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Regularization of Descriptor Systems

Nancy K. Nichols and Delin Chu

Abstract Implicit dynamic-algebraic equations, known in control theory as descrip-
tor systems, arise naturally in many applications. Such systems may not be regular
(often referred to as singular). In that case the equations may not have unique solu-
tions for consistent initial conditions and arbitrary inputs and the system may not be
controllable or observable. Many control systems can be regularized by proportional
and/or derivative feedback. We present an overview of mathematical theory and nu-
merical techniques for regularizing descriptor systems using feedback controls. The
aim is to provide stable numerical techniques for analyzingand constructing regular
control and state estimation systems and for ensuring that these systems are robust.
State and output feedback designs for regularizing linear time-invariant systems are
described, including methods for disturbance decoupling and mixed output prob-
lems. Extensions of these techniques to time-varying linear and nonlinear systems
are discussed in the final section.

1 Introduction

Singular systems of differential equations, known in control theory asdescrip-
tor systemsor generalized state-space systems, have fascinated Volker Mehrmann
throughout his career. His early research, starting with his habilitation [33, 35],

Nancy K. Nichols
Department of Mathematics, University of Reading, Box 220,Reading, RG6 2AX, UK e-mail:
n.nichols@rdg.ac.uk

Delin Chu
Department of Mathematics, National University of Singapore, Singapore e-mail:
matchudl@nus.edu.sg

1 Published in: Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control
Theory, (eds P. Benner, M. Bollhoefer, D. Kressner, C. Mehl and T. Stykel), Springer International
Publishing, Switzerland, pp. 415–433, 2015. doi:10.1007/978-3-319-15260-815

1
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concerned autonomous linear-quadratic control problems constrained by descrip-
tor systems. Descriptor systems arise naturally in many applications, including air-
craft guidance, chemical processing, mechanical body motion, power generation,
network fluid flow and many others, and can be considered as continuous or dis-
crete implicit dynamic-algebraic systems [32, 41]. Such systems may not be regular
(often referred to as singular). In that case unique solutions to initial value problems
consistent with the system may not exist and the system may not be controllable
or observable. An important aspect of control system designis therefore to ensure
regularity of the system.

In this chapter we review the work of Volker and his colleagues on mathematical
theory and numerical techniques for regularizing descriptor systems using feedback
controls. Two key elements contributed initially to the research: the establishment of
conditions for the regularizability of descriptor systemsby feedback [25, 30] and the
development of stable numerical techniques for the reduction of descriptor systems
to condensed matrix forms [33, 34, 36]. Following a stimulating meeting at the
International Conference on Linear Algebra and Applications in Valencia in 1987,
these two research threads were brought together in a reporton feedback design for
descriptor systems [5] and later published in [6] and [7].

Since that time, Volker has contributed to a whole sequence of exciting results on
the regularization of descriptor systems [3, 8, 9, 10, 11, 12, 15, 20, 21, 22, 24, 31,
37] . The development of sound numerical methods for system design, as well as
techniques for guaranteeing therobustnessof the systems to model uncertainties and
disturbances, has formed the main emphasis throughout thisresearch. We describe
some of this work in the next sections.

We start with preliminary definitions and properties of descriptor systems and
then discuss regularization by state feedback for linear time-invariant systems. Dis-
turbance decoupling by state feedback is also discussed. The problem of regulariza-
tion by output feedback is then considered. Further developments involving mixed
output feedback regularization are given next, and finally work on time-varying and
nonlinear systems is briefly described.

2 System Design for Descriptor Systems

We consider linear dynamical control systems of the form

Eẋ(t) = Ax(t)+Bu(t) , x(t0) = x0,

y(t) = Cx(t) , (1)

or, in the discrete-time case,

Ex(k+1) = Ax(k)+Bu(k) , x(0) = x0,

y(k) = Cx(k) , (2)
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whereE, A∈ Rn×n, B∈ Rn×m,C ∈ Rp×n. Herex(·) is the state,y(·) is the output,
andu(·) is the input or control of the system. It is assumed thatm, p ≤ n and that
the matricesB,C are of full rank. The matrixE may besingular. Such systems
are known asdescriptoror generalized state-spacesystems. In the caseE = I , the
identity matrix, we refer to (1) or (2) as astandardsystem.

We assume initially that the system is time-invariant; thatis, the system matrices
E,A, B,C are constant, independent of time. In this context, we are interested in
proportional and derivative feedback control of the formu(t)=Fy(t)−Gẏ(t)+v(t)
or u(k) = Fy(k)−Gy(k+ 1)+ v(k) , where F ,G ∈ Rm×p are selected to give the
closed-loop system

(E+BGC)ẋ(t) = (A+BFC)x(t)+Bv(t) (3)

or
(E+BGC)x(k+1) = (A+BFC)x(k)+Bv(k) (4)

desired properties.Proportional outputfeedback control is achieved in the special
caseG = 0. Derivative outputfeedback control corresponds to the special case
F = 0 and derivative and proportionalstatefeedback control corresponds to the
special caseC= I . The dual of the control system, anobserver(or state-estimator),
is attained with an appropriate choice forv in the special caseB= I . The aim of
the feedback designs is to alter the behaviour of the system response. Proportional
feedback acts to modify the system matrixA, whilst derivative feedback alters the
system matrixE. Different properties of the system can, therefore, be achieved using
different feedback combinations.

2.1 Structure of the System Response

The response of the descriptor system (1) or (2) can be described in terms of the
eigenstructure of the matrix pencilαE−βA, which we denote by(E,A) . The sys-
tem isregular if the pencil(E,A) is regular, that is,

det(αE−βA) 6= 0 for some(α,β ) ∈C
2. (5)

The generalized eigenvalues of a regular pencil are defined by the pairs
(α j ,β j) ∈C2\{0,0} such that

det(α jE−β jA) = 0, j = 1,2, . . . ,n. (6)

If β j 6= 0, the eigenvalue pair is said to befinitewith value given byλ j =α j/β j and
otherwise, ifβ j = 0, then the pair is said to be aninfiniteeigenvalue. The maximum
number of finite eigenvalues that a pencil can have is less than or equal to the rank
of E .
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If the system (1) or (2) is regular, then the existence and uniqueness of classical
smooth solutions to the dynamical equations is guaranteed for sufficiently smooth
inputs and consistent initial conditions [14, 43]. The solutions are characterized in
terms of the Kronecker Canonical Form (KCF) [26]. Nonsingular matricesX andY
(representing right and left generalized eigenvectors andprincipal vectors of the
system pencil, respectively) then exist such that

XEY=

[

I 0
0 N

]

, XAY=

[

J 0
0 I

]

, (7)

where the eigenvalues of the Jordan matrixJ coincide with the finite eigenvalues of
the pencil andN is a nilpotent Jordan matrix such thatNi = 0, Ni−1 6= 0, i > 0,
corresponding to the infinite eigenvalues. Theindexof a descriptor system, denoted
by ind(E,A), is defined to be the degreei of nilpotency of the matrixN , that is, the
index of the system is the dimension of the largest Jordan block associated with an
infinite eigenvalue of the KCF (7). The index is a fundamentalcharacteristic of a
descriptor system, determining the existence and smoothness of solutions.

By convention, a descriptor system is regular and of index 0 if and only if E
is nonsingular. In this case the system can be reformulated as a standard system.
However, the reduction to standard form can be numerically unreliable if E is ill-
conditioned with respect to inversion. Therefore it is desirable to work directly with
the generalized state-space form even whereE is nonsingular.

A descriptor system is regular and has index at most one if andonly if it has
exactlyq= rank(E) finite eigenvalues andn−q non-defectiveinfinite eigenvalues.
Conditions for the system to be regular and of index≤ 1 are given by the following
important result.

Theorem 1. [25, 30] Let E, A∈ Rn×n and let S∞(E) and T∞(E) be full rank matri-
ces whose columns span the null spacesN (E) andN (EH) respectively. Then the
following are equivalent:

(i) αE−βA is regular and of index≤ 1;
(ii) rank([E,AS∞(E)]) = n;

(iii) rank(

[

E
TT

∞ (E)A

]

) = n;

(iv) rank(TT
∞ (E)AS∞(E)) = n− rank(E) .

Systems that are regular and of index at most one can be separated into purely
dynamical and algebraic parts (fast and slow modes) [14, 23]and in theory the
algebraic part can be eliminated to give a reduced-order standard system. The re-
duction process, however, may be ill-conditioned for numerical computation and
lead to large errors in the reduced order system [28]. If the system is not regular or
if ind(E,A) > 1, then impulses can arise in the response of the system if thecon-
trol is not sufficiently smooth [27, 42]. Since the linear constant coefficient system
is usually only a model that approximates a nonlinear model,disturbances in the
real application will in general lead to impulsive solutions if the system is of index
higher than one.
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2.2 Controllability and Observability

If the descriptor system (1) or (2) isregular, then the following controllability and
observability conditions are sufficient for most classicaldesign aims. To simplify
the notation, we hereafter denote a matrix with orthonormalcolumns spanning the
right nullspace of the matrixM by S∞(M) and a matrix with orthonormal columns
spanning the left nullspace ofM by T∞(M) . The controllability conditions are de-
fined to be:

C0: rank([αE−βA, B]) = n for all (α,β ) ∈ C2\{(0,0)}.
C1: rank([λE−A, B]) = n for all λ ∈ C.
C2: rank([E, AS∞(E), B]) = n, where the columns ofS∞(E) span the

null space ofE.

(8)

The observability conditions are defined as the dual of the controllability conditions:

O0: rank(

[

αE−βA
C

]

) = n for all (α,β ) ∈C2\{(0,0)}.

O1: rank(

[

λE−A
C

]

) = n for all λ ∈ C.

O2: rank(





E
TT

∞ (E)A
C



) = n, where the columns ofT∞(E) span the

right null space ofE.

(9)

For systems that are regular, these conditions characterize the controllability of
the system. The conditionC0 ensures that for any given initial and final states of the
system,x0 , xf , there exists an admissible control that transfers the system fromx0

to xf in finite time [43]. ConditionC1 ensures the same for any given initial and
final statesx0 , xf belonging to the solution space of the descriptor system [5,7]. A
regular system that satisfies the conditionsC0 andO0 is said to becompletely con-
trollable (C–controllable) andcompletely observable(C–observable) and has prop-
erties similar to those of standard control systems. A regular system isstrongly con-
trollable (S–controllable) ifC1 andC2 hold andstrongly observable(S–observable)
if O1 andO2 hold. Regular systems that satisfy conditionC2 arecontrollable at in-
finity or impulse controllable[27, 42]. For these systems, impulsive modes can be
excluded. ConditionC2 is closely related to the second condition in Theorem 1,
which characterizes regular systems of index at most one. Bythe definition, a regu-
lar descriptor system of index at most one is controllable atinfinity.

The controllability and observability conditionsC0, C1, C2, andO0, O1, O2 are
all preserved under non-singular “equivalence” transformations of the pencil and
under proportional state and output feedback, butC2 is not necessarily preserved
under derivative feedback. Therefore, if derivative feedback is used to modify the
system dynamics, it is necessary to avoid losing controllability at infinity [5, 7].

Whilst regularity is required for controllability and observability, it is notneeded
in order to regularize the system by feedback. Many descriptor systems that are not
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regular can be regularized by proportional and/or derivative feedback. Conversely,
systems that are regular can easily be transformed by feedback into closed-loop
systems that are not regular. It is important, therefore, toestablish conditions that
ensure the regularity of systems under feedback and to develop numerically reliable
techniques for constructing regular feedback systems of index at most one.

Theorem 1 defines conditions that must be satisfied by a closed-loop system pen-
cil (3) or (4) for it to be regular and of index≤ 1. These conditions are closely
related to the propertiesC1, C2, O1, O2, but regularity is needed for controllability
and observability, whereas it is not required for regularization. In [25, 30] it was
first shown that these conditions can be used to determine a closed-loop descriptor
feedback system that is both regular and of index at most one,using proportional
feedback. The system itself does not need to be regular to achieve this result.

In a standard system, derivative feedback does not alter thesystem behaviour in
any way that could not be achieved by proportional feedback alone. However, for
descriptor systems, it is possible that derivative feedback can decrease the suscep-
tibility to noise and change the dynamic order of the descriptor system. One of the
applications of derivative feedback is to shift infinite frequencies to finite frequen-
cies in order to regularize and control the system. These possibilities together with
the implications of Theorem 1, provided a challenge to Volker and his colleagues
and motivated their initial work on feedback design for descriptor systems [5, 6, 7].
The work is based on numerically stable methods for reducingdescriptor systems to
condensed forms using unitary transformations. In the nextsection we summarize
this research.

3 Regularization by Feedback for Time-Invariant Systems

The problem of regularizing a descriptor system of form (1) or (2) by feedback is
defined as:

Problem 1. Given real system matricesE, A, B,C, find real matricesF andG such
that the closed-loop pencil

(E+BGC,A+BFC) (10)

is regular and ind(E+BGC,A+BFC)≤ 1.

If C = I this is thestatefeedback regularization problem and otherwise it is the
outputregularization feedback problem.

In the report [5], both the output and the state feedback regularization problems
are investigated initially, but the published version [7] treats only the state feedback
problem. A complete solution to the state feedback problem was achieved, but the
output case proved to be more elusive, and a number of papers tackling this prob-
lem followed later. The state feedback problem has its own importance in real ap-
plications, so here we consider first the state feedback problem and then the output
feedback problem separately.
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3.1 Regularization by State Feedback

In the papers [5, 6, 7], two major contributions are made. Thefirst provides con-
ditions for the existence of solutions to the state feedbackregularization problem.
This is achieved by numerically stable transformations to condensed forms that en-
able the required feedback matrices to be constructed accurately in practice. The
second establishes ‘robust’ system design techniques for ensuring that the proper-
ties of the closed-loop system pencil are insensitive to perturbations in the system
matricesE+BG, A+BF , B.

The following theorem gives the complete solution to the state feedback regular-
ization problem.

Theorem 2. [7] Given a system of the form (1) or (2), ifrank([E ,AS∞(E) ,B]) = n,
that is, if C2 holds, then there exist real feedback matrices F,G ∈ Rm×n such
that the pencil (E + BG,A+ BF) is regular, ind(E + BG,A+ BF) ≤ 1, and
rank(E+BG) = r , where0≤ rank([E,B])− rank(B) ≤ r ≤ rank([E,B]) .

To establish the theorem, we compute the QR factorization ofB and the URV
factorization [28] ofTT

∞ (B)E to obtain orthogonal matricesP andQ such that

PEQ=





E11 0 0
E21 E22 0
0 0 0



 , PB=





0
B2

0



 , PAQ=





A11 A12 A13

A21 A22 A23

A31 A32 A33



 . (11)

Here E11 and B2 are nonsingular andE22 is full column rank. BothE11 and B2

can be further reduced by orthogonal transformations to full-rank positive diagonal
matrices. The theorem then follows by selecting feedback matrices to ensure that
the closed-loop pencil

(E+BG,A+BF) (12)

satisfies condition (ii) of Theorem 1. IfC1 holds as well asC2 , the resulting
closed-loop system is then strongly controllable [7]. Thissystem could be reduced
further to a standard system, but in this case the feedback matrices would have to be
selected with care to ensure that the reduction is numerically stable.

Additional results on state feedback regularization usingonly proportional or
derivative feedback are also given in [5, 6, 7]. The existence of regularizing propor-
tional state feedback designs is easily shown in the case where C2 holds using the
condensed form (11). For the derivative feedback case, the results are the same as
in Theorem 2, with the exception that the potential rank of the matrix (E+BG) is
now restricted from below. The maximum rank that can be obtained remains equal
to rank([E,B]) .

In general the feedback designs that regularize the system (1) or (2) are not
uniquely determined by Theorem 2 and additional degrees of freedom in the design
can be exploited to obtain robustness and stability of the system as well as regularity.
For robustness we want the system to remain regular and of index at most one under
perturbations to the closed-loop system matrices. From Theorem 1 the closed-loop
pencil (12) is regular and of index≤ 1 if and only if
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rank(

[

E+BG
TT

∞ (E+BG)(A+BF)

]

) = n. (13)

It is well-known that for a matrix with full rank, the distance to the nearest matrix of
lower rank is equal to its minimum singular value [28]. Hencefor robustness of the
closed-loop pencil (12) we aim to selectF and G such that the pencil is unitarily
equivalent to a pencil of the formαS1−βS2 where

S1 =

[

ΣR 0
0 0

]

, S2 =

[

A11 A12

A21 ΣL

]

, (14)

and the assigned singular values ofΣR, ΣL are such that the condition numbers of
ΣR andΣL are minimal. This choice ensures regularity of the system and maximizes
a lower bound on the minimum singular value of (13), whilst retaining an upper
bound on the magnitude of the gainsF and G. Details of the algorithm to achieve
these results are given in [5, 7, 39]. This choice also ensures that the reduction of the
closed-loop descriptor system to a standard form is as well-conditioned as possible.
In practice such robust systems also have improved performance characteristics (see
[40]).

In addition to regularity, it is desirable to ensure that a system design has stability
and even that it has specified finite eigenvalues. The following result, shown in [5, 7],
holds for descriptor systems.

Theorem 3. [5, 7] Given a system of the form (1) or (2), if the conditionsC1 andC2
hold and r is an integer such that0≤ rank([E,B])− rank(B) ≤ r ≤ rank([E,B]) ,
then for any arbitrary setS of r self-conjugate finite poles there exist feed-
back matrices F,G ∈ Rm×n such that the pencil(E + BG,A+ BF) is regular,
ind(E + BG,A+BF) ≤ 1, rank(E + BG) = r and all pairs in S are the finite
generalized eigenvalues of the pencil(E+BG,A+BF) .

For robustness of the closed-loop system, we require the maximum number of
finite eigenvalues to be assigned and both the finite and infinite eigenvalues to be
insensitive to perturbations in the closed-loop system matrices. One strategy for
obtaining a robust solution to the eigenvalue assignment problem for a descriptor
system is to apply derivative feedback alone to obtain a robust, regular index-one
system with rank(E+BG) = r = rank([E,B]) using singular value assignment, and
then to userobustproportional state feedback to assignr finite eigenvalues to the
system. The problem of eigenvalue assignment by proportional state feedback in
descriptor systems is treated in [17, 25, 30]. Techniques for robust eigenstructure
assignment ensuring that the assigned eigenvalues of the closed-loop system are
insensitive to perturbations in the system matrices are established in [29, 30, 38].

The problem of designing an observer, or state-estimator, is the dual of the state
feedback control problem. An observer is an auxiliary dynamical system designed
to provide estimates ˆx of all the statesx of the system (1) or (2) using measured
output datay and ẏ . The estimator is a closed-loop system that is driven by the
differences between the measured outputs and derivatives of the system and their
estimated values. The system pencil is given by
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(E+GC,A+FC) , (15)

where the matricesF andG must be selected to ensure that the response ˆx of the
observer converges to the system statex for any arbitrary starting condition; that
is, the system must be asymptotically stable. By duality with the state feedback
problem, it follows that if the conditionO2 holds, then the matricesF andG can be
chosen such that the corresponding closed-loop pencil (15)is regular and of index at
most one. If conditionO1 also holds, then the closed-loop system is S-observable.
Furthermore, the remaining freedom in the system can be selected to ensure the
stability and robustness of the system and the finite eigenvalues of the system pencil
can be assigned explicitly by the techniques described for the state feedback control
problem.

3.2 Disturbance Decoupling by State Feedback

In practice control systems are subject to disturbances that may include modelling
or measurement errors, higher order terms from linearization, or unknown inputs
to the system. For such systems it is important to design feedback controllers and
observers that suppress the disturbance so that it does not affect the input-output
of the system. In research strongly inspired by the earlier work of Volker and his
colleagues on state feedback regularization, the problem of disturbance decoupling
is treated in [20, 21].

In the case that disturbances are present, the linear time-invariant system takes
the form

Eẋ(t) = Ax(t)+Bu(t)+Hq(t) , x(t0) = x0,

y(t) = Cx(t) , (16)

or

Ex(k+1) = Ax(k)+Bu(k)+Hq(k) , x(0) = x0,

y(k) = Cx(k) , (17)

whereE, A∈ Rn×n, B∈ Rn×m,C ∈ Rq×n, H ∈ Rn×p , and q(·) represents a vector
of disturbances.

To suppress the disturbances, a state feedback controller is used to modify the
input-output map, or transfer function, of the system. The disturbance decoupling
problem for the descriptor system (16) or (17) is then to find proportional and deriva-
tive feedback matricesF, G such that the closed-loop pencil(E+BG,A+BF) is
regular and of index at most one and

T(s)≡C(s(E+BG)− (A+BF))−1H ≡ 0, (18)
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whereT(s) defines the transfer function of the closed-loop system fromthe input
disturbanceq(·) to the outputy(·) . This condition ensures that the disturbance does
not affect the input-output response of the closed-loop system for any choice of
the input controlu(·) . Necessary and sufficient conditions for the existence of a
solution to this problem are established in [21]. In addition, conditions are derived
under which the feedback matrices can be chosen such that theclosed-loop system
is also stable. The derivations are constructive and a numerically stable algorithm is
given for implementing the procedure.

In [20] the problem of designing a disturbance-decoupled observer system for
estimating (a subset of) the states of the system (16) or (17)is developed. The aim is
to select feedback matrices such that the closed-loop observer is regular and of index
at most one and such that the disturbances have no influence onthe error in the es-
timated states of the system. Necessary and sufficient conditions are derived for the
existence of disturbance-decoupled observers of this formand also for the observer
to be stable, ensuring that the estimated states converge over time to the correspond-
ing states of the original system. The main results are established constructively and
are again based on a condensed form that can be computed in a numerically stable
way using unitary matrix transformations.

3.3 Regularization by Output Feedback

The output feedback regularization problem is to find derivative and state output
feedback matricesF, G such that the closed-loop system pencil (10) is regular and
has index at most one.

Meeting at the Institute for Mathematics and Its Applications in Minnesota in
1992 and following up the earlier research on regularization, Volker and his col-
leagues tackled the difficult output feedback problem in earnest. The results of the
research are published in an extensive report [8] and in later papers [9, 10]. In these
papers, a condensed form of the descriptor system pencil is derived that displays
the conditions under which the system can be transformed into a regular system of
index at most one by output feedback using numerically stable orthogonal trans-
formations. For proportional output feedback the solutionto the design problem
follows immediately from this condensed form. Necessary and sufficient conditions
for a feedback matrixF ∈Rm×p to exist such that the pencil(E,A+BFC) is regular
and has index at most one are given byC2 and O2 . The closed-loop system is then
S-controllable and S-observable ifC1 and O1 also hold [8, 10].

For combined derivative and proportional output feedback,it is also established
in [8, 10], using the condensed form, that ifC2 and O2 hold, then there exist
matricesF, G ∈ Rm×p such that the closed-loop pencil(E +BGC,A+BFC) is
regular, has index at most one, and rank(E+BGC) lies in a given range. Techniques
such as those used for the state feedback problem to ensure optimal conditioning, or
robustness of the closed-loop system to perturbations, arealso described in [8, 39].
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With proportional output feedback alone, if the system has index≤ 1, then the
number of finite eigenvalues of the closed-loop pencil(E ,A+BFC) is fixed at
r = rank(E) . With derivative and proportional feedback, the system pencil becomes
(E+BGC, A+BFC) and the system properties that depend on the left and right null
spaces ofE , such asC2 andO2, may be altered and the rank ofE+BGC may be
increased or decreased from that ofE . If the closed-loop system is regular with
index= 1, then the system may be separated intor = rank(E+BGC) differential
or difference equations andn− r purely algebraic equations. In applications, it may
be useful to have more or fewer differential or difference equations. A complete
characterization of the achievable ranksr for systems that are regular and of index
at most one is, therefore, desirable.

Variations of the condensed form of [8, 10] that can be obtained by stable or-
thogonal transformations have subsequently been derived in [11, 18, 19, 22] and
different approaches to the output feedback problem have been developed. A com-
prehensive summary of the extended results, based on these condensed forms, is
given in [3]. The main result can be expressed as follows.

Theorem 4. [3, 11, 18, 19, 22]
Let Ta = T∞(ES∞(C)), Sa = S∞((T∞(B))TE), and

Tb = T∞([E, AS∞(

[

E
C

]

), B]), Sb = S∞(





E
(T∞[E,B])TA

C



) .

Then the following statements are equivalent:
(i) There exist feedback matrices F, G∈ R

m×p such that the closed-loop pencil
(E+BGC,A+BFC) is regular and of index at most one.
(ii) T T

a ASb has full column rank, TTb ASa has full row rank and

rank(T∞([E,B])
TAS∞(

[

E
C

]

))≥ n− rank(

[

E B
C 0

]

) .

Moreover, if the closed-loop pencil(E+BGC,A+BFC) is regular and of index at
most one with r= rank(E+BGC) then

rank([E,B])+ rank(

[

E
C

]

)− rank(

[

E B
C 0

]

)≤ r ≤

≤ rank([E,B])− rank(TT
a ASb)≡ rank(

[

E
C

]

)− rank(TT
b ASa) .

The matrices in the theorem and their ranks are easily obtained from the follow-
ing condensed form [3, 18, 22], whereU,V,∈ Rn×n, P∈ Rm×m andW ∈ Rp×p are
orthogonal matrices:
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UEV =













t1 t2 t3 s4 s5

t1 E11 0 0 0 0
t2 E21 E22 0 0 0
t3 E31 E32 E33 E34 0
t4 E41 E42 0 E44 0
t5 0 0 0 0 0













,

UBP=













t3 t4
t1 0 0
t2 0 0
t3 B31 B32

t4 0 B42

t5 0 0













, (19)

WCV =

[

t1 t2 t3 s4 s5

s4 C11 C12 0 C14 0
t1 C21 0 0 0 0

]

,

where the blocksE11, C21, E22, E33, B31, B42, andC14 are nonsingular.
Theorem 4 follows directly from the condensed form (19). Thetheorem gives a

complete characterization of the possible ranks ofE+BGC for systems that are reg-
ular and of index at most one. Additional results on output feedback regularization
using only proportional or derivative feedback are also presented in the references.
Corresponding results for observer designs can be determined directly by duality.

In practice, it is desirable not only that the closed-loop descriptor system is regu-
lar and has index at most one, but also that it is robust in the sense that it is insensitive
to perturbations in the system matrices. As in the state feedback case, the aim is to
chooseF andG such that the closed-loop pencil is unitarily equivalent toa pencil
of the form (14) where the matricesΣR and ΣL are well-conditioned for inversion.
This choice ensures that the reduction of the closed-loop system to a standard system
is computationally reliable. Partial solutions to this problem are provided in [8, 9],
based on the results of [24], and an algorithm is given for minimizing upper bounds
on the conditioning ofΣR and ΣL using unitary transforms to condensed forms.
This procedure generally improves the conditioning of the closed-loop system.

3.4 Regularization by Mixed Output Feedback

Systems where different states and derivatives can be output arise commonly in
mechanical multi-body motion. In such systems, velocitiesand accelerations can
often be measured more easily than states (e.g. by tachometers or accelerometers).
Time-invariant systems of this type can be written in the form:
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Eẋ(t) = Ax(t)+Bu(t), x(t0) = x0,

y1(t) = Cx(t), (20)

y2(t) = Γ ẋ,

or, in the discrete time case

Ex(k+1) = Ax(k)+Bu(k), x(t0) = x0,

y1(k) = Cx(k), (21)

y2(k+1) = Γ x(k+1),

where E, A ∈ Rn×n, B ∈ Rn×m,C ∈ Rp×n, Γ ∈ Rq×n . In this case we are inter-
ested in proportional and derivative control of the formu(t) = Fy1(t)−Gẏ2(t) or
u= Fy1(k)−Gy2(k+1) , whereF andG are chosen to give the closed-loop system
pencil

(E+BGΓ , A+BFC) (22)

desired properties. In particular the aim is to ensure that the closed-loop system is
regular and of index at most one. The mixed output feedback regularization problem
for this system is stated explicitly as follows.

Problem 2. For a system of the form (20) or (21), give necessary and sufficient con-
ditions to ensure the existence of feedback matricesF ∈Rm×p ,G∈Rm×q such that
the closed-loop system pencil(E + BGΓ , A + BFC) is regular and
ind(E+BGΓ , A+BFC)≤ 1.

The mixed feedback regularization problem and its variants, which are signif-
icantly more difficult than the state and output feedback regularization problems,
have been studied systematically by Volker and his colleagues in [22, 37]. These
have not been investigated elsewhere, although systems where different states and
derivatives are output arise commonly in practice.

Examples frequently take the second order form

M
..
z+Kż+Pz= B1u̇+B2u (23)

and can be written in the generalized state space form
[

M 0
K I

][

ż
v̇

]

=

[

0 I
−P 0

][

z
v

]

+

[

B1

B2

]

u. (24)

If the velocitiesż of the states of the system can be measured, then the statesv =
Mż−B1u are also available and the outputs

y1 =Cx=
[

0 I
]

[

z
v

]

, y2 = Γ ẋ=
[

I 0
]

[

ż
v̇

]

(25)

can be used separately to modify the system by either proportional or derivative
feedback, respectively. The corresponding closed-loop state-space system matrices
then take the form
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E+BGΓ =

[

M+B1G 0
K+B2G I

]

, A+BFC=

[

0 I +B1F
−P B2F

]

. (26)

Different effects can, therefore, be achieved by feeding back either the derivatives ˙z
or the statesv. In particular, in the case whereM is singular, but rank[M,B1] = n, the
feedbackG can be chosen such thatM+B1G is invertible and well-conditioned [7],
giving a robustclosed-loop system that is regular and of index zero. The feedback
matrix F can be chosen separately to assign the eigenvalues of the system [30], for
example, or to achieve other objectives.

The complete solution to the mixed output feedback regularization problem is
given in [22]. The theorem and its proof are very technical. Solvability is established
using condensed forms derived in the paper. The solution to the output feedback
problem given in Theorem 4 is a special case of the complete result for the mixed
output case given in [22]. The required feedback matrices are constructed directly
from the condensed forms using numerically stable transformations.

Usually the design of the feedback matrices still contains freedom, however,
which can be resolved in many different ways. One choice is toselect the feedbacks
such that the closed-loop system is robust, or insensitive to perturbations, and, in
particular, such that it remains regular and of index at mostone under perturbations
(due, for example, to disturbances or parameter variations). This choice can also be
shown to maximize a lower bound on the stability radius of theclosed-loop sys-
tem [13]. Another natural choice would be to use minimum normfeedbacks, which
would be a least squares approach based on the theory in [24].This approach is also
investigated in [22, 37]. The conclusion is that although minimum norm feedbacks
are important in other control problems, such as eigenvalueassignment or stabiliza-
tion because they remove ambiguity in the solution in a leastsquares sense, for the
problem of regularization they do not lead to a useful solution, unless the rank of E
is decreased. Heuristic procedures for obtaining a system by output feedback that is
robustly regular and of index at most one are discussed in [8,9, 39].

4 Regularization of Time-Varying and Nonlinear Descriptor
Systems

Feedback regularization for time-varying and nonlinear descriptor systems provided
the next target for Volker’s research. Extending the previous work to the time-
varying case was enabled primarily by the seminal paper on the analytic singular
value decomposition (ASVD) published by Volker and colleagues in 1991 [4]. The
ASVD allows condensed forms to be derived for the time-varying problem, just as
the SVD does for the time-invariant case, and it provides numerically stable tech-
niques for determining feedback designs.

The continuous form of the time-varying descriptor system is given by the im-
plicit system
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E(t)ẋ(t) = A(t)x(t)+B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t), (27)

whereE(t), A(t) ∈ Rn×n, B(t) ∈ Rn×m,C(t) ∈Rp×n are allcontinuousfunctions of
time andx(t) is the state,y(t) is the output, andu(t) is the input or control of the
system. (Corresponding discrete-time systems with time-varying coefficients can
also be defined, but these are not considered here.)

In this general form, complex dynamical systems including constraints can be
modelled. Such systems arise, in particular, as linearizations of a general nonlinear
control system of the form

F (t,x, ẋ,u) = 0, x(t0) = x0,

y = G (t,x) , (28)

where the linearized system is such thatE(t), A(t), B(t) are given by the Jacobians
of F with respect to ˙x, x, u, respectively, andC(t) is given by the Jacobian ofG
with respect tox (see [31]).

For the time-varying system (27) and the nonlinear system (28), the system prop-
erties can be modified by time-varying state and output feedback as in the time-
invariant case, but the characterization of the system, in particular the solvability
and regularity of the system, is considerably more complicated to define than in the
time-invariant case and it is correspondingly more difficult to analyse the feedback
problem. The ultimate goal remains, however, to obtain stable numerical approaches
to the problem using time-varying orthogonal transformations to condensed forms.

If time-varying orthogonal transformationsU(t),V(t),W(t),Y(t) are applied to
the system (27), and all variables are assumed to be time-dependent, then the system
becomes

UTEVż= (UTAV−UTEVS)z+UTBWw,

ỹ = YCVz, (29)

wherex(t) =V(t)z(t) , u(t) =W(t)w(t) , ỹ=Yy and S(t) =V(t)TV̇(t) is a skew-
symmetric matrix. We see that applying time-varying transformations alters the sys-
tem matrix A, and this must be taken into account where reducing the systemto
equivalent condensed forms.

In [1, 2] it is shown that the ASVD can be used to produce a condensed form for
system (27), similar to the form derived in [10]. A time-varying system is defined
here to be regular and of index at most one if the conditions ofTheorem 1 hold
for all t and the system can be decoupled into purely dynamic and algebraic parts.
In order to establish regularizability of system (27), the strong assumption is made
that rank(E(t)) is constant and that ranks in the condensed form are also constant.
Time-varying output feedback matrices are then constructed to produce a closed-
loop pointwise regular pencil of the form (10) with index at most one. The rank
assumptions ensure the solvability of the closed-loop system. The system matrices
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E, A, B,C, are assumed to be analytic functions oft , but these conditions can be
relaxed provided the ASVD decompositions remain sufficiently smooth.

In the papers [12, 31], a much deeper analysis of the regularization problem
is developed. Detailed solvability conditions for the time-varying system (27) are
established and different condensed forms are derived, again using the ASVD. Con-
stant rank assumptions do not need to be applied, although the existence of smooth
ASVDs are required. The analysis covers a plethora of different possible behaviours
of the system. One of the tasks of the analysis is to determineredundancies and in-
consistencies in the system in order that these may be excluded from the design
process. The reduction to the condensed forms displays all the invariants that de-
termine the existence and uniqueness of the solution. The descriptor system is then
defined to be regularizable if there exist proportional or derivative feedback matri-
ces such that the closed-loop system is uniquely solvable for every consistent initial
state vector and any given (sufficiently smooth) control. Conditions for the system
to be regularizable then follow directly from the condensedforms.

In [31] a behaviour approach is taken to the linear time-varying problem where
state, input and output variables are all combined into one system vector and the
combined system is studied. This approach allows inhomogeneous control problems
also to be analysed. Instead of forming a derivative array from which the system in-
variants and the solutions of the original system can be determined, as in [14, 16],
the behaviour approach allows the invariants to be found without differentiating the
inputs and thus avoids restrictions on the set of admissiblecontrols. Reduction of
the behaviour system to condensed form enables an underlying descriptor system
to be extracted and the conditions under which this system can be regularized by
proportional and derivative feedback are determined. The construction of the feed-
back matrices is also described. The reduction and construction methods rely on
numerically stable equivalence transformations.

More recent work of Volker and his colleagues [15] extends the behaviour ap-
proach to a general implicit nonlinear model of the form

F (t,x, ẋ,u,y) = 0, x(t0) = x0 . (30)

The property of ‘strangeness-index’ is defined and used in the analysis. This prop-
erty corresponds to ‘index’, as defined for a linear time-invariant descriptor system,
and ‘strangeness-free’ corresponds to the condition that atime-invariant system is
of index at most one. Conditions are established under whicha behaviour system
can be reduced to a differential-algebraic system, and after reinterpretation of the
variables, to a typical implicit nonlinear system consisting of differential and al-
gebraic parts. Locally linear state feedback can then be applied to ensure that the
system is regular and strangeness-free. Standard simulation, control, and optimiza-
tion techniques can be applied to the reformulated feedbacksystem. Further details
of Volker’s work on nonlinear differential–algebraic systems can be found in other
chapters in this text.
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5 Conclusions

We have given here a broad-brush survey of the work of Volker Mehrmann on
the problems of regularizing descriptor systems. The extent of this work alone is
formidable and forms only part of his research during his career. We have concen-
trated specifically on results from Volker’s own approachesto the regularity prob-
lem. The primary aim of his work has been to provide stable numerical techniques
for analyzing and constructing control and state estimation systems and for ensuring
that these systems are robust. The reduction of systems to condensed forms using
orthogonal equivalence transformations forms the major theme in this work. Whilst
some of the conclusions described here can also be obtained via other canonical
or condensed forms published in the literature, these cannot be derived by sound
numerical methods and the required feedbacks cannot be generated from these by
backward stable algorithms. Volker’s work has therefore had a real practical impact
on control system design in engineering as well as producingsome beautiful theory.
It has been a pleasure for us to be involved in this work.
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