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EXISTENCE, UNIQUENESS AND STRUCTURE OF SECOND

ORDER ABSOLUTE MINIMISERS

NIKOS KATZOURAKIS AND ROGER MOSER

Abstract. Let Ω ⊆ Rn be a bounded open C1,1 set. In this paper we prove

the existence of a unique second order absolute minimiser u∞ of the functional

E∞(u,O) := ‖F(·,∆u)‖L∞(O), O ⊆ Ω measurable,

with prescribed boundary conditions for u and Du on ∂Ω and under natural

assumptions on F. We also show that u∞ is partially smooth and there exists
a harmonic function f∞ ∈ L1(Ω) such that

F(x,∆u∞(x)) = e∞ sgn
(
f∞(x)

)
for all x ∈ {f∞ 6= 0}, where e∞ is the infimum of the global energy.

1. Introduction

For n ∈ N, let Ω ⊆ Rn be a bounded open set and let also F : Ω×R −→ R be a
real function that is L(Ω)⊗ B(R)-measurable, namely, measurable with respect to
the product σ-algebra of the Lebesgue subsets of Ω with the Borel subsets of R. In
this paper we consider variational problems for second order supremal functionals
of the form

(1.1) E∞(u,O) :=
∥∥F(·,∆u)

∥∥
L∞(O)

, O ⊆ Ω measurable,

where the admissible functions u range over the (Fréchet) Sobolev space

(1.2) W2,∞(Ω) :=
⋂

1<p<∞

{
u ∈W 2,p(Ω) : ∆u ∈ L∞(Ω)

}
.

The following is a natural notion of minimiser for variational problems of this type.

Definition 1 (Second order absolute minimisers). A function u ∈ W2,∞(Ω) is
called a second order absolute minimiser of (1.1) on Ω if

E∞(u,O) ≤ E∞(u+ φ,O)

for all open sets O ⊆ Ω and all φ ∈ W2,∞
0 (O).

Here we have used the obvious notationW2,∞
0 (O) :=W2,∞(O)∩W2,2

0 (O). Given

u0 ∈ W2,∞(Ω), we will also write W2,∞
u0

(Ω) = u0 +W2,∞
0 (Ω).

The concept of an absolute minimiser would be unnecessary for variational prob-
lems given in terms of integrals rather than the essential supremum, where it would
suffice to consider global minimisers on Ω for fixed boundary data. But here, since
the functional (1.1) is not a measure (not additive) in the domain argument, a global
minimiser of E∞(·,Ω) will not necessarily be a second order absolute minimiser.

Key words and phrases. ∞-Laplacian; ∞-Bilaplacian; Second Order absolute minimisers; Cal-
culus of Variations in L∞.
N.K. has been partially financially supported by the EPSRC grant EP/N017412/1.
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2 NIKOS KATZOURAKIS AND ROGER MOSER

Example. For Ω = (−1, 0)∪(0, 1), consider the functional E∞(u,O) = ‖u′′‖L∞(O)

and let Q(x) := xχ(−1,0)(x)−x(x−1)χ(0,1)(x), x ∈ Ω. Then Q is a global minimiser

of E∞(·,Ω) in W2,∞
Q (Ω) with E∞(Q,Ω) = 2 and is also a second order absolute

minimiser. However, for any function ζ ∈ C∞c (−1, 0) with 0 < ‖ζ ′′‖L∞(−1,0) < 1,

the perturbation Q + ζ still satisfies E∞(Q + ζ,Ω) = 2 and lies in W2,∞
Q (Ω), but

does not minimise E∞(·, (−1, 0)) over W 2,∞
Q ((−1, 0)) because the only minimiser

on (−1, 0) with boundary data Q is the identity.

On the other hand, if u ∈ W2,∞(Ω) minimises E∞(·,Ω) uniquely in W2,∞(Ω)
with respect to its own boundary conditions, then we will show that u is actually
the unique second order absolute minimiser. This is the situation that we will find
in the main results of this paper. We first give a condition that guarantees that
u is the unique minimiser for its boundary values on any subdomain. While it is
not obvious that this condition can be met, we will subsequently prove that it is
satisfied by exactly one function under given boundary conditions and very mild
additional assumptions.

In the following, we will use the symbolisation “sgn” for the sign function, with
the convention that sgn(0) = 0. We will assume also that

(1.3) Ω is a bounded connected open subset of Rn, n ≥ 1,

and

(1.4)

{
F : Ω× R −→ R is L(Ω)⊗ B(R)-measurable and for a.e.

x ∈ Ω, ξ 7→ F(x, ξ) is strictly increasing with F(x, 0) = 0.

Our first main result therefore is:

Theorem 2 (Criterion for unique minimisers). Suppose (1.3)-(1.4) hold and con-
sider (1.1) and a function u∗ ∈ W2,∞(Ω). If there exist a number e∗ ≥ 0 and a
function f∗ ∈ L1(Ω) satisfying

(1.5) ∆f∗ = 0, on Ω,

such that

(1.6) F(·,∆u∗) = e∗ sgn(f∗), a.e. on Ω,

then

E∞(u∗,O) < E∞
(
u∗ + φ,O

)
,

for any open O ⊆ Ω and any φ ∈ W2,∞
0 (O) \ {0}.

Namely, for any open subset O ⊆ Ω, the function u∗ is the unique global min-
imiser of E∞(·,O) in W2,∞

u∗ (O).

Consequently, any such function u∗ as in Theorem 2 is the unique second order
absolute minimiser as well as the unique minimiser in W2,∞(Ω) with respect to its
own boundary conditions on ∂Ω.

Clearly, (1.6) implies that e∗ = E∞(u∗,Ω) unless f∗ ≡ 0. If we fix boundary data
by choosing u0 ∈ W2,∞(Ω) and insist that u∗ ∈ W2,∞

u0
(Ω), then there is at most one

minimiser u∗ ∈ W2,∞
u0

(Ω) that satisfies the condition and e∗ is uniquely determined
as the infimum of E∞(·,Ω) over the space. On the other hand, the function f∗ is
not determined uniquely by the boundary conditions. Note further that since F(x, ·)
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is by assumption strictly increasing, (1.6) is equivalent to the next representation
formula for u∗:

∆u∗(x) = F(x, ·)−1
(
e∗ sgn

(
f∗(x)

))
, a.e. x ∈ Ω.

Moreover, by using standard argument involving Green functions (see e.g. [GT, Ch.
2]), we could represent u∗ in terms of F, f∗, e∗, u∗|∂Ω,Dνu∗|∂Ω.

Theorem 2 gives a connection between the variational problem and a PDE system
of second order equations with a parameter consisting of (1.5) and (1.6). We will
see later that under certain assumptions on Ω, F and the boundary data, the system
has in fact a solution (u∗, f∗, e∗) with f∗ 6≡ 0 if e∗ > 0. It then follows that (u∗, e∗)
is unique and the system is equivalent to unique global minimality under prescribed
boundary data. We may think of (1.5) and (1.6) as a PDE formulation of the L∞

variational problem. There does exist, however, a more conventional analogue of
the “Euler-Lagrange equation” for (1.1). This is the fully nonlinear PDE of third
order

(1.7) F(·,∆u)Fξ(·,∆u)
∣∣D(|F(·,∆u)|2

)∣∣2 = 0, on Ω.

A particular model case of (1.1)-(1.7) is what we call the “∞-Bilaplacian” and
arises from the choice F(x, ξ) = ξ. Then, equation (1.6) becomes ∆u∗ = e∗ sgn(f∗)
and (1.7) becomes ∆u|D(|∆u|2)|2 = 0. Due to the particular structure of the func-
tional (1.1), however, in this case (1.7) becomes redundant since all the structural
information of second order absolute minimisers can be obtained directly from the
L∞ variational problem.

For our existence result, we will assume that F : Ω× R −→ R satisfies

(1.8)



F ∈ C2(Ω× R),

F(x, 0) = 0, x ∈ Ω,

∃ c > 0 :


c ≤ Fξ(x, ξ) ≤

1

c
, (x, ξ) ∈ Ω× R,

F(x, ξ) Fξξ(x, ξ) ≥ −
1

c
, (x, ξ) ∈ Ω× R,

where subscripts of F denote partial derivatives. The conditions of (1.8) imply that
for any fixed x ∈ Ω the partial function |F(x, ·)| is level-convex on R (i.e. has convex
sublevel sets) but in general they do not imply convexity.

In addition to existence, we will prove that the absolute minimisers of the L∞

problem can be approximated by solutions of corresponding minimisers of Lp prob-
lems as p→∞. For p ∈ (1,∞), we therefore define

Ep(u) :=

( 
Ω

∣∣F(·,∆u)
∣∣p)1/p

, u ∈W 2,p(Ω)

where the slashed integral sign denotes the average over Ω.

Theorem 3 (Existence, structure and approximation). Let Ω satisfy (1.3) and also
have C1,1 boundary. Let also F satisfy (1.8) and fix a function u0 in W2,∞(Ω) with
∆u0 ∈ C(Ω).

(I) There exist a global minimiser u∞ ∈ W2,∞
u0

(Ω) of E∞(·,Ω) and a harmonic

function f∞ ∈ L1(Ω) such that

F(·,∆u∞) = e∞ sgn(f∞), a.e. on Ω,
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where e∞ = E∞(u∞,Ω). Further, f∞ 6≡ 0 if e∞ > 0.
(II) Let

Γ∞ := f−1
∞ ({0}).

If e∞ > 0, then u∞ belongs to C3,α(Ω \ Γ∞) for any α ∈ (0, 1) and Γ∞ is
a Lebesgue nullset. If e∞ = 0, then u∞ is a harmonic function.

(III) For p ∈ N, let

ep := inf
{

Ep(u) : u ∈W 2,p
u0

(Ω)
}
.

Then, for any p large enough there exists a global minimiser up ∈W 2,p
u0

(Ω)
of Ep satisfying Ep(up) = ep. Moreover, ep −→ e∞ as p → ∞ and there
exists a subsequence (p`)

∞
`=1 such that up` −−⇀ u∞ in the weak topology of

W2,∞(Ω) as `→∞. In addition,
up` −→ u∞, in C1(Ω),

D2up` −−⇀ D2u∞, in Lq(Ω,Rn×n) for all q ∈ (1,∞),

∆up` −→ ∆u∞, a.e. on Ω and in Lq(Ω) for all q ∈ (1,∞),

as ` → ∞. Furthermore, ∆up` −→ ∆u∞ locally uniformly on Ω \ Γ∞ if
e∞ > 0 and locally uniformly on Ω if e∞ = 0.

(IV) Let

(1.9) fp :=
1

ep−1
p

∣∣F(·,∆up)
∣∣p−2

F(·,∆up) Fξ(·,∆up)

if ep 6= 0 and fp ≡ 0 if ep = 0. Then, the harmonic function f∞ in (I) may
be chosen such that fp` −→ f∞ as ` → ∞ in the strong local topology of
C∞(Ω).

By invoking Theorem 2, an immediate consequence is that the modes of con-
vergence in Theorem 3(III) as p → ∞ are actually full and not just subsequential.
Also, known results on the regularity of nodal sets of solutions to elliptic equations
[HS] imply that Γ∞ is countably rectifiable, being equal to the union of countably
many smooth submanifolds of Ω and a set of vanishing (n− 2)-dimensional Haus-
dorff measure. This, however, uses only the fact that f∞ is harmonic and it seems
plausible that the full statement in (I) could give further information.

The optimal regularity of Γ∞ is an open question which we do not attempt to
answer here. Certainly, full regularity of the set Γ∞ cannot be expected as there
are limitations: in [KP2] it was noted that Γ∞ in general may not be a smooth
submanifold, as for certain data u0 the intersection of transversal lines in Ω was
observed in numerical experiments. In most cases the set Γ∞ is necessarily non-
empty and divides Ω into two distinct parts, whilst the equations F(·,∆u∞) = ±e∞
do not permit any solutions in W2,∞

u0
(Ω) for most boundary data, even if n = 1.

Therefore, the Laplacian of u∞ will have a jump on Γ∞ and, in terms of u∞, no
more regularity than W2,∞(Ω) can be expected (see the numerical and explicit
solutions in [KP2]).

Let us also note further that (I)–(IV) above have been obtained in [KP2] for
n = 1 and in some other special cases (although were not stated in this explicit
fashion), whilst the qualitative behaviour emerging here was observed numerically
for n = 2 and F(x, ξ) = ξ.

When combined, Theorem 2 and Theorem 3 imply in particular the following.
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Corollary 4. Under the hypotheses of Theorem 3, there exists a unique global
minimiser u∞ of E∞(·,Ω) in W2,∞

u0
(Ω), which is a second order absolute minimiser

and a strong solution to the Dirichlet problem for (1.7): F(·,∆u)Fξ(·,∆u)
∣∣D(|F(·,∆u)|2

)∣∣2 = 0, in Ω,
u = u0, on ∂Ω,

Du = Du0, on ∂Ω,

More precisely, u∞ is thrice differentiable a.e. on Ω and satisfies the PDE in the
pointwise sense.

The study of supremal functionals and of their associated equations is known
as Calculus of Variations in the space L∞. Second order variational problems in
L∞ have only relatively recently been studied and are still poorly understood. It
is remarkable that for our specific problem, we obtain not just unique absolute
minimisers, but also a fair amount of detailed information about their structures,
with relatively simple means. On the other hand, our methods take advantage of
the special structure of the problem and are unlikely to work in general, although
they allow the following modest generalisation: all of the preceding results hold for
the seemingly more general case where the Laplacian is replaced by the projection
A : D2u =

∑
i,j AijD

2
iju on a fixed positive symmetric matrix A ∈ Rn×n+ . This

gives rise to the following functional:

E∞(u,O) =
∥∥F(·,A :D2u)

∥∥
L∞(O)

, O ⊆ Ω measurable.

However, this case can easily be reduced to the case we study herein via the change
of variables x 7→ ΛO>x for a diagonal n × n matrix Λ and an orthogonal matrix
O ∈ O(n) arising from the spectral representation A = OΛ2O>.

Some of the techniques that underpin Theorem 3 have been successfully deployed
to problems somewhat different to (1.1) (with dependence on u in addition to ∆u)
[MS, S1], which suggests that further generalisation might be possible. In order
to keep the presentation simple, however, we do not explore this possibility any
further in this work.

We conclude this introduction by placing the L∞ problem we study herein into
the wider context of Calculus of Variations. Variational problems for first order
functionals of the form

(1.10) (u,O) 7−→ ess sup
x∈O

H
(
x, u(x),Du(x)

)
, u ∈W 1,∞(Ω), O ⊆ Ω,

together with the associated PDEs, first arose in the work of Aronsson in the 1960s
[A1]–[A3]. The first order case is very well developed and the relevant bibliography
is very extensive. For a pedagogical introduction to the theme which is accessible
to non-experts, we refer to the monograph [K8] (see also [C]). The vectorial case of
(1.10) for maps u : Rn ⊇ Ω −→ RN is a much more modern and rapidly developing
topic which first arose in recent work of the first author in the early 2010s (see
[K1]–[K7], [K9]–[K13] as well as the joint works with Abugirda, Ayanbayev, Croce,
Kristensen, Manfredi, Pisante and Pryer [AK, KM, CKP, KP, KK, AyK]).

In a very recent paper, the first author, jointly with Pryer (see [KP2] and also
[KP3]), initiated the study of higher order variational problems and of their asso-
ciated PDEs. As a first step they considered functionals of the form

(u,O) 7−→ ess sup
x∈O

H
(
D2u(x)

)
, u ∈W 2,∞(Ω), O ⊆ Ω,
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with dependence on pure second derivatives only. Some preliminary investigations
(relevant to the second order case of energy density H(·, u, u′, u′′) when n = 1) had
previously been performed via different methods by Aronsson and Aronsson-Barron
in [A4, AB].

Apart from the intrinsic mathematical interest, the motivation to study higher
order L∞ minimisation problems comes from several diverse areas. In applied
disciplines like Data Assimilation in the geosciences, PDE-constrained optimisation
in aeronautics, etc. (see e.g. the model problem in [K9] and references therein, as well
as the classical monograph [L]), a prevalent underlying problem is the construction
of approximate solutions to second order ill-posed PDE problems. For instance, in
the modelling of aquifers, one needs to solve a Poisson equation ∆u = f coupled
with a pointwise constraint of the form K(u) = k for given functions f,K, k. By
minimising the error function |∆u−f |2+|K(u)−k|2 in L∞, one can obtain uniformly
(absolutely) best approximations.

Minimisation problems in L∞ similar to the above have also been studied in
the context of differential geometry and in questions related to the Yamabe prob-
lem. In particular, the second author, together with Schwetlick [MS], and subse-
quently Sakellaris [S1] considered the problem of minimising the scalar curvature
of a Riemannian metric on a given manifold and in a given conformal class. When
formulated in terms of differential operators, this gives rise to a functional similar
in structure to (1.1). This work uses different boundary conditions, however, and
no attempt is made to prove uniqueness or find second order absolute minimisers.
Nevertheless, some of the tools in the proofs of the above results originate in the
above quoted papers.

We close with some remarks about generalised solutions to the equations govern-
ing the “extremals” of Calculus of Variations in L∞. In the scalar first order case,
the theory of viscosity solutions of Crandall-Ishii-Lions (see [CIL, C, K8]) proved
to be an apt framework within which the generally non-smooth solutions to the so-
called Aronsson equation, which is a second order PDE, can be studied rigorously.
However, viscosity solutions are of purely scalar nature and fail to work in either
the vectorial or the higher order case (where we have either a second order system
with discontinuous coefficients, or a fully nonlinear third order PDE). In the recent
papers [K9, K10] a new theory of generalised solutions has been introduced which is
based on a probabilistic representation of derivatives which do not exist classically
and in the papers [AK, AyK, CKP, K11, K12, K13, KP, KP2, KP3] several results
have been obtained in this framework. However, in the setting of the present paper,
the particular structure of the problem at hand allows to prove directly existence
of strong solutions to the fully nonlinear PDE (1.7).

2. Proofs

In this section we establish the proofs of Theorems 2 and 3 and of Corollary 4.

Proof of Theorem 2. Fix φ ∈ W2,∞
0 (Ω) with φ 6≡ 0 on Ω. Since f∗ is a harmonic

function in L1(Ω), it follows that

(2.1)

ˆ
Ω

f∗∆φ = 0.

We set

Γ∗ := f−1
∗ ({0}).
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By standard results on the nodal set of solutions to elliptic equations [HS] and the
connectedness of Ω, it follows that if f∗ 6≡ 0 then Γ∗ is a Lebesgue nullset and if
f∗ ≡ 0 then Γ∗ = Ω.

Let us first consider the case f∗ 6≡ 0. Note that ∆φ cannot vanish almost
everywhere on Ω (as this would imply that φ ≡ 0 by uniqueness of solutions of the
Dirichlet problem for the Laplace equation). Therefore, we deduce that f∆φ 6= 0
on a subset of positive Lebesgue measure in Ω. Hence, (2.1) implies that there exist
measurable sets Ω± ⊆ Ω with Ln(Ω±) > 0 such that

±f∗∆φ > 0, a.e. on Ω±,

where Ln denotes the n-dimensional Lebesgue measure. If (1.6) holds true, then
we have |F(·,∆u∗)| = e∗ a.e. on Ω and

sgn(∆u∗) = sgn(f∗) = sgn(∆φ), a.e. on Ω+.

As F(x, ·) is strictly increasing for a.e. x ∈ Ω, this gives that

|F(·,∆u∗ + ∆φ)| > |F(·,∆u∗)| = e∗, a.e. in Ω+.

Therefore,

E∞(u∗,Ω) = e∗ < E∞(u∗ + φ,Ω).

It remains to consider the case f∗ ≡ 0. Then, the hypothesis (1.6) implies that
∆u∗ = 0 almost everywhere and so E∞(u∗,Ω) = 0. On the other hand, by arguing

as above it follows that E∞(u∗ + φ,Ω) > 0 for any φ ∈ W2,∞
0 (Ω) \ {0}. Hence, we

arrive at the same conclusion.
Finally, if O ⊆ Ω is a non-empty open set and φ ∈ W2,∞

0 (O) \ {0}, by repeating
the previous reasoning with O is the place of Ω and Γ∗ ∩ O in the place of Γ∗, we
obtain once again the strict inequality E∞(u∗,O) < E∞(u∗ + φ,O). The theorem
ensues. �

The proof of Theorem 3 is more involved and requires some preparation. We
begin with an elementary preliminary result.

Lemma 5. Let Ω ⊆ Rn be an open set and F ∈ C2(Ω × R) a function satisfying
(1.8). Then

sgn
(
F(x, ξ)

)
= sgn(ξ),(2.2)

1

c
|ξ| ≥

∣∣F(x, ξ)
∣∣ ≥ c|ξ|,(2.3) (

|F(x, ·)|p
)
ξξ

(ξ) ≥ 0, if p ≥ 1

c3
+ 1,(2.4)

Fξ(x, ξ) |ξ| ≥ c2|F(x, ξ)|,(2.5)

for all (x, ξ) ∈ Ω× R, where c > 0 is the same constant as in (1.8).

Proof of Lemma 5. We first note that (2.2) is obvious, while (2.3) follows, by
integration, from F (x, 0) = 0 and the bounds c ≤ F(x, ·) ≤ 1/c of (1.8). For (2.4),
we differentiate in ξ and use (1.8). Then(

|F|p
)
ξξ

= p|F|p−2
(

F Fξξ + (p− 1)(Fξ)
2
)

≥ p|F|p−2
(
− 1

c
+ (p− 1)c2

)
,
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which establishes the desired bound. Finally, (2.5) is a consequence of (1.8), which
gives |ξ|Fξ(x, ξ) ≥ c|ξ|, and of (2.3), which gives c|ξ| ≥ c2|F(x, ξ)|. �

We will construct the solutions to our problem by approximation with minimisers
of Lp functionals. Therefore, we need to understand the behaviour of the latter.

Proposition 6. Suppose that F ∈ C2(Ω × R) satisfies (1.8). Then for any p >
c−3 + 1 there exists a minimiser up of Ep over the space W 2,p

u0
(Ω). Moreover, up is

a weak solution to the Dirichlet problem for the Euler-Lagrange equation associated
with the functional Ep:

∆
(∣∣F(·,∆u)

∣∣p−2
F(·,∆u) Fξ(·,∆u)

)
= 0, in Ω,

u = u0, on ∂Ω,
Du = Du0, on ∂Ω.

Furthermore, there exist a (global) minimiser u∞ of the functional E∞(·,Ω) over
the space W2,∞

u0
(Ω) such that Ep(up) −→ E∞(u∞,Ω) as p→∞. Also, there exists

a subsequence (p`)
∞
1 such that{
up` −→ u∞, in C1(Ω),

D2up` −−⇀ D2u∞, in Lq(Ω,Rn×n), for all q ∈ (1,∞),

as `→∞.

Proof of Proposition 6. By (2.3)–(2.4) of Lemma 5, for p > c−3+1 the functional
Ep is convex in W 2,p

u0
(Ω) and

Ep(u) ≥ c(Ln(Ω))−1/p‖∆u‖Lp(Ω),

for any u ∈ W 2,p
u0

(Ω). Since u − u0 ∈ W 2,p
0 (Ω), by the Calderon-Zygmund Lp

estimates (e.g. [GT, GM]) and the Poincaré inequality we have a positive constant
c0 = c0(p,Ω) that

(2.6) ‖∆u‖Lp(Ω) ≥ c0 ‖u‖W 2,p(Ω) − (c0 + 1)‖u0‖W 2,p(Ω).

Hence, Ep is coercive on W 2,p
u0

(Ω) and by setting

ep := inf
{

Ep(u) : u ∈W 2,p
u0

(Ω)
}

we also have the bound

0 ≤ ep ≤ Ep(u0) < ∞
because u0 ∈W 2,p(Ω). By applying the direct method of the Calculus of Variations
(e.g. [D]), we deduce the existence of a global minimiser up ∈ W 2,p

u0
(Ω). Further,

Ep is Gateaux differentiable at the minimiser as a result of the bound∣∣|F(·, ξ)|p−1Fξ(·, ξ)
∣∣ ≤ C|ξ|p−1

and well-known results (see e.g. [D, GM]).
Consider a family of minimisers (up)p≥p0 where

p0 :=
{

integer part of max{n, c−3}+ 1
}

and fix k ∈ N. For any p ≥ k, by (2.3), Hölder’s inequality and the minimality we
have

(2.7) c ‖∆up‖Lk(Ω)

(
Ln(Ω)

)−1/k ≤ Ek(up) ≤ Ep(up) ≤ Ep(u0) ≤ E∞(u0,Ω)
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and hence (∆up)p≥p0 is bounded in Lk(Ω). By the previous arguments and (2.6),
we conclude that (up)p≥p0 is bounded in W 2,k

u0
(Ω) for any k ∈ N. By a standard

diagonal argument, weak compactness and the Morrey theorem, there exists

u∞ ∈
⋂

1<k<∞

W 2,∞
u0

(Ω)

such that the desired convergences hold true along a subsequence as p` →∞. When
we pass to the limit as ` → ∞ in (2.7), the weak lower semicontinuity of the Lk

norm implies

‖∆u∞‖Lk(Ω) ≤
(Ln(Ω))1/k

c
E∞(u0,Ω).

Letting k → ∞ we obtain ∆u∞ ∈ L∞(Ω). Thus, u∞ ∈ W2,∞
u0

(Ω), as desired. It
remains to show the convergence of Ep(up) and minimality of u∞.

Hölder’s inequality and minimality show that

Ep(up) ≤ Ep(uq) ≤ Eq(uq), whenever p ≤ q.

Therefore, the limit lim
p→∞

Ep(up) exists. Since up − u∞ ∈ W 2,p
0 (Ω), for any φ ∈

W2,∞
0 (Ω) the minimality and Hölder’s inequality imply

E∞(u∞,Ω) = lim
k→∞

Ek(u∞)

≤ lim inf
k→∞

(
lim inf
`→∞

Ek(up`)
)

≤ lim
p→∞

Ep(up)

≤ lim sup
p→∞

Ep(u∞ + φ)

≤ E∞(u∞ + φ,Ω).

(2.8)

Inequality (2.8) implies that u∞ is indeed a global minimiser of E∞(·,Ω) over
W2,∞
u0

(Ω). In addition, the choice φ = 0 in (2.8) gives

E∞(u∞,Ω) ≤ lim
p→∞

Ep(up) ≤ E∞(u∞,Ω)

and hence Ep(up) −→ E∞(u∞,Ω), as claimed. �

The next result is an essential part of our constructions and this is the only point
at which we make use of the C1,1 boundary regularity of ∂Ω and the slightly higher
regularity of the boundary condition u0 ∈ W2,∞(Ω) (that is, that the Laplacian
∆u0 is continuous on Ω).

Subsequently, we will be using the following symbolisation for the r-neighbourhood
of the boundary ∂Ω in Ω:

Ωr := {x ∈ Ω : dist(x, ∂Ω) < r},

for r > 0.

Lemma 7 (Improving the the boundary data). Let Ω ⊆ Rn be a bounded open
set with C1,1 boundary and consider a function u0 ∈ W2,∞(Ω) with ∆u0 ∈ C(Ω).
Then, for any ε > 0 there exist a number r = r(ε) > 0 and a function w = w(ε) ∈
W2,∞
u0

(Ω) such that

‖∆w‖L∞(Ωr) ≤ ε.
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In other words, given any boundary condition u0 ∈ W2,∞(Ω) such that ∆u0 is
continuous up to the boundary, we can find another function w in the same space
with the same boundary data, the Laplacian of which is as small as desired in a
neighbourhood of the boundary.

Proof of Lemma 7. Since ∂Ω is C1,1-regular, the result of the appendix establishes
that the distance function dist(·, ∂Ω) belongs to C1,1(Ω2r0) for some r0 > 0 small
enough.

Let d be an extension of dist(·, ∂Ω) from Ωr0 to Ω which is in the space W 2,∞(Ω).
Extend ∆u0 and d by zero on Rn \ Ω. Let (ηδ)δ>0 ⊆ C∞c (Rn) be a standard
mollifying family (as e.g. in [E]). We set

(2.9) vδ := u0 −
d2

2

(
ηδ ∗∆u0

)
.

Then vδ − u0 ∈ W2,∞
0 (Ω) since d = 0 on ∂Ω and

Dvδ = Du0 − d

{
d

2
D
(
ηδ ∗∆u0

)
+
(
ηδ ∗∆u0

)
Dd

}
,

D2vδ = D2u0 −
(
Dd⊗Dd

)(
ηδ ∗∆u0

)
− d

{
d

2
D2
(
ηδ ∗∆u0

)
+ D

(
ηδ ∗∆u0

)
⊗Dd + Dd⊗D

(
ηδ ∗∆u0

)
+
(
ηδ ∗∆u0

)
D2d

}
.

By using that

tr(Dd⊗Dd) = |Dd|2 = 1 on Ωr0 ,

for 0 < r < r0 we deduce

‖∆vδ‖L∞(Ωr) ≤
∥∥∆u0 − ηδ ∗∆u0

∥∥
L∞(Ωr0

)
+ C1r

(∥∥∆u0 ∗D2ηδ
∥∥
L∞(Rn)

+
∥∥∆u0 ∗Dηδ

∥∥
L∞(Rn)

+
∥∥∆u0

∥∥
L∞(Rn)

)(2.10)

for some constant C1 > 0. Since

ηδ(x) = δ−nη(|x|/δ)

for some fixed function η ∈ C∞c (B1(0)), by Young’s inequality for convolutions we
have the estimate

(2.11)
∥∥∆u0 ∗Dkηδ

∥∥
L∞(Rn)

≤ 1

δk
∥∥∆u0

∥∥
L∞(Rn)

‖Dkη‖L1(Rn), k = 1, 2.

Hence, by invoking (2.11) we see that (2.10) gives

‖∆vδ‖L∞(Ωr) ≤
∥∥∆u0 − ηδ ∗∆u0

∥∥
L∞(Ωr0 )

+ C2r

(
1

δ2
+

1

δ
+ 1

)∥∥∆u0

∥∥
L∞(Ωr0 )

,

where C2 = C1‖η‖W 2,1(Rn). By choosing

δ := r1/4

and also choosing r0 sufficiently small, we obtain the desired statement as a conse-
quence of the continuity of ∆u0. �

Now we can show that the minimiser u∞ obtained in Proposition 6 satisfies the
desired formula of part (I) in Theorem 3. The rest of the proof is then not difficult.
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Proof of Theorem 3. Let us begin by setting

e∞ := inf
{

E∞(u,Ω) : u ∈ W2,∞
u0

(Ω)
}
.

If e∞ = 0, then everything in Theorem 3 follows from Proposition 6 or is trivial.
(Note that in this case ep = 0 for every p and every minimiser of the corresponding
functionals is a harmonic function.) Therefore, we may assume that e∞ > 0.

Since ep −→ e∞ as p → ∞ by Proposition 6, it follows that ep > 0 for large p,
say for p ≥ p0. Then for all p ≥ p0, the formula in (IV) gives rise to a measurable
function fp : Ω −→ R. Then the Euler-Lagrange equation in Proposition 6 can be
expressed in the form

(2.12) ∆fp = 0, on Ω.

That is, fp is harmonic on Ω and hence belongs to C∞(Ω).
Let p′ = p/(p− 1) be the conjugate exponent of p ∈ (1,∞). Then (1.8) implies( 

Ω

|fp|p
′
)1/p′

=
1

ep−1
p

( 
Ω

∣∣∣Fp−1(·,∆up)Fξ(·,∆up)
∣∣∣p′)1/p′

≤ 1

c ep−1
p

( 
Ω

∣∣∣Fp−1(·,∆up)
∣∣∣p/(p−1)

)(p−1)/p

=
1

c
,

which gives the following uniform L1 bound of (fp)p≥p0 ⊆ C∞(Ω):

(2.13) ‖fp‖L1(Ω) ≤ Ln(Ω)

( 
Ω

|fp|p
′
)1/p′

≤ L
n(Ω)

c
.

By the mean value theorem for harmonic functions and by the standard interior
derivative estimates (e.g. [GT]) we have, for any k ∈ N∪{0} and for any compactly
contained O b Ω, a constant C = C(k,O,Ω) > 0 such that

‖Dkfp‖L∞(O) ≤ C‖fp‖L1(Ω).

Hence, the family (fp)p≥p0 is bounded (in the locally convex sense) in the topology
of C∞(Ω) and as a consequence there exist f∞ ∈ C∞(Ω) and a sequence p` → ∞
such that fp` −→ f∞ as `→∞. From (2.12) it follows that f∞ is harmonic:

(2.14) ∆f∞ = 0, on Ω.

Fix r > 0 and consider the inner r-neighbourhood Ωr of ∂Ω. Since fp` −→ f∞ in

C
(
Ω \ Ωr

)
, inequality (2.13) implies that

‖f∞‖L1(Ω\Ωr) = lim
`→∞

‖fp`‖L1(Ω\Ωr) ≤
Ln(Ω)

c
.

Letting r → 0 we conclude that f∞ ∈ L1(Ω) and

(2.15) ‖f∞‖L1(Ω) ≤
Ln(Ω)

c
.

We now show that f∞ 6≡ 0 using Lemma 7. Fix ε > 0 small and let r > 0 and
w ∈ W2,∞

u0
(Ω) be as constructed in Lemma 7 with |∆w| ≤ ε on the inner zone
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Ωr ⊆ Ω of the boundary ∂Ω. Since up − w ∈ W 2,p
0 (Ω), it is an admissible test

function and by (2.12), integration by parts givesˆ
Ω

fp ∆(up − w) = 0.

Hence, by the above together with (1.9), (1.8), (2.2) and (2.5), we obtainˆ
Ω

fp ∆w =

ˆ
Ω

fp ∆up

=
1

ep−1
p

ˆ
Ω

∣∣F(·,∆up)
∣∣p−2

F(·,∆up) Fξ(·,∆up)∆up

=
1

ep−1
p

ˆ
Ω

∣∣F(·,∆up)
∣∣p−1

Fξ(·,∆up) |∆up|

≥ c2

ep−1
p

ˆ
Ω

∣∣F(·,∆up)
∣∣p.

Thus,

(2.16)

ˆ
Ω

fp ∆w ≥ c2 Ln(Ω) ep.

Now, we use (2.16), (2.13) and Lemma 7 to estimate

c2 Ln(Ω) ep ≤
ˆ

Ωr

fp ∆w +

ˆ
Ω\Ωr

fp ∆w

≤ ε‖fp‖L1(Ω) +

ˆ
Ω\Ωr

fp ∆w

≤ εLn(Ω)

c
+

ˆ
Ω\Ωr

fp ∆w.

Recalling that ep` −→ e∞ and also fp` −→ f∞ in C
(
Ω \ Ωr

)
, we pass to the limit

as `→∞ to find that ˆ
Ω\Ωr

f∞∆w ≥ Ln(Ω)
(
c2 e∞ −

ε

c

)
.

By choosing ε > 0 small enough, we deduce thatˆ
Ω\Ωr

f∞∆w > 0,

which implies f∞ 6≡ 0, as claimed.
Let us now define the map

Φ : Ω× R −→ Ω× R, Φ(x, ξ) := (x,F(x, ξ)).

Under the assumption (1.8), this is a C2 diffeomorphism.
Since the inverse function of t 7→ |t|p−2t is given by s 7→ sgn(s)|s|1/(p−1), we may

rewrite the formula (1.9) defining the harmonic function fp, as

F(·,∆up) = ep|fp|
1

p−1
[
Fξ(·,∆up)

]− 1
p−1 sgn(fp)

or as

(2.17)
(
x,∆up(x)

)
= Φ−1

(
· , ep|fp|

1
p−1
[
Fξ(·,∆up)

]− 1
p−1 sgn(fp)

)
(x),



SECOND ORDER ABSOLUTE MINIMISERS 13

for x ∈ Ω \ Γ∞. On any compact set K ⊆ Ω \ Γ∞, we have the uniform con-
vergence fp` −→ f∞ as ` → ∞, whereas Fξ is uniformly bounded from above
and below by (1.8). Hence, by restricting ourselves along the subsequence p` and
letting ` → ∞ we obtain uniform convergence of the right-hand side of (2.17) to
Φ−1 (·, e∞ sgn(f∞)) on K. But since we already know that ∆up −−⇀ ∆u∞ weakly
in L2(Ω), it follows that

(2.18)
(
x,∆u∞(x)

)
= Φ−1

(
x, e∞ sgn

(
f∞(x)

))
, x ∈ K.

As a consequence,

F
(
x,∆u∞(x)

)
= e∞ sgn

(
f∞(x)

)
, x ∈ K.

Now let us recall that Ln(Γ∞) = 0. This is a consequence of general regularity
results for nodal sets of solution to elliptic equations [HS]. The statement of item
(I) then follows.

In order to prove item (II), we note that (2.18) implies that ∆u∞ ∈ C2(Ω\Γ∞).
The desired statement then follows from standard Schauder theory [GT].

For item (III), first recall the subsequential convergence of the Ep-minimisers
(up)

∞
1 of Proposition 6 along (p`)

∞
1 as `→∞. We also have the desired respective

convergence of the global infima (ep)
∞
1 of the energies.

The a.e. convergence of the Laplacians (∆up`)
∞
`=1 follows from the fact that

Ω\Γ∞ has full Lebesgue measure and that the sequence converges locally uniformly
thereon.

The strong convergence of the Laplacians (∆up`)
∞
`=1 in Lq(Ω) for all q ∈ (1,∞) is

a consequence of the Vitaly convergence theorem (see e.g. [FL]) and of the following
facts:
i) the weak convergence of the Laplacians over the same spaces,
ii) the a.e. convergence of the Laplacians on Ω,
iii) the boundedness of Ω,
iv) the Lq equi-integrability estimate

‖∆up`‖Lq(E) ≤
(

sup
`∈N
‖∆up`‖Lq+1(Ω)

)(
Ln(E)

) 1
q(q+1)

which holds true for any measurable subset E ⊆ Ω.
Finally, the statement in part (IV) has already been proven. �

We conclude this section by noting that Corollary 4 is an immediate consequence
of Theorem 2, Theorem 3, and the observation that Ln(Γ∞) = 0 if e∞ > 0. On the
other hand, u∞ is a harmonic function if e∞ = 0 and the result follows trivially.

Appendix: C1,1 regularity of the distance function for C1,1 domains

Suppose that Ω ⊆ Rn is a bounded open set with C1,1 boundary ∂Ω. Let

d ≡ dist(·, ∂Ω) : Ω −→ R

symbolise the distance function to the boundary. For r > 0, let Ωr denote again
the inner r-neighbourhood of ∂Ω in Ω:

Ωr = {x ∈ Ω : d(x) < r}.

In this appendix we establish that d ∈ C1,1(Ωr) when r is sufficiently small. This
fact is probably known but we couldn’t locate a precise reference in the literature.



14 NIKOS KATZOURAKIS AND ROGER MOSER

The C2 regularity of the distance function for a C2 boundary ∂Ω is a classical result,
see e.g. [GT, Appendix 14.6]. On the other hand, the case of C1 regularity of the
distance function when the boundary ∂Ω is C1 holds under the extra hypothesis
that the distance is realised at one point; see e.g. [F].

In order to prove the desired C1,1 regularity of the distance function near ∂Ω
when the boundary itself is a C1,1 manifold (which we utilised in Lemma 7), we
first note the following fact: suppose that r > 0 is such that 1/r is larger than the
essential supremum of the curvature of ∂Ω. If x ∈ Ω and y ∈ ∂Ω with |x−y| = s ≤ r
and such that the tangent hyperplanes of ∂Ω and ∂Bs(x) coincide at y, then it
follows that Bs(x) ⊆ Ω and ∂Bs(x) ∩ ∂Ω = {y}. (This is easy to see when ∂Ω is
C2 regular and follows by an approximation of ∂Ω with C2 manifolds otherwise.)
Therefore, in the above situation, it follows that d(x) = s. Moreover, for x ∈ Ω with
d(x) ≤ r, it follows that there exists a unique point y ∈ ∂Ω such that |x−y| = d(x).
Moreover, if ν denotes the outer normal vector on ∂Ω, then x = y − d(x)ν(y) and
Dd(x) = −ν(y).

Now fix x0 ∈ ∂Ω. Our aim is to prove C1,1 regularity of d near x0. To this end,
we may assume without loss of generality that there exist open sets U ⊆ Rn and
V ⊆ Rn−1 such that x0 ∈ U and 0 ∈ V and there exists a function f ∈ C1,1(V )
such that

Ω ∩ U =
{

(x′, xn) ∈ V × R : xn > f(x′)
}
∩ U

and such that x0 = (0, f(0)) and Df(0) = 0. Define

N(x′) :=
(−Df(x′), 1)√
1 + |Df(x′)|2

, x′ ∈ V,

so that N(x′) = −ν(x′, f(x′)) for x′ ∈ V . Note that this map is Lipschitz continu-
ous. We now define Ψ : V × R −→ Rn by

Ψ(x′, t) := (x′, f(x′)) + tN(x′).

Then Ψ is C0,1 near (0, 0). Note also that Ψ is injective in a sufficiently small
neighbourhood of (0, 0): if we had Ψ(x′, s) = Ψ(y′, t) =: z with 0 < s ≤ t ≤
r, then it would follow that ∂Bt(z) and ∂Ω have the same tangent hyperplanes
at (y′, f(y′)). By the above observations, this would imply that Bt(z) ⊆ Ω and
∂Bt(z) ∩ ∂Ω = {(y′, f(y′))}, and therefore x′ = y′ and s = t. So if U and V are
chosen appropriately, then Ψ is a bijection between V × [0, r) and U ∩Ω. Moreover,
we compute

DjΨi(x
′, t) = δij + tDjNi(x

′), i, j = 1, . . . , n− 1,

and

DjΨn(x′, t) = Djf(x′) + tDjNn(x′), j = 1, . . . , n− 1,

while

DtΨ(x′, t) = N(x′).

Since Df(0) = 0 and N(0) = (0, . . . , 0, 1), it follows that DΨ is of full rank in some
neighbourhood of (0, 0) and moreover, the inverse (DΨ)−1 is essentially bounded
in this neighbourhood. That is, by making V and r smaller if necessary, without
loss of generality we may assume that

Ψ−1 ∈ C0,1
(
U ∩ Ω;V × [0, r)

)
.
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Now note that

Dd(Ψ(x′, t)) = N(x′)

whenever t > 0 is small enough. Hence if π denotes the projection onto Rn−1×{0},
then we obtain the formula

Dd = N ◦ π ◦Ψ−1

near x0. The right-hand side is of class C0,1, and thus d is of class C1,1 near x0. A
compactness argument then proves the above statement.

Acknowledgement. N.K. would like to thank Craig Evans, Juan Manfredi,
Robert Jensen, Jan Kristensen, Giles Shaw and Tristan Pryer for inspiring sci-
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