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A JOINT STATE AND PARAMETER ESTIMATION SCHEME FOR

NONLINEAR DYNAMICAL SYSTEMS∗

POLLY J. SMITH†‡ , SARAH L. DANCE† , AND NANCY K. NICHOLS†

Abstract. We present a novel algorithm for concurrent model state and parameter estimation
in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational
data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of
state augmentation to estimate uncertain model parameters alongside the model state variables in
a sequential filtering system. The method is relatively simple to implement and computationally
inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of
the method via a series of identical twin experiments with three simple dynamical system models. The
scheme is able to recover the parameter values to a good level of accuracy, even when observational
data are noisy. We expect this new technique to be easily transferable to much larger models.

Key words. state estimation, parameter estimation, variational data assimilation, filtering,
nonlinear dynamical systems.

AMS subject classifications.

1. Introduction. Parameters are intrinsic to numerical modelling. Parameteri-
sations are typically used as a way of representing processes that are not fully known
or understood, or where limitations to computer power constrain the model resolution
and therefore the level of detail that can be described. Numerical models will often
contain empirical or heuristic components derived from practical experience rather
than physical laws. A consequence of this is that model parameters often do not
represent an accurately known or directly measurable quantity. Whilst these approx-
imations are generally well founded, uncertainties in the model parameters can lead
to significant errors between the predicted and actual states of the system.

Typically, parameter estimation is addressed as a separate issue to state esti-
mation and model calibration is performed off-line in a separate calculation. Model
parameters are ordinarily determined theoretically or by adhoc calibration of the
model against historical data sets. More recently, improvements in computational
capabilities have seen the development of many novel, and often complex, automated
parameter optimisation algorithms. Generally, these methods involve data fitting
via the minimisation of an objective function [16], [20], [35]. The main distinctions
between the different methods are how the minimum is located, how the observed
data are processed and the assumptions made about the error statistics. A useful
inter-comparison of several optimisation techniques for parameter estimation applied
to terrestrial biogeochemical models is given in [48]. Another approach is to use
Bayesian ideas which allow the uncertainty in the parameter estimates to be assessed
[36], [37], [51].

Efforts to improve computational models of dynamical systems tend to concen-
trate on either improving methods for parameter estimation (without explicitly ac-
counting for uncertainty in the model state estimate) or improving methods for state
estimation (estimating model variables whilst keeping the model parameters fixed).
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However, in some scenarios it can make sense to perform joint estimation of both the
model state and parameters simultaneously. One method for doing this is to use data
assimilation techniques based on filtering methods.

State estimation, or data assimilation, is a technique for combining partial obser-
vations of a dynamical system with a mathematical model of that system in order to
accurately estimate the current system state and in turn produce better predictions
of future states. In filtering based estimation methods the observational data are
received sequentially in time and the system state is updated in an on-line fashion as
part of an analysis-forecast loop.

Data assimilation methods are most commonly used in the earth sciences to pro-
vide initial conditions for model forecasting in applications such as meteorology and
oceanography. However, they can also be used to estimate uncertain model param-
eters concurrently with the dynamical system state. Here, we do this by employing
the method of state augmentation [19]. State augmentation is conceptually very sim-
ple and can, in theory, be applied with any standard state estimation method. The
parameters are regarded as variables in the dynamical system and are appended to
the model state vector to give an augmented state vector; the equations governing the
evolution of the model state are combined with the equations describing the evolution
of these parameters and the chosen state estimation algorithm is simply applied to
this new augmented system. This enables us to estimate the model parameters and
update the predicted model state simultaneously, rather than treating the problem as
two individual processes, and means that observational data can be used much more
efficiently.

The state augmentation approach has previously been successfully employed in
the context of model error or bias estimation (see e.g. [3], [7], [14], [27]). The re-
view article [30] discusses state augmentation for parameter estimation in relation to
four dimensional variational data assimilation (4D-Var) techniques and surveys the
literature relating to parameter estimation in meteorology and oceanography. The
technique has also been applied with the Kalman filter. In [25] the method is used
for model bias estimation in ocean modelling, [47] employs the technique with the
extended and ensemble Kalman filters for parameter estimation in a simplified bio-
geochemical model, and [11] uses the approach with an Ensemble Transform Kalman
Filter (ETKF) for parameter and bias estimation in river flood modelling. Here, we
implement the method within a sequential three dimensional variational (3D-Var)
data assimilation scheme (e.g. [5], [23]). Variational data assimilation is a popular
choice for state estimation in large problems. 3D-Var is a well established method
that has many practical advantages over other estimation techniques, such as ease of
implementation, computational efficiency and robustness.

A key challenge in the construction of a state estimation algorithm is specifica-
tion of the statistics of the errors in the a priori system state estimate (referred to
as the background errors). These statistics, in the form of error covariances, play an
important role in the filtering and spreading of the observational data and are there-
fore fundamental in determining the nature of the solution. Ideally the background
error covariance should be evolved with the model, but this is computationally very
expensive, and infeasible when the system of interest is of high dimension. Conven-
tional 3D-Var algorithms assume that the background error covariances are statisti-
cally stationary; the structure of the covariance matrix is specified at the start of the
assimilation and kept fixed throughout.

A particular issue highlighted by [39] and [40] is the role of the state-parameter
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cross-covariances in joint state-parameter estimation. It is these cross-covariances that
transfer information from the observations to the parameter estimates and determine
the nature of the parameter updating. In [39] it was found that whilst the assumption
of static error covariances was sufficient for state estimation, it was insufficient for
joint state-parameter estimation. In order to yield reliable estimates of the exact
parameters, a flow dependent representation of the state-parameter cross-covariances
is required. Crucially, however, it is not necessary to evolve the full augmented system
covariance matrix. This result led to the development of a novel algorithm that uses
ideas from 3D-Var and the extended Kalman filter (EKF) to construct a hybrid error
covariance matrix. The new approach enables us to capture the flow dependent nature
of the state-parameter error cross-covariances whilst avoiding the explicit propagation
of the full background error covariance matrix. As we demonstrate here, the method
has proved to be applicable to a range of dynamical system models. An additional
example of its application is given in [43].

In this paper we give details of the formulation of our new method and demon-
strate its efficacy using three simple models: a single parameter 1D linear advection
model, a two parameter nonlinear damped oscillating system, and a three parameter
nonlinear chaotic system. The scheme has been tested by running a series of identi-
cal twin experiments. The results are positive and confirm that our new scheme can
indeed be a valuable tool in identifying uncertain model parameters. We are able to
recover the model parameter values to a good level of accuracy, even when observa-
tions are noisy. We expect that there is potential for successful application of our new
methodology to larger, more realistic models with more complex parameterisations.

This paper is organised as follows. In §2 we introduce the augmented system
model and give a brief overview of the sequential 3D-Var and Kalman filter algorithms
upon which our new method is based. Details of the formulation of our new method
are given in §3. In §4 we derive estimates of the state-parameter cross covariances for
each of our three test models and present results from our experiments. Finally, in §5
we summarise the conclusions from this work.

2. State estimation and state augmentation. In this section we present the
background material necessary for understanding the formulation and implementation
of our new scheme as described in §3. We start by introducing the equations for a
general dynamical system model and explaining the notation and terminology that
we will be using throughout this paper.

2.1. The model system equations. We consider the discrete nonlinear time
invariant dynamical system model

xk+1 = f(xk,p), k = 0, 1, . . . (1)

The column vector xk ∈ R
n is known as the state vector; it contains the model

variables we wish to estimate and represents the system state at time tk. The vector
p ∈ R

q is a vector of q (uncertain) model parameters, and the operator f : Rn −→ R
n

is a nonlinear function describing the evolution of the state from time tk to tk+1. We
assume that specification of x and p at time tk uniquely determines the model state
at all future times. We also assume that f(x,p) is differentiable with respect to x and
p for all x ∈ R

n and p ∈ R
q.

In §4.1 we consider a model for which the operator f is a linear function of the
model state. In this case we can re-write the model (1) in the form

xk+1 = Mk(p)xk, k = 0, 1, . . . , (2)
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where the matrix Mk ∈ R
n×n depends nonlinearly on the parameters p.

In this paper we use the ‘perfect model assumption’ [32]; for any given initial
state, the model equations (1), together with the known exact parameter values, give
a unique description of the behaviour of the underlying exact dynamical system. We
also assume that the model parameters remain constant over time, that is, they are
not altered by the forecast model from one time step to the next. The equation for
the evolution of the parameters therefore takes the simple form

pk+1 = pk, k = 0, 1, . . . . (3)

2.2. The augmented system. We define the augmented state vector w by
appending the parameter vector p to the model state vector x,

w =

(

x

p

)

∈ R
n+q. (4)

Combining the equation for the evolution of the parameters (3) with the state forecast
model (1) we can write the equivalent augmented system model as

wk+1 = f̃(wk), (5)

where

f̃ (wk) =

(

f(xk,pk)
pk

)

, (6)

with f̃ : Rn+q −→ R
n+q.

In most cases the parameters will enter the governing equations nonlinearly so
that even if the original dynamical model is a linear function of the state variables
the resulting augmented system model will be nonlinear. However, since the number
of parameters is typically small relative to the dimension of the state vector and the
dynamics of the parameters are simple, this does not have a significant impact on
computational cost.

2.3. Sequential state and parameter estimation. For sequential estimation,
we start with a background state wb

k = (xb
k,p

b
k)

T that represents a priori estimates of
the exact system state xt

k and model parameters pt at time tk, with error εbk ∈ R
(n+q).

This should be the best available approximation of the current exact system state and
parameters and is typically obtained from a previous model forecast.

We suppose that we have a set of rk observations to assimilate and that these are
related to the model state by the equations

yk = hk(x
t
k) + δk , k = 0, 1, . . . (7)

Here yk ∈ R
rk is a vector of rk observations valid at time tk. Note that the number

of available observations rk may vary with time. The operator hk : Rn −→ R
rk is

a nonlinear observation operator that maps from model state space to observation
space and the vector δk ∈ R

rk represents the observational errors. These errors are
commonly assumed to be unbiased, serially uncorrelated, stochastic variables, with a
given probability distribution [22]. For the augmented problem, the equation for the
observations (7) becomes

yk = h̃k(w
t
k) + δk = h̃k

(

xt
k

pt
k

)

+ δk
def
≡ hk(x

t
k) + δk , k = 0, 1, . . . , (8)
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where h̃k : Rn+q −→ R
rk maps from augmented model space to observation space.

The equivalence of equations (8) and (7) comes from the fact that the parameters
cannot be observed.

The aim of state-parameter estimation is to combine the measured observations
yk with the prior estimates wb

k to produce an updated augmented model state that
gives the best estimate of the expected value of the exact system state wt

k at time
tk. This optimal estimate is called the analysis and is denoted wa

k. For sequential
estimation, this updating procedure is carried out repeatedly in a series of forecast-
analyis steps; the current analysis state is used to forecast the background state for
the next analysis time by taking it as the initial condition and evolving the model
forward to the time at which a new set of observations becomes available. Note that
although the exact model parameters are assumed to be constant, the value of the
estimated parameters used in the state forecast model will vary with time as they are
updated by the estimation.

If we assume that the background and observation errors are unbiased and un-
correlated with Gaussian probability density functions, the optimal analysis is equal
to the maximum a posteriori Bayesian estimate of the system states [32]. The esti-
mation problem reduces to minimising a cost function measuring the misfit between
the model state wk, and the background state wb

k and the model and observations
yk, weighted by the inverse of their respective error covariances,

J(wk) =
1

2

(

wk −wb
k

)T
(

P
f
k

)−1
(

wk −wb
k

)

+
1

2

(

yk − h̃k(wk)
)T

R−1
k

(

yk − h̃k(wk)
)

.

(9)

The covariance matrices P
f
k ∈ R

(n+q)×(n+q) and Rk ∈ R
rk×rk are taken to be sym-

metric and positive definite. These matrices characterise the uncertainties in the
background state and the observations and determine the relative contribution of the
background and observations in the analysis. They are defined as

P
f
k = E

[

εbk εbk
T
]

and Rk = E
[

δk δk
T
]

. (10)

There are a variety of state estimation methods that can be used to solve the
nonlinear optimisation problem (9), each varying in formulation, complexity, compu-
tational burden, optimality and suitability for practical application. Our novel scheme
utilises ideas from the 3D-Var and extended Kalman filter methods. In 3D-Var (e.g.
[5], [23], [31]) the minimising solution at each observation time tk is found iteratively
via a gradient descent algorithm. Generally, the assumption made in 3D-Var schemes
is that the statistics of the model state background errors are homogenous, isotropic
and independent of the flow. The background error covariances are then approxi-
mated by a fixed matrix (i.e. P

f
k = Pf for all k in (9)), thus making 3D-Var an

efficient approach for large scale problems. If a 3D-Var scheme is applied cyclically as
described above it can be regarded as a sequential estimation method, thus allowing
us to utilise time series of observations.

In the EKF (e.g. [12], [19]), the analysis is taken to be the best linear unbiased
estimate (BLUE) [22] of the solution to the optimisation problem and is calculated
directly as

wa
k = wb

k +Kk(yk − H̃kw
b
k). (11)

The Kalman gain Kk is given by

Kk = P
f
kH̃

T
k (H̃kP

f
kH̃

T
k +Rk)

−1 . (12)
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where the matrix H̃k ∈ R
rk×(n+q) represents the linearisation (or Jacobian) of the

augmented observation operator h̃k evaluated at the background state wb
k.

Unlike in 3D-Var, the EKF algorithm forecasts the error covariance matrix P
f
k

forward, using the quality of the current analysis to specify the covariances for the
next update step. If the Kalman gain (12) has been computed exactly, the analysis
(posterior) error covariance Pa

k is given by

Pa
k = (I−KkH̃k)P

f
k . (13)

The background (forecast) state at tk+1 is again found by evolving the model forward
from the current analysis state. The background (or forecast) error covariance at tk+1

is determined by propagating the analysis error covariance forward from time tk using
a linearisation of the model dynamics

P
f
k+1 = FkP

a
kF

T
k , (14)

where

Fk =
∂ f̃

∂w

∣

∣

∣

∣

∣

wa

k

=

(

∂f(x,p)
∂x

∂f(x,p)
∂p

0 I

)∣

∣

∣

∣

∣

xa

k
,pa

k

(15)

is the Jacobian of the augmented system forecast model evaluated at the current
analysis state wa

k.
If the system is linear, equation (11) gives the exact solution to the minimisation

problem (9), but otherwise the EKF solution it is not optimal due to linearisation
of the model dynamics and observation operators. The high computational cost of
the EKF means that it becomes prohibitively expensive for large scale systems. In
practice the matrix P

f
k is kept constant or a much simpler updating is performed.

However, the equations provide a useful basis for the development of approximate
algorithms.

3. A hybrid approach. Although state augmentation appears straightforward
in theory, practical implementation of the approach relies strongly on the relationships
between the parameters and model state components being well defined and assumes
that we have sufficient knowledge to reliably describe them. Since it is not possible
to observe the parameters themselves, the parameter estimates will depend on the
observations of the state variables. For joint state-parameter estimation, it is the state-
parameter cross-covariances that govern how information in the observed variables is
translated into updates in the estimates of the unobserved parameters. A good a priori

specification of these covariances is therefore fundamental to reliable joint state and
parameter estimation. Since by the nature of the problem the true error statistics of
the system are unknown we have to approximate them in some manner; this can offer
a significant challenge.

Previous work [39], [40] indicated that in order to be able to reliably update the

model parameters the state-parameter cross-covariances in P
f
k need to have a flow-

dependent structure. However, an important part of our findings was that, provided
the state-parameter cross-covariances were well defined, it was not necessary to prop-
agate the model state background error covariances; here a static representation was
sufficient. Following this result, we developed a novel hybrid approximation that cap-
tures the flow dependence of the state-parameter errors without the computational
expense and complexity of explicitly propagating the full system covariance matrix.
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The state-parameter cross-covariances are estimated based on a simplified version of
the EKF error covariance forecast step (14) and this is then combined with an em-
pirical, fixed approximation of the model state background error covariances and a
fixed parameter error covariance matrix. We give details of the formulation of this
new approach in the following section.

3.1. Formulation. The augmented EKF forecast and analysis error covariance
matrices can be partitioned as follows

Pk =

(

Pxxk
Pxp

k

(Pxp
k
)T Ppp

k

)

(16)

with the superscript f or a used to indicate forecast or analysis. Here Pxxk
∈ R

n×n is
the forecast (analysis) error covariance matrix for the model state vector xk at time
tk, Ppp

k
∈ R

q×q is the covariance matrix describing the errors in the parameter vector
pk and Pxp

k
∈ R

n×q is the covariance matrix for the cross correlations between the
forecast (analysis) errors in the state and parameter vectors.

Starting at time tk, we consider the form of the EKF forecast error covariance
matrix (14) for a single step of the filter. If we denote the Jacobian of the state
forecast model with respect to the model state and model parameters respectively as

Mk =
∂f(x,p)

∂x

∣

∣

∣

∣

xa

k
,pa

k

and Nk =
∂f(x,p)

∂p

∣

∣

∣

∣

xa

k
,pa

k

, (17)

where Mk ∈ R
n×n and Nk ∈ R

n×q, and substitute into (15),(14) we obtain the

following expressions for the blocks of Pf
k+1

Pf
xxk+1

= MkP
a
xxk

MT
k +Nk(P

a
xp

k
)TMT

k +MkP
a
xp

k
NT

k +NkP
a
pp

k
NT

k , (18)

Pf
xp

k+1
= MkP

a
xp

k
+NkP

a
pp

k
, (19)

Pf
pp

k+1
= Pa

pp
k
. (20)

We do not want to recompute the full augmented matrix (18–20) at every time step.
Guided by the results of our previous work [39], [40] we simplify as follows. We sub-
stitute the EKF model state forecast error covariance matrix (18) with a conventional
3D-Var fixed approximation

Pf
xxk

= Pf
xx for all k. (21)

The choice for Pf
xx will depend on the particular model application; a simple and

commonly adopted approach is to define Pf
xx using an analytic correlation function

[6]. Alternatively, a more sophisticated covariance representation can be obtained
using one of the various empirical techniques discussed in the literature (see e.g. [1],
[10]). We make the same assumption for the parameter error covariances and set

Pf
pp

k
= Pf

pp for all k. (22)

Specification of Pf
pp requires some a priori knowledge of the parameter error statis-

tics. The error variance of each parameter should reflect our uncertainty in its initial
estimate and should be chosen so as to ensure that the parameter updates are realistic
and consistent with the scales of the model. When the number of model parameters
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we wish to estimate, q, is greater than one, we also need to consider the relationships
between individual parameters.

For our new method we focus on the state-parameter background error cross-
covariances given by the off-diagonal blocks (19). Even with assumptions (21) and
(22), evaluating (19) at every time step would introduce unwanted complexity into our
scheme. We want a simple approximation that provides an adequate characterisation
of the state-parameter cross-covariances whilst being straightforward to compute.

It is not unreasonable to assume that at the initial time the background state
and parameter errors are uncorrelated. Setting Pa

xp
k
= 0 and using (22) gives us the

following approximation to (19)

Pf
xp

k+1
= NkP

f
pp. (23)

Our augmented background error covariance matrix now takes the following form

P
f
k+1 =

(

Pf
xx NkP

f
pp

Pf
ppN

T
k Pf

pp

)

. (24)

To summarise, all elements of the augmented background error covariance matrix
(24) are kept fixed except the off-diagonal blocks which are updated by recomputing
the matrix Nk at each new analysis time, where Nk is given by (17). This ap-
proximation enables us to capture the flow dependent nature of the state-parameter
cross-covariances without having to explicitly evolve the full augmented system ma-
trix.

4. Models and experiments. In this section we demonstrate our new method
using three simple models: (i) a single parameter 1D linear advection model [49]; (ii) a
two parameter nonlinear damped oscillating system [15]; and (iii) the three parameter
nonlinear chaotic Lorenz 63 equations [24], [45]. We give details of each model and
its discretisation before using the method formulated in the previous section to derive
an approximation of the state-parameter error cross-covariances. A brief description
of the experimental design is given, followed by selected results.

The scheme has been tested via a series of twin experiments using pseudo ob-
servations with a range of temporal frequencies. For the linear advection model we
also vary the spatial frequency of the observations. In each case we specify an exact
or reference solution; this solution is used to provide the observations and also to
evaluate the performance of the scheme in terms of estimating the state variables. It
is generated by running the model from a given initial condition with pre-specified
parameter values.

Observations are assimilated sequentially and are generated by sampling the ref-
erence solution at regular intervals. The temporal and (where applicable) spatial
frequency of the observations remains fixed for the duration of each individual exper-
iment but is varied between experiments as described in §4.1.3, §4.2.3 and §4.3.3. In
all cases, the observation operator is linear and takes the form

H̃k = H̃ ≡
(

H 0
)

for all k , (25)

where H ∈ R
r×n, with the number of observations rk = r the same for all k. In cases

(ii) and (iii) we have H = I ∈ R
n×n.

Experiments have been run with both perfect and imperfect observations. The
imperfect observations are created by adding random noise from a Gaussian distribu-
tion with mean zero and variance σ2

o , where σ2
o is the observation error variance. We
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Fig. 1. Solutions u(x, t) to the linear advection equation (27) for Gaussian initial data at model
times t = 0, 1, 2.

assume that the observation errors are spatially and temporally uncorrelated and set
the observation error covariance matrix Rk

Rk = R = σ2
oI , I ∈ R

r×r . (26)

In the perfect observations experiments, the observation error variance is set at σ2
o =

0.01. The use of a non-zero observation error variance allows us to investigate the
impact of the accuracy of the observations without actually adding noise. This is
common practice in the preliminary testing of state estimation schemes with pseudo
data (e.g. [27]).

The initial background state is generated by perturbing the initial state of the
reference solution as described in §4.1.2, §4.2.2 and §4.3.2. The initial parameter
estimates are generated by adding Gaussian random noise with zero mean and given
variance to the exact parameter values.

4.1. Linear advection. We consider the one-dimensional linear advection equa-
tion [49]

∂u

∂t
+ c

∂u

∂x
= 0, (27)

where u(x, t) is the model state variable, t is time, and the parameter we wish to
estimate, c, represents the advection velocity or wave speed in the x direction.

The model (27) has the benefit of an analytical solution [21]. Given initial data,
u(x, 0), and known, non-zero, constant velocity, the solution has the property that
it preserves its initial shape. As figure 1 illustrates, as time evolves, the initial data
propagates undistorted at constant speed c to the right (for c > 0).

For the experiments, we solve (27) numerically on a finite spatial domain with pe-
riodic boundary conditions. We assume that the parameter c is positive and discretise
using the upwind method (e.g. [21], [29])

uj, k+1 = uj, k + cλ(uj−1, k − uj, k) , k = 0, 1, . . . , j = 1, . . . n (28)

with boundary conditions

u1, k = un, k (29)

where uj,k ≈ u(xj , tk), with xj = (j − 1)∆x, tk = k∆t, and λ = ∆t
∆x where ∆x is the

spatial grid spacing and ∆t is the model time step.
The upwind scheme is first order accurate in space and time and stable provided

that the CFL condition |λ c| ≤ 1 is satisfied [8]. To ensure that the model remains
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stable we set λ = 1 and assume that c is known to be somewhere in the interval [0 , 1].
The upwind scheme is numerically diffusive; this results mainly in amplitude errors
in the solution when the forecast model is run with the correct c value and can be
reduced by choosing a small ∆x. The scheme (28) can be written as a linear matrix
system enabling us to obtain an explicit expression for the elements of the Jacobian
matrix Nk.

The state forecast model (28), with known constant advection speed c, can be
written as

xk+1 = Mxk, (30)

where xk = (u1,k, u2,k, . . . un,k)
T ∈ R

n is the model state at time tk and M is a
(constant) n× n matrix, that depends nonlinearly on the advection velocity c,

Mi,j =







(1 − λc) i = j
λc i = j + 1 , and (i, j) = (1, n)
0 otherwise

(31)

Setting wk = (xk, ck)
T
, we combine (30) with the parameter evolution model (3) to

give the augmented system model

wk+1 =

(

Mk 0
0 1

)(

xk

ck

)

(32)

Note that the constant matrix M in (30) has been replaced by the time varying
matrix Mk = M(ck). Although the exact system matrix M is constant, during the
state-parameter estimation the forecast model at time tk will depend on the current
estimate, ck, of the exact advection velocity, c. The matrix Mk will therefore vary as
ck is updated.

4.1.1. State-parameter cross-covariance. In this case, we only have a single
unknown parameter; the parameter vector is scalar and the parameter background
error covariance matrix Pf

pp is simply the parameter error variance, σ2
c . The ap-

proximation of the cross-covariances between the errors in the model state and the
parameter c at time tk+1 is therefore given by

Pf
xp

k+1
= σ2

cNk . (33)

For the linear advection model, the matrix Nk is defined as

Nk =
∂ (Mkxk)

∂c

∣

∣

∣

∣

xa

k
,ca

k

, (34)

which is a vector in R
n with elements

Nj,k = λ(uj−1,k − uj,k), j = 1, . . . , n ; k = 0, 1, . . . (35)

4.1.2. Experiments. We run the linear advection model on the domain x ∈
[ 0, 3] with grid spacing ∆x = 0.01 and time step ∆t = 0.01, giving λ = 1. The initial
state of the reference solution is given by the Gaussian function

u(x, 0) =











0 x < 0.01

e−
(x−0.25)2

0.01 0.01 < x < 0.5
0 x ≥ 0.5

. (36)
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The exact advection velocity is set as c = 0.5. The parameter error variance is set to
be σ2

c = 0.1, which corresponds to an error variance of 20%. The initial background
state for u is also specified as a Gaussian function but is rescaled so that it is a
different height, width and centred around a slightly different point to the reference
state. The model state background error covariance matrix is defined using a isotropic
correlation function [34]

Pf
xx = σ2

bρ , (37)

where σ2
b is the model state background error variance and ρ is the Markov matrix

ρi,j = e−∆x|i−j|/L i, j = 1, . . . , n. (38)

The element ρi,j defines the correlation between components i and j of the model
state background error vector εbx = (xb − xt) and L is a correlation length scale that
is adjusted empirically. For these experiments L is set at twice the current observation
spacing and σ2

b = 0.05.
The analysis wa

k+1 at time tk+1 is found by solving the nonlinear optimisation
problem (9) numerically, using a quasi-Newton descent algorithm [13] to iterate to the
minimising solution. At the end of each update cycle the state analysis is integrated
forward, using the new value of c, to become the background state at the next analysis
time.

4.1.3. Results. Perfect observations. Experiments were carried out using a
range of both over- and under-estimated initial c values and different initial back-
ground guesses for xb. We found that the quality of the state analysis and the con-
vergence and accuracy of the parameter estimates depends on a number of factors
including the initial background guess, the location and spatial frequency of the ob-
servations, the time between successive updates, and the presence of observational
noise. Here, we discuss the results from one example case where the advection veloc-
ity c is initially over estimated as c0 = 0.87116.

Figure 2(a) shows the effect of varying the spatial frequency of the observations.
Observations are assumed to be available every 10∆t with the grid spacing ranging
from every ∆x to every 50∆x. The hybrid approach works extremely well. For
observations taken at intervals between ∆x and 25∆x the value of c is found, at
worst, to within 2 decimal places. The speed of convergence of the estimate decreases
as the number of observations decreases. For intervals up to 10∆x the analysis for
u is consistently good and closely tracks the reference solution. When observations
are taken every 25∆x there is initially some variation in the quality of the analysis
for u but once the c estimate has converged it is also very good (see [38] for further
discussion and figures). If the observation spacing is further increased to 50∆x, the
estimates of c are too low. However, if the time window is extended beyond that
shown, they do slowly begin to converge towards the exact value. The state analysis
also consequently improves.

Figure 2(b) shows the effect of varying the temporal frequency of the observations
between 5∆t and 50∆t. For these experiments, the spatial frequency is fixed at 10∆x.
The results are similar to the previous experiment; the speed of convergence decreases
as the frequency of the observations decreases but the final estimated c values are very
close to the exact value. There are only small differences in convergence when the
time between successive updates is increased from every 5∆t to 10∆t to 25∆t. The
analysis for u is also very good, with only slight fluctuations in predicted height for
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Fig. 2. Linear advection model: parameter updates for initial estimate c0 = 0.87116, exact
c = 0.5. (a) Varying the spatial frequency of observations: solid grey line - observations at 1∆x

intervals; dashed line - observations at 5∆x intervals; dot-dash line - observations at 10∆x intervals;
solid line with round markers - observations at 25∆x intervals; solid line with square markers -
observations at 50∆x intervals. (b) Varying the temporal frequency of observations: solid grey line
- observations every 5∆t; dashed line - observations every 10∆t; dot-dash line - observations every
25∆t; solid line with round markers - observations every 50∆t.
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Fig. 3. Linear advection model: imperfect observations. Parameter updates for initial estimate
c0 = 0.87116, exact c = 0.5. (a) unaveraged estimates. (b) time averaged estimates. Solid line -
σ2
o
= 0.001; dashed line - σ2

o
= 0.01; dot-dash line - σ2

o
= 0.1. Vertical line indicates the start of

time averaging.
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the case 25∆t. When observations are taken every 50∆t the estimates for c take
longer to converge and as a result the model takes longer to stablise. Once the model
has settled the analysis for u is relatively good. If the time between observations is
doubled to 100∆t the scheme completely fails to recover c.

Noisy observations. For these experiments, noisy observations were taken with
temporal frequency 10∆t at spatial intervals of 10∆x. Figure 3 (a) shows the param-
eter estimates produced for observation error variance increasing from σ2

o = 0.001 to
σ2
o = 0.1. This represents errors with variance of up to 10% of the maximum curve

height.
As we would expect, when the observations are noisy the resulting state analy-

sis and parameter estimates are also noisy. The amplitude of the oscillations in the
estimated c values increases as σ2

o is increased. The oscillations are, however, approxi-
mately centered around the reference c value and lie within the bounds of uncertainty
placed on the observations. We found that smoother and more accurate parameter
estimates could be obtained by averaging over a moving time window, as is shown
figure 3(b). Here, the c estimates are averaged over a moving time window of 50 time
steps. Note that to allow time for the scheme to settle we omit the early estimates
and begin the averaging at t = 2.0.

4.2. Nonlinear oscillator. Our second test model is a two parameter, unforced,
damped non-linear oscillator given by the second order ordinary differential equation

ẍ+ dẋ+mx+ x3 = 0 , (39)

where the parameters we wish to estimate d andm are real and constant, and x = x(t).
Often referred to as the Duffing equation or Duffing oscillator, equation (39) arises

in number of forms and has a variety of applications. See e.g. [15], [46], [50] for more
detailed discussions. For d,m > 0, the form (39) describes the motion of a single mass
attached to a spring with nonlinear elasticity and linear damping. The parameter d
is the damping coefficient and m is the square of the frequency of oscillation.

We can rewrite (39) as the first order system

ẋ = y,

ẏ = −(mx+ x3 + dy). (40)

The nature of the solution of this system varies greatly depending on the values of
the parameters. For d,m > 0 the system (40) has a single stable equilibrium at
(x, ẋ) = (0, 0). We solve (40) numerically using a second order Runge-Kutta method
(see e.g. [4]). The discrete system is given by the following set of equations

xk+1 =

(

∆t− d
∆t2

2

)

yk +

(

1−m
∆t2

2
−

∆t2

2
x2
k

)

xk (41)

yk+1 =

(

1− d∆t−m
∆t2

2
+ d2

∆t2

2

)

yk +

(

−m∆t+ dm
∆t2

2
+ (d

∆t2

2
−

∆t

2
)x2

k

)

xk . . .

−
∆t

2
(xk +∆tyk)

3
, k = 0, 1, . . . (42)

where xk ≈ x(tk) and yk ≈ y(tk), tk = k∆t.
We combine the parameters d and m in the vector pk = (dk, mk)

T ∈ R
2 with the

parameter evolution model given by (3). Adding the parameter vector to the state



14 P. J. SMITH AND S. L. DANCE AND N. K. NICHOLS

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

x

 

 

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

time

dx
/d

t

 

 

Fig. 4. Damped, unforced nonlinear oscillator: computed numerical solution for x and y.

vector xk = (xk, yk)
T
gives the augmented state vector

wk = (xk, yk, dk, mk)
T . (43)

The augmented system model takes the form (5), (6) with f : R2 −→ R
2 given by

(41)–(42).

4.2.1. State-parameter cross-covariance. For the oscillating system, we as-
sume that the parameters d and m are uncorrelated and set the parameter error
covariance matrix Pf

pp = diag(σ2
d , σ

2
m) where σ2

d and σ2
m are the error variances of

d and m respectively. The Jacobian of the state forecast model with respect to the
parameters is a 2× 2 matrix defined as

Nk =

(

∂f(x,p)

∂d

∂f(x,p)

∂m

)∣

∣

∣

∣

xa

k
,pa

k

, (44)

so that

Pf
xp

k+1
=

(

σ2
d

∂f(xk,pk)

∂d
σ2
m

∂f(xk,pk)

∂m

)∣

∣

∣

∣

xa

k
,pa

k

. (45)

The elements of (45) can be computed directly from the discrete equations (41)–(42).
Details of this calculation are given in [38].

4.2.2. Experiments. We define the reference solution to be that given by the
discretised equations (41)–(42) with model time step ∆t = 0.1, initial displacement
x0 = 2.0, initial velocity y0 = 0.0 and parameter values d = 0.05 and m = 1.0.
It is assumed that we know the values of d,m are positive. The evolution of x
and y is shown in figure 4 for t ∈ [0, 50]. The initial background estimate for the
state xb

0 is generated by adding random noise to the initial conditions of the reference
solution. This noise is taken from a Gaussian distribution with zero mean and variance
σ2
b = 0.01. The state background error covariance matrix is assumed to be a diagonal

matrix, Pf
xx = σ2

bI ∈ R
2×2. The error variance of parameters d and m are set at

σ2
d = 0.005 and σ2

m = 0.1 respectively. Since the dimension of the augmented state
is small in this case, and the observation operator is linear, we compute the analysis
directly from the BLUE equation (11).
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Fig. 5. Nonlinear oscillator: (a) Parameter d updates for initial estimate d0 = 0.081877, (b)
Parameter m updates for initial estimate m0 = 0.58617: solid light grey line - observations every
∆t; solid dark grey line - observations every 5∆t; dashed line - observations every 10∆t; dotted line
- observations every 25∆t. The horizontal dashed line indicates the exact parameter value.

4.2.3. Results. Perfect observations. Figures 5(a) and (b) show the parameter
d and m updates for an example model run with initial parameter estimates d0 =
0.081877 (over estimated), m0 = 0.58617 (under estimated) and observations of x and
y at varying temporal frequencies. The scheme manages to retrieve the values of both
d and m to a good level of accuracy for observation intervals up to every 25∆t. We
see a large increase in error in the estimated parameter values when the observation
frequency is decreased to 50∆t (not shown). The x and y analyses are not shown;
for observation intervals of less than 25∆t they are qualitatively indistinguishable
from the reference solution. When observations are taken every 25∆t we start to see
very small differences, and when the observation frequency is halved to 50∆t there
is a marked deterioration in the analysis, with the over estimation of both d and m
causing significant phase and amplitude errors. In this case, too much weight is being
given to the background state which suggests that a background error variance value
of σ2

b = 0.01 is too low. Indeed, we would expect the errors in the model forecast to
grow as the time between successive state and parameter updates is increased. We
found that both the state and parameter estimates could be improved by inflating the
background error variance. Further examples and discussion can be found in [41] and
[38].

Noisy observations. Figures 6(a) and (b) show the results produced when random
noise with variance σ2

o = 0.01 was added to the observations. Note that the length of
the time window has been increased to 80 time units for these experiments. Overall the
scheme performs well, although there is some curious behaviour. Unlike the perfect
observation case, there is no clear relationship between the observation frequency and
the accuracy of the parameter estimates; the best estimates of d and m were obtained
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using different observation intervals. There was also variation across model runs.
A notable result is the estimates of parameter d when observations are available at
every timestep (solid grey line in figure 6(a)). The estimates initially appear to be
moving towards the correct value but at around 40 timesteps they begin to increase
away. The experiment was repeated with different noise simulations and different
starting values for d but similar behaviour was found in every case. It is possible
that the interval between updates is insufficient for the model to adjust to the new
value of d before the next input of data. A further hypothesis is that this behaviour
is related to the role of d in the model equations. The parameter d determines how
quickly the solution becomes damped. As we move forward in time the amplitude of
the solution decreases, the relative size of the observational noise therefore increases
causing greater misrepresentation of the true amplitude and making it harder to
identify the exact value of d.

We found that this behaviour could be remedied by averaging the estimates as
is illustrated in figures 7(a) and (b). The parameter estimates were averaged over a
moving time window of 50 time steps starting at t = 30. This produces more stable
estimates for the parameters which in turn gives greater stability to the forecast
model. In this example, the value prescribed for σ2

o is relatively small and so the
observational noise has very little impact on the overall quality of the state analysis.
We see a much greater effect on the state analysis if the observation error variance is
increased to σ2

o = 0.1 but we are still able to estimate the parameters to a reasonable
level of accuracy for observation intervals up to 10∆t.

4.3. The Lorenz 63 equations. The Lorenz equations is the name given to
a system of first order differential equations describing a simple nonlinear dynamical
system that exhibits chaotic behaviour. The system was originally derived from a
model of fluid convection and consists of the three coupled, nonlinear ordinary differ-
ential equations [24]

ẋ = −s(x− y) , ẏ = ρx− y − xz , ż = xy − βz . (46)

where x = x(t), y = y(t) and z = z(t) and s, ρ and β are real, positive parameters.

The strong nonlinearity of these equations means that the model solution is ex-
tremely sensitive to perturbations in the initial conditions and parameters; they are
often used as a framework for examining the properties of state estimation methods
applied to highly nonlinear dynamical systems [9], [28]. The origin is a stationary
point for all parameter values. When ρ > 1 there are two other stationary points

(

±
√

β(ρ− 1),±
√

β(ρ− 1), ρ− 1
)

.

For these experiments we set the reference parameters as s = 10, ρ = 28 and β = 8/3.
These are the classic values first used by Lorenz. At these values all three equilibrium
points are unstable and give rise to chaotic solutions [45].

To investigate the applicability of our new method to this system we adapt a pre-
existing Matlab routine written by M.J Martin [27], [25]. The code was developed as
a data assimilation training tool to illustrate sequential state estimation in simplified
models; a copy of the original, unmodified code can be obtained from [26]. Equations
(46) are solved numerically using the same second order Runge–Kutta scheme as in
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Fig. 6. Nonlinear oscillator: imperfect observations with observation error variance σ2
o
= 0.01.

Parameter updates for initial estimate (a) d0 = 0.081877 and (b) m0 = 0.58617. Lines as figure 5.
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Fig. 7. Nonlinear oscillator: imperfect observations with observation error variance σ2
o
= 0.01.

Time averaged parameter updates for initial estimate (a) d0 = 0.081877 and (b) m0 = 0.58617.
Lines as figure 5. Vertical line indicates the start of time averaging.
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Fig. 8. Lorenz equations: reference solution for x and z.

§4.2. The discrete system is given by

xk+1 = xk + s
∆t

2

[

2(yk − xk) + ∆t(ρxk − yk − xkzk)− s∆t(yk − xk)
]

, (47)

yk+1 = yk +
∆t

2

[

ρxk − yk − xkzk + ρ(xk + s∆t(yk − xk))− yk −∆t(ρxk − yk − xkzk)

− (xk + s∆t(yk − xk))(zk +∆t(xkyk − βzk))
]

(48)

zk+1 = zk +
∆t

2

[

xkyk − βzk + (xk +∆ts(yk − xk))(yk +∆t(ρxk − yk − xkzk))

− β(zk +∆t(xkyk − βzk))
]

k = 0, 1, . . . (49)

where xk ≈ x(tk), yk ≈ y(tk) and zk ≈ z(tk), tk = k∆t.

Combining the state and parameter vectors xk = (xk, yk, zk)
T
and pk = (sk, ρk, βk)

T

gives the augmented state vector

wk = (xk, yk, zk, sk, ρk, βk)
T
. (50)

Our augmented system model (5),(6) is then given by the state evolution model (47)–
(49) together with the parameter model (3).

4.3.1. State-parameter cross-covariance. We assume that the parameters s,
ρ and β are uncorrelated and set Pf

pp = diag(σ2
s , σ

2
ρ, σ

2
β), where σ

2
s , σ

2
ρ and σ2

β are the
error variances of parameters s, ρ and β respectively. The Jacobian matrix Nk can
be computed directly by differentiating the discrete equations (47)–(49) with respect
to each parameter as described in [38]. The state-parameter cross-covariance matrix
at tk+1 is then given by

Pxpk+1 =

(

σ2
s

∂f(xk,pk)

∂s
σ2
ρ

∂f(xk,pk)

∂ρ
σ2
β

∂f(xk,pk)

∂β

)∣

∣

∣

∣

xa

k
,pa

k

. (51)

4.3.2. Experiments. The reference solution is taken to be that given by the
discrete equations (47)–(49) with model timestep ∆t = 0.01 and initial conditions
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x0 = −5.4458, y0 = −5.4841 and z0 = 22.5606. The solutions for x and z are
illustrated in figure 8 for t ∈ [0, 30]. The initial model background state vector xb

0

is generated by adding Gaussian random noise with zero mean and variance 0.1 to
the reference state at t0. The state background error covariance matrix is given by
Pf

xx = σ2
b I ∈ R

3×3 with error variance σ2
b = 1.0. The error variances of the parameters

are set equal to 20% of their reference value. As in §4.2, we use the BLUE equation
(11) to compute the analysis directly.

4.3.3. Results. Perfect observations. Once again we find that our method per-
forms extremely well. Figure 9 shows the parameter updates for model runs with
observations of x, y and z at decreasing temporal frequency. In this example, the
initial parameter values are s0 = 11.0311, ρ0 = 30.1316 and β0 = 1.6986. For ob-
servation frequencies 5∆t, 10∆t and 20∆t the estimates of ρ and β converge to their
exact values very rapidly. The updating of s is much slower but the correct value is
eventually recovered to an accuracy of 3 decimal places. There are no distinguishable
differences between the model and reference solution for x, y and z at these frequencies
and so we do not show the results here. When the observation interval is increased
to 30∆t (not shown due to scale) the scheme takes longer to stabilise; there are large
initial deviations in the estimated parameters but all three do eventually converge to
their reference value. This in turn effects the updating of the state variables; initially
there are clear differences between the predicted and reference solutions. However,
once the model has stabilised the reference solution is reproduced almost perfectly
(see [38]). If the time period between updates is further increased to 40∆t the scheme
completely fails to find the correct parameter values and the model state analysis is
poor across the entire time window.

Noisy observations. The experiments were re-run using noisy observations with
observation error variance ranging from σ2

o = 0.01 to σ2
o = 0.25. Figure 10 shows

the parameter updates obtained with observation error variance σ2
o = 0.1. When

σ2
o = 0.01 the convergence and quality of the parameter and state estimates is very

similar to the perfect observation case. With σ2
o = 0.1 and σ2

o = 0.25 the parameter
estimates are very noisy but the oscillations are centered around their reference values.
The size of the parameter errors increase as σ2

o increases and also as the frequency of
the observations decreases. When σ2

o = 0.1 there is a significant growth in the size of
the oscillations when the time between updates is increased to 30∆t. Again these are
not shown due to scale. If we try to extend the observation interval any further, the
model fails to produce any meaningful results.

Figure 11 shows the effect of averaging the parameter estimates over a moving
time window of 50 time steps, starting at t = 10. With σ2

o = 0.1 the parameters
are predicted to a good level of accuracy for observation intervals up to 20∆t. With
σ2
o = 0.25 (not shown) we get similarly good results for ρ and β, but the parameter s

estimates are less accurate for observation intervals greater than 5∆t. In the perfect
observation experiments, we found that this parameter converged much slower than
the other two. This perhaps suggests that the model is relatively insensitive to small
deviations in its value. The averaged s estimate could potentially be improved by
starting the averaging at a later time.

For observation intervals of 5∆t to 20∆t, the quality of the analysis for the model
state variables is good for both σ2

o = 0.1 and σ2
o = 0.25 even without the averaging of

the parameter estimates. There is a noticeable deterioration in the analysis when the
observation frequency is decreased to 30∆t, particularly in the σ2

o = 0.25 case. When
σ2
o = 0.1, we found that the state analysis improved when the model was re-run using
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Fig. 9. Lorenz equations: Parameter updates for initial estimates s0 = 11.0311, ρ0 = 30.1316
and β0 = 1.6986. Solid light grey line - observations every 5∆t; solid dark grey line - observations
every 10∆t; dashed line - observations every 20∆t. Note the different timescale for parameter s.

the time averaging of the parameter estimates. The same approach failed to produce
any substantial improvement for the case σ2

o = 0.25.

5. Conclusions. A new method for concurrent model parameter and state es-
timation, employing a joint sequential estimation algorithm, has been proposed and
demonstrated via a series of identical twin experiments with three simple numeri-
cal models. The approach combines ideas from 3D-Var and the extended Kalman
filter methods to produce a flow dependent approximation of the state-parameter
cross-covariances whilst avoiding the computational complexities associated with im-
plementation of the full Kalman filter equations. This allows us to use the state
augmentation technique with the 3D-Var algorithm which traditionally makes the
assumption of a static background error covariance matrix.

In this paper we have presented details of this new methodology and illustrated its
versatility by applying it to a range of simple dynamical system models in which the
use of incorrect parameters has a direct impact on the model solution. Although each
system has different characteristics the technique performed well in all three cases.
As the results show, the scheme was successful in recovering the reference parameter
values we had specified to a good level of accuracy, even when the observational data
were noisy. This had a positive impact on the forecast model and enabled more
accurate estimation of the reference model state.

As we would expect, there are limits to the success of the method; when observa-
tional data become too infrequent or too noisy, or if the initial state and parameter
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Fig. 10. Lorenz equations: imperfect observations with observation error variance σ2
o
= 0.1.

Parameter updates for initial estimates σ0 = 11.0311, ρ0 = 30.1316 and β0 = 1.6986. Lines as
figure 9. Note the different timescale for parameter s.
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background estimates are particularly poor then we are unable to yield reliable results.
The threshold for each model varied depending on properties of the model structure
and the underlying dynamics, but was not overly restrictive.

The scheme is inevitably less successful in situations where the model is relatively
insensitive to a particular parameter, as was the case for certain settings in the nonlin-
ear oscillating system. This is not surprising as we cannot expect to be able to correct
parameters that cause errors in the model solution that are on smaller scales than
can be reliably observed. Other parameter estimation techniques would also be likely
to fail in such a scenario. This is linked to the concepts of observability and identifi-
ability [2], [30]; whether the available observations contain sufficient information for
us to be able to determine the parameters of interest and whether these parameters
have a unique deterministic set of values. A method can only be expected to work
reliably when both these properties hold. Future work will consider these issues in
more depth and examine how they formally relate to our new algorithm.

For models with more than one parameter, consideration must be given to the
relationship between individual parameters. In this work we assumed that the pa-
rameters in the oscillating and Lorenz models were uncorrelated and set the cross-
covariances between the parameters equal to zero. Whilst this assumption worked for
these particular models it may not adequate for models in which the parameters ex-
hibit strong correlation. A model sensitivity analysis can be used to help identify the
interdependence of parameters and ascertain whether cross-correlations are needed.
In this case, more attention will need to be given to the parameter error covariance
matrix and methods for defining the cross-correlations will need to be considered [43].
In some situations, it may be prudent to consider a re-parameterisation of the model
equations to improve the identifiability of the parameters or even to transform the
parameters to a set of uncorrelated variables [44].

To date, our new technique has only been tested in models of relatively low di-
mension, where the number of parameters is small and, since the required parameters
are constants, the dynamics of the parameter model are simple. The increase in the
dimension of the problem caused by the addition of the parameters to the state vector
does not have a significant impact on the computational cost of the estimation scheme
and the re-calculation of the matrix Nk at each new observation time is not infeasi-
ble. Here we chose model discretisations that allowed us to obtain explicit expressions
for the matrix Nk thereby avoiding any additional computational complexity. How-
ever, an explicit computational form for the Jacobian is not necessarily required; it
can, for example, be approximated using a simple local finite difference approach, as
demonstrated in [43], [42], [41]. A further option is automatic differentiation [33].

Important advantages of our new approach are that the background error covari-
ance matrix only needs to be updated at each new analysis time rather than at every
time step and it does not require the previous cross-covariance matrices to be stored.
It also avoids many of the potential problems associated with implementation of fully
flow dependent algorithms like the EKF and ensemble Kalman filters such as filter
divergence, rank deficiency [17], spurious correlations and imbalance [18].

This study has provided a valuable insight into how our new method is likely
to perform in a range of dynamical systems. The scheme has proven to be largely
successful and we believe that it offers an efficient and versatile solution to the problem
of sequential joint state-parameter estimation across a variety of applications.
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