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EQUIVALENCE BETWEEN WEAK AND D-SOLUTIONS FOR

SYMMETRIC HYPERBOLIC FIRST ORDER PDE SYSTEMS

NIKOS KATZOURAKIS

Abstract. In a recent paper the author introduced a new theory of gen-

eralised solutions for fully nonlinear PDE systems which allows for merely
measurable solutions to systems of any order and with perhaps discontinuous

coefficients. This approach is a duality-free alternative to distributions and is

based on the probabilistic representation of limits of difference quotients via
Young measures over compactifications of the “state space”. Herein we show

that for symmetric hyperbolic systems with constant coefficients whereat both

weak solutions as well as D-solutions apply, the notions actually coincide.

1. Introduction

Let n,N ∈ N and T > 0 and consider the system of first order PDE

(1.1) Dtu + A :Du = f, u : (0, T )× Rn −→ RN ,

where A : RNn −→ RN is a constant map given by

(1.2) A :Q :=

N∑
α,β=1

n∑
i=1

(
AαβiQβi

)
eα ∈ RN , Q ∈ RNn,

and f : (0, T ) × Rn −→ RN . We obviously use the notation Du = (D1u, ...,Dnu)
for the spatial gradient with respect to x ∈ Rn, Dt denotes the partial temporal
derivative with respect to t > 0 and {e1, ..., eN} is the standard basis of RN and
we will assume that the unknown map u and the right hand side f are both in
L2
(
(0, T )× Rn,RN

)
. In index form the system (1.1) reads

Dtuα +

N∑
β=1

n∑
i=1

AαβiDiuβ = fα, α = 1, ..., N.

We will throughout this paper assume the hyperbolicity hypothesis

(1.3) Aαβi = Aβαi

for all indices α, β = 1, ..., N and all i = 1, ..., n. This implies that for each index i
the following matrix is symmetric

(1.4) Ai :=

N∑
α,β=1

Aαβi e
α ⊗ eβ ∈ RN×Ns

and hence for each i = 1, ..., n, the space RN has an orthonormal basis of eigen-
vectors {η(i)1, ..., η(i)N} with respective eigenvalues σ(Ai) = {c(i)1, ...., c(i)N}. The

Key words and phrases. Symmetric hyperbolic first order PDE systems, generalised solutions,
fully nonlinear systems, distributional solutions, Young measures.
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2 NIKOS KATZOURAKIS

symmetric hyperbolic system (1.1) plays an important role in many contexts for
both theory and applications.

In this paper we consider the question of equivalence between two completely
different notions of generalised solutions to (1.1) and by assuming a commutativity
hypothesis on the matrices Ai we prove their equivalence. The first one in the usual
notion of weak solutions defined by duality∫

(0,T )×Rn

{
uαDtφ +

N∑
β=1

n∑
i=1

Aαβi uβ Diφ + fα φ

}
= 0,

for all φ ∈ C0
c

(
(0, T )× Rn

)
. This is the standard natural notion of generalised

solution defined in terms of integration-by-parts. The second notion of solution has
very recently been proposed by the author in [K8, K9] and is a duality-free notion
of solution which applies to general fully nonlinear PDE systems of any order. The
a priori regularity required for this sort of solutions is just measurability and the
nonlinearities are also allows to be discontinuous. More precisely, let Ω ⊆ Rm be
an open set and

(1.5) F : Ω×
(
RM × RMm × RMm2

s × · · · × RMmp

s

)
−→ Rd

a Carathéodory map (that is F is measurable with respect to the first argument
and continuous with respect to the second). Here RMmp

s is the space of symmetric
tensors {

X ∈ RMmp
∣∣ Xαi1...ik...il...ip = Xαi1...il...ik...ip ,

α = 1, ...,M, is = 1, ...,m, s = 1, ..., p, 1 < k < l < p
}

wherein the pth order derivative

Dpu =
(
Dp
i1...ip

uα

)α=1,...,M

i1,...,ip∈{1,...,m}

of (smooth) mappings u : Ω ⊆ Rm −→ RM is valued. Our new theory applies to
measurable solutions of the pth order PDE system

(1.6) F
(
·, u,Du, ...,Dpu

)
= 0, on Ω.

Since in this approach we do not need to assume that the solutions are locally
integrable on Ω, the derivatives Du, ..., Dpu may not exist not even in the sense of
distributions.

The starting point of our notion in not based either on duality or on integration-
by-parts. Instead, it relies on the probabilistic representation of the limits of differ-
ence quotients by using Young (or parameterised) measures. The Young measures
have been introduced in the first half the previous century ([Y]) in order to show
existence of some sort of “relaxed” solutions to nonconvex minimisation problems
for which the infimum is not attained at a function. Today they are indispensable
tools in Calculus of Variations, PDE theory and they have also be studied in a very
abstract topological setting (see e.g. [E, M, P, FL, CFV, FG, V]). The standard use
of Young measures so far has been to quantify the failure of weak convergence to
be strong in approximating sequences. Typically this is a result of the combination
of phenomena of oscillations and/or concentrations (e.g. [DPM, KR]).

In our setting, Young measures are utilised in order to define generalised solutions
of (1.6) by applying it to the difference quotients of the candidate solution. Let
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us motivate the notion in the first order case p = 1 of (1.6) which is the only case

needed in this paper. Suppose that u : Ω ⊆ Rm −→ RM is a W 1,1
loc (Ω,RM ) strong

a.e. solution of the PDE system

(1.7) F
(
x, u(x), Du(x)

)
= 0, a.e. x ∈ Ω.

Then, observe that u is a solution if and only if for any compactly supported
function Φ ∈ C0

c

(
RMm

)
, we have∫

RNn
Φ(X)F

(
x, u(x), X

)
d[δDu(x)](X) = 0, a.e. x ∈ Ω.

Hence, if we view the weak derivative Du : Ω ⊆ Rm −→ RMm as a probability-
valued map δDu : Ω ⊆ Rm −→ P(RMm) given by the Dirac mass at the weak
gradient, this gives the idea that we may relax the requirement to be a concentration
measure and allow instead more general probability-valued maps arising as limits
of difference quotients for non-differentiable mappings. In order to derive such a
notion which extends strong solutions, we suppose that u is in W 1,1

loc (Ω,RM ) and
solves (1.7). By the equivalence between weak and strong L1 derivatives, we have
that along infinitesimal sequences (hν)∞ν=1, u satisfies

F
(
x, u(x), lim

ν→∞
D1,hνu(x)

)
= 0, a.e. x ∈ Ω,

where D1,h denotes the usual first difference quotients operator. Since F is assumed
continuous with respect to the gradient variable, this is equivalent to

lim
ν→∞

F
(
x, u(x), D1,hνu(x)

)
= 0, a.e. x ∈ Ω.

Note now that the above statement makes sense if u is merely measurable whereas
the limit may exist even if the initial limit does not. In order to represent it, we view
the difference quotients D1,hu as probability-valued maps δD1,hu : Ω −→P

(
RMm

)
over the Alexandroff compactification

RMm := RMm ∪ {∞},
that is as an element of the set of Young measures Y

(
Ω,RMm

)
which consists of

measurable probability-valued maps Ω −→P
(
RMm

)
(see Section 2 for the precise

definitions and for the properties of Young measures). By the weak* compactness
of Y

(
Ω,RMm

)
, even if u is merely measurable there always exist probability-valued

maps Du : Ω −→P
(
RMm

)
such that along subsequences we have

(1.8) δD1,hνu
∗−−⇀ Du in Y

(
Ω,RMm

)
, as ν →∞.

Then, by a simple convergence argument it follows that strong solutions satisfy

(1.9)

∫
RMm

Φ(X)F
(
x, u(x), X

)
d[Du(x)](X) = 0, a.e. x ∈ Ω,

for any compactly supported “test” function Φ ∈ C0
c

(
RMm

)
and any “diffuse de-

rivative” Du. We stress that (1.8) and (1.9) are independent of the regularity of
u. In the event that u is weakly differentiable, then Du is unique and coincides
with the Dirac mass δDu a.e. on Ω. Up to a small adaptation of the idea (we need
to take difference quotients with respect to special orthonormal bases depending
on the coefficients) (1.8) and (1.9) essentially constitute the definition of diffuse
derivatives of the map u : Ω ⊆ Rm −→ RM and of D-solutions to the PDE
system (1.7) respectively.
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In this paper we restrict our attention to the case of the 1st order linear hyper-
bolic system (1.1) with constant coefficients and compare the notion of D-solutions
to the usual notion of weak solutions for (1.1). The main result of this paper is
Theorem 9 (and Corollary 10) which says that D-solutions and weak solutions for
(1.1) coincide if the matrices Ai of (1.4) commute. The latter hypothesis is triv-
ially satisfied if either we are in one spatial dimension (n = 1) or in the scalar
case (N = 1). We also obtain extra information regarding the partial regularity of
the solution to the system (in either senses) along certain rank-one lines of RN+Nn

which we explain below in the idea of the proof.
Theorem 9 is particularly significant for the following reasons. Firstly, (1.1) is

an archetypal linear hyperbolic model of two classes of nonlinear PDE of major im-
portance, that is of systems of conservation laws and of systems of Hamilton-Jacobi
equations. Herein we show that when both weak solutions and D-solutions apply,
these two independent approaches actually coincide on their common domain of
applicability. This is further strong evidence (on top of the existence-uniqueness
results obtained in [K8, K9] which we summarise below) that D-solutions are a
“proper” duality-free counterpart of distributions, since they appear to be an effi-
cient framework in which well-posedness of the Cauchy problem for fully nonlinear
systems such as

Dtu = F (·, u,Du), u : (0, T )× Rn −→ RN ,

can be considered and studied.
Secondly, we provide new insights on the analytic structure of the newly pro-

posed generalised objects complementing those of [K8]. As we demonstrate later
in Remark 8, unlike distributional derivatives, diffuse derivatives in general do not
behave linearly. Without extra hypotheses, the sum of two D-solutions to a linear
equation may not be a D-solution unless one of them is regular. As a byproduct of
Theorem 9, it follows that D-solutions become a “linear” notion for linear hyper-
bolic systems and hence a linear combination of D-solutions to (1.1) is a D-solution
itself. Further, although it is fairly obvious from the motivations that D-solutions
are compatible with strong and classical solutions, there is no direct connection
between D-solutions and nonsmooth distributional solutions. Formally, however, it
can be easily seen that the distributional derivatives coincide with the barycentres
of the diffuse derivative measures (Remark 8). The results herein in a sense confirm
this claim rigorously.

The essential idea of the proof of Theorem 9 is the following. First, by using
approximation and some partial regularity estimates, we show that a map u ∈
L2((0, T ) × Rn,RN ) is a weak solution to (1.1) if and only if the distributional
space-time gradient (Dtu,Du) has a projection along a certain subspace of RN+Nn

which is given by an L2 matrix-valued map (Lemmas 11, 12). We follow the ideas of
[K8] and formalise this by using an extension of the classical Sobolev spaces which
we call “fibre spaces”. The fibre space consists of partially differentiable maps only
along certain rank-one directions of RN+Nn which correspond to the directions of
non-degeneracy of (1.1). The commutativity hypothesis on the matrices Ai gives
the necessary condition that the subspace of non-degeneracies of the system (on
which we have estimates) is spanned by rank-one directions. Then, we use the
machinery of D-solutions in order to characterise this partially regular object in
the fibre space as a D-solution to (1.1) (Lemma 13, Remark 14).
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Our motivation to introduce and study generalised solutions primarily comes
from the necessity to study rigorously the equations arising in vectorial Calculus of
Variations in the space L∞ and in particular the model of the ∞-Laplace system.
Calculus of Variations in L∞ concerns the study of variational problems of the
so-called supremal functionals as well as of its associated analogues of the Euler-
Lagrange equations. The field has a relatively short history which was started in the
1960s by Aronsson ([A1]-[A5]) who was the first to consider variational problems
for functionals of the form

(1.10) E∞(u,Ω) :=
∥∥H(·, u,Du)

∥∥
L∞(Ω)

and to study its associated equations. The study of (1.10) is inherently interesting
both from the viewpoint of applications as well as from the purely mathematical
side. On the one hand, minimisation of the maximum “energy” provides more
realistic models as opposed to the classical case of minimisation of the average “en-
ergy” (integral). For instance, it is more realistic to know the maximum tolerance
of a material to destructive forces rather than the average. On the other hand,
the equations in L∞ are nondivergence and highly degenerate. Until recently, the
study of (1.10) was restricted exclusively to the scalar case. In the scalar case, the
theory of viscosity solutions of Crandall-Ishii-Lions proved to be the proper setting
for the L∞ equations (see [K] for a pedagogical introduction). In the vectorial
case, though, the absence of an efficient theory of generalised solutions hindered
the rigorous study of the systems arising in L∞. The vectorial case of (1.10) has
been pioneered by the author in a series of recent papers ([K1]-[K6], [K8, K9]). In
the simplest model case of the functional

(1.11) E∞(u,Ω) =
∥∥|Du|2∥∥

L∞(Ω)

applied to Lipschitz maps u : Ω ⊆ Rm −→ RM (where |Du| is the Euclidean norm
on RMm), the analogue of the Euler-Lagrange equation is the ∞-Laplace system:

(1.12) ∆∞u :=
(
Du⊗Du+ |Du|2[Du]⊥⊗ I

)
: D2u = 0.

In (1.12), the symbol [Du]⊥ denotes the orthogonal projection on the orthogonal
complement of the range of the gradient

[Du(x)]⊥ := Proj(R(Du(x)))⊥

and in index form the ∞-Laplacian reads

M∑
β=1

m∑
i,j=1

(
DiuαDjuβ + |Du|2[Du]⊥αβ δij

)
D2
ijuβ = 0, α = 1, ...,M.

In the recent paper [K8], among other things we proved existence of D-solutions to
the Dirichlet problem for the ∞-Laplace system and in [K9] we proved existence
for the equations arising from the functional (1.10) but in one spatial dimension.
The methods used therein varied and were based on the analytic “counterpart”
of Gromov’s convex integration (the Dacorogna-Marcellini Baire category method
[DM]) for differential inclusions and on a priori estimates and Lp approximations
as p → ∞. In the paper [K8] we also considered the Dirichlet problem for fully
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nonlinear degenerate elliptic systems{
F (·, D2u) = f, in Ω,

u = 0, on ∂Ω,

and we proved existence and uniqueness of a D-solution to the problem (which in
general may not be even once weakly differentiable).

2. Theory of D-solutions for fully nonlinear systems

2.1. Preliminaries. We begin with some notation and some basic facts which will
be used throughout the paper, perhaps without explicitly quoting this subsection.

Basics. Our measure theoretic and function space notation is either standard,
e.g. as in [E2, EG] or self-explanatory. The norms | · | appearing will always be
the Euclidean, while the Euclidean inner products will be denoted by either “·” on
Rm,RM or by “:” on matrix spaces, e.g. on RMm we have

|X|2 =

M∑
α=1

m∑
i=1

XαiXαi ≡ X :X,

etc. The symbol “:” will also be used to denote higher order contractions as e.g.
in (1.1), (1.2) but the exact meaning will be clear form the context. The standard
bases on Rm, RM , RMm will be denoted by {ei| i}, {eα|α} and {eα ⊗ ei|α, i}
respectively. For the main part of the paper, we will take M = N and m = n + 1
and RMm = RN+Nn.

We will follow the convention of denoting vector subspaces of RMm as well as
the orthogonal projections on them by the same symbol. For example, if Π ⊆ RMm

is a subspace, we denote the projection ProjΠ : RMm −→ RMm by just Π.
We will also use the 1-point compactification of RMm which will be denoted by

RMm := RMm ∪ {∞}.
Its metric distance will be the usual one which makes it isometric to the sphere of the
same dimension (via the stereographic projection which identifies the point infinity
{∞} with the north pole of the sphere). RMm will be viewed as a metric vector
space isometrically contained into its compactification RMm. We note that balls
and distances taken in RMm will be the Euclidean and we will employ orthonormal
expansions with respect to the usual inner product of RMm (see the next paragraph)
but this will cause no confusion since the underlying topology is the same.

Derivatives & difference quotients with respect to general bases. In the
sequel we will express derivatives and difference quotients with respect to non-
standard orthonormal bases. Let {E1, ..., EM} be an orthonormal basis of RM and
suppose that for each α = 1, ...,M we have an orthonormal basis {E(α)1, ..., E(α)m}
of Rm. Given such bases, we will equip RMm with the induced orthonormal basis

RMm = span[
{
Eαi |α, i

}
], Eαi := Eα ⊗ E(α)i.(2.1)

Then, if DE(α)i denotes the directional derivative along E(α)i, the gradient Du of
a regular map u : Ω ⊆ Rm −→ RM defined on an open set Ω can be written as

(2.2) Du =

M∑
α=1

m∑
i=1

(
Eαi : Du

)
Eαi =

M∑
α=1

m∑
i=1

(
DE(α)i(Eα · u)

)
Eαi.
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Further, let u : Ω ⊆ Rm −→ RM be any measurable map which we understand to
be extended by zero on Rm \ Ω. For any a ∈ Rn with |a| = 1 and h ∈ R \ {0}, the
difference quotients of u along the direction a at x will be denoted by

(2.3) D1,h
a u(x) :=

1

h

[
u(x+ ha)− u(x)

]
.

Given any infinitesimal sequence (hν)∞ν=1 ⊆ R \ {0} with hν → 0 as ν → ∞, we
define the difference quotients of u (with respect to the fixed reference frames)
arising from (hν)∞ν=1 as

D1,hνu : Ω ⊆ Rm −→ RMm, D1,hνu :=

M∑
α=1

m∑
i=1

[
D1,hν
E(α)i(E

α · u)
]
Eαi.(2.4)

In the above, D1,hν
E(α)iu is as in (2.3) and Eαi as in (2.1).

Young Measures. Let E ⊆ Rm be a (Lebesgue) measurable and consider the
L1 space of strongly measurable maps valued in C0

(
RMm

)
, that is in the space of

continuous functions over RMm:

L1
(
E,C0

(
RMm

))
.

For background material on this space we refer e.g. to [FL, FG, Ed, V] (and refer-
ences therein) as well as to [K8, K9]. The elements of this space can be identified
with the Carathéodory functions

Φ : E × RMm −→ R, (x,X) 7→ Φ(x,X)

in the sense that E 3 x 7→ Φ(x, ·) ∈ C0
(
RMm

)
. The norm of the space is given by

‖Φ‖L1(E,C0(RMm)) :=

∫
E

(
max
RMm

∣∣Φ(x, ·)
∣∣) dx.

The dual space is given by(
L1
(
E,C0

(
RMm

)))∗
= L∞w∗

(
E,M

(
RMm

))
.

Here M
(
RMm

)
is the space of Radon measures equipped with the total variation

norm. The dual space L∞w∗
(
E,M

(
RMm

))
consists of weakly* measurable measure-

valued mappings

E 3 x 7−→ ϑ(x) ∈ M
(
RMm

)
,

that is, for any ϑ in the space and any fixed Φ ∈ C0
(
RMm

)
, the function

E 3 x 7−→
∫
RMm

Φ(X) d[ϑ(x)](X) ∈ R

is Lebesgue measurable. The duality pairing between the spaces is given by

〈·, ·〉 : L∞w∗
(
E,M

(
RMm

))
× L1

(
E,C0

(
RMm

))
−→ R,

〈ϑ,Φ〉 :=

∫
E

∫
RMm

Φ(x,X) d[ϑ(x)](X) dx

and the norm of the space L∞w∗
(
E,M

(
RMm

))
is the L∞-norm of the total variation:

‖ϑ‖L∞
w∗ (E,M(RMm)) := ess sup

x∈E
‖ϑ(x)‖

(
RMm

)
.
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Definition 1 (Young measures). The space of Young measures is the set of all
probability-valued mappings E ⊆ Rm −→ P

(
RMm

)
which are weakly* measur-

able. Hence, the set of Young measures can be identified with a subset of the unit
sphere of L∞w∗

(
E,M

(
RMm

))
:

Y
(
E,RMm

)
:=
{
ϑ ∈ L∞w∗

(
E,M

(
RMm

))
: ϑ(x) ∈P

(
RMm

)
, a.e. x ∈ E

}
.

We will equip the Young measures with the induced weak* topology (which is
metrisable and sequentially precompact on bounded sets because L1

(
E,C0

(
RMm

))
is separable).

Remark 2 (Properties of Y
(
E,RMm

)
). The next standard facts about Young

measures will be used systematically (see e.g. [FG]):

i) [Weakly* compact space] Y
(
E,RMm

)
is a convex and sequentially weakly*

compact set.

ii) [Functions as Young measures] The set of measurable mappings v : E ⊆
Rm −→ RMm can be embedded into Y

(
E,RMm

)
via the Dirac mass v 7→ δv given

by δv(x) := δv(x) (and the embedding is weakly* dense).

The next fact is a essentially a classical result but it plays a fundamental role
in our framework because it will guarantee compatibility of D-solutions and strong
solutions (its simple proof can be found e.g. in [K8]).

Lemma 3. Let Uν , U∞ : E ⊆ Rm −→ RMm be measurable maps, ν ∈ N. Then,
there are subsequences (νk)∞1 , (νl)

∞
1 such that:

(1) Uν −→ U∞ a.e. on E =⇒ δUνk
∗
−−⇀ δU∞ in Y

(
E,RMm

)
,

(2) δUν
∗
−−⇀ δU∞ in Y

(
E,RMm

)
=⇒ Uνl −→ U∞ a.e. on E.

Main definitions. We restrict our attention only to the first order case which is
relevant to the system (1.1) we consider herein. For the general case we refer to
[K8].

Definition 4 (Diffuse derivatives). Suppose we are given some fixed reference
frames as in (2.1). For any measurable map u : Ω ⊆ Rm −→ RM , we define
the diffuse gradients Du of u as the limits of the difference quotients D1,hνu
(see (2.3)-(2.4)) in the spaces of Young measures Y

(
E,RMm

)
which arise along

infinitesimal subsequences (hνk)∞1 ⊆ (hν)∞1 :

δ
D

1,hνk u
∗−−⇀ Du in Y

(
Ω,RMm

)
, as k →∞.

By the weak* compactness of Y
(
E,RMm

)
, every measurable map possesses

diffuse derivatives, in fact at least one for every infinitesimal sequence. In general
diffuse gradients may not be unique for nonsmooth maps but they are compatible
with weak derivatives:

Lemma 5 (Compatibility of weak and diffuse gradients). Suppose u ∈W 1,1
loc (Ω,RM ).

Then, the diffuse gradient Du is unique and we have δDu = Du a.e. on Ω.

The proof of Lemma 5 is an immediate consequence of Lemma 3 and of the
standard equivalence between weak and strong L1 derivatives. Now we give our
notion of solution to fully nonlinear first order PDE systems.
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Definition 6 (D-solutions of 1st order systems). Let Ω ⊆ Rm be open,

F : Ω×
(
RM × RMm

)
−→ Rd

a Carathéodory map and u : Ω ⊆ Rm −→ RM a map in W 1,1
loc (Ω,RM ). Suppose we

have fixed some reference frames as in (2.1) and consider the PDE system

(2.5) F
(
x, u(x), Du(x)

)
= 0, on Ω.

We say that u is a D-solution of (2.5) when for any diffuse gradient of u arising
from any infinitesimal sequence along subsequences (Definition 4)

δ
D

1,hνk u
∗−−⇀ Du in Y

(
Ω,RMm

)
, as k →∞

and for any Φ ∈ C0
c

(
RMm

)
, we have∫

RMm
Φ(X)F

(
x, u(x), X

)
d[Du(x)](X) = 0, a.e. x ∈ Ω.

The following result asserts the fairly obvious fact that D-solutions are compat-
ible with strong solutions.

Proposition 7 (Compatibility of D-solutions with strong solutions). Let F be a

Carathéodory map as above, u : Ω ⊆ Rm −→ RM a mapping in W 1,1
loc (Ω,RM ) and

consider the PDE system (2.5). Then, u is a D-solution on Ω if and only if u is a
strong a.e. solution on Ω.

The proof of Proposition 7 is an immediate consequence of Lemma 5 and of the
motivation of the notions.

Remark 8 (Nonlinearity of diffuse derivatives and relation to distributions). We
summarise here some of the discussions of [K8]. In the context of the usual notions
of solution (smooth, strong, weak, distributional), it is standard that the generalised
derivative is a linear operation. However, without extra assumptions this may be
false for diffuse derivatives; D-solutions are a genuinely nonlinear approach even
when we apply them to linear PDE. More precisely, let Ta : RMm → RMm denote
the translation by a. Given a Young measure ϑ ∈ Y

(
Ω,RMm

)
, we define ϑ ◦ Ta ∈

Y
(
Ω,RMm

)
by[

(ϑ ◦ Ta)(x)
]
(B) := [ϑ(x)]

(
(B \ {∞})− a

)
+ [ϑ(x)]

(
{∞}

)
,

for any Borel set B ⊆ RMm and a.e. x ∈ Ω. Hence, we translate the Euclidean
part of B while “infinity” is left intact (it can be seen as a push-forward measure as
well). It can be easily proved that (see [K8], also [FL]), given any two maps u, v :
Ω ⊆ Rm −→ RM for which one of them, say v, is in addition weakly differentiable,
we have

D(u+ v) = Du ◦ TDv, a.e. on Ω.

Regarding the relation between distributional and diffuse derivatives, we can in-
formally say that the barycentres of the diffuse derivatives are the distributional
derivatives. This can be seen as follows: if u ∈ L1(Rm), then we have D1,hu

∗−−⇀Du
in the distributions as h→ 0. Since D1,hu is the barycentre of the measure δD1,hu

and δD1,hνu
∗−−⇀Du in the Young measures, we roughly have bar(Du) = Du. How-

ever, this formal relation lacks precision primarily because it does not take into
account the loss of mass at ∞ which is the central “nonlinear” feature.
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3. Equivalence between weak and D-solutions for hyperbolic systems

3.1. Fibre spaces and the main result. Before stating our main result we need
some preparation. Given the map A of (1.2) which we assume satisfies the hyper-
bolicity hypothesis (1.3), we define the linear map

(3.1) A : RN+Nn −→ RN , A :X := X0 + A :X,

that is A is given by

RN+Nn 3 X ≡ [X0|X] 7−→
N∑
α=1

(
Xα0 +

N∑
β=1

n∑
i=1

AαβiXβi

)
eα ∈ RN .

The nullspace of A will be denoted as

(3.2) N(A) :=
{
X ∈ RN+Nn

∣∣ X0 + A :X = 0
}

and we consider its orthogonal complement

Π := N(A)⊥ ⊆ RN+Nn.(3.3)

By using (3.1)-(3.3) and the notation

(3.4)

{
x := (x0, x) ≡ (t, x) ∈ (0, T )× Rn,

Du(x) :=
(
Dtu(x), Du(x)

)
∈ RN+Nn,

when u : (0, T )×Rn −→ RN is a measurable map, we may rewrite the PDE system
(1.1) as

(3.5) A :Du(x) = f(x), x ∈ (0, T )× Rn,

when f ∈ L2
(
(0, T )× Rn,RN

)
. We will also use the obvious notation

D1,h
a u(x) =

u(x+ ha)− u(x)

h

for the space-time difference quotients of u, the obvious analogues of the expansions
(2.1)-(2.4) with respect to bases of R1+n, RN , RN+Nn and the notation Du for the
diffuse space-time gradient

δ
D

1,hνk u
∗−−⇀ Du in Y

(
(0, T )× Rn, RN+Nn

)
, as k →∞

of a measurable mapping u : (0, T ) × Rn −→ RN along infinitesimal subsequences
(hνk)∞1 ⊆ (hν)∞1 .

The fibre Sobolev space. For A as in (3.1), let Π be given by (3.3) and suppose
that Π is spanned by rank-one directions η ⊗ a of RN+Nn, a = [a0|a] ∈ R1+n.
A sufficient condition regarding when this happens is when the matrices Ai of
(1.4) commute, something we will require later. For simplicity, we treat only the
L2 first order case needed in this paper (for extensions see [K8]). Let us begin
by identifying the Sobolev space W 1,2

(
(0, T )×Rn,RN

)
with its isometric image

W̃ 1,2
(
(0, T )×Rn,RN

)
into a product of L2 spaces:

W̃ 1,2
(

(0, T )×Rn,RN
)
⊂
→
L2
(

(0, T )×Rn, RN× RN+Nn
)
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via the mapping u 7→ (u,Du). We define the fibre space W 1,2
(
(0, T )×Rn,RN

)
(associated to A and (1.1)) as the Hilbert space
(3.6)

W 1,2
(

(0, T )× Rn,RN
)

:= Proj
L2
(

(0,T )×Rn,RN×Π
) W̃ 1,2

(
(0, T )× Rn,RN

) ‖·‖L2

with the natural induced norm (written for W 1,2 maps)

‖u‖W 1,2((0,T )×Rn) := ‖u‖L2((0,T )×Rn) +
∥∥ΠDu

∥∥
L2((0,T )×Rn)

.

We remind that we use the same letter to denote both the vector space Π as well
as the orthogonal projection on it. By employing the Mazur theorem, (3.6) can be
characterised in the following way:

W 1,2
(

(0, T )×Rn,RN
)

=


(
u,G(u)

)
∈ L2

(
(0, T )×Rn, RN×Π

) ∣∣∣ ∃ (uν)∞1 ⊆

W 1,2
(

(0, T )× Rn,RN
)

: (uν ,ΠDuν)−−⇀
(
u,G(u)

)
weakly in L2

(
(0, T )× Rn, RN×Π

)
, as ν →∞

 .

We will call G(u) ∈ L2
(
(0, T )×Rn,Π

)
the fibre (space-time) gradient of u.

By using integration by parts and the hypothesis that Π is spanned by rank-one
directions, it can be easily seen that the measurable map G(u) depends only on
u ∈ L2

(
(0, T )×Rn,RN

)
and not on the approximating sequence. Further, by the

equivalence between weak and strong L2 directional derivatives, G(u) can be char-
acterised as a “fibre” derivative of u:

η ⊗ a ∈ Π ⊆ RN+Nn =⇒ G(u) : (η ⊗ a) = Da(η · u), a.e. on (0, T )× Rn.

In general, the fibre spaces are strictly larger than their “non-degenerate” counter-
parts since it is very easy to find singular examples which are not even once weakly
differentiable.

We may now state our main result.

Theorem 9 (Equivalence of weak and D-solutions to linear hyperbolic systems
with constant coefficients & partial regularity). Let A be as in (1.2), (1.3) and
consider the system

(3.7) Dtu + A :Du = f, in (0, T )× Rn,

where f ∈ L2
(
(0, T )×Rn,RN

)
and T > 0. We suppose that the commutator of the

matrices A1, ...,An of (1.4) vanishes:

[Ai,Aj ] := AiAj −AjAi = 0, i, j = 1, .., n.

Then, a map u : (0, T )× Rn −→ RN is a weak solution to (3.7) in the space

(3.8) X :=
{
u ∈ L2

(
(0, T ), L2(Rn,RN )

)
: Dtu ∈ L2

(
(0, T ),W−1,2(Rn,RN )

)}
if and only if u : (0, T ) × Rn −→ RN is a D-solution in the fibre Sobolev space
W 1,2

(
(0, T )×Rn,RN

)
associated to A (see (3.6)). By Definition 6, the latter means

there exist orthonormal bases of R1+n, of RN and of RN+Nn (depending only on
A) such that, for any diffuse (space-time) gradient of u arising along infinitesimal
subsequences

δ
D

1,hνk u
∗−−⇀ Du in Y

(
(0, T )× Rn, RN+Nn

)
, as k →∞
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and for any Φ ∈ C0
c (RN+Nn), we have∫

RN+Nn

Φ(X)
(
X0 + A :X − f(t, x)

)
d
[
Du(t, x)

]
(X) = 0,

for a.e. (t, x) ∈ (0, T )× Rn.
Moreover, any D-solution u to (3.7) (and hence any weak solution) has the fol-

lowing regularity: the projection of the space-time gradient (Dtu,Du) on the sub-
space Π ⊆ RN+Nn associated to A exists in L2, Π is spanned by rank-one matrices
and for any such direction η ⊗ a ∈ Π, we have Da(η · u) ∈ L2((0, T )×Rn).

The commutativity hypothesis is always satisfied if either n = 1 (one spatial
dimension) or N = 1 (scalar case). By standard results on hyperbolic systems, we
readily have the following consequence of Theorem 9:

Corollary 10 (Well-posedness of the Cauchy problem for D-solutions). In the
setting of Theorem 9 and under the same assumptions, the Cauchy problem{

Dtu + A :Du = f, in (0, T )× Rn,
u(0, ·) = u0, on {0} × Rn,

has a unique D-solution in the fibre space W 1,2
(
(0, T )×Rn,RN

)
, for any given

f ∈ L2
(
(0, T )×Rn,RN

)
, u0 ∈ L2(Rn,RN ) and T > 0.

Proof of Theorem 9. The proof consists of three lemmas. In the first one below
we show that the commutativity hypothesis on the matrices A1, ...,An implies that
the vector space Π of (3.3) has an orthonormal basis of rank-one directions which
can be completed to an orthonormal basis of rank-one directions spanning RN+Nn.

Lemma 11. Given the map A : RNn −→ RN of (1.2), let A : RN+Nn −→ RN
be given by (3.1), its nullspace N(A) by (3.2) and its orthogonal complement Π by
(3.3).

Then, if the matrices A1, ..,An of (1.4) commute, RN+Nn has an orthonormal
basis of rank-one directions such that N -many of them span the subspace Π ⊆
RN+Nn and the rest Nn-many of them span the nullspace N(A) ⊆ RN+Nn:

(3.9)


RN+Nn = span

[{
Eαi : α = 1, ..., N, i = 0, 1, ..., n

}]
,

Π = span
[{
Eα0 : α = 1, ..., N

}]
,

N(A) = span
[{
Eαi : α = 1, ..., N, i = 1, ..., n

}]
.

In addition, the basis {Eαi} arises in the following way: there is an orthonor-
mal basis {E1, ..., EN} ⊆ RN and for each α = 1, ..., N an orthonormal basis
{E(α)0, E(α)1, ..., E(α)n} ⊆ R1+n such that

(3.10) Eαi = Eα ⊗ E(α)i, α = 1, ..., N, i = 0, 1, ..., n.

Moreover, A satisfies the lower bound estimate

(3.11) ∃ c > 0 :
∣∣A :X

∣∣ ≥ c |ΠX|, X ∈ RN+Nn,

and the invariance property under the projection on Π

(3.12) A :X = A : (ΠX), X ∈ RN+Nn.

Finally, the fibre Sobolev space associated to A (given by (3.6)) satisfies the desired
rank-one spanning property.
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Proof of Lemma 11. We begin by observing that directly from the definitions of
Π and of Π⊥ = N(A), we have
(3.13)

Π⊥ =
{
X =

[
−A :X

∣∣X] ∣∣∣ X ∈ RNn
}
,

Π =
{
Y = [Y0|Y ] ∈ RN+Nn

∣∣∣Y0 · (−A :X) + Y :X = 0, X ∈ RNn
}
.

Next, by standard linear algebra results ([L]) we obtain that the commutativity
hypothesis of the (symmetric) matrices {A1, ...,An} ⊆ RN×Ns is equivalent to the
requirement that there exists an orthonormal basis {η1, ..., ηN} ⊆ RN which diago-
nalises all the matrices {A1, ...,An} simultaneously, namely there is a common set
of eigenvectors for perhaps different eigenvalues {c(i)1, ..., c(i)N} of Ai. Thus, for
any i = 1...n, we have

Ai η
α = c(i)α ηα, α = 1, ..., N,

or, in index form (see (1.4))

N∑
γ=1

Aβγi η
α
γ = c(i)α ηαβ , α, β = 1, ..., N,

whereas σ(Ai) = {c(i)1, ..., c(i)N}. We rewrite the above as

N∑
γ=1

n∑
j=1

Aβγj

(
ηαγ e

i
j

)
+
(
− c(i)α ηαβ

)
= 0, α, β = 1, ..., N, i = 1, ..., n,

and in view of (1.4) we may write it as

(3.14) A :
(
ηα ⊗ ei

)
+
(
− c(i)α ηα

)
= 0 α = 1, ..., N, i = 1, ..., n.

We now define

(3.15) Nαi := ηα ⊗
[
−c(i)α
ei

]
= ηα ⊗

([
− c(i)α, 0, ..., 0, 1, 0, ...0

]>
̂(1+i)-position

)
,

for α = 1, ..., N , i = 1, ..., n, and also

(3.16) Nα0 := ηα ⊗
[

1
cα

]
= ηα ⊗

([
1, c(1)α, ..., c(n)α

]>)
,

where
cα :=

[
c(1)α, ..., c(n)α

]>
is the α-th eigenvalue vector of the matrices {A1, ...,An}. The definition of Nαi

and (3.14) with (3.1) immediately give that

A : Nαi = 0, α = 1, ..., N, i = 1, ..., n,

and hence Nαi ∈ N(A) = Π⊥. Moreover, by (3.13) and the fact that the (Nn)-
many matrices {ηα ⊗ ei |α, i} are an orthonormal basis of RNn, we have that

Y ∈ Π ⇐⇒ Y0 · (−A :X) + Y :X = 0, X ∈ RNn,

⇐⇒ Y0 ·
(
−A : (ηα ⊗ ei)

)
+ Y : (ηα ⊗ ei) = 0, α = 1, ..., N, i = 1, ..., n,

(3.14)⇐⇒ Y0 ·
(
− c(i)αηα

)
+ Y : (ηα ⊗ ei) = 0, α = 1, ..., N, i = 1, ..., n,

(3.15)⇐⇒ [Y0|Y ] : Nαi = 0, α = 1, ..., N, i = 1, ..., n.
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Hence, Y ⊥N(A) if and only if Y ⊥Nαi for all α = 1, ..., N and i = 1, ..., n. Since
N(A) = Π⊥, this proves that

(3.17) N(A) = span[
{
Nαi

∣∣α = 1, ..., N, i = 1, ..., n
}

].

Moreover, the matrices Nαi spanning N(A) are linearly independent and hence
exactly Nn-many. Indeed, for α, β = 1, ..., N and i, j = 1, ..., n, by (3.15) we have

Nαi : Nβj =
(
ηα ⊗

[
−c(i)α
ei

])
:
(
ηβ ⊗

[
−c(i)β
ei

])
= δαβ

(
c(i)αc(j)β + δij

)
.

It follows that for any α 6= β, Nαi is orthogonal to Nβj . Moreover, for any for
α = 1, ..., N and i 6= j in {1, ..., n}, by (3.15) we have

Nαi

|Nαi|
:
Nαj

|Nαj |
=

c(i)αc(j)α√
1 + (c(i)α)2

√
1 + (c(j)α)2

∈ (−1,+1)

and hence for each α the set of matrices {Nαi| i} is linearly independent. Further,
by (3.15), (3.16) we have that

Nα0 : Nβi =
(
ηα ⊗

[
1
cα

])
:
(
ηβ ⊗

[
−c(i)β
ei

])
=
(
ηα · ηβ

){[
1, c(1)α, ..., c(n)α

]
·
[
− c(i)β , 0, ..., 0, 1, 0, ...0

]
̂(1+i)-position

}
= δαβ

(
−c(i)β + c(i)α

)
= 0,

for all α, β = 1, ..., N and i = 1, ..., n. Moreover, by (3.16) we have

Nα0 : Nβ0 =

(
ηα ⊗

[
1
cα

])
:

(
ηβ ⊗

[
1
cβ

])
= δαβ

(
1 + cα · cβ

)
and as a consequence the matrices {Nα0|α} form an orthogonal set of N -many
elements which is orthogonal to N(A). Since the dimension of the space is N+Nn,
all the above together with (3.13), (3.15), (3.16) prove that

(3.18) Π = span[
{
Nα0

∣∣α = 1, ..., N
}

].

We now show that the frame {Nαi|α, i} can be modified in order to be made an
orthonormal basis and still consisting of rank-one matrices. First note that the
matrices spanning Π are orthogonal and we only need to fix their length. Further,
note that Π⊥ can be decomposed as the following direct sum of mutually orthogonal
subspaces

Π⊥ =

N⊕
α=1

span[
{
Nαi

∣∣ i = 1, ..., n
}

] =:

N⊕
α=1

Wα.

Since

Wα = ηα ⊗ span[

{[
−c(i)α
ei

]
: i = 1, ..., n

}
],
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by the Gram-Schmidt method, we can find an orthonormal basis of Wα consisting
of matrices of the form

(3.19) Ñαi = ηα ⊗ a(α)i, a(α)i · a(α)j = δij .

Finally, we define

Eα0 :=
Nα0

|Nα0|
= ηα ⊗

(
1√

1 + |cα|2

[
1
cα

])
∈ RN+Nn,

Eαi := Ñαi = ηα ⊗ a(α)i ∈ RN+Nn,

and also

Eα := ηα ∈ RN ,

E(α)0 :=
1√

1 + |cα|2

[
1
cα

]
, E(α)i := a(α)i ∈ R1+n,

where α = 1, ..., N and i = 1, ..., n. By the previous it follows that {Eαi|α =
1, ..., N, i = 0, 1, ..., n} is an orthonormal basis of RN+Nn consisting or rank-one
directions such that {Eα0|α = 1, ..., N} span the subspace Π and {Eαi|α =
1, ..., N, i = 1, ..., n} span its complement Π⊥. Moreover, Eαi = Eα ⊗ E(α)i.
We conclude the proof of the lemma by noting that (3.11), (3.12) follow by the
definition of Π and standard linear algebra results. �

Next, we employ the orthonormal frames constructed in Lemma 11 and the
properties (3.11), (3.12) of A in order to characterise weak solutions to (3.7) as
mappings in the fibre space (3.6) which solve the equation in a pointwise “strong
fibre-wise” sense: the equation is satisfied a.e. on (0, T )× Rn if we substitute the
distributional gradient (Dtu,Du) (which can be interpreted only via duality) with
the pointwise fibre gradient G(u).

Lemma 12. In the setting of Theorem 9 and under the same assumptions, we have
that a map u : (0, T )×Rn −→ RN in the fibre space (3.6) (associated to A) satisfies

A :G(u) = f, a.e. on (0, T )× Rn

(where A is given by (3.1) and G(u) is the fibre gradient of u) if and only if
u : (0, T )×Rn −→ RN is a weak solution to (3.7) in the space X given by (3.8).

Proof of Lemma 12. Suppose first that u is a weak solution of (3.7). By mollifying
in the standard way, for any ε > 0 there are uε, fε ∈ C∞

(
(ε, T − ε)×Rn,RN

)
such

that uε −→ u and fε −→ f as ε→ 0 in L2
(
(δ, T − δ)×Rn,RN

)
for any δ ≥ ε and

also

Dtu
ε + A :Duε = fε, on (δ, T − δ)× Rn.

By (3.1), (3.4),(3.5) and (3.12), we rewrite this as

(3.20) A :
(
ΠDuε

)
= fε, on (δ, T − δ)× Rn,

for any δ ≥ ε > 0. Hence, by (3.11) this gives the estimate∥∥ΠDuε
∥∥
L2((δ,T−δ)×Rn)

≤ C‖f‖L2((δ,T−δ)×Rn),

which is uniform in ε, δ > 0. By the definition of the fibre space (3.6) and the
above estimate together with the fact that uε −→ u as ε → 0 in L2, we obtain
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that u ∈ W 1,2
(
(0, T ) × Rn,RN

)
and in addition ΠDuε −→ G(u) in L2. Thus, by

passing to the limit in (3.20) as ε→ 0 and as δ → 0, we obtain that

(3.21) A :G(u) = f, a.e. on (0, T )× Rn,

as desired. Conversely, suppose that (3.21) holds. Then, by the definition (3.6) of
the fibre space there are approximating sequences uν −→ u and ΠDuν −→ G(u),
both in L2 as ν →∞. Hence, we have

A :
(
ΠDuν

)
− f = A :

(
ΠDuν −G(u)

)
= o(1),

as ν →∞, in L2. By the above, (3.12) and (3.1)-(3.5), we have

Dtu
ν + A :Duν − f = A :Duν − f

= A :
(
ΠDuν

)
− f

= o(1),

as ν →∞, in L2. Hence, for any φ ∈ C∞c
(
(0, T )× Rn

)
, we have∫

(0,T )×Rn

{
uνDtφ + A :

(
uν ⊗Dφ

)
+ f

}
= o(1),

as ν → ∞. By passing to the limit, we deduce that u is a weak solution of (3.7),
as claimed. The lemma ensues. �

Finally, we characterise D-solutions to (3.7) in the fibre space (3.6) as mappings
which solve the equation in the pointwise “strong fibre-wise” sense of Lemma 12.
This result completes the proof of Theorem 9.

Lemma 13. In the setting of Theorem 9 and under the same assumptions, we have
that a map u : (0, T )×Rn −→ RN is a D-solution to (3.7) in the fibre space (3.6)
(associated to A) if and only if it satisfies

A :G(u) = f, a.e. on (0, T )× Rn,

where A is given by (3.1) and G(u) is the fibre gradient of u.

Proof of Lemma 13. We begin by supposing that A :G(u) = f a.e. on (0, T )×Rn.
Then, by the properties of the fibre space (3.6) and the equivalence between weak
and strong L2 directional derivatives, we have that

D1,h
a (η · u) −→ (η ⊗ a) :G(u), in L2

(
(0, T )× Rn

)
as h→ 0,

for any rank-one direction η ⊗ a ∈ Π ⊆ RN+Nn. By Lemma 11, Π has an or-
thonormal basis consisting of rank-one matrices which can be complemented to an
orthonormal basis of rank-one matrices of RN+Nn. Thus, in view of (2.1)-(2.4) we
have

(3.22) ΠD1,hu −→ G(u), in L2
(
(0, T )× Rn,Π

)
as h→ 0,

where D1,h denotes the difference quotient operator taken with respect to these
bases. By (3.22) and (3.12) we obtain that

(3.23) A :D1,hu −→ A :G(u), in L2
(
(0, T )× Rn,RN

)
as h→ 0.
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Further, for any fixed measurable set E ⊆ (0, T )×Rn with finite measure and any
Φ ∈ C0

c (RN+Nn), by using our hypothesis A : G(u) = f , we have the estimate∥∥∥Φ
(
D1,hu

)(
A :D1,hu − f

)∥∥∥
L1(E)

≤
√
|E| ‖Φ‖C0(RN+Nn)

∥∥∥A :D1,hu − A :G(u)
∥∥∥
L2((0,T )×Rn)

.
(3.24)

Hence, (3.23) and (3.24) imply

(3.25) Φ
(
D1,hu

)(
A :D1,hu − f

)
−→ 0, in L1(E,RN ) as h→ 0.

Moreover, the Carathéodory function

(3.26) Ψ(x,X) :=
∣∣∣Φ(X)(A :X − f(x)

)∣∣∣χE(x)

is an element of the space

L1
(

(0, T )× Rn, C0
(
RN+Nn

))
because

‖Ψ‖
L1
(

(0,T )×Rn,C0(RN+Nn)
) ≤ |E|( max

X∈supp(Φ)

∣∣Φ(X)A :X
∣∣)

+
√
|E|

(
max

X∈supp(Φ)

∣∣Φ(X)∣∣) ‖f‖L2((0,T )×Rn).

Let now (hν)∞1 ⊆ R\{0} be any infinitesimal sequence. Then, there is a subsequence
hνk → 0 such that

(3.27) δ
D

1,hνk u
∗−−⇀ Du in Y

(
(0, T )× Rn, RN+Nn

)
, as k →∞.

By the weak*-strong continuity of the duality pairing between

L1
(

(0, T )× Rn, C0
(
RN+Nn

))
× L∞w∗

(
(0, T )× Rn,M

(
RN+Nn

))
−→ R

and by (3.25)-(3.27), we have that

∫
E

∣∣∣Φ(D1,hνku
)(

A :D1,hνku − f
)∣∣∣ =

∫
E

Ψ
(
·, D1,hνku

)
−→

∫
E

∫
RN+Nn

Ψ
(
·, X

)
d[Du](X)

=

∫
E

∫
RN+Nn

∣∣∣Φ(X)(A :X − f
)∣∣∣ d[Du](X),

(3.28)

as k →∞. By (3.28) and (3.25) we conclude that∫
RN+Nn

∣∣∣Φ(X)(A :X − f(x)
)∣∣∣ d[Du(x)

]
(X) = 0, a.e. x ∈ E.

Since E ⊆ (0, T )×Rn is an arbitrary set of finite measure, Φ is an arbitrary function
in C0

c (RN+Nn) and Du an arbitrary diffuse gradient as in (3.27), it follows that u
is a D-solutions of (3.7) on (0, T )× Rn, as desired.
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Conversely, suppose that u is a D-solution of (3.7) in the fibre space (3.6). Then,
for any diffuse gradient as in (3.27) and any Φ ∈ C0

c (RN+Nn), it follows that

(3.29)

∫
RN+Nn

Φ
(
X
)
d
[
ϑ(x)

]
(X) = 0, a.e. x ∈ (0, T )× Rn,

where for a.e. x ∈ (0, T ) × Rn, ϑ(x) is a locally finite Radon measure which is
absolutely continuous with respect to the restriction of the diffuse gradient measure[
Du(x)

]
xRN+Nn and it is given by

ϑ(x) ∈ Mloc

(
RN+Nn

)
,[

ϑ(x)
]
(B) :=

∫
B

(
A :X − f(x)

)
d
[
Du(x)

]
(X),

(3.30)

for any Borel set B ⊆ RN+Nn. From (3.28) and (3.30) it follows that ϑ(x) = 0
for a.e. x ∈ (0, T ) × Rn. This implies that for any such point, the support of the
measure

[
Du(x)

]
xRN+Nn lies inside the closed set

Lx :=
{
X ∈ RN+Nn

∣∣∣ A :X = f(x)
}
.

Since

Lx :=
{
X ∈ RN+Nn

∣∣∣ ∣∣A :X − f(x)
∣∣ = 0

}
and Φ has compact support in RN+Nn, it follows that

(3.31)

∫
RN+Nn

∣∣Φ(X)∣∣ ∣∣∣A :X − f(x)
∣∣∣ d[Du(x)

]
(X) = 0,

for a.e. x ∈ (0, T )×Rn. By considering again the function Ψ of (3.26) and invoking
(3.27)-(3.28) and (3.31), we deduce that

(3.32) lim
k→∞

∫
E

∣∣∣Φ(D1,hνku(x)
)(

A :D1,hνku(x) − f(x)
)∣∣∣ dx = 0.

We now fix R > 0 and choose Φ ≥ χBR(0), where BR(0) is the closed R-ball of

RN+Nn centred at the origin. Then, (3.32) gives

(3.33) lim
k→∞

∫
E∩
{∣∣D1,hνk u

∣∣≤R}
∣∣∣A :D1,hνku(x) − f(x)

∣∣∣ dx = 0,

for any R > 0. We now set

ER :=
{
x ∈ (0, T )× Rn

∣∣∣ Lx ∩ BR(0) 6= ∅
}

and

(3.34) TR
(
x,X

)
:=

{
X, for

∣∣X∣∣ ≤ R, x ∈ ER
O(x), for

∣∣X∣∣ > R, x ∈ ER,

where x 7→ O(x) is a measurable selection of the set-valued mapping with closed
non-empty values

ER 3 x 7−→ Lx ∩ BR(0) ⊆ RN+Nn.

This means that

A :O(x) = f(x) and
∣∣O(x)

∣∣ ≤ R, a.e. x ∈ ER.
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Such selections exist for large enough R > 0 by Aumann’s measurable selection
theorem (see e.g. [FL]), but in this specific case they can also be constructed ex-
plicitly because of the simple structure of the multi-valued mapping. By using
(3.34), (3.33) implies that

lim
k→∞

∫
ER

∣∣∣A : TR
(
x,D1,hνku(x)

)
− f(x)

∣∣∣ dx = 0

and by recalling (3.12), we rewrite this as

(3.35) lim
k→∞

∫
ER

∣∣∣A : TR
(
x,ΠD1,hνku(x)

)
− f(x)

∣∣∣ dx = 0.

Hence, (3.35) implies that∫
ER

∣∣∣A : G(u) − f
∣∣∣ ≤ ∫

ER

∣∣∣A : TR
(
·,ΠD1,hνku

)
− f

∣∣∣
+

∫
ER

∣∣∣A : TR
(
·,ΠD1,hνku

)
− A : G(u)

∣∣∣
≤ o(1) + |A|

∫
ER

∣∣∣TR(·,ΠD1,hνku
)
− G(u)

∣∣∣
as k →∞, and as a consequence we have∫

ER

∣∣∣A : G(u) − f
∣∣∣ ≤ |A|∫

ER

∣∣∣TR(·,ΠD1,hνku
)
− TR

(
·, G(u)

)∣∣∣
+ |A|

∫
ER

∣∣∣TR(·, G(u)
)
− G(u)

∣∣∣ + o(1),

(3.36)

as k → ∞, for any R > 0. Moreover, by assumption u is in the fibre space
(3.6). Hence by invoking (3.23), the Dominated convergence theorem, the fact that
|E| <∞ and (3.34), we may pass to the limit in (3.36) as k →∞ to obtain∫

ER

∣∣∣A : G(u) − f
∣∣∣ ≤ |A|

∫
ER

∣∣∣TR(·, G(u)
)
− G(u)

∣∣∣,
for any R > 0. Finally, we let R → ∞ and recall the arbitrariness of the set
E ⊆ (0, T ) × Rn and (3.34) to infer that A : G(u) = f , a.e. on (0, T ) × Rn. The
lemma has been established. �

The proof of Theorem 9 is now complete. �

Remark 14 (Functional representation of the diffuse gradients). In a sense, Lemma
13 says that all the diffuse gradients of the D-solution u when restricted on the
subspace of non-degeneracies have a certain “functional” representation inside the
coefficients, given by G(u). Namely, if we decompose RN+Nn = Π ⊕ Π⊥, the
restriction of any diffuse space-time gradient Du ∈ Y

(
Ω,RN+Nn

)
on Π is given by

the fibre space-time gradient:

Du(t, x)xΠ = δG(u)(t,x), a.e. (t, x) ∈ (0, T )× Rn.
This is a statement of “partial regularity type” for D-solutions: although not all
of the diffuse gradient is a Dirac mass, certain restrictions of it on subspaces are
concentration measures.

Acknowledgement. I would like to thank Tristan Pryer for our inspiring scientific
discussions.
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DPM. R.J. DiPerna, A.J. Majda, Oscillations and concentrations in weak solutions of the incom-

pressible fluid equations, Commun. Math. Phys. 108, 667 - 689 (1987).
Ed. R.E. Edwards, Functional Analysis: Theory and Applications, Dover Books on Mathematics,

2003.

E. L.C. Evans, Weak convergence methods for nonlinear partial differential equations, Regional
conference series in mathematics 74, AMS, 1990.

E2. L.C. Evans, Partial Differential Equations, AMS, Graduate Studies in Mathematics Vol. 19,

1998.
EG. L.C. Evans, R. Gariepy, Measure theory and fine properties of functions, Studies in advanced

mathematics, CRC press, 1992.

FG. L.C. Florescu, C. Godet-Thobie, Young measures and compactness in metric spaces, De
Gruyter, 2012.

FL. I. Fonseca, G. Leoni, Modern methods in the Calculus of Variations: Lp spaces, Springer
Monographs in Mathematics, 2007.

K. N. Katzourakis, An Introduction to viscosity Solutions for Fully Nonlinear PDE with Ap-

plications to Calculus of Variations in L∞, Springer Briefs in Mathematics, 2015, DOI
10.1007/978-3-319-12829-0.

K1. N. Katzourakis, L∞-Variational Problems for Maps and the Aronsson PDE system, J. Dif-

ferential Equations, Volume 253, Issue 7 (2012), 2123 - 2139.
K2. N. Katzourakis, Explicit 2D ∞-Harmonic Maps whose Interfaces have Junctions and Cor-

ners, Comptes Rendus Acad. Sci. Paris, Ser.I, 351 (2013) 677 - 680.
K3. N. Katzourakis, On the Structure of ∞-Harmonic Maps, Communications in PDE, Volume

39, Issue 11 (2014), 2091 - 2124.
K4. N. Katzourakis, ∞-Minimal Submanifolds, Proceedings of the Amer. Math. Soc., 142 (2014)

2797-2811.
K5. N. Katzourakis, Nonuniqueness in Vector-valued Calculus of Variations in L∞ and some

Linear Elliptic Systems, Communications on Pure and Applied Analysis, Vol. 14, 1, 313 - 327
(2015).

K6. N. Katzourakis, Optimal ∞-Quasiconformal Immersions, ESAIM Control, Opt. and Calc.
Var., to appear (2015) DOI: http://dx.doi.org/10.1051/cocv/2014038.

K7. N. Katzourakis, On Linear Degenerate Elliptic PDE Systems with Constant Coefficients,

Adv. in Calculus of Variations, DOI: 10.1515/acv-2015-0004, published online June 2015.

K8. N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and existence-
uniqueness theorems, ArXiv preprint, http://arxiv.org/pdf/1501.06164.pdf.

K9. N. Katzourakis, Existence of generalised solutions to the equations of vectorial Calculus of
Variations in L∞, ArXiv preprint, http://arxiv.org/pdf/1502.01179.pdf.

L. P. D. Lax, Linear Algebra and Its Applications, Wiley-Interscience, 2nd edition, 2007.

http://arxiv.org/pdf/1501.06164.pdf
http://arxiv.org/pdf/1502.01179.pdf


EQUIVALENCE BETWEEN WEAK AND D-SOLUTIONS FOR HYPERBOLIC SYSTEMS 21

KR. J. Kristensen, F. Rindler, Characterization of generalized gradient Young measures generated

by sequences in W 1,1 and BV , Arch. Rational Mech. Anal. 197, 539 - 598 (2010) and erratum

Arch. Rational Mech. Anal. 203, 693 - 700 (2012).
M. S. Müller, Variational models for microstructure and phase transitions, Lecture Notes in

Mathematics 1783, Springer, 85-210, 1999.

P. P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, 1997.
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