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Abstract

Optimal state estimation is a method that requires minimising a weighted, nonlinear, least
squares objective function in order to obtain the best estimate of the current state of a
dynamical system. Often the minimisation is non-trivial due to the large scale of the prob-
lem, the relative sparsity of the observations and the nonlinearity of the objective function.
To simplify the problem the solution is often found via a sequence of linearised objective
functions. The condition number of the Hessian of the linearised problem is an important in-
dicator of the convergence rate of the minimisation and the expected accuracy of the solution.
In the standard formulation the convergence is slow, indicating an ill-conditioned objective
function. A transformation to different variables is often used to ameliorate the conditioning
of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information
in the literature for describing the causes of ill-conditioning of the optimal state estimation
problem and explaining the effect of preconditioning on the condition number. This paper
derives descriptive theoretical bounds on the condition number of both the unpreconditioned
and preconditioned system in order to better understand the conditioning of the problem.
We use these bounds to explain why the standard objective function is often ill-conditioned
and why a standard preconditioning reduces the condition number. We also use the bounds
on the preconditioned Hessian to understand the main factors that affect the conditioning
of the system. We illustrate the results with simple numerical experiments.

Keywords Optimal state estimation, variational data assimilation, nonlinear least squares,
condition number, preconditioning, correlation matrices, circulant matrices

1 Introduction

In dynamical systems, the aim of state estimation is to find the most likely current or future
state of the system, given noisy, possibly indirect, observations. In many applications, such
as numerical weather prediction (NWP), the number of observations is sparse relative to the
dimension of the state space and so additional information, such as a prior estimate of the initial
state of the system, is often required to guarantee a unique solution. The optimal state, called
the ‘analysis’, minimises a weighted nonlinear least-squares objective function, measuring the
distance between the state trajectory and the observations and between the initial state and
the prior estimate, weighted by the covariance of the errors in the observations and the prior
respectively. In the meteorology community this optimization problem is referred to as four-
dimensional variational data assimilation or 4DVar [25]. The analysis is optimal in the sense
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that, under certain assumptions, it provides the maximum a posteriori Bayesian estimate of the
state of the system [22], [18]. Once the analysis is obtained the dynamical model is applied to
predict future states.

The model and the observation operator, which maps model states to observations, are often
nonlinear and therefore, to improve computational efficiency, the objective function is linearised
around the current state estimate and a Gauss-Newton process is applied [10]. The linearised
problem is solved by an inner iteration, called the inner loop, and then used to update the solu-
tion to the full nonlinear problem in an outer-loop. This inner-outer iteration process is repeated
until the desired accuracy is obtained. The solution to the linearised problem is often found
using gradient methods such as a conjugate gradient or quasi-Newton method [24]. However the
accuracy of the solution and the rate of convergence of these iterative methods depends on the
condition number, i.e. the ratio of the largest and smallest eigenvalues, and on the clustering of
the eigenvalues, of the Hessian of the linearised objective function [9]. A large condition number
often implies slow convergence and inaccurate results, whereas a small condition number means
the gradient method converges quickly. Understanding the conditioning of the problem helps
to identify sources of ill-conditioning and indicates how improvements in conditioning can be
achieved.

The conditioning of the problem can be improved by transforming to new state variables. This is
a form of preconditioning. A common type of preconditioning used for optimal state estimation
in numerical weather prediction uses a square root of the prior error covariance matrix and has
been shown to significantly reduce the condition number and time of convergence of the gradient
methods [7], [12], [19]. This approach is equivalent to transforming to a set of variables with
errors that are initially uncorrelated. Previous research has largely focused on the conditioning
of the least-squares optimization (4DVar) problem in an experimental setting or in simplified
systems [1], [26]. The conditioning of the state estimation problem without a prior estimate
has also been considered in the literature on power systems and it has been shown that the
observation errors and positions have an important effect on the conditioning of the problem [5]
[23], [20]. Haben et. al. [12], [13], presented theoretical results for a one-dimensional periodic
single-variable discretized system with observations made only at a one time point (a 3DVar
problem). In these papers it was shown how dense accurate observations increase the condition
number of the preconditioned Hessian. Additionally it was shown that the ill-conditioning
of the covariance matrix of the prior errors was a major cause of the ill-conditioning of the
unpreconditioned Hessian.

The focus of this paper is to prove theoretical bounds on the conditioning of the linearised
objective function, with and without preconditioning, for a general state estimation or 4DVar
data assimilation problem. In particular we establish the results of Haben et. al. [12], [13] as a
special case of the results presented in here. We also present numerical results to illustrate the
theory. We begin in Section 2 by providing background to the problem. In Section 3 we derive
our main theoretical results for both the preconditioned and unpreconditioned case and then
illustrate these results experimentally in Section 4 using simple numerical systems. Finally in
Section 5 we summarise the results of this paper.
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2 Optimal State Estimation

The aim of state estimation is to find the best estimate of the initial state of the system,
x0 ∈ RN (called the analysis), at time t0, given a prior estimate xb

0 (called the background) and
measurements yi ∈ Rpi at time ti (i = 0, . . . , n), taken within a time window [t0, tn], and subject
to the state space equations

xi = M(ti, t0,x0), (1)

yi = Hi(xi) + δi, (2)

for i = 0, . . . , n . The notation is as follows:

• the N model states at time ti are denoted by the vector xi ∈ IRN ;

• the non-linear operator M(ti, t0, .) : IR
N → IRN , describes the evolution of the states from

time t0 to time ti ;

• the non-linear operator Hi : IR
N → IRpi relates the system states to the observations at

time ti and may include transformations and grid interpolations;

• the vector δi ∈ IRpi describes the errors between the observed data and the model predic-
tions of the data.

In many applications, such as numerical weather prediction, there are fewer total observations
(
∑n

i=0 pi) than the number of state variables (N). The prior estimate is therefore included with
the aim of regularising the problem [22], [16]. We will assume the number of observations is less
than the state dimension throughout this paper.

The errors (x0 − xb
0) in the background and δi in the observations are assumed to be random

with mean zero and symmetric positive-definite covariance matrices B and Ri , respectively. In
addition, the observational errors are assumed to be temporally uncorrelated and uncorrelated
with the errors in the background. The optimal estimate of the state of the system, xa

0, at
time t0 is found by minimising the following objective function with respect to x0

J(x0) =
1

2
(x0 − xb

0)
TB−1(x0 − xb

0) +
1

2

n∑
i=0

(Hi(xi)− yi)
TR−1

i (Hi(xi)− yi), (3)

subject to the model forecast equations (1)–(2). If the errors in the background and in the
observations are assumed to have Gaussian probability distributions, then the solution to the
optimization problem is equal to the maximum a posteriori Bayesian estimate of the system
states at the initial time [18].

In this paper we concentrate on the case where the observation and model operators are linear,
in which case we can write the objective function as

J̃(x0) =
1

2
(x0 − xb

0)
TB−1(x0 − xb

0) +
1

2
(Ĥx0 − ŷ)T R̂−1(Ĥx0 − ŷ), (4)

where we assume xi satisfies the linear model equations

xi = M(ti, t0)x0 ≡ Mi x0, (5)
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and

Ĥ =
[
HT

0 , (H1M1)
T , . . . , (HnMn)

T
]T

, (6)

ŷ =
[
yT
0 , yT

1 , . . . , yT
n

]T
.

The matrices Mi and Hi , i = 0, . . . , n , are linear evolution and observation operators respec-
tively and R̂ is a block diagonal matrix with diagonal blocks equal to Ri . The minimum of
(4) can be found using iterative gradient methods such as the conjugate gradient method [9].

If the operators M(ti, t0, .) and Hi are nonlinear then the analysis is found by a double-loop
algorithm, or inner-outer iteration procedure, where the problem is linearised around the current
estimate of the model trajectory xi , i = 0, . . . , n , satisfying the nonlinear forecast model (1).
An increment, δx0 , to the current estimate of the analysis is then calculated by minimising
the linearised objective function subject to the linearised model equations in an inner-loop [3].
The increment is then used to update the current estimate in an outer-loop. This double-loop
process is equivalent to an approximate Gauss-Newton method [17], [10]. The inner-loop is
often solved using a gradient method and is the main source of the computational cost of the
minimisation. The linearised cost function has the same first-order Hessian as (3) and therefore
the condition number analysis in this paper applies (to first order) whether the model and
observation operators are linear or non-linear. Hence for the remainder of the paper we suppose
that the model operators are linear.

2.1 Condition Number

A measure of the accuracy and efficiency with which the optimal state estimation problem can
be solved is given by the condition number of the Hessian

S = B−1 + ĤT R̂−1Ĥ , (7)

of the linearized objective function (4) [9]. For any normal matrix, S, the condition number in
the ℓ2-norm is defined to be

κ(S) = ||S||2||S−1||2 ≡
|λmax(S)|
|λmin(S)|

, (8)

where λmax(S) and λmin(S) denote the maximum and minimum (by moduli) eigenvalues of the
matrix respectively. When S is positive definite then all the eigenvalues are real and positive [9].
A Hessian with a large condition number is referred to as ill-conditioned and indicates that the
solution to the linearized least-squares problem (4) is sensitive to relatively small perturbations
in the data of the system. Additionally, ill-conditioning of the Hessian can have a detrimental
effect on the convergence rates of the gradient methods used to solve the minimisation problem.
For example, for the conjugate gradient method, the error in the computed solution after k

iterations is bounded in proportion to
(
(
√
κ(S)− 1)/(

√
κ(S) + 1)

)k
, which shows a potentially

slow convergence for an ill-conditioned system [9]. Alternatively, a small condition number
κ(S) ≈ 1 will lead to a rapid convergence of the conjugate gradient method.
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2.2 Preconditioning

A common method for reducing the condition number of the objective function (4) is to use a
linear transformation to change the variables [9]. The process of changing the condition number
of the system is known as preconditioning. The condition number is minimised when the square
root of the inverse of the Hessian is used as the change of variables transformation. However this
is generally not practical due to the dimension of the problem and the complexity of the B, R̂
and Ĥ matrices. Instead, the symmetric square root of the covariance matrix of the errors in the
prior estimates, B1/2, is often used [2], [19], [16]. The errors in the new variables z0 = B−1/2x0 ,
are now uncorrelated, with unit variances, giving a prior error covariance matrix equal to the
identity matrix.

In terms of the new variables, we aim to minimize the transformed objective function

Ĵ(z0) =
1

2
(z0 − zb0)

T (z0 − zb0) +
1

2
(ĤB1/2z0 − ŷ)T R̂−1(ĤB1/2z0 − ŷ), (9)

with respect to z0 , where zb0 = B−1/2xb
0.

The effect of the variable transform is symmetrically to precondition the Hessian (7) with the
square root of the error covariance matrix of the prior. The Hessian of the preconditioned
objective function (9) is now given by

Ŝ = IN +B1/2ĤT R̂−1ĤB1/2, (10)

where Im denotes the m×m identity matrix throughout the paper.

In general there are fewer observations than states of the system and therefore the matrix
B1/2ĤT R̂−1ĤB1/2 is not of full rank, but is positive semi-definite. It follows that the smallest
eigenvalue of (10) is unity and the condition number of the preconditioned Hessian is equal to
its largest eigenvalue.

The aim of this paper is to prove theoretical bounds on the condition number of the unpre-
conditioned and preconditioned Hessians (7) and (10) respectively. The bounds enable the
conditioning of the unpreconditioned and preconditioned Hessians to be compared and help
to identify the main factors that affect the conditioning of the objective functions. This work
extends the theoretical results presented in earlier work [12] [13], which examine the case of
a discrete periodic single-variable system defined on a one dimensional grid with observations
taken at only one time step. The proofs derived in this paper apply to more general cases where
observations are taken over a time window and include, as special cases, proofs of the results
summarized in previous papers. We illustrate the theory with numerical examples in a simplified
system using common covariance structures and models.

3 Theory

3.1 Background Results

Before we can derive the algebraic bounds on the condition number of the Hessians, (7) and
(10), of the unpreconditioned and preconditioned objective functions respectively, we require
some basic results on circulant matrices.
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For a periodic single-variable system discretized on a one-dimensional domain with equal spacing
between grid points, many covariance and linear forecast models have a circulant structure.
The eigenvalues for circulant matrices have a convenient form which makes them, and hence
the condition number, simple to calculate. We exploit this useful property for producing our
theoretical bounds. In more general cases, where the domain is not periodic, the autocovariance
matrices will be Toeplitz instead. However when the dimension of the state space N is large
these Toeplitz matrices and their properties can be approximated by circulant matrices [11],
[15].

A circulant matrix has the form of a Toeplitz matrix where each row is a cyclic permutation of
the previous row. Let c = [c0, c1, c2, . . . , cN−1] denote the top row of a N ×N circulant matrix
C. Then the eigenvalues of C are equal to the discrete Fourier transforms of the coefficients of
the first row of the matrix [11] and can be written

νm =

N−1∑
k=0

cke
−2πimk/N . (11)

The corresponding eigenvectors are given by the discrete exponential function,

vm =
1√
N

(1, e−2πim/N , . . . , e−2πim(N−1)/N )T . (12)

Since circulant matrices are normal matrices we can explicitly calculate the condition number
of C from the definition (8) by taking the eigenvalues with the largest and smallest magnitude
calculated using equation (11) [11].

A loose upper bound can be placed on the eigenvalues of a circulant matrix

|νm| ≤ ||C||1 =
N−1∑
k=0

|ck| . (13)

If the circulant matrix has only positive coefficients then the largest eigenvalue is
ν0 =

∑N−1
k=0 ck. AssumingC is a correlation matrix then ck ∈ [−1, 1], for k = 0, . . . , N−1, and the

eigenvalue with the largest magnitude is at most N , the dimension of the state vector. However,
unless all errors are strongly correlated (|ck| ≈ 1) this is likely to be a large overestimate.

3.2 Theory: Conditioning of the Hessian

In this section we consider the conditioning of the unpreconditioned Hessian (7). We make the
following basic assumptions:

A1. The covariance matrix for the errors in the prior estimate is of the form B = σ2
bC ∈ RN×N ,

where C is a symmetric, positive definite correlation matrix and σb > 0 is the standard
deviation of the prior estimate errors.

A2. The observation error covariance matrices at each time step are given by Ri = σ2
oIpi ∈

Rpi×pi , for i = 0, . . . , n , where pi ̸= 0, and σo > 0 is the standard deviation of the
observation errors. Additionally r ≡

∑n
i=0 pi < N .
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Assumption A1 implies that each component of the prior error has variance σ2
b . Assump-

tion A2 assumes that observation errors are spatially and temporally uncorrelated with the
same variances, σ2

o . These are reasonable assumptions where the states of the system repre-
sent values of the same variable at different spatial points and where the observations are all
made with the same accuracy at every time. Where the observation errors satisfy assump-
tion A2, R̂ will be block diagonal with blocks Ri on the diagonal. In this case we can write
R̂ = diag(R0,R1, . . . ,Rn). The final assumption ensures the total number of observations is
less than the size of the state space we are estimating.

In the following theorem we derive the first theoretical bounds on the condition number of the
unpreconditioned Hessian.

Theorem 1 Let B ∈ RN×N and R̂ = diag(R0,R1, . . . ,Rn) ∈ Rr×r be the prior error and
observation error covariance matrices, respectively, satisfying assumptions A1 and A2. Addi-
tionally let Ĥ ∈ Rr×N be the observation operator defined by (6). Then the following bounds
hold on the condition number of the Hessian S = B−1 + ĤT R̂−1Ĥ :

κ(C)(
1 +

σ2
b

σ2
o
λmax(C)λmax(ĤT Ĥ)

) ≤ κ(S) ≤ κ(C)

(
1 +

σ2
b

σ2
o

λmin(C)λmax(Ĥ
T Ĥ)

)
, (14)

where λmax(A) and λmin(A) represent the maximum and minimum (in modulus) eigenvalue,
respectively, of the matrix A.

Proof. To bound the condition number of the Hessian (7) we bound the maximum and minimum
eigenvalues of S. Suppose A1 and A2 are N ×N , symmetric, positive semi-definite matrices
and that we label their eigenvalues such that 0 ≤ λN (Ai) ≤ λN−1(Ai) ≤ . . . ≤ λ2(Ai) ≤ λ1(Ai)
for i = 1, 2. Then from [9] the following bounds hold

λm(A1) + λN (A2) ≤ λm(A1 +A2) ≤ λm(A1) + λ1(A2) , (15)

for m = 1, . . . , N . By assumption A1 and A2, B = σ2
bC and ĤT R̂−1Ĥ = σ−2

o ĤT Ĥ are both
symmetric positive semi-definite matrices and therefore (15) applies with A1 = σ−2

b C−1 and

A2 = ĤT R̂−1Ĥ = σ−2
o ĤT Ĥ . In addition we have

λN (ĤT R̂−1Ĥ) = 0 , (16)

since ĤT R̂−1Ĥ is not full rank by assumption A2. Hence the maximum and minimum eigen-
values of the Hessian satisfy

σ−2
b λ1(C

−1) ≤ λ1(S) ≤ σ−2
b λ1(C

−1) + σ−2
o λ1(Ĥ

T Ĥ), (17)

and
σ−2
b λN (C−1) ≤ λN (S) ≤ σ−2

b λN (C−1) + σ−2
o λ1(Ĥ

T Ĥ), (18)

respectively. Combining (17) and (18) and the fact that λN (A) = λmin(A) and λ1(A) = λmax(A)
for any positive semi-definite symmetric matrix A, we establish the following bounds on the
condition number of the Hessian

κ(C)(
1 +

σ2
b

σ2
o
λmax(C)λmax(ĤT Ĥ)

) ≤ κ(S) ≤ κ(C)

(
1 +

σ2
b

σ2
o

λmin(C)λmax(Ĥ
T Ĥ)

)
, (19)
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which completes the proof. �

An alternative lower bound, which is easier to calculate explicitly, can be obtained using more
restrictive assumptions

A3. The observation operator is the same at each time step, that is, Hi = H ∈ Rq×N , where
pi = q , for i = 0, . . . , n , and all observations are direct observations of individual states.

A4. The forecast model is assumed to be time invariant with Mi := Mi for i = 1, . . . , n, for
some circulant matrix M ∈ RN×N .

A5. The symmetric positive-definite error covariance matrix B ∈ RN×N , and hence also its
inverse, are circulant.

A consequence of assumption A3 is that HT
i Hi = HTH ∈ RN×N for i = 0, . . . , n is a diagonal

matrix with the kth diagonal entry equal to one if the kth position is observed or zero otherwise.
Assumptions A4 and A5 mean that we can explicitly calculate the updated lower bound in the
following theorem by using (11). We shall see in Section 4 that for a single periodic variable
defined on a one-dimensional equally-spaced grid, the background covariance and forecast model
matrices are circulant in many examples.

Under the additional assumptions (A3)-(A5) we can derive the following theoretical bounds on
the condition number of the Hessian (7).

Theorem 2 Let B, R̂ and Ĥ satisfy assumptions A1-A5 where Ĥ is the generalised observation
operator defined by (6). Then the following bounds hold on the condition number of the Hessian
S = B−1 + ĤT R̂−1Ĥ : 1 + q

N
σ2
b

σ2
o
λmin(C)γmin

1 + q
N

σ2
b

σ2
o
λmax(C)γmax

κ(C) ≤ κ(S) ≤ κ(C)

(
1 +

σ2
b

σ2
o

λmin(C)λmax(Ĥ
T Ĥ)

)
, (20)

where λmax(A) and λmin(A) represent the maximum and minimum (in modulus) eigenvalues
of a matrix A ∈ RN×N respectively and we have γmax :=

∑n
j=0 |λmax(M)|2j and γmin :=∑n

j=0 |λmin(M)|2j.

Proof. From Theorem 1 the upper bound on the condition number is automatically obtained.
The lower bound is achieved using the Rayleigh quotient, which for a Hermitian matrix A ∈
CN×N and non-zero vector v ∈ CN is defined by

RA(v) =
vHAv

vHv
, (21)

where the superscript H denotes complex conjugate transpose. The Rayleigh quotient is a
bounded function satisfying [9]

λN (A) ≤ RA(v) ≤ λ1(A), (22)
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where A has eigenvalues λN (A) ≤ λN−1(A) ≤ . . . ≤ λ2(A) ≤ λ1(A). Consider the Rayleigh
quotient of ĤT Ĥ at an eigenvector v of the symmetric, positive definite matrix B−1 (which by
assumption A5 is of the form (12)). By assumption A3 and A4, HT

j Hj = HTH and Mj = Mj

for j = 0, 1, . . . n and therefore

vH(ĤT Ĥ)v = vH

 n∑
j=0

(Mj)THTHMj

v =
n∑

j=0

(λH(M))j(λ(M))jvHHTHv. (23)

The last equality holds because M is circulant by assumption A4 and hence has the same
eigenvectors as B−1, giving

Mjv = (λ(M))jv, (24)

where λ(M) is the eigenvalue of M corresponding to the eigenvector v. Since the eigenvectors
are of the form (12) and the observations are only of individual states, then we have

vHHTHv =
q

N
, (25)

using assumption A3. Combining (25) and (23) we obtain

vH(ĤT Ĥ)v =
q

N

n∑
j=0

|λ(M)|2j . (26)

We can then use (26) to put new bounds on the Hessian, S , given by (7). Let vmax denote the
eigenvector associated with λmax(B

−1) = λ1(B
−1) and some eigenvalue λα(M) of M. Applying

the Rayleigh quotient to S we obtain

λmax(S) ≥ vH
maxSvmax = vH

maxB
−1vmax + σ−2

o vH
max(Ĥ

T Ĥ)vmax (27)

= σ−2
b λmax(C

−1) +
q

N
σ−2
o

n∑
j=0

|λα(M)|2j (28)

≥ σ−2
b λmax(C

−1) +
q

N
σ−2
o

n∑
j=0

|λmin(M)|2j , (29)

where λmin(M) is the minimum (in modulus) eigenvalue of M. Similarly, let vmin be the eigen-
vector corresponding to λmin(B

−1) = λN (B−1) and some eigenvalue λβ(M) of M. Then the
Rayleigh quotient can be used to show

λmin(S) ≤ σ−2
b λmin(C

−1) +
q

N
σ−2
o

n∑
j=0

|λmax(M)|2j , (30)

where λmax(M) is the maximum (in modulus) eigenvalue of M. Now define

γmax =

n∑
j=0

|λmax(M)|2j , (31)

γmin =

n∑
j=0

|λmin(M)|2j , (32)
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and combine the bounds (29) and (30) to give

κ(S) ≥

 1 + q
N

σ2
b

σ2
o
λmin(C)γmin

1 + q
N

σ2
b

σ2
o
λmax(C)γmax

κ(C), (33)

which completes the proof. �

The theoretical bounds for the special case where observations are made at only one time step,
presented in [12], follow automatically from Theorem 2, as shown in the following corollary.

Corollary 3 Let n = 0, and let B, R̂ ≡ R = σ2
oIq and Ĥ ≡ H satisfy assumptions A1-A5.

Then the following bounds hold on the condition number of S = B−1 +HTR−1H : 1 + q
N

σ2
b

σ2
o
λmin(C)

1 + q
N

σ2
b

σ2
o
λmax(C)

κ(C) ≤ κ(S) ≤
(
1 +

(
σ2
b

σ2
o

)
λmin(C)

)
κ(C), (34)

where λmax(C) and λmin(C) are the maximum and minimum (in modulus) eigenvalues respec-
tively of the matrix C.

Proof. The proof follows directly from Theorem 2, since λmax(H
TH) = 1 and γmax = 1 = γmin

in the case n = 0. �

The bounds presented in Theorem 1, Theorem 2 and Corollary 3 demonstrate the influence
of the conditioning of the prior error covariances on the conditioning of the Hessian (7). In
particular, the bounds provide us the following further details about the condition number of
the Hessian:

1. If we vary the ratio σ2
b/σ

2
o in the bounds (14) and (20), while fixing all other variables,

then as σ2
b/σ

2
o −→ 0, both the lower bounds and upper bounds on the condition number

converge to κ(C). In this case the observations become much less accurate than the prior
estimate or, conversely, the accuracy of the prior estimate becomes much greater than the
accuracy of the observations. In either case the solution is dependent primarily on the
prior estimate because the observations provide little or no constraint on the the solution
to the problem. Hence the conditioning depends essentially on the conditioning of the
prior error correlation matrix.

2. If the ratio σ2
b/σ

2
o −→ ∞, while all other variables are fixed, then the upper bound in

(14) and (20) grows linearly with σ2
b/σ

2
o . In this case the observations become much more

accurate than the prior estimate or, conversely, the accuracy of the prior estimate becomes
much worse than the accuracy of the observations. In the limit we are then trying to fit
model trajectories to perfectly accurate observations, and the prior places no constraint
on the problem. As the regularization provided by the prior reduces, we expect the state
estimation (data assimilation) problem to become more ill-posed and harder to solve and,
in general, we expect the condition number to increase.

3. If the prior errors become strongly positively correlated, the matrix C becomes singular,
since all its components converge to unity. In the limit λmax(C) is bounded away from
zero and λmin(C) −→ 0, and the upper and lower bounds in (14) and (20) converge to
κ(C) −→ ∞.
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4. In the special case where the prior errors are all uncorrelated and C = IN , with IN being
the N × N identity matrix, then all eigenvalues of C are unity and the exact condition

number κ(S) = 1 +
σ2
b

σ2
o
λmax(Ĥ

T Ĥ), which is equal to the upper bounds in (14) and (20).

In this case the upper bound on the conditioning of the Hessian is strict.

In conclusion, the conditioning of the state estimation problem (4) is strongly dependent on the
conditioning of the prior error covariance matrix. With commonly arising prior error covariance
matrices, it was shown in [14] that for large correlation length-scales, these matrices are very
ill-conditioned and lead to a poorly conditioned Hessian of (4). This is consistent with previous
results on variational data assimilation that suggest that the error covariances of the prior
estimates are the cause of slow convergence in the minimization of the objective function [19].
In Section 4 we further illustrate the effect of an ill-conditioned prior error covariance matrix on
the conditioning of the optimal state estimation problem using simplified numerical experiments.

3.3 Conditioning of the Preconditioned System

In this section we consider the effect of preconditioning the Hessian with the square root of the
error covariance matrix of the prior estimate. The following theorem derives new theoretical
bounds on the condition number of the preconditioned Hessian (10).

Theorem 4 Let B = σ2
bC ∈ RN×N and R̂ = diag(R0,R1, . . . ,Rn) ∈ Rr×r be the prior and

observation error covariance matrices, respectively, satisfying assumptions A1 and A2. Addi-
tionally let Ĥ ∈ Rr×N be the observation operator defined by (6). Then the following bounds
hold on the condition number of the preconditioned Hessian Ŝ = IN +B1/2ĤT R̂−1ĤB1/2 :

1 +
1

r

σ2
b

σ2
o

r∑
k, l=1

{ĤCĤT }k, l ≤ κ(Ŝ) ≤ 1 +
σ2
b

σ2
o

||ĤCĤT ||∞, (35)

where {A}k, l represents the (k, l)th entry of the matrix A.

Proof. Since there are fewer observations than variables in the state space (r < N), the Hessian Ŝ
is just a low rank update of the identity matrix and its smallest eigenvalue is unity. The condition
number of the Hessian is then equal to the largest eigenvalue of Ŝ. Let E = R̂−1/2ĤB1/2. The
matrices ETE = B1/2ĤT R̂−1ĤB1/2 and EET = R̂−1/2ĤBĤT R̂−1/2 have the same non-zero
eigenvalues and therefore the Hessian Ŝ has the same non-unit eigenvalues as the symmetric,
positive definite matrix

G = Ir + R̂−1/2ĤBĤTR̂−1/2 = Ir +
σ2
b

σ2
o

ĤCĤT. (36)

For any ℓp -norm ||.||, |λmax(A)| ≤ ||A|| where λmax(A) is the maximum (in modulus) eigenvalue
of matrix A ∈ Rr×r . Therefore letting A = ĤCĤT we obtain

κ(Ŝ) = λmax(G) ≤ 1 +
σ2
b

σ2
o

||ĤCĤT ||∞, (37)

which establishes the upper bound.
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The lower bound is established by applying the Rayleigh quotient of G with the unit vector
y = 1√

r
(1, 1, . . . , 1)T ∈ Rr,

RG(y) = yTGy = 1 +
1

r

σ2
b

σ2
o

r∑
k,l=1

{ĤCĤT }k,l. (38)

Since λmax(G) ≥ RG(y) for any y ∈ Rr×r, this completes the proof. �

The bounds on the condition number of the preconditioned Hessian for the special case of
observations at only one time step, derived in [13], can be found in the following corollary to
Theorem 4.

Corollary 5 Let n = 0, and let B, R̂ ≡ R = σ2
oIq and Ĥ ≡ H satisfy assumptions A1-A5.

Then the following bounds on the condition number of Ŝ = IN +B1/2HTR−1HB1/2 hold

1 +
1

q

σ2
b

σ2
o

∑
i,j∈K

{C}i,j ≤ κ(Ŝ) ≤ 1 +
σ2
b

σ2
o

||HCHT ||∞, (39)

where K are indices of the state variables that are observed.

Proof. From Theorem 4 with n = 0 we obtain the bounds

1 +
1

q

σ2
b

σ2
o

q∑
k, l=1

{HCHT }k, l ≤ κ(Ŝ) ≤ 1 +
σ2
b

σ2
o

||HCHT ||∞. (40)

SinceHCHT is simply the matrixC with rows and columns removed at the unobserved positions
it follows that

q∑
k, l=1

{HCHT }k, l =
∑
i,j∈K

{C}i,j , (41)

where K are indices of the state variables that are observed. �

Before discussing the implications of the bounds we first note that the matrix ĤCĤT which ap-
pears in the upper and lower bounds (35) can also be written in the form H̃C̃H̃T = σ−2

b H̃B̃H̃T ,

where H̃ is the block diagonal matrix consisting of n+ 1 blocks equal to Hi, i = 0, . . . , n , and
B̃ = σ2

b C̃ is the four-dimensional error covariance matrix associated with the background state

vector (xb
0
T
,xb

1
T
, . . . ,xb

n
T
)T . Here xb

i denotes the state vector at time ti, i = 1, . . . , n evolved
from the prior state estimate, xb

0, using the dynamical model (5) [14]. Since H̃C̃H̃T is simply C̃
with rows and columns deleted at positions that are unobserved, we refer to this as the reduced
error covariance matrix.

The reduced error covariance matrix H̃C̃H̃T plays a key role in the condition number of the
Hessian (10). In particular, the lower bound in (35) is linearly related to the average row
sum 1

r

∑r
k, l=1{H̃C̃H̃T }k,l whereas the upper bound is related to the absolute maximum row

sum ||H̃C̃H̃T ||∞. In fact the lower and upper bounds are identical if all entries of H̃C̃H̃T are
positive and its row sums are identical. The dependence on the reduced error covariance matrix
implies further details about the condition number of the preconditioned Hessian.
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1. The number and positions of the observations are important to the conditioning of the
preconditioned problem. In particular, if we assume that the correlations in the prior error
covariance matrix decrease with increased distance between grid points and also that the
linear model M acts to ensure that the coefficients of the correlation matrix C remain
positive and decrease monotonically with distance, then increasing the distance between
observations will imply smaller entries in the reduced error covariance matrix and thus
smaller sums in the upper and lower bounds in (35) and, potentially, a smaller condition
number. The assumptions apply, for instance, in the case where the model is an advection
equation and the prior error covariance has a Gaussian or SOAR structure [14].

2. Additionally, under the same assumptions, if we have fewer observations at fewer time
steps, then there will be fewer entries in the reduced error covariance matrix, implying
smaller sums in the bounds and hence a smaller condition number of the Hessian (10).

3. Finally, it follows from the dependence of the bounds (35) on the ratio σ2
b/σ

2
o that the

accuracy of the observations is also important to the conditioning of the problem. In
particular, increasing the accuracy of the observations, where σ2

o −→ 0 while the other
variables remain fixed, implies an increase in the bounds and a potential increase in the
conditioning of the Hessian. In the limit, the model trajectories must fit exactly to the
data, as in the unpreconditioned case, and the problem becomes much harder to solve and
hence more ill-posed.

The bounds (35) and (39) are quite general and do not require the more restrictive assumptions
A3-A5 used in the unpreconditioned case. Additionally the bounds do not depend on the
condition number of the background error covariance matrix but simply on a summation of the
coeffcients of a four-dimensional background error covariance matrix. In [12] it was shown that,
in the case where observations are only made at a single time step, preconditioning brought a
dramatic reduction in the condition number of the Hessian compared to the unpreconditioned
case. Contrary to intuition, however, the bounds also show that in the preconditioned case,
as well as in the unpreconditioned case, increasing the accuracy and density of observations is
likely to make the conditioning of the problem increase and the estimation problem harder to
solve accurately.

4 Numerical Experiments

In this section we illustrate the effect of varying different parameters and properties of the state
estimation problem on the condition number of the unpreconditioned (7) and preconditioned
(10) Hessians. We apply the theoretical bounds derived in Section 3.2 and 3.3, respectively,
to explain these effects. Throughout this Section we consider a dynamical system where the
state vector consists of a single periodic variable discretized at equally spaced grid points on a
one-dimensional domain. As shown in Section 3.2 the prior error covariance plays a influential
role in the conditioning of the preconditioned and unpreconditioned Hessian and so we first
introduce and describe some of the properties of a common prior error covariance matrix.
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4.1 Condition Number of Error Covariance Matrices

In this section we assume that the prior error covariance matrix is of the form B = σ2
bC ∈ RN×N

where C denotes the error correlation matrix and σ2
b is the error variance. By definition (8), the

condition number κ(B) = κ(C) . We use the second-order auto-regressive correlation (SOAR)
function [4], defined by

ρS(r) =

(
1 +

|d|
L

)
exp

(
−|d|

L

)
, (42)

to model the correlation structure, where L > 0 is the correlation length-scale and 0 ≤ d ∈ R
is the distance between two points on the real line. The SOAR function is commonly used to
define correlations in meteorological applications [4]. For a periodic variable we identify the
values of the variable at two points −D and D. However, the function (42), which defines a
valid correlation function on the real line, may no longer define valid correlation models on the
finite interval, since the corresponding Fourier transforms are not necessarily positive [29], [8],
[28]. We transform to a valid correlation model on the circle by replacing the distance along the
great circle by the chordal distance

d = 2a sin(θ/2) , (43)

where θ is the angle between two points on the circle and a is the radius. This guarantees that
the corresponding correlation matrix is positive definite [30, Sec. 22.5]. Applying the transform
(43) to the SOAR correlation function and sampling at evenly spaced points on the circle si,
i = 1, . . . , N , produces the SOAR correlation matrix CS on the circle with elements given by

(CS)i,j =

(
1 +

|2a sin(θi,j/2)|
L

)
exp

(
−|2a sin(θi,j/2)|

L

)
(44)

where i, j = 1, . . . , N and θi,j is the angle between the points si and sj on the circle. We note
that the resultant correlation matrix is circulant and therefore has eigenvalues given by (11).

Length-scale 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Condition Number 5.96 58.1 265 807 1963 3978 7328

Table 1: The condition number of the SOAR correlation matrix as a function of different corre-
lation length-scales.

Table 1 shows the condition number of C = CS , for different length-scales, L, where the cor-
relation function is sampled at N = 500 equally spaced grid points on the interval [−25, 25].
The table shows that the condition number of the correlation matrix increases as a function
of the correlation length-scale. As shown there is a large increase in the condition number as
the length-scale increases. An increase in the length-scale from 0.1 to 0.2 causes an increase in
the condition number by about 750 whereas the same increase in length-scale from 0.2 to 0.3
causes an increase by over 3000 in the condition number. Similar results also hold for other com-
mon auto-correlation matrices, see [14, Chap. 5]. Since all coefficients of the SOAR correlation
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matrix are positive, we find from (11) that the largest eigenvalue satisfies

λmax(C) = ||C||∞ =
N−1∑
k=0

ck, (45)

and therefore increases slowly as a function of L and is bounded by N = 500 since |ck| ≤ 1. It
is the decrease in the smallest eigenvalue that causes the increase in condition number of the
correlation matrix [14, Chap. 5]. For the remainder of this paper we define the background
correlation matrix using the SOAR correlation matrix (44).

4.2 Numerical Example: Advection Model

To compare the conditioning of the unpreconditioned and preconditioned Hessians (7) and (10),
respectively, we assume a simple linear advection equation for our dynamical forecast model (5)
throughout the rest of this section. We discretise using the upwind scheme described at the kth

grid point at time tj+1 by [21, Chap. 4]

U j+1
k = U j

k − c
∆t

∆x
(U j

k − U j
k−1) = U j

k − ν(U j
k − U j

k−1), (46)

where c = 0.3 is the speed of advection and U0 = UN . We assume there are N = 500 grid
points with a fixed spatial spacing of ∆x = 0.1 and that the time step is ∆t = 0.1. (Here
ν = c∆t

∆x ∈ (0, 1) so the finite difference equation satisfies the CFL condition and is therefore

convergent [21]). In matrix form (46) can be written Uj+1 = MUj where Uj = (U j
1 , . . . , U

j
N )T .

The linear forecast model matrix M is a circulant matrix with top row (1− ν,−ν, 0, . . . , 0,−ν)
and satisfies Mj = Mj . We observe at the same randomly spatially distributed grid points at
three different time steps t0 = 0, t1 = 3∆t and t2 = 6∆t, giving 60 observations in total. Finally,
we fix the background error variance to be σ2

b = 1 and the observation error variances to be
σ2
o = 1. With these criteria the corresponding Hessian satisfies the assumptions A1-A5 and

therefore the bounds (20) and (35) derived in Theorems 2 and 4, respectively, hold.
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Figure 1: The coefficients of the 250th row of the off-diagonal (a) and diagonal blocks (b) of the
4D-prior error covariance matrix using the SOAR correlation matrix.
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Since C and M are circulant, then each block of the 4D-prior error covariance matrix C̃ is
circulant. By plotting rows of each block of C̃ we notice all coefficients are less than or equal to
one. For example, Figure 1 shows the 250th row of the matrix diagonal and off-diagonal blocks
MjC(Mk)T and MjC, respectively, for j , k = 0, 3, 6 in the case where the length-scale of the
correlations is given by L = 0.2. From Theorem 4 the maximum size of the condition number
of the preconditioned Hessian is then given by

κ(Ŝ) ≤ 1 +
σ2
b

σ2
o

||ĤCĤT ||∞ ≤ 61. (47)

If the conditioning of the unpreconditioned system is driven by the background error covari-
ance matrices, as indicated by the bounds derived in Theorem 1 and 2, then we expect the
preconditioning to significantly reduce the condition number of the problem in the cases where
the length-scales of the prior error correlations are sufficiently large. Figure 2 compares the
actual condition number and the theoretical bounds on the conditioning of the (a) unprecondi-
tioned and (b) preconditioned Hessians as a function of length-scale using the SOAR correlation
matrix. For this experiment the conditioning of the unpreconditioned system follows the upper
bound, which demonstrates that the bound is strict. From these results it can be seen that, even
for short length-scales, the preconditioning improves the conditioning of the Hessian by orders
of magnitude. Similar results hold for Hessians constructed using other common correlation
matrices to define the prior error covariance matrix (see [14, Chap. 7] for more details.).

A comparison of the magnitude of the condition number of the unpreconditioned Hessian and
the condition number of the corresponding prior error covariance matrix with the same length-
scale, given in Table 1, reveals that the conditioning of the Hessian is closely coupled to the
conditioning of the prior error covariance matrix, as predicted by the theoretical bounds found
in Theorem 2. For example, at length-scale L = 0.25 = 2.5∆x the condition number of the
Hessian is approximately 1900 whereas the condition number of the SOAR correlation matrix
for the same length-scale as shown in Table 1 is 1963.
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Figure 2: Condition number of the Hessian (solid line) together with the bounds (dashed) as
a function of length-scale for SOAR correlation matrix in the (a) unpreconditioned and (b)
preconditioned case.
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For the preconditioned Hessian, the condition number is much smaller than the absolute upper
bound predicted by (47) and is much better conditioned than the unpreconditioned Hessian.
For instance, at length-scale L = 0.25 the condition number of the unpreconditioned Hessian is
approximately 1900, whereas for the preconditioned Hessian it is around 6 . The conditioning
of the preconditioned system increases as the length-scale increases, which can be explained by
the increase in the bounds (35). The larger length-scale increases the coefficients of the matrix
C̃ and therefore the size of the row sums of the coeffcients of H̃C̃H̃T = ĤCĤT in the upper
and lower bounds (35).

4.3 The Effect of Observations on the Conditioning of the Preconditioned
Hessian

We now consider the conditioning of the preconditioned Hessian for the numerical advection fore-
cast model in more detail. The bounds for the preconditioned Hessian (35) and (39) identify the
accuracy and positioning of observations as important to the conditioning of the preconditioned
objective function.

Assuming the same data as for the experiment shown in Figure 2, we consider the effect of
changing the observation accuracy on the condition number of the Hessian. We use the SOAR
correlation matrix and fix the correlation length-scale to L = 0.2, but vary the observation
variance. Table 2 shows the effect of changing the observation accuracy on the condition number
of the preconditioned Hessian. As demonstrated in section 3.3, the bounds (35) are linearly
related to the inverse of the observation variance and hence we expect the condition number of
the Hessian to increase as the observation variance decreases and the accuracy of the observations
increases. This is confirmed by the results of the numerical experiment, as seen in Table 2. For
instance, a doubling in the accuracy of the observations from a variance of 0.1 to 0.05 roughly
doubles the condition number of the Hessian from 51.55 to 102.11. Similar results also hold
where other common prior error covariance matrices and observation locations are used (see
[14]).

Obs Variance 0.01 0.05 0.10 0.50 1.00 2.00 5.00 10.00

Condition Number 506.53 102.11 51.55 11.11 6.06 3.53 2.01 1.51

Table 2: The condition number of the preconditioned Hessian as a function of the observation
error variance using SOAR correlation matrices.

We now consider the condition number of the preconditioned Hessian as a function of the
separation of the observations. From the definition of the correlation matrix (44) the coefficients
in each block of {C̃}i,j monotonically decrease as the distance |i − j| increases, as shown in
Figure 1. The upper and lower bounds on the Hessian (10) depend on sums of the elements of
the matrix H̃C̃H̃T , which is viewed as a ‘reduced’ covariance matrix. The reduced matrix is
simply the 4D covariance matrix C̃ with all non-observed rows and columns deleted. As the
separation of the observations increases, the elements of the reduced matrix become smaller in
magnitude due to the decrease in the coefficients (or covariance) with distance. We therefore
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expect the conditioning of the problem to decrease as the separation of the observations increases
or the density decreases. We illustrate this with our numerical model.

We fix the observation error variances to σ2
o = 1 and assume that q = 20 observations are made

at grid points at each of the time steps t0 = 0, t1 = 3∆t and t2 = 6∆t with uniform spacing
between adjacent observations. We consider the condition number as the uniform spacing is in-
creased. Table 3 shows the results of the experiment. As expected from the theoretical bounds
(14), increasing the spacing between the observations reduces the size of the condition number
of the Hessian. Since the coefficients of the covariance matrix C̃, given by (44), decrease with an
increase in the distance between sampling points, the condition number of the preconditioned
Hessian becomes smaller with larger distances and decreased density of observations. Addition-
ally, as predicted, the condition number is larger for larger length-scales corresponding to the
increase in the size of the coefficients of C̃. Similar results hold for the preconditioned Hessians
using other common prior error covariance matrices (See [14, Chap. 7]).

Spacing 1 2 3 4 5 6 7 8 9 10

Condition Number (L = 0.2) 22.0 12.5 8.9 6.9 5.8 5.1 4.6 4.3 4.0 3.9
Condition Number (L = 0.3) 29.6 17.6 12.5 9.8 8.1 7.0 6.2 5.6 5.1 4.8
Condition Number (L = 0.5) 39.8 26.3 19.3 15.2 12.6 10.8 9.4 8.4 7.6 7.0

Table 3: The condition number of the preconditioned Hessian as a function of the number of
spaces between observations for different correlation length-scales L.

The results of this section indicate that less accurate and less dense observations reduce the
conditioning of the preconditioned Hessian and hence may increase the rate of convergence
of the iterative solver used to find the optimal state estimate. These results appear to be
counter-intuitive as it would indicate that better observational data leads to a more inaccurate
(numerical) solution. This may be explained by the fact that highly accurate, dense observations
put tighter restrictions on the optimisation problem and so the problem becomes more difficult
to solve whilst accurately satisfying the constraints. In practice there must a balance between
satisfactorily solving the physical problem (by collecting many accurate data) and the numerical
problem (as typified by the condition number).

5 Discussion

In state estimation the conditioning of the objective function plays an important role in de-
termining the accuracy of the numerical solution and the speed of convergence of the iterative
methods used to solve the problem. If the Hessian of the objective function has a large condition
number, then we say the problem is ill-conditioned and the iterative method may be slow to
converge. The problem can be reformulated with a variable transform which preconditions the
problem to one with a smaller condition number.

In this paper we have examined the conditioning of an optimal state estimation (data assim-
ilation) problem and shown how preconditioning with a standard change of variables affects
this conditioning. The main results presented in this work are new theoretical bounds on the
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condition number of the Hessian of the objective function in both the unpreconditioned and
preconditioned forms. The bounds derived identify the main sources of ill-conditioning in both
systems and explain how preconditioning can improve the conditioning of the problem. In par-
ticular, we found that the condition number of the unpreconditioned Hessian is proportional to
the condition number of the prior error covariance matrix. Hence an ill-conditioned prior error
covariance matrix can produce an ill-conditioned Hessian. The bounds on the preconditioned
system showed that preconditioning using the prior error covariance matrix can produce a signif-
icant reduction in the condition number of the Hessian. Additionally, the distribution, quantity
and accuracy of the observations play key roles in the conditioning of the preconditioned Hessian,
with more accurate and dense observations creating a more ill-conditioned problem.

We presented results from numerical experiments in order to demonstrate the effect of the various
factors on the condition number of the Hessians, as indicated by the bounds. We presented the
SOAR covariance matrix, which is commonly used in variational data assimilation, and showed
that the conditioning of this matrix becomes very ill-conditioned for only relatively small in-
creases in correlation length-scale. We then demonstrated that this prior error covariance matrix
resulted in the ill-conditioning of the unpreconditioned Hessian and that preconditioning dra-
matically reduced the conditioning, as predicted by the theoretical bounds. We also illustrated
the reduction in the conditioning of the preconditioned system as we increased the separation
between observations and reduced the accuracy of the observations, as expected from our theo-
retical results. We remark that the conclusions derived from the theory presented here have also
been found to hold for experimental data from the high-dimensional, multi-variable Met Office
Numerical Weather Prediction data assimilation system [13].

A simple, natural extension to this problem would be to consider more general observation oper-
ators which incorporate interpolation and to introduce correlations into the observation errors.
Very recently, extra preconditioning, in addition to the variable transform via the matrix B, has
been considered [27], [6] for use in optimal state estimation. Further exploration and analysis of
these, and other, preconditioning techniques, following the theoretical approach presented here,
may be valuable in order to produce further improvements in the conditioning of the problem.
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