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Abstract

Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the
floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast un-
certainty. This has the potential to keep the forecast on track, so providing an Earth Observation
(EO) based flood forecast system. However, the operational applicability of such a system for
floods developed over river networks requires further testing. One of the promising techniques
for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use
a limited-size ensemble representation of the forecast error covariance matrix. This represen-
tation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which
is a further complication for dealing with floods in either urban areas or river junctions in rural
environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR
overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct
application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence
caused by spurious correlations. However, a spatially-based filter localization provides a substan-
tial moderation in the development of the forecast error covariance matrix, directly improving
the forecast and also making it possible to further benefit from a simultaneous online inflow
error estimation and correction. Additionally, we propose and evaluate a novel along-network
metric for filter localization, which is physically-meaningful for the flood over a network prob-
lem. Using this metric, we further evaluate the simultaneous estimation of channel friction and
spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously
to sensible values. Results also indicate that friction is a second order effect in flood inundation
models applied to gradually varied flow in large rivers. The study is not conclusive regarding
whether in an operational situation the simultaneous estimation of friction and bathymetry helps
the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based opera-
tional flood forecasting.
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1. Introduction

While there are recent advances in low-cost telemetered networks for long-life flood monitor-
ing and warning applications, oriented to be deployed over large areas (e.g., Marı́n-Pérez et al.,
2012), the actual number of operational gauges is actually declining in the world (Vörösmarty
et al., 2001). On the other hand, in recent times, the technology of earth observation (EO) has be-
gun to be adopted to improve flood visualisation and reduce flood modelling uncertainties (e.g.,
Raclot, 2006; Schumann et al., 2007; Mason et al., 2010; Schumann et al., 2011). Specifically,
in real-time mode, the assimilation of water level observations (WLOs) derived from EO may
serve to keep forecasts obtained from flood simulations on track and, in hindcast mode, to obtain
better estimates of the dynamic footprints of past flood events. The forecast mode may be used
by civil protection services and industry for operational uses, while the post-flood mode may
be used in damage assessment and flood defence design studies (Mason et al., 2014). In both
modes, the key variable to forecast is the water level (and hence flood extent) (e.g., Hostache
et al., 2010; Biancamaria et al., 2011). However, the assimilation of EO-based WLOs for the
water level estimation problem, mostly in a forecast situation, is plagued by problems derived
from errors in a) inflows (discharge) into the modelled domain, and b) model parameters (mostly,
friction and bathymetry). Thus, the estimation and correction of (a) and (b), in a data assimila-
tion (DA) context, have become themselves a major or secondary objective in recent studies. In
an alternative scenario, with a focus on large rivers and longer timescales, discharge estimation,
in itself, is a important objective for land surface water budget analyses (e.g., Andreadis et al.,
2007; Balsamo et al., 2013). Overall, the estimation of water levels, water discharge and model
parameter estimation are all inter-related in the abovementioned contexts. For example, Neal
et al. (2009) conducted a case study of simultaneous water level and inflow estimation from EO-
based WLOs, in a 10-km river reach. Also, Matgen et al. (2010) and Giustarini et al. (2011), in
a synthetic case and a real case respectively, showed that the simultaneous correction of inflow
errors led to improved water level forecast in a 19-km river reach. Garcı́a-Pintado et al. (2013)
conducted a synthetic sensitivity analysis of the flood forecast skills to satellite-based SAR ac-
quisitions (first visit and revisit times) in order to support the scheduling of satellite imaging for
operational uses.

Regarding bathymetry estimation, Durand et al. (2008), in a proof-of-concept study, indicated
that bathymetry is a significant source of uncertainty in estimating discharge. They conducted
two synthetic experiments to assimilate EO-based WLOs, assuming known inflows, in order to
estimate a mean bathymetric slope and bathymetric depth at 5 specific locations in a 250-km
reach in the Amazon river. Specifically, they used synthetic observations of the proposed Sur-
face Water and Ocean Topography (SWOT) mission. The experiments were successful, and they
concluded that model errors will likely dominate over SWOT-like WLO errors. Roux & Dartus
(2008) succeeded in calibrating the mean bathymetry in a channel reach using real satellite-based
flood extent data, and Gessese et al. (2011) directly obtained an explicit partial differential equa-
tion (PDE) for the 1-D inverse problem, and successfully estimated the depth of a rectangular
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horizontal channel with a bump, with known inflow and known downstream slope. Later, Durand
et al. (2014) used real SAR-based WLOs to simultaneously estimate bathymetry and lateral in-
flows, along with channel roughness, for a major out-of-bank flood event in a river. They treated
the river in term of reaches, so that they estimated mean values for three transects along the river,
and assumed the major upstream inflow was known. Their results suggest that it should be pos-
sible to estimate river discharge via EO. In closely related work, the estimation of bathymetry in
river estuaries through the assimilation of SAR-based waterlines with morphodynamic models
has also been evaluated (Thornhill et al., 2012; Smith et al., 2013).

On the other hand, the chosen DA method itself may have intrinsic problems. Specifically, in
recent years there has been a growing interest in DA ensemble schemes for flood studies. From
these, the various methods derived from the Kalman filter are generically known as Ensemble
Kalman Filters (EnKFs) (Evensen, 1994). These filters use a limited-size ensemble represen-
tation of the forecast error covariance matrix. This is updated as each set of observations is
assimilated. The ensemble-based error covariances tend to underestimate the forecast error vari-
ance and develop physically unrealistic or spurious correlations. This may lead to to ensemble
collapse and filter divergence. Filter localization is often used to reduce the problem of spuri-
ous correlations. This increases the degrees of freedom available to fit nearby observations in
the analysis by decreasing the weight given to observations far from the physical location of the
estimated state variable (Hamill et al., 2001).

While previous experiments are encouraging regarding EO capabilities for flood and river
flow monitoring and forecasting, they focus on specific single river reaches, albeit ones that are
sometimes very large or subject to secondary lateral inflows. Our new contribution is to carry
out a case study assimilating real EO data for the sequential monitoring and forecast of a flood
developing on a river network with tributaries. In our case, uncertain forecasts from upstream
rainfall-runoff models provide the discharge at seven catchments contributing to the flood. The
case is based on possibly the best example of sequential monitoring of a flood extent by high-
resolution Synthetic Aperture Radar (SAR) images currently available in the world. This is a
7-image set from the COSMO-Skymed constellation, which was acquired during a flood that
occurred in November 2012 around the confluence of the Severn and Avon catchments in the
western UK.

The assimilation is conducted via a Local Ensemble Transform Kalman Filter (LETKF)
(Hunt et al., 2007) applied to a 2-D flood model. Our objective is to evaluate a number of
strategies for real-time flood forecasting by assimilating high-resolution EO-based WLOs with
the flood simulations assuming uncertain model parameters. That is, we want a) to evaluate if
localization is strictly required for avoiding problems arising from spurious correlations; b) to
evaluate if the flood forecast improves by jointly estimating inflow boundary condition errors
simultaneously with the water level; and c) to evaluate if, with an imminent flood situation, it
is better to focus on state estimation (water levels), joint state-inflow estimation, or joint state-
parameter estimation, where at the same time certain friction and bathymetry parameters are
estimated.

Regarding objective (a), it is noted that filter localization requires a distance metric for moder-
ating the weights given to the observations. In this paper we introduce an along-network distance
metric for filter localization, which is new to the DA literature. The proposed metric is physically
meaningful for the flood over a network problem and, accordingly, we evaluate its influence on
the forecast. Regarding objective (b), it is noted that the online correction of inflow errors into the
flood model domain does not affect the hydrologic simulations of the upstream catchment-scale
rainfall-runoff processes.
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2. Methods

2.1. Study domain

This study focuses on an area of the lower Severn and Avon rivers in the South West United
Kingdom, over a 30.6× 49.8 km2 (1 524 km2) domain. Fig. 1 depicts the study area for the flood
model. Four our investigation, we used a real case based on an event that occurred in November
2012. We used a previous event in July 2007 in the same location as a calibration scenario. In
the calibration event, the two major rivers suffered a substantial degree of overbank flooding.
The event of 23 November–4 December 2012 recorded a maximum water depth of 5.21 m at
the Saxon’s Lode gauge near Tewkesbury. Also both the Severn and Avon were in flood in this
event. Tewkesbury lies at the confluence of the Severn, flowing from the Northwest, and the
Avon, flowing from the Northeast.

2.2. Rainfall-runoff model and inflow generation

In the experimental setup we emulated a real forecast scenario, in which the precipitation
data came from a network of tipping-bucket gauges sparsely distributed in a 190 km W-E ×
120 km S-N rectangular area covering 7 catchments discharging as inflow boundary conditions
into the flood domain (i.e., we did not use a Numerical Weather Prediction model). In both the
calibration and the forecast scenarios we estimated catchment-average precipitation in each of the
seven catchments by Ordinary Kriging (OK) (Deutsch & Journel, 1998) the tipping bucket data
over an 1 km resolution grid, at hourly timesteps, and integrating the distributed rainfall maps
on the corresponding catchment areas. We treated the OK quantitative precipitation estimates
as certain, so that all uncertainty in the discharge ensemble came from the parameters in the
hydrologic models.

We used a lumped catchment-scale rainfall-runoff hydrologic model for each catchment, the
Hydrologic Simulation Program-Fortran (HSPF) model (Donigian et al., 1995). HSPF is a U.S.
EPA program for simulation of watershed hydrology, with a long history and that is still the
subject of active research (e.g., Ryu, 2009; Schultz et al., 2013; Kim & Ryu, 2014). Each of the
seven major catchments used an independently calibrated HSPF model. Remaining minor point
flows and lateral discharge were neglected in both the calibration and forecast stages.

2.3. Hydrodynamic model

We used the flood simulation model LISFLOOD-FP, a coupled 1D/2D hydraulic model based
on a raster grid (Bates & De Roo, 2000) with 75 m grid-spacing (664 × 408 pixels).. After
each assimilation step, the model is re-initialized with the updated state vector (water stage).
LISFLOOD-FP has several formulations. Here, we apply the so-called “sub-grid” approach
described by Neal et al. (2012), which uses a finite difference numerical scheme adapted from
the reach scale inundation model of Bates et al. (2010), and utilises gridded river network data,
assuming a rectangular channel geometry. Garcı́a-Pintado et al. (2013) used the same domain,
and provide some more details and a previous application of this model in a synthetic scenario.

2.4. Satellite observations

Satellite SAR observations of the 2012 event were acquired by the COSMO-SkyMed con-
stellation. A sequence of 7 CSK Stripmap images giving good synoptic views of the flooding
was acquired on a roughly daily basis covering the period 27 November–4 December 2012 (Fig.
2). Unfortunately the rising edge of the hydrograph was not imaged, though the first image in
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the sequence was acquired just before the flood peak in the Severn (see Fig. 3). Although the
river went back in bank on 30 November, we continued the imaging as a substantial amount of
water remained on the floodplain. It is worth noting that water levels on the flood plain at the
end of the event were much higher than those in the channel. All CSK images were HH polar-
isation, providing good discrimination between flooded and non-flooded regions. Details of the
overpasses are given in Table 1.

Processing level was 1C-GEC, which meant that the images were geo-corrected to ∼100 m.
It was necessary to register the images to British National Grid coordinates using ground control
points and a digital map, when a registration accuracy of better than 2 pixels (of size 2.5 m) was
obtained.

Detection of the flood extent in each image was performed using the segmentation technique
described in Mason et al. (2012a), which groups the very large numbers of pixels in the scene into
homogeneous regions. As there was no flooding of urban areas, only the rural flood detection
algorithm was used. The scale parameters for the segmentation were the same as those used
in Mason et al. (2012a). A critical step is the automatic determination of a threshold on the
region mean SAR backscatter, such that regions having mean backscatter below the threshold
are classified as flooded, and others as un-flooded. The initial rural flood classification may be
improved in a number of ways. For example, in the clean-up stage, flood regions were deleted
if their mean height was above 14 m above ordnance datum (AOD). Heights were obtained from
an image constructed from 24 2 × 2 km UK Environment Agency (EA) LiDAR tiles covering
the hydrodynamic model domain (Fig. 1). Fig. 2 shows the flood extents detected in the images,
overlain on the SAR data in the hydrodynamic model domain. The sequence shows the flood
wave moving down the river, and the flood at Tewkesbury gradually dying away, starting on the
Avon. In general terms, regarding the spatial coverage of the images, the Severn was imaged
up to the Latitude of Worcester, the Teme up to the Longitude of Bransford, and the Avon up to
the Longitude of Besford Bridge. Also, the first image (2012-11-27) just covered up to ∼2 km
downstream from Kempsey.

WLOs were extracted from the flood extent waterlines by intersecting the extents with high
resolution floodplain topography (airborne LiDAR of 1 m or 2 m pixel size) using the method
described in Mason et al. (2012b). The method selects candidate waterline points in flooded
rural areas having low slope and vegetation, so that small errors in waterline position have little
effect on waterline level. The waterline levels and positions are corrected for the effects of double
reflections between the water surface and emergent vegetation at the flood edge. However, the
resulting points were not thinned to reduce spatial autocorrelation at this stage as in Mason et al.
(2012b), this step being held over until the Quality Control (QC) stage of the assimilation is done.
The standard deviation for the thinned set of WLOs was 0.25 m (Mason et al., 2012b). Satellite
and aerial photography used to extract WLOs for the calibration event of July 2007 have been
described previously in ?.

2.5. River cross sections and bathymetry estimation

The EA provided field surveyed river cross-sections for the study area, with a total of 35 along
the River Severn and 127 along the River Avon. The available cross-sections had a complete
coverage and were evenly distributed along the Avon within the study area. However, the cross-
sections for the Severn, while evenly distributed, just covered the transect from the junction with
the Avon (near Mythe Bridge) to ∼10 km upstream from the Saxons Lode US gauge.
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Table 1: Details of COSMO-SkyMed overpasses.

Timestamp (UTC) Pass Indicence angle
27/11/12 19:20 Descending 49◦

28/11/12 18:01 Descending 51◦

29/11/12 18:20 Descending 32◦

30/11/12 19:32 Descending 53◦

01/12/12 05:38 Ascending 26◦

02/12/12 05:56 Ascending 48◦

04/12/12 18:14 Descending 40◦

We transformed the surveyed cross-sections into rectangular equivalents, as required by the
chosen flood model to simulate channel bathymetry, by

arg min
wr ,dr

[
ε−1

w
1
2

(wc − wr)2 + ε−1
d

1
2

(dc − dr)2
]
, (1)

subject to the constraint wrdr = Ac, where Ac is the area of the surveyed cross-sectional area
(precalculated by integration), wc and dc are the maximum of the (within bank) surveyed channel
width and depth, respectively, wr and dr are width and depth of the rectangular equivalent cross-
section. εw and εd are the errors variances in wc and dc, respectively, assumed proportional to the
channel dimensions as

εw =
wc

wc + dc
, (2)

εd =
dc

wc + dc
. (3)

With the given contraint (wrdr = Ac), the substitution dr = Ac/wr can be done in (1), which be-
comes a minimization of a single variable (wr), which we solved by Newton-Raphson iteration.
Then, for both the Severn and the Avon, we interpolated wr and dr along the river chainages.
For the Severn, further than the area covered by the cross sections (i.e. downstream from Mythe
Bridge and from ∼10 km downstream from Kempsey up to Bewdley) we extrapolated the width
and depth of the cross-sections at the corresponding extremes. For the other rivers in the net-
work we assumed a constant rectangular-equivalent width and depth, with widths obtained from
previous studies, and depths obtained from the power law relationship d = λwγ between the
channel width (w) and depth (d), where we used the parameters λ = 0.30, and γ = 0.78 [further
details about these may be found in Garcı́a-Pintado et al. (2013)]. Overall, the aim of model
bathymetry based on simple rectangular (spatially-variable) cross-sections is to speed up pro-
cessing times while attempting to simulate the behaviour that higher resolution fully detailed
channel cross-sections would have. Our prior rectangular bathymetry estimates are assumed
subject to a reasonable degree of uncertainty, and local biases are plausible. Hence, we decided
to conduct the experiment with these prior estimates, and test the forecast under the filter con-
figurations described in Section 2.10 to evaluate how the filter could cope with this potential
problem in a real-time flood forecast situation. This decision, in contrast to attempting a previ-
ous simulation-based off-line calibration of bathymetry, is also the motivation for recent studies
concerning bathymetry estimation (e.g., Durand et al., 2014), which acknowledge that detailed
river bathymetry is unknown across many rivers in the world.
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2.6. The ensemble filter
We conducted synchronous assimilation of the observations. That is, the flood model simula-

tions were sequentially interrupted as assimilation was conducted at the time of the correspond-
ing CSK overpasses. Whenever we simultaneously estimated uncertain parameters or errors in
inflow boundary conditions at the time of the assimilation, we did so as part of the data assimila-
tion by using state space augmentation (Friedland, 1969). As the model state is augmented with
model parameters, the assimilation scheme is able to take into account correlations between the
errors in the parameters and the errors in the model variables. In data assimilation schemes using
such an approach, the analysis updates an augmented state vector ψ ∈ <n,

ψ =

[
z
β

]
, (4)

where z is the ns-dimensional model state (water levels in our case) and β is a generic nβ-
dimensional vector of parameters (including instantaneous inflow errors for the cases where these
are simultaneously estimated). Thus, n = ns + nβ.

The Ensemble Kalman Filter (EnKF), introduced by Evensen (1994), is characterised by a
two step feedback loop: a prediction and an observation update. In each step, an ensemble of
augmented state vectors is interpreted as a statistical sample of the forecast or analysis uncer-
tainty, respectively. Thus if {ψi} (i = 1, . . . ,m) is an m-member ensemble, then the ensemble
mean is the n-vector defined by

ψ =
1
m

m∑
i=1

ψi. (5)

The ensemble perturbation matrix for the augmented state is the n × m matrix with columns
defined by the ensemble perturbations from the mean as

Ψ =
1

√
m − 1

[
ψ1 − ψ|ψ2 − ψ| . . . |ψm − ψ

]
. (6)

Then the ensemble error covariance matrix is given by

P = ΨΨT =
1

m − 1

m∑
i=1

(ψi − ψ)(ψi − ψ)T. (7)

In the prediction phase, each individual ensemble member is evolved forward in time by the
forecast model until the time of an observation. In our case this means that the model states
(water-levels) are forecast by the hydrodynamic model with appropriate forecast boundary con-
ditions. The dynamical model for the parameters (bathymetry, friction) is that they are constant
in time. The treatment of these parameters and the inflows is described in more detail in section
2.10.

At the time of an observation, an ensemble approximation of the Kalman filter equations
(Kalman, 1960) to used to update the ensemble. The update of the ensemble mean is chosen to
satisfy the following constraint:

ψa = ψ f + K
(
y −Hψ f

)
, (8)

where the forecast (prior) and analysis (posterior) quantities are denoted by the superscripts f and
a, respectively. The vector of observations is given by y ∈ <p. Note that the observations may
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be indirect or not located at model grid points, so the p × n matrix H, known as the observation
operator (or “forward” operator) is required to map the state vector to the observation space. The
Kalman gain,

K = Ψ f (HΨ f )T
(
HΨ f (HΨ f )T + R

)−1
, (9)

is an n × p matrix, where the superscript “T” denotes matrix transposition, and R is the p × p
observation error covariance matrix. This update may be thought of as a linear combination of
the forecast and the observations, weighted by the uncertainty in the given model and observa-
tion data. The term δy = y − Hψ f is usually called the vector of “innovations”, indicating the
difference between the observations and the forecast; the Kalman gain, K, contains the weights
given to the innovations to update the system; δψ = ψa − ψ f , is called the vector of “increments”
and is the difference between the analysis and the forecast.

As well as updating the ensemble mean, we must also update the ensemble perturbations,
giving an ensemble estimate of the analysis error covariance as

Pa =
(
Ψ f −KHΨ f

) (
Ψ f

)T
. (10)

There are a number of possible computational implementations for updating the ensemble.
In this work, we used an Ensemble Transform Kalman Filter (ETKF) in an unbiased formulation
with a symmetric square-root (Ott et al., 2004; Wang et al., 2004; Hunt et al., 2007; Livings et al.,
2008). Regarding notation in this study, being A a generic matrix, Ai,: means the ith row of A,
and Ai, j is the element at the ith row and the jth column.

2.7. Filter localization
Ensemble size is an important issue in any ensemble Kalman filter. We can see from equa-

tions 8 and 9 that the increments lie in the subspace spanned by the ensemble perturbations.
Another way to express this is that the increments are linear combinations of the columns of the
forecast error covariance matrix. Typically the number of ensemble members is much smaller
than the dimension of the state vector, leading to under-sampling. This often manifests itself as
spurious (unphysical) forecast error correlations and for example, increments updating the state
at locations further from the location of the observation than is plausible. Localization techniques
are often used to ameliorate the problem.

There are a large number of variations on the localization technique with the principal differ-
ence being whether localization is applied directly to the forecast error covariance matrix (known
as covariance localization, Houtekamer & Mitchell, 1998, 2001) or by a more indirect method
known as domain localization (Ott et al., 2004; Hunt et al., 2007). In the latter, the assimilation
is applied to independently to a series of disjoint local domains in physical space. For each local
assimilation, only observations within some defined cut-off radius are considered. In this paper
we use observation localization (OL) (Hunt et al., 2007; Nerger & Gregg, 2007), which allows
us to obtain a similar effect to covariance localization while using domain localization. In OL,
we construct a taper matrix from chosen correlation functions of compact support. The Schur
or Hadamard (elementwise) product of the taper matrix and the inverse of the observation-error
covariance matrix corresponding to a local analysis domain is computed. Thus, the weight of
observations is reduced as a function of their distance from the local analysis domain by increas-
ing their assumed error variance. Here we used a fifth-order polynomial (Gaspari & Cohn, 1999,
Eq. (4.10)) for weighting the observations. The study of localization techniques and parameters
is an active area of research (e.g., Kirchgessner et al., 2014). Our new contribution is to develop
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a novel distance metric based on a channel network distance, which allows us to distinguish
between flows in adjacent channels that may be close together in a Euclidean sense.

For floods developed around a channel network (e.g., a river network, as in this case study),
one could expect the physical connectivity of flows to influence the development of the fore-
cast error covariance. Thus a localization taking into account the along-network distance would
not only be more physically meaningful than an “as-the-crow-flies”-based localization, but also
should lead to an improved forecast skill. To this end, assuming that the flood is developed around
a pre-existing (river/urban) network, the channel network can be vectorised and the chainage of
the network used for calculating along-network distances. Let X be the set of points of inter-
est for localization, and we denote as Xc the minimum-distance mapping of X into the channel
network. With this, let us define our along-network metric for localization, dn(xi, x j), as

dn(xi, x j) = max
{
de(xi, x j), ds(xc

i , x
c
j)
}
, (11)

where de(., .) denotes the “as-the-crow-flies” Euclidean distance, which is evaluated upon X, and
ds(., .) is the distance evaluated along the chainage provided by the vectorised channel network,
which is evaluated upon Xc. The rationale for including de(., .) in the definition of dn(., .) is
to provide a minimum distance threshold for nearby couple of points (xi, x j), which might for
example fall at both sides of a flooded channel, and whose ds distance is neglected in their cor-
responding projection (xc

i , x
c
j). One might argue that this can artificially decrease the covariance

at some points near junctions. However, this should be a minor effect, and also one might well
argue that it is sensible to use this metric at those points, just because they are in junctions, influ-
enced by flows with different dynamics. The output of this metric is then used by Eq. (4.10) of
Gaspari & Cohn (1999) in the same way that Euclidean distances would be. Note that this is not
a translation invariant metric.

2.8. Ensemble inflation

Another mechanism to preserve the ensemble variance and help preventing ensemble collapse
is the inflation of the ensemble perturbations (Anderson, 2001). We used a simple automatic
multiplicative inflation approach applied to the posterior perturbations. For this, we obtained
an inflated ensemble Ψa,+ by multiplying each row in the pre-inflated analysed ensemble matrix
Ψa,− times the corresponding element of an inflation vector λ ∈ <n (i.e., Ψa,+

i,: = λiΨ
a,−
i,: ), where

for any specific variable in the state vector the inflation factor λi was obtained as

λi = (1 − αp)
σ

f
i

σa
i

+ αp, (12)

where αp is an input inflation parameter, with αp ∈ [0, 1], and σ f
i and σa

i are the background
and updated sample (ensemble) standard deviations, respectively, for the assimilation step. Thus,
αp = 0 would recover the variance prior to the assimilation, and αp = 1 would not apply any
inflation. As indicated in Table 2, αp can hold different values for the various types of elements
in the augmented state vector.

2.9. Observation Quality Control

Online data assimilation techniques such as ensemble Kalman filters and particle filters tend
to lose accuracy dramatically when presented with an unlikely observation. Such an observation
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may be caused by an unusually large measurement error or reflect a rare fluctuation in the dy-
namics of the system. Over a long enough span of time it becomes likely that one or several of
these events will occur. Floods are a case of data assimilation in a low noise regime and obser-
vational noise of SAR-base WLOs is normally small. In this setting an outlier analysis helps to
screen out spurious observations.

Accordingly, we conducted an online Quality Control (QC) of the observations as follows,
based on the innovation values. The innovations (see Section 2.6) are obtained for the complete
set of WLOs (see Section 2.4). An experimental semivariogram is then obtained with the in-
novations, and the range of a corresponding adjusted exponential variogram model is used as
the cut-off radius of a spatially moving window, which is sequentially centered at the location of
each WLO to evaluate if its corresponding innovation is an outlier according to its neighborhood.
An innovation is then considered an outlier if its value is out of the interval with 95% confidence
level obtained from the population of innovations in the local window. Once the outliers are
rejected according to the QC protocol, a thinning analysis is conducted on the surviving WLOs,
as described by Mason et al. (2012b). The thinned dataset is finally used by the DA analysis
for its assimilation. Our previous tests (not shown) indicated that QC of the observations, as for
example the one included here, is a necessary step to avoid rare fluctuations, as indicated above.
QC is a standard part of operational assimilation-forecast systems in other applications such as
numerical weather prediction (e.g., Kalnay, 2002, section 5.8). WLOs can be considered as fairly
unbiased. Note there are observation bias-aware DA schemes (e.g., Dee, 2005; Pauwels et al.,
2013).

2.10. Calibration and experimental design
We used a previous event in July 2007 in the same location as a calibration scenario. With pre-

cipitation and potential evapotranspiration as input data and flow at the outlet of each catchment
as calibration data (yellow named points in Fig. 1), we calibrated the HSPF lumped catchment-
scale rainfall-runoff hydrologic model for each of the 7 catchments. Calibration was done with
a simple Monte Carlo run, sampling from prior uniform distributions with common ranges as
indicated in the HSPF model documentation. From an initial set of 500 samples, we selected
the 150 best set of parameters for each catchment according to the Nash coefficient. Off-line,
we used the calibrated ensemble (size m = 150) discharge of the hydrologic models as input
into the flood model domain, and calibrated the latter using a similar approach that employed
available time-series of water levels at a number of gauges as calibration data (green points with
red labels in Fig. 1). For model spin-up, in both the calibration event and the evaluation one, the
rainfall-runoff simulations started 1 month before the 2-D flood simulations.

With the cascaded calibrated hydrologic-flood models we conducted the assimilation with
a number of filter configurations for the November 2012 event in forecast mode. The first six
configurations are focused on evaluating the effect of localization and inflow estimation on the as-
similation and forecast. These configurations have fixed values for both friction and bathymetry:
a) a global ETKF, b) as (a) with inflow error estimation and correction, c) a local ETKF (LETKF),
d) as (c) with inflow error estimation and correction, and e) and f), which are respectively as (c)
and (d) but with an along-network metric for localization (described in 2.7). Another six configu-
rations support the evaluation of the effect of friction and bathymetry estimation, and all of them
use an along-network metric for localization: g), h) and i) do not estimate and correct inflow
errors, so that g) estimates friction, h) estimates bathymetry, and i) estimates both friction and
bathymetry. Then, j), k) and l), are respectively as (g), (h) and (i) but with simultaneous inflow
error estimation and correction. A further configuration m) is as (l) but with a smaller localization
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radius for bathymetry, to provide a minimal analysis of the influence of the localization radius
on the distributed bathymetry estimation and the general estimation process.

Regarding the parameter spatial support, friction was considered as two global parameters
described by the Manning’s coefficient: one scalar value for the three larger rivers (Severn, Avon
and Teme) [with prior ηc1 ∼ N(0.035, 1.00e − 06)], and another scalar value for the other rivers
in the domain [with prior ηc2 ∼ N(0.040, 1.00e − 06)]. These priors seem reasonable given our
previous experience on the study area (e.g., Garcı́a-Pintado et al., 2013). Bathymetry was con-
sidered as a local spatially distributed parameter along the channel network. That is, bathymetry
was just uncertain for channels and every channel pixel could have an independently updated
bathymetry, without any further constraint. The distinction between “local” and “global” here
refers to whether the parameters may be assigned a point location, and so be directly subject to
localization in the filter.

Several methods have been proposed for correcting the errors in river discharge predictions,
as these degrade the quality of the downstream flood forecasts (e.g., Bogner & Pappenberger,
2011). For example, Andreadis et al. (2007) used an first order autoregressive error model for a 3-
month case synthetic experiment in the context of discharge estimation based on assimilating EO-
based water levels. However, for the context of storm-flood events (our focus here), the sparse
satellite overpasses in relation with the duration of the event make it impractical (if possible) to
estimate the parameters of models more complex than a simple stationay model (i.e., to assume
a constant bias between satellite overpasses). Thus whenever the inflow errors were estimated
and updated (in the seven inflow boundary conditions), we assumed a constant bias forecast
error model for the inflows, as previous studies in the field (Matgen et al., 2010; Garcı́a-Pintado
et al., 2013). In addition, in all the filter configurations, we included simultaneous estimation
of the downstream free surface slope boundary condition, as a local parameter where the prior
distribution was dsl∼ N(3.32e − 03, 2.25e − 10) (see mean as yellow label in Fig. 1), the mean
value being obtained from the calibration for the July 2007 event, and the variance representing
the reasonable degree of uncertainty we had on the prior mean. See Section 2.5 for a description
of the prior estimates of bathymetry, and rationale for the distributed online updating approach.

In the filter configurations with parameter updating [(c), and (d)], we added a spatially cor-
related error to the prior bathymetry. For this, we selected an unconditional Gaussian error
simulation to generate the ensemble of 2D random error fields, which we masked with the chan-
nel network. The selection of the parameters for the Gaussian simulation, and the assumption
that all errors come from bathymetry (i.e. perfect hydraulic structures) is somehow arbitrary.
Specifically, we assumed the bathymetry errors εb were proportional to the prior estimates of
channel depth, with c.v.= 0.15, and having a spatial correlation length of 5 000 m, defined as the
range parameter of an exponential variogram model.

The ensemble size was m = 150. Table 2 summarizes the assimilation conditions for each
filter configuration.

2.11. Validation approach

We used gauge water level time series from the network shown in Fig. 1 (red labels). For
validation we conducted a visual examination of the ensemble time series along the event, and
RMSE as general statistics. All level gauges indicated in Fig. 1 are in the major three rivers,
except for Shuthonger, which is in a small tributary, close to its junction with the Severn and
likely affected by backwater effects.
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Table 2: Summary of filter configurations for assimilation.a

code h q dsl ηc bat

ub ic ld u i l u i l u i l u i l
a T 0.5 F F – – T 0.0 F F – – F – –
b T 0.5 F T 0.0 F T 0.0 F F – – F – –
c T 0.5 de(20) F – – T 0.0 de(10) F – – F – –
d T 0.5 de(20) T 0.0 de(20) T 0.0 de(10) F – – F – –
e T 0.5 dn(20) F – – T 0.0 dn(10) F – – F – –
f T 0.5 dn(20) T 0.0 dn(20) T 0.0 dn(10) F – – F – –
g T 0.5 dn(20) F – – T 0.0 dn(10) T 1.0 F F – –
h T 0.5 dn(20) F – – T 0.0 dn(10) F – – T 1.0 dn(10)
i T 0.5 dn(20) F – – T 0.0 dn(10) T 1.0 F T 1.0 dn(10)
j T 0.5 dn(20) T 0.0 dn(20) T 0.0 dn(10) T 1.0 F F – –
k T 0.5 dn(20) T 0.0 dn(20) T 0.0 dn(10) F – – T 1.0 dn(10)
l T 0.5 dn(20) T 0.0 dn(20) T 0.0 dn(10) T 1.0 F T 1.0 dn(10)
m T 0.5 dn(20) T 0.0 dn(20) T 0.0 dn(10) T 1.0 F T 1.0 dn(5)

acode is filter configuration, h is distributed water level; q are the 7 inflow boundary conditions; dsl is the slope of the downstream free surface boundary
condition; ηc refers to the 2 global Manning coefficients for channels; bat refers to the distributed bathymetry. T is TRUE (applied). F is FALSE (not
applied). “–” if meaningless.
bu refers to whether the variable/parameter is being updated in the assimilation.
ci refers to the inflation parameter αp (see Section 2.8).
d l is FALSE for no localization, de(r) for isotropic “as-the-crow-flies” distance, and dn(r) for along-network distance, being r the localization radius in
km (see Section 2.7).

3. Results and discussion

3.1. Structure of results and discussion

We structure the results and discussion around three major topics: i) influence of localization
on the system updating and flood forecast, ii) capability of inflow estimation and its influence
on the flood forecast, and iii) capability of model parameter estimation (friction and bathymetry)
and its influence of the flood forecast. This structure is to ease discussion. We will see however
that the three topics are strongly inter-related, and we include cross-references as needed.

3.2. Influence of the metric for localization

In this study we propose an along-network metric for localization, based on the understanding
that it should be sound for the flood forecast problem in river/channel networks. In accordance
with Section 2.7, here we test and discuss the use of a global ETKF versus filtering schemes
with localization (LETKF), with either a standard “as-the-crow-flies” Euclidean distance (de) or
an along-network distance (dn). Note we have arbitrarily chosen localization parameters which
seem relevant to the problem, so that it is unlikely we have selected the optimum in either filter
configuration.

We will use Fig. 4, as a base example for discussion. This depicts a symbolic representation
(square symbols) of the elements of the Kalman gain matrix Ki, j for several filter configura-
tions. Here, i is the row corresponding to the updating of the water level at Bredon, in the river
Avon catchment. The symbols are plotted at locations corresponding to the jth element of the
observation vector, with the WLOs obtained from the 7th CSK overpass. While it is important
to remember that the increment is the sum of the matrix-vector product between the Kalman
gain and the vector of innovations, a consideration of the individual elements of the Kalman
gain provides information about the relative influence of different observation locations on the
analysis.
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In Fig. 4 the updated forecast error covariance between level at Bredon and levels elsewhere
is also shown as the background for each configuration. Note that both the colour scales and
the symbolic representation of Ki, j are independent for each plot to ease visualisation. For this
figure we have selected filters with inflow updating, as these tend to behave better than similar
ones without inflow estimation (see Section 3.3 below). Also, we focus here on the situation
pertaining to the assimilation of WLOs from the last CSK overpass, as this summarizes the
cumulative feedback of the different filters along the sequential assimilation in the event.

Filter (b), the global filter, leads to sparsely distributed non-negligible Ki, j values through-
out the domain, with many distant observations influencing the updating at Bredon. Not only are
there many significant gain values along the whole Severn, but also the highest value (max

{
Ki,:

}
=

0.023) at this last overpass (t = 7) is in a tributary of the Severn, a significant distance away from
Bredon. Also, the gain values have a skewed distribution with a just a few WLOs having high
gain values and then many other observations gathering around low, albeit non-negligible, val-
ues. In general, the situation is far from what one would expect from a properly constructed
assimilation system, and it is also likely to hamper the robustness of the filter to possible anoma-
lous (outlying) innovations. This situation arises from the assimilation sequence throughout the
event, in which spurious correlations are not properly damped. Thus the global filter ends up
with a system in which these spurious correlations have a dominant effect, leading to relation-
ships which are unlikely to happen in the real physical system. Moreover, at this stage in the
event the water levels at observation locations surrounding Bredon have a negative correlation
with the level at Bredon, leading to negative gain values (red squares), which do not have any
physical reason to happen. A strongly-related problem is the collapse of the variance, as the
development of spurious correlations leads in turn to too much weight being put onto the ob-
servations in the early stages of the event and promotes variance collapse. As the assimilation
proceeds, the global filter leads to a general underestimation of the variance and filter divergence,
here exemplified via the over-flattened map of the forecast error covariance with Bredon, and its
low sum of absolute values of the corresponding Kalman gain values (

∑p
j=1 |Ki, j| = 0.3).

On the other hand, filter (d), with de-metric localization, shows a very different situation, with
a much higher variance and higher spatial variability in the model error covariance with Bredon
water levels. Significant values in the corresponding Ki,: row in are much closer to Bredon,
and more observations share a fair contribution to the updating, making the filter more robust
to outliers in the observations. Overall, the spurious correlations have been quite effectively
filtered out, and this seems a much better situation than that from filter (b). Also the situation
that the most influencial gain values are clustered downstream from Bredon has some physical
basis, as this situation corresponds to the recession of the flood event, and the bulk of the flood
wave has now passed Bredon. Thus the variance of water levels is higher downstream and lower
upstream, while the standard deviation of the WLOs is set to 0.25 m everywhere. This naturally
maps into higher/lower Kalman gain values for those observations with higher/lower variance
in the corresponding background water levels. However, one would still expect higher Kalman
gain values to be closer to Bredon, and to have some influence, even if minor, from upstream
observations in the updating.

Filter (f), with dn-metric localization seems an improved version of (d). It does not contain
any negative gain values, and there is also a good number of observations with roughly equally
high gain values leading to a robust situation with respect to outliers existence in the WLOs.
The distant WLOs in the Severn now have lower gain values, and the highest gain values are
closer to Bredon. Also WLOs upstream from Bredon now have a relatively higher gain values.
Overall, this seems the best filter of the three, among which the only difference is the localization
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approach.
The influence of simultaneous parameter estimation is discussed in Section 3.4. However,

we include filter (l), which is similar to (f) but with simultaneous estimation of global channel
friction and distributed bathymetry, to summarize that it leads to a situation which seems even
more physically sound than that from (f) from the point of view of the spatial distribution and
share of the Kalman gain values. The higher gain values are now very well distributed around
Bredon, and with slightly higher weights given to those WLOs downstream from Bredon. The
situation seems very close to ideal, with properly developed forecast error covariances, with
respect to what one could expect at this stage of the event. There are a few distant minor negative
gain values in the row, but given their relative values these become insignificant in the updating.
Other aspects of the case are discussed in Section 3.4.

3.3. Inflow estimation
As indicated in Section 2.4, the satellite sequence was not covering the boundary condition

locations for the major inflows to the flood model domain. For the three major rivers, the cover-
age was up to ∼20 km downstream from Bewdley (inflow to the Severn), ∼10 km downstream
from Evesham (inflow to the Avon), and ∼8 km downstream from Knightsford bridge (inflow to
the Teme). In fact, Besford bridge (inflow to the Bow brook) was the only inflow location within
the SAR coverage. Thus this case is an extrapolation situation regarding the online estimation
and correction of inflow errors. Table 2 shows a number of filter configurations which performed
simultaneous estimation of inflow errors at the assimilation times, and used these error estimates
to correct the prior inflows (those from the hydrologic models), assuming a constant bias as
forecast error model. Table 3 indicates the root mean squared error (RMSE) for these filter con-
figurations, where the RMSE is evaluated against the gauged inflows (blue lines in Fig. 3) for
the time between the 1st CSK overpass (2012-11-27 19:20:00 UTC) and about one day after the
last overpass (2012-12-05 23:00:00 UTC). In parentheses, Table 3 indicates the increment in the
RMSE between the updated inflows, along the event, and the background (the open loop hydro-
logic forecast) inflow errors. Thus a positive/negative increment in RMSE indicates the updated
inflows are further from/closer to the gauged inflows than the background.

The filters, in any case, just calculate the innovations (WLOs minus the forecast levels at the
time of the overpass and on WLO locations) and use the background and observation error co-
variances to map these innovations into increments in the state vector (water levels and, possibly,
parameters, depending on the filter configuration). So, positive/negative innovations, along with
the generally positive correlations with water level errors, are basically stating that more/less
water should have entered into the system by the time of the assimilation and correcting this by
updating the water levels. In the setup in this study, apart from the 7 inflow boundary conditions,
we are not making any provision for lateral inflows along the river network, inflows from smaller
tributaries, nor for groundwater infiltration/exfiltration. These unaccounted inflows/outflows in
the flood model may well be a reason for increased/decreased local innovations and the corre-
sponding mapping into the distributed increments in the water level as a result of the assimilation.
Also if inflow errors at the time of the assimilation are correlated with water levels at downstream
observation points at that time, the abovementioned unaccounted flows may map, through the in-
novations, into an over- or underestimate of the specific errors at the inflow boundary conditions
(over/under-shooting). However, this over/under-shooting is not necessarily a bad thing for the
next forecast step. The DA is just attempting to estimate overall inflow errors and assigning them
to the only provision we have made for that, i.e. to the specific inflow boundary conditions. Thus
the RMSEs in Table 3 are just an indication of how close the gauged inflows (which, themselves
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may be subject to biases because of errors or unaccounted hysteresis in the rating curves, etc.)
are to the assimilation-based estimates of total inflow to the system.

Summarising Table 3, the assimilation in all filter configurations generally moves the prior
inflows away from the gauged inflows. This is indicated by the positive values in parenthesis in
the RMS row. As indicated, this should not be interpreted as whether the assimilation is doing a
bad job. On the contrary, this may well be the case that the satellite-based WLOs are providing
information, to improve the estimation of total inflows into the system, not contained either in
the gauged inflow boundary condition nor in the prior inflows, forecasted from the catchment-
scale hydrologic models. Without further information, to evaluate whether the assimilation is
then performing well in estimating inflow errors and whether this online inflow error estima-
tion/correction is an useful operational strategy, one needs to evaluate how the flood forecast
behaves downstream and whether the estimated inflow errors are properly allocated to the corre-
sponding sources. In the context studied, this refers to a loose relationship between flooded areas
and corresponding assumed point inflow boundary conditions.

For example, Table 3 shows two opposed configurations with similar RMS [filter (b) and
filter (l)]. Filter (b) is in fact the only configuration which brings the updated inflow from Be-
wdley closer to the gauged inflows (δRMSE = −2.95 m3s−1). Fig. 5 shows the evolution of the
updated inflows at Bewdley for these two filters; i.e. the global filter (b), and the filter (l), with
dn-metric localization and simultaneous friction and bathymetry estimation. Filter (b) behaves
rather erratically, in agreement with the discussion about the lack of robustness of the filter in
Section 3.2. For example, the assimilation of the WLOs from the 2nd and 6th overpasses creates
positive increments, which are interspersed with the negative increments related to the 3rd and
the 7th overpasses. On the other hand, filter (l) has a small increment at the 1st overpass, and then
onwards, the increments become negligible. To provide some insight into the reasons leading to
these different situations, let us focus now on the forecast error covariances after the 1st assimi-
lation step between the flows at Bewdley (inflow to the Severn) and the water levels elsewhere.
This is depicted by Fig. 6 for the same filters as Fig. 4. Filter (b) shows a strong component of
the updating is due to spurious correlations, not only from smaller tributaries downstream, but
also even from a set of negative Kalman gain values assigned to WLOs too distant in the Avon.
The evolution of the spatial distribution of the Kalman gain values in filter (b) is highly erratic
along the event, with the highest gain values continually displacing from one location to another
between sequential assimilation steps (not shown; available on request), and leading to a degen-
erate situation by the 7th overpass, where a highly skewed dsitribution of the gain values (in the
row) and the growth of spurious correlation with WLOs in smaller tributaries is very similar to
that of Fig. 4 for the same filter.

Filter (d), however, adequately takes into account the most upstream observations in the
Severn to update the inflows. Still there are non negligible spurious gain values in tributaries
downstream. Filters (f) and (l) are both similar to (d) but more effective at damping the spurious
correlation with water levels at downstream tributaries. The evolution of the distribution of
Kalman gain values in the sequential assimilation is then very similar for (d), (f), and (l) (not
shown). For these, the spatial distribution of gain values is much more stable in time, and the
filters are effective in removing the spurious correlations. There is still a general trend to put
more weight into a few observations over time. However, this is partially due to the fact that less
WLOs are available to assimilate as the flood recedes.

Table 4 indicates the RMSE of the water levels through the event evaluated at the seven
available water level gauges. Note that it is also possible that the gauges have some bias. Ac-
cording to Table 4, a pairwise comparison of filter configurations with similar configuration but
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without/with simultaneous inflow estimation indicates that the online inflow updating lead to
improved forecasts if localization is applied [e.g., (c) versus (d), or (e) versus (f)]. This improve-
ment also applies if friction is simultaneously estimated [(g) vs. (j)], but the statistics are similar
for those configurations with simultaneous bathymetry estimation [(h) vs. (k), or (i) vs. (l)].

On the other hand, in the global filters [(a) vs. (b)] the simultaneous inflow updating further
promotes ensemble collapse and divergence. This is reflected in the larger RMSE in (b) with
respect to (a), and can be seen, e.g., in the water level time series plots for configuration (b) in
Worcester in the Severn (Fig. 7), Mythe Bridge downstream in the Severn close to the junction
with the Avon (Fig. 8), or Bredon in the Avon (Fig. 9). Thus, just the filters with localization,
with improved accounting of the forecast error covariances, are able to better exploit the added
freedom of inflow updating, behaving better throughout the event than the versions with pre-
scribed inflows. The benefit of the simultaneous inflows estimation shown in Table 4 is also
shown by a pairwise comparion of the filter with de-metric localization [(c) vs. (d)] or the filters
with dn-metric localization [(e) vs. (f)] in time series (Figs. 7, 8, and 9).

Table 3: RMSE of inflows for filters with inflow updating.a,b
b d f j k l

besford bridge q 1.84(0.24) 1.94(0.35) 1.79(0.20) 1.74(0.15) 1.82(0.23) 1.75(0.16)
bewdley q 82.87(-2.95) 122.26(36.44) 108.86(23.04) 107.34(21.52) 97.63(11.81) 95.92(10.10)
evesham q 33.43(12.79) 32.07(11.43) 23.82(3.18) 23.49(2.85) 23.62(2.98) 23.93(3.30)

harford hill q 1.12(0.37) 0.96(0.20) 1.32(0.57) 1.21(0.46) 0.96(0.20) 0.95(0.19)
hinton q 0.65(0.10) 0.48(-0.07) 0.49(-0.06) 0.49(-0.06) 0.53(-0.02) 0.52(-0.03)

kidder callows ln us q 1.24(-0.60) 1.20(-0.64) 1.42(-0.42) 1.41(-0.42) 1.50(-0.33) 1.54(-0.30)
knightsford bridge q 48.38(4.66) 49.56(5.84) 59.34(15.61) 58.08(14.35) 51.13(7.41) 49.00(5.27)

RMSc 38.42(5.27) 51.33(14.61) 47.73(10.59) 46.99(9.84) 42.61(5.39) 41.72(4.49)
a[m3s−1]. RMSE measured against gauged inflows within [2012-11-27 19:20:00 UTC, 2012-12-05 23:00:00 UTC].
bIn parentheses is the RMSE minus the RMSE of the prior inflows (forecast of the hydrologic models).
cRMS of the values for the corresponding column.

Table 4: RMSE of water levels at gauged locations for the filters evaluated.a
a b c d e f g h i j k l m

bransford h 0.79 0.90 0.80 0.95 0.81 1.34 0.85 1.00 0.98 1.30 1.14 1.18 1.00
bredon h 0.66 0.65 0.69 0.40 0.69 0.40 0.67 0.85 0.89 0.45 0.74 0.72 0.60

kempsey h 1.22 1.43 1.26 0.57 1.27 0.60 1.17 1.22 1.28 0.65 1.16 1.18 1.06
mythe bridge h 0.69 0.79 0.73 0.50 0.73 0.46 0.72 0.86 0.79 0.51 0.76 0.76 0.65

saxons lode us h 0.94 1.12 0.98 0.56 0.99 0.55 0.94 1.16 1.22 0.60 1.20 1.26 1.24
shuthonger h 0.38 0.49 0.42 0.22 0.42 0.22 0.41 0.63 0.55 0.25 0.52 0.55 0.39

worcester h 1.33 1.55 1.37 0.48 1.38 0.61 1.28 1.29 1.48 0.66 1.27 1.23 1.02
RMS 0.91 1.06 0.94 0.56 0.95 0.68 0.91 1.03 1.07 0.70 1.01 1.02 0.90

a[m]. RMSE measured against gauged water levels within [2012-11-27 19:20:00 UTC, 2012-12-05 23:00:00 UTC].

Overall, the two filters with better performance in the group without friction and/or bathymetry
estimation (a–f) are the filters with localization and simultaneous inflow estimation. According
to Table 4, these are filter (d) with de-metric localization (RMS= 0.56 m), and (f) with dn-metric
localization (RMS= 0.68 m). While the RMS is slightly better for filter (d), the evaluation of
the forecast error covariance (for example, as shown in Figs. 4, and 6) indicates that the along-
network-based localization is preferable as a forecast error covariance moderation process, and
helps further to prevent the development of spurious correlations, which should be adequate for
local parameter estimation. Also in the downstream areas, where most of the flood occurred
(Mythe Bridge, Saxons Lode US, and Bredon) the RMSE is equal or better for filter (f).

Thus in the following section on simultaneous parameter estimation we focus the discussion
on filter configurations with dn-based localization.
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3.4. Parameter estimation

In this section we focus on filter configurations with simultaneous friction and/or bathymetry
estimation. We evaluate if these parameters can be simultaneously estimated, and also if this
simultaneous estimation leads to an improvement in the flood forecast.

Let us first make a comment about the accuracy generally achieved in this type flood forecast.
Schumann et al. (2011) evaluated the accuracy of sequential aerial photography and SAR data for
observing urban flood dynamics, with a case study of the 2007 floods in the same area as our case
study. In fact, their 2007 event was the same one that we used for calibrating the model in our
case. They reported that, from a number of SAR sensors, the best vertical accuracy was obtained
for the high-resolution TerraSAR-X SAR data (which has an horizontal resolution similar to
CSK), with a 0.56 m RMSE (evaluated against a high resolution hydraulic model simulations
as a surrogate for theunknown true water levels). It is worth noting than in our case study, the
agreement between the water levels recorded by gauges and those just updated by the assimilation
(i.e. water levels at assimilation times), was generally higher than that indicated by Schumann
et al. (2011). Fig. 8 is an indication of this. At that location, in the filter (f), which had the
best RMSE, the difference between gauged levels and assimilated levels at the time of the CSK
overpasses was kept very low (order of a few centimeters), except for the last overpass, where
the difference was ∼0.45 m. In fact, most of the RMSE shown in Table 4 relates to the capability
of the filter to remain stable and even being able to forecast the levels in the recession of the
flood. Let us note also that the estimation of the recession levels was more difficult as rivers were
back in bank, whereas WLOs were on the floodplain at those times. With this, Table 4 indicates
that, according to the RMS criterion, there is no benefit in simultaneous parameter estimation
regarding the flood forecast during the short time span of a single event in this case study. Let us
explore possible reasons.

The estimation of Manning’s friction coefficient for the major channels appears to converge
systematically across all the filter configurations. Fig. 10 shows this convergence for filter (j).
With slightly different convergence rates, all filters with friction estimation ([g], [i], [j], and [l])
had a very similar trend, from an initial mean ηc1 = 0.035 to a final mean ηc1 ≈ 0.033. This
systematicity in time and across filters, independent from simultaneous inflow and bathymetry
estimation, supports the confidence in the friction estimates. The fact that the convergence is
gradual is intrinsic to the assimilation-based estimation, but also the gradual friction decay may
well be physical. The washout effect of high water levels on channel beds, resulting in hysteresis
of the rating curves (stage-discharge relationships), is known to happen for some flood events
(e.g., Garcı́a-Pintado et al., 2009). On the other hand, the second Manning’s friction coefficient,
affecting the minor tributaries, did not converge systematically across the filters. For example,
from the initial ηc2 = 0.040 the final estimate was ηc2 = 0.039 in filter (j), but other filters saw
final values slightly higher than the prior ones. With a smaller general influence on the water
levels, and generally more distant from the WLOs, the estimation of ηc2 seems to be influenced
by spurious correlations and, as a summary, does not seem sound.

However, despite the likely adequate estimation of channel friction in the major channels
(the ones with a higher influence on general water levels), the feedback of friction estimation
on the flood forecast within this event seems negligible. For example, compare the RMS of
(e) vs. (g), both without inflow estimation, or (f) vs. (j), both with inflow estimation, where
in both comparisons the second filter includes friction estimation. The negligible difference in
RMSEs can also be seen by the pairwise comparison of these filters in Figs. 7, 8, and 9. As ηc1
is consistently estimated, one could expect that this sensitivity of friction to the WLOs should
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be reflected in a sensitivity of the flood forecast to the (likely) improved friction estimates, so
leading to a better forecast. However, the convergence being gradual, it seems the DA-forecast
cycle does not have time to benefit from the updated friction.

Fig. 11 shows the evolution of bathymetry, along the event, for the rivers Severn and Avon,
and filter configuration (k). The chainage 0 for the Avon refers to its junction with the Sev-
ern, very close to Mythe Bridge. All the filters including bathymetry estimation with identi-
cal localization radius for bathymetry, either with/without simultaneous friction estimation, or
with/without simultaneous inflow bias correction (i.e. filters [h], [i], [k], and [l]) show a nearly
identical convergence, supporting the robustness of the estimation shown in Fig. 11, indepen-
dently from other factors. The sequential updating converges systematically toward a profile in
which, after the event, the lower part of the Severn is nearly 2 m higher than the prior bathymetry,
and the transect between Saxons Lode US and Kempsey gauges is lower than the prior (at some
points reaching ∼1.5 m of difference with respect to the prior). The highest increments in the
updating are due to the assimilation of WLOs from the first overpass. Thereafter, the updating
increments become gradually smaller along time. The updatings summarize the influence of the
channel conveyance on the flood development. Globally, the SAR-WLOs seem to indicate that
the prior bathymetry was leading to a model which overestimated the release of water from the
flooded domain during the early stages of the event. The sequential increments in the bathymetry
along the Avon are also systematic, leading to a raised channel bed profile with respect to the
prior. In both rivers, the effect of the localization is clearly visible. That is, moving upstream,
the increments become gradually smaller as the bed locations move away from the observations
(e.g., in the Severn the WLOs roughly generally covered up to the 40 km chainage coordinate,
close to Kemspey). The consistent and systematic sequential increments indicate a physical basis
for these, as happened with ηc1. Note the prior bathymetry was based on an interpolation of the
rectangular approximations of the real cross-sections. Thus these plots refer to the bottom of the
rectangular channels approximating the real ones.

One could argue that a possible explanation is that since the time at which the surveys for
the cross sections were done, the channel bed may have evolved, with some erosion happening
upstream in the Severn (in the Saxons Lode US–Kempsey transect) and some sediment deposi-
tion hapenning downstream. We did not have available the metadata indicating the dates for the
cross-section surveys. Thus it is not possible for us to check the possibility/degree of this fac-
tor. However, the surveys were likely collected before 2002 (UK Environment Agency, personal
communication), and several flood events have occurred since that time.

As with friction, despite the consistency in bathymetry estimation, the flood forecast does not
improve as a result of the updated bathymetry. Figs. 7, 8, and 9 shows that the filters including
bathymetry estimation had difficulties in forecasting the recession limb, this being a the major
effect contributing to the worsened RMSE for these filters. The recession limb is related to the
moment in which the bulk of the flood reaches the downstream boundary location and leaves the
domain through the South boundary. Thus the updated bathymetry may have led to an improved
estimate of the flood extent for the peak of the flood, but the assimilation may be overshooting
the estimation of the most downstream bathymetry, preventing an accurate release of water from
the domain in the last stages of the flood. This seems to be the case. That is, as the flood wave
evolves the control from bathymetry on the flood development is gradually moving downstream.
In the first assimilation steps, it is likely that bathymetry around Saxons Lode US and Shuthonger
exerts a stronger control on the flood than the most downstream areas, and the simultaneous
updating of these most downstream bathymetries is collaterally caused by their correlated errors
with those from the bathymetry some kilometers upstream. An additional difficulty is that the last
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5 km of the domain remained unobserved during the event (i.e., as a results of the multicriteria
screening to obtain the WLOs to be assimilated, none of these was located in the last 5 km of
the Severn within the domain). As in the experimental design we did not provide any inflation
for bathymetry, the channel bed estimated variance is gradually reduced along the sequential
assimilation, and by time the most downstream area (around Mythe Bridge and toward the South)
has the strongest influence on the release of water from the domain, the bathymetry spread is
too low to be properly updated (and the WLOs did not reach the last ∼ 5 km of the South
of the domain —see, e.g., Fig. 4—). A plot similar to Fig. 11, but regarding the evolution of
the bathymetry ensemble spread along the sequential assimilation indicates that the standard
deviation of bathymetry around Mythe Bridge decreases from an initial 0.8 m until a final 0.4 m
(not shown; available on request). The chosen c.v.=0.15 in the bathymetry error generation,
reflects our confidence in the prior bathymetry estimates.

Overall, it seems that either the chosen 5 000 m spatial correlation length in the stochastic
generation of the bathymetry error was too high or the 10 000 m localization window for the
dn-based localization for bathymetry estimation was too high (or both factors), leading to an
overshooting of the downstream bathymetry increments, and subsequent problems. To test this
point, we conducted a further simulation (filter configuration [m]) with 5 000 m as localization
window for bathymetry estimation. In effect, the general trends in the sequential bathymetry
updating are similar to the previous experiments, but the increments gradually fade downstream
(see supplementary material). This translates into a steeper recession limbs (closer to those of
configuration [f]) and better statistics (see [m] versus [l] in Table 4). Thus everything indicates
that by tuning the localization radii and correlation length in the bathymetry error generation
the simultaneous parameter/state estimation process could be further improved. However, as
indicated in the experimental design, to provide a detailed exploration of the parameter space
and localization parameters goes beyond the scope of the current study.

4. Conclusions

We have shown that under a relatively complex scenario with simultaneous uncertain in-
flows into a flooded domain, a satellite-based forecast of the flood with high accuracy is possible
through the assimilation of the satellite-based WLOs into a flood forecast model. However, sev-
eral aspects should be taken into account for a successful operational application of EnKF-based
assimilation of EO-based WLOs and forecast. First, a moderation of the forecast error covariance
based on spatial localization is necessary to avoid filter divergence. Second, inflow estimation
also improves the forecast. This second point is only valid if localization is applied, otherwise
the incorrect forecast error covariance development in the global filter prevents any benefit from
online inflow estimation and bias correction. Third, the implementation should consider the
possible uncertainty in model parameters and their simultaneous online estimation.

The study shows that if the physical connectivity of flows is considered in the form of the
newly proposed along-network metric for the localization, the development of forecast error
covariances is sounder than that resulting from the use of a standard as-the-crow-flies distance.
The relevance of this regarding the forecast skill should depend on the geometry of the network
in each specific case, and further studies would be needed to assess this relevance.

The study is not conclusive about how simultaneous parameter estimation (friction and bathymetry)
interacts with the flood forecast. There seems to be a benefit in the development of sound forecast
error covariances, and also, the convergence of the parameters seems to be consistent. However,
the simultaneous parameter estimation does not improve the on-going flood forecast skill in the
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studied case. In other cases (steeper rivers, faster flow, etc.) things might be different. The
localization parameters used in the case study for bathymetry estimation seem to be far from
optimal, and tuning these parameters could lead to a better estimates in the inverse problem (i.e.
bathymetry estimation), with improved feedback on the flood forecast. The exploration of the
localization parameters and localization method on the simultaneous state and parameter estima-
tion problem warrants further investigation.

There should be also a more positive feedback of the simultaneous parameter estimation
(provided parameters are properly estimated) for longer events, in floods developed over bigger
areas. The estimated parameters resulting from the assimilation should also lead to improved
forecasts in future events in the same domain. This is mostly the case for bathymetry estimation,
to which the forecast sensitivity is higher that the sensitivity to channel friction, at least in this
study.

Other factors influencing filter performance have not been explored here. For example, the
sensititivy of the skill to the ensemble size, or the possibility of conducting transformations to
diminish the negative effect of the nonlinearities in the filtering process.

Overall, further possible improvements notwithstanding, the study indicates that a properly
constructed stand-alone EO-based flood forecast is accurate enough for operational applications
even for floods developed within relatively complex river networks.
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Figure 1: Flood model domain. OSGB 1936 British National Grid projection; coordinates in meters. Grey labels indicate
the three larger rivers (thick black lines). The red polygon surrounds the Tewkesbury urban area. Orange labels/dots refer
to the 7 inflow boundary conditions, some of them on smaller tributaries (thin black lines). The yellow line to the South
indicates a free-surface boundary condition, with the label indicating the prior mean bed slope. Red labels/green dots
show locations with available stage observations, just used for validation in the forecast mode. The background is the
75 m resolution DEM used for the model, obtained by upscaling the 5 m NEXTMAP British digital terrain model.

24



2012-12-042012-12-022012-12-01

2012-11-302012-11-292012-11-282012-11-27

Figure 2: Flood extents (blue) for the forecast event (November 2012), overlain on SAR in flood model domain.
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Figure 3: Inflows into the flood domain for the forecast event, in November 2012. As a reference, blue lines are inflows
as measured by standard gauges (not used as data input here). Grey lines are the 150-member forecast ensemble from
the hydrologic models, used as input by the flood model. Dashed red lines are the ensemble means. Vertical dashed lines
show COSMO-SkyMed overpass times.
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Figure 4: Updated error covariance between the state variable (water level) at Bredon and the state vector (water level
elsewhere) at the last assimilation step (7th CSK overpass). Plot labels (b, d, f, and l) refer to the corresponding fil-
ters (see Table 2). The red circle indicates the location of Bredon. The set of squares, with each one centered at the
corresponding observation location, is a symbolic representation of Ki,: (being i the state vector index corresponding to
water level Bredon) at the corresponding assimilation step and filter. The side length of each square is proportional to the
corresponding Ki, j value, where the biggest square in each plot relates to max

{
Ki,:

}
(e.g., 0.023 in filter [b]). The sum

of the absolute Kalman gain values in the row is indicated by
∑p

j=1 |Ki, j |. Green/red squares are positive/negative gain
values.
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Figure 5: Inflow estimation at Bewdley for filters with configuration (b) and (l), as specified in Table 2.
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Figure 6: Updated error covariance between the inflow boundary conditions at Bewdley and the state vector (water
level elsewhere) at the first assimilation step (1th CSK overpass) for the same filter than Fig. 4. Plots focus on the
satellite coverage area, thus Bewdley location is not shown. Description is as Fig. 4, being now i the state vector index
corresponding to inflow errors at Bewdley.
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Figure 7: Water level forecast at Worcester, whose major inflows come from Bewdley (river Severn), Kidder Callows Ln
Us (river Stour), and Harford Hill (river Salwarpe). Plot labels refer to the corresponding filter configurations (Table 2).
For each plot, grey lines are the forecast ensemble, the red line is the mean forecast and the blue line is the gauged water
level, included as a reference. Vertical dashed lines indicate the times of the CSK overpasses/assimilation. Horizontal
lines indicate the bank level (labelled as “dtmd”), and the prior mean channel bottom level (labelled as “SGCz”).
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Figure 8: Water level forecast at Mythe Bridge, in the Severn. Description as in Fig. 7.
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Figure 9: Water level forecast at Bredon, in the Avon. Description as in Fig. 7.
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Figure 10: Evolution of the estimate of the global Manning’s coefficient along the sequential assimilation steps for the
three major rivers (Severn, Avon, and Teme), and filter configuration (j).
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Figure 11: Evolution of the estimate of bathymetry along the sequential assimilation steps for the river Severn (top), and
the Avon (bottom), for the filter configuration (k). The ticks at the bottom indicate the location of the available cross
sections. The vertical dashed lines and corresponding labels indicate the location of level gauges used for water level
validation.
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