityi(t) =
estimatori(t)

‖u− Ui‖L∞(0,t;L2(Ω))

.

Here, estimatori(t) and Ui(t) denote the estimator and discrete solution calculated on mesh i.
Subfigure (B) of each plot shows the magnitudes and convergence rates of each component of the error

estimator, computed using the minimal accumulation in each case. Finally, subfigure (C) in each case
shows a comparison between the estimators evaluated using various specified types of accumulation. The
line marked ‘L1 accumulations’ shows the value of the estimator when all components are evaluated using
Lp-type accumulations with the least admissible value of p in each case (for some terms this is 1, for
others it is 2). Similarly, the line ‘L2 accumulations’ shows the behaviour where p is taken as value 2 for
all components, and the line ‘L∞ accumulations’ shows the effect of taking p =∞. To the right of these,
we plot the effectivity computed for each of these three estimators.

5.3.1. Sinusoidal benchmark. We consider the problem with the solution

u(t, x, y) = sin(πt) sin(πx) sin(πy). (5.1)

For this example, we show results for the backward Euler method with time steps linked to the spatial
discretisation as τi = h2

i and τi = hi in Figures 3 and 4 respectively, and for the Crank-Nicolson method

with τi = hi and τi = h
1/2
i in Figures 5 and 6 respectively. Since a priori error estimates inform us that

the L∞(0, t;L2(Ω)) should converge with order O(τ + h2) for the backward Euler method and with order
O(τ2 + h2) for the Crank-Nicolson scheme, we deduce that the expected convergence rates for the four

simulations should be 2, 1, 2, and 1 respectively. For the Crank-Nicolson method with τi = h
1/2
i , we

include additional data for i ∈ {7, 8} in order to better demonstrate the asymptotic behaviour of the
estimator.
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Figure 2. The effectivity comparison of Figure 5(C)
replotted on logarithmic axes, revealing the asymp-
totic rates at which the different effectivities grow.

Examining the plots in subfigure (A) for each
figure indicate that these rates are attained by the
true error, while the estimator seems to converge
slightly faster on the coarser meshes for both the
cases when the expected rate is 1 (Figures 4 and 6).
Since this appears to be settling down towards the
expected rates on the finer meshes, this quirk is
presumably attributable to some pre-asymptotic
behaviour, and could be due to the fact that we
are ignoring the values of the constants weighting
each term of the estimator, meaning that the spa-
tial estimators (which converge more quickly) ini-
tially dominate over the temporal estimators which
are responsible for restricting the total estimate to
order 1. This pre-asymptotic behaviour observed
in Figures 4 and 6 also has an impact on the effec-
tivities of the estimator, we are significantly larger
on coarser meshes than on finer meshes in the se-
quence. In Figures 3 and 5, however, where the
error is expected to converge at rate 2, the estima-
tor converges much more similarly to the error, resulting in effectivities which do not depend so much on
the mesh.

What’s striking in all four figures, though, is that the effectivities become constant with respect to time.
This is entirely due to the use of the L∞-type accumulations in the estimator, as shown by the plots in
subfigure (C) in each case. The estimators making use of the L1 and L2-type accumulations grow much
faster in this case than the actual error. This is best demonstrated by Figure 2, in which the data from
the effectivity comparison of Figure 5(C) is replotted on logarithmic axes. It becomes evident from this
that, after an initial period in which the accumulation coefficient dominates the profile of each curve, the
effectivity of the L1-type estimator grows like t, the L2-type estimator’s effectivity grows like t1/2, and
the L∞-type estimator becomes constant.

5.3.2. Polynomial benchmark. We consider a problem with the solution

u(t, x, y) =
x(x− 1)y(y − 1)

250
t(t− 2)(t− 4)(t− 6)(t− 8)(t− 10), (5.2)

which satisfies the problem with right hand side

f(t, x, y) =
x(x− 1) + y(y − 1)

125
t(t− 2)(t− 4)(t− 6)(t− 8)(t− 10).

We note that for t ∈ [0, 10], max(x,y)∈Ω u(t, x, y) oscillates within [−0.3, 0.1], but the solution grows so
rapidly when t ∈ [10, 15] that max(x,y)∈Ω u(15, x, y) = 42, 230. The interesting features of this benchmark
problem are therefore twofold: firstly, the forcing function is non-zero on ∂Ω; secondly, we are interested
to see how the estimator behaves with the rapid growth in the solution.

The results obtained from the backward Euler and Crank-Nicolson methods applied to this problem are
shown in Figures 7 and 8 respectively. To address the first point, we observe that all components of both
estimators remain of at least optimal order due to the modified definition of the elliptic reconstruction
operator. The second point is more interesting. We observe that the effectivity of both estimators are
relatively well behaved, remaining around 100. However, from the comparison of the estimators and
effectivities obtained using different types of accumulation, we observe that in neither case is it optimal
to use the L∞-type accumulations; rather, L2-type accumulations seem to behave best. Broadly speaking,
this can be attributed to the fact that the error is large early on in the simulation, as in case (C) of
Section 5.1, so the L1 and L2-type accumulations are preferable early on, while the contribution to the
error on each timestep grows for t > 10, ensuring that the L∞-type accumulations also grow. We note
that this could be a situation in which it is preferable to use different types of accumulation on different
sections of the time domain, as discussed in Section 4.3.
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6. Conclusions

In summary, we have derived a family of new optimal order estimates for the L∞(0, t;L2(Ω) norm error
of finite element discretisations with backward Euler and Crank-Nicolson time-stepping schemes for a class
of parabolic problems. The estimates in this family are almost all new, and allow the individual terms of
the estimator to accumulate through time in an Lp(0, t) fashion for any p ∈ [1,∞]. Included amongst this
spectrum are, of course, previously known estimates relying on L1 or L2-type time accumulations of their
terms, which we have demonstrated to exhibit effectivities (the ratio of the estimator to the true error)
which grow like t or

√
t, where t is the simulation duration. Estimators based on L∞-type accumulations

were previously derived using parabolic duality-based techniques, although it was previously unknown how
these could be proven using energy arguments as they have been here. The advantage of using L∞-type
accumulations is that the estimators attain constant effectivities on benchmark problems, meaning they
are much better suited as error estimates for long time simulations and offer potential for deriving lower
bounds on the error.

The technique we used for deriving these estimates is fundamentally based on the structure of the
partial differential equation, rather than the construction of the numerical method. To ensure the details of
the new technique remain clear, we have only demonstrated the technique for finite element discretisations
of linear parabolic problems with backward Euler and Crank-Nicolson time-stepping schemes, although
we expect it will be applicable more widely — both in the sense of wider classes of model problems
involving nonlinearities for instance, and in the sense of other varieties of numerical scheme. Similarly,
the technique applies equally well in the case of adaptive space and time meshes, although presents the
interesting conundrum of devising mesh refinement schemes which behave well when the mesh transfer
error is accumulated in an L∞(0, t) fashion.
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(a) Behaviour of the error and estimator

(b) Behaviour of the components of the estimator

(c) Comparison of the impact of different time accumulation types on the estimator

Figure 3. Behaviour of the error and estimator for the backward Euler scheme applied
to the sinusoidal example (5.1) with τ ≈ h2.
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(a) Behaviour of the error and estimator

(b) Behaviour of the components of the estimator

(c) Comparison of the impact of different time accumulation types on the estimator

Figure 4. Behaviour of the error and estimator for the backward Euler scheme applied
to the sinusoidal example (5.1) with τ ≈ h.
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(a) Behaviour of the error and estimator

(b) Behaviour of the components of the estimator

(c) Comparison of the impact of different time accumulation types on the estimator

Figure 5. Behaviour of the error and estimator for the Crank-Nicolson scheme applied
to the sinusoidal example (5.1) with τ ≈ h.
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(a) Behaviour of the error and estimator

(b) Behaviour of the components of the estimator

(c) Comparison of the impact of different time accumulation types on the estimator

Figure 6. Behaviour of the error and estimator for the Crank-Nicolson scheme applied
to the sinusoidal example (5.1) with τ ≈

√
h.
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(a) Behaviour of the error and estimator

(b) Behaviour of the components of the estimator

(c) Comparison of the impact of different time accumulation types on the estimator

Figure 7. Behaviour of the error and estimator for the backward Euler scheme applied
to the polynomial example (5.2) with τ ≈ h2.
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(a) Behaviour of the error and estimator

(b) Behaviour of the components of the estimator

(c) Comparison of the impact of different time accumulation types on the estimator

Figure 8. Behaviour of the error and estimator for the Crank-Nicolson scheme applied
to the polynomial example (5.2) with τ ≈ h.
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