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Abstract

The dynamics of polymer melts and concentrated solutions is notoriously slow due to the fact that long polymer
chains can not cross each other and therefore �nd themselves entangled. This popular belief is very di¢ cult to
quantify and convert into mathematical model because there is still no clear de�nition of what entanglement really
is. In this paper we propose to de�ne entanglement as a persistent contact between mean paths of the chains. In
molecular dynamics (MD) simulations of well-entangled linear chains we discovered that such very tight and long-
lived contacts exist in signi�cant numbers. Moreover, once such contact is formed, it exists at every time step of the
simulation until its destruction, which allows one to de�ne its life time. We study several properties of individual
entanglements and discover several unexpected features not taken into account in the tube theory or slip-links models.
We believe that our simple and versatile de�nition opens the way to the truly microscopic understanding of polymer
dynamics.

1 Introduction

This paper deals with the foundation of dynamical description of long polymer melts or concentrated solutions. It is
well known that short polymer melts can be more or less described by the Rouse model, which approximates many chain
problem of an interacting polymer melt by a single chain dynamics in an e¤ective media. The single chain is modelled
by a set of beads connected by linear springs, and the e¤ect of all other chains on a particular chain is modelled by
the random and friction forces. The random forces are delta-correlated in both space and time, and the friction forces
obey the �uctuation-dissipation theorem. These assumptions allow one to write down precise equations of motion for
the chain, and solve them exactly for almost all observables. These equations are the usual Langevin equations for the
bead positions Ri:

�
dRi

dt
= �@U(R0:::RN )

@Ri
+ fi(t) (1)

where U(R0:::RN ) is the interaction potential between the beads, � is the bead friction, and fi(t) is a random force
acting on the bead i at time t. The random forces are governed by the �uctuation-dissipation theorem

hf�i (t)i = 0;
D
f�i (t)f

�
j (t

0)
E
= 2kBT��ij����(t� t0) (2)

where kBT is the temperature multiplied by the Boltzmann constant, and � and � denote di¤erent Cartesian compo-
nents. Three � symbols here correspond to three decoupling assumptions: the random forces on di¤erent monomers
along the chain are not correlated with each other, random forces in di¤erent directions are not correlated, and random
forces at di¤erent moments of time are not correlated with each other. Finally, the interaction potential in Rouse model
is given by a set of harmonic springs connecting neighboring monomers

U(R0:::RN ) =
3kBT

b2

NX
i=1

(Ri �Ri�1)
2 (3)

where b is the statistical segment length, and N in the number of bonds in the chain. An alternative and exactly
equivalent equation of motion can be written in terms of stochastic di¤erential equation using Ito calculus:

�dRi = �
@U(R0:::RN )

@Ri
dt+

p
2kBT�dWi

�Current address: Department of Physics School of Basic and Applied Sciences, Central University of Tamilnadu Thiruvarur - 610 004,
Tamilnadu, India.
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whereWi are independent vector Wiener processes.
Despite the simplicity of such approximation, the Rouse model compares relatively well with molecular dynamics

(MD) simulations [1],[2] and experiments [3],[4]. For example, the viscosity scales linearly with molecular weight and
stress relaxation function scales as G(t) � V

kBT
h�xy(t)�xy(0)i � t�1=2, where ��� is the stress tensor and V is volume.

The agreement with the Rouse model breaks dramatically when the molecular weight exceeds some critical value
Mc. This is clearly observed in both MD and experiment. For example, the stress relaxation function G(t) slows down
and eventually develops a plateau, and the terminal time and viscosity start to grow with molecular weight as N3:5 or
so. These deviations from the Rouse model are generally believed to be caused by entanglements, or by the constraint
that polymer chains can not cross each other. For long chain this constraint becomes signi�cant and the e¤ect of other
chains on a probe chain can not be adequately described by the random and friction forces only. We then have a choice:
either to modify equation 1, modify the potential 3 or random forces eq. 2, or to abandon eq.1 all together and write
down new equations for another set of variables.
The tube theory follows the later choice: it postulates that for each chain there exists a curve in space (called a

primitive path) such that on su¢ ciently long timescales the chain motion can be approximated by the one-dimensional
motion along this primitive path. The equation of motion is then formulated for this one-dimensional motion, plus
randomization of the primitive path at the ends when the chain leaves its tube. Notice a vague description of these main
postulates as compared to the Rouse theory. The postulate about existence of the primitive path is not constructive,
i.e. no de�nition is given in terms of the chain coordinates fRig. But if one does not know how to construct the path,
one can not unambiguously compare the tube theory predictions with the observation of chain coordinates from MD
simulations. This situation has led to multiple and contradicting tube theories, but no single well de�ned model similar
to the Rouse model exists. Besides that, there are numerous problems de�ning physical observables from the 1-d chain
coordinates along the primitive path, as discussed in a recent book chapter[2].
Let�s come back to the other possibility: can one modify eq.1 or it�s ingredients, eqs.2 and 3, and have a consistent

dynamics for the three-dimensional chain coordinates, which will adequately describe the motion along the primitive
path? Since the e¤ects of entanglements are caused by the other chains, it is clear that modi�cation of interaction
potential eq.3 will not be e¤ective. It is also established that entanglements do not signi�cantly a¤ect the static
properties of the chains, and thus the interaction potential should not be signi�cantly di¤erent from the one used to
model shorter unentangled chains. Thus, one should concentrate on modifying the forces from the environment, i.e.
random and friction forces and perhaps some new forces. The choices again include anisotropic friction, random forces
with memory and additional forces due to entanglements. The later choice seem to be most promising and it�s the
only one which is consistent with reptation at long lengthscales. Since the entanglements are supposed to con�ne the
chain to a tube-like region, one comes to the natural conclusion that in order to model the e¤ect of entangled matrix
on a particular chain, one has to introduce extra variables describing the environment. These can be either tube or
entanglements coordinates. For the modelling purposes, discrete notations are more convenient than the continuous, so
we shall add a set of extra variables aj . One has to introduce some dynamics of these variables and some interaction
or coupling between them and the chain variables. The simplest model which arises from this logic is the slip-spring
model[5], which was shown to agree well with molecular dynamics simulations[6],[2]. The variables aj in this model
are the positions of the anchoring points, which are �xed in space but disappear when the chain end passes through a
corresponding slip-link, and appear at the ends with a certain rate. There is also a set of one-dimensional positions of
the slip-links along the chain xj . The equations of motions are then very similar to the Rouse equation, but include
one additional interaction term and an extra equation for new variables xj

�
dRi

dt
= �@U(R0:::RN )

@Ri
+ fi(t)�

3kBT

Nsb2
(Ri � aj)�i;xj

where an extra term is non-zero only if the anchoring point j is connected to the monomer i. The equation for xj can
be either similar stochastic di¤erential equation, or a master equation for jumps between the neighboring monomers,
realized for example by the Metropolis algorithm. In both cases the evolution of xj is governed by a well de�ned
interaction potential between aj and Ri.
The slip-spring model is much more consistent and better de�ned than the tube model because the equations of

motion for the chain coordinates are clearly speci�ed and thus predictions for all experimental or simulation observables
are readily available. However, the slip-spring model remains an empirical model in a sense that it postulates existence
of the virtual objects (slip-links), which are not de�ned microscopically (i.e. from the positions of other chains), and thus
their dynamics can not be veri�ed in MD simulations. This becomes a serious problem when one wants to generalize
the slip-spring model to fast deformations, branched polymers and other interesting situations. The aim of this paper is
to identify entanglements in a multi-chain MD simulations and to study their dynamics. In section 2 we will de�ne the
mean paths consisting of the average positions of each bead over some time and will show that there are very persistent
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contacts between the mean paths of di¤erent chains. We will de�ne entanglements as such persistent contacts between
the mean paths. Section 3 will introduce contact maps for chain pairs and a way to analyze such maps. In section
4 we will develop numerical algorithms to extract quantitative information about entanglements, and in section 5 we
shall present the results of these algorithms applied to MD trajectories of well entangled chains. Section 6 will list the
conclusions and the outlook.

2 Mean paths

It is clear that both entanglements and tube pictures predict existence of long lived contacts between di¤erent chains.
However, it is not easy to detect such contacts. Indeed, in a usual modest simulation with Nc = 100 chains of length
N = 100 for 107 time steps one has to process information about 1011 possible contacts even if the only information
one is interested in is whether chain i is in contact with chain j or not. If one does process this information, one has to
decide what to call a persistent contact. Chain positions are subject to rapid �uctuations and thus contacts between
the chains appear and disappear rapidly. Thus, any analysis of such contact information is bound to be probabilistic,
i.e. one can ask what is the probability of two chains to be in contact at time t providing they were in contact at
time 0. One can not however assert whether these two contacts constitute the same entanglement or not. Such contact
analysis was performed in ref.[7] for instantaneous chain coordinates. An approach based on an average interaction
energy between non-bonded monomers was utilized in ref.[8] to visualize persistent contacts.
We note that contact probability information is not very useful to calibrate the tube or the slip-spring models. These

models operate with survival probabilities, i.e. the probability that the same entanglement or tube segment exists at
time t; if it was present in the system at time 0. In order to compute these probabilities, one has to track individual
contacts and detect their appearance and disappearance.
In order to do that, we suggest to perform contact analysis on the mean paths r̂i rather than on the instantaneous

chain coordinates Ri. The mean paths were introduced in ref.[9] as

r̂i(t) =
1

�av

Z t

t��av
Ri(t

0)dt0

i.e. they consists of the average positions of each bead over some averaging time �av. As was shown in ref.[9], the mean
path of entangled polymer has a free energy of a semi�exible chain, i.e. the mean paths should be smooth on small
length scales and of course follow the chain random walk on large scales. In this paper we report simulation results
of 100 chains made of N = 150 beads, which are connected with �nitely-extensible nonlinear (FENE) springs and
interact with purely repulsive truncated Lennard-Jones potentials. Besides that, we add harmonic bending potential as
described in ref.[10] with coe¢ cient kb = 3. This is done to create more entangled system relatively cheaply. The time
step of the simulation is �t = 0:012, and the system was run for much longer than the longest relaxation time to ensure
proper equilibration. According to the tube theory, the number of entanglements in our system is in the range of 7-15
depending on the de�nition, and the relaxation time of the strand between entanglements �e � 300� 1000. For mean
paths, we will use �av = 1200; or 105 timesteps, unless speci�ed otherwise. We have also analyzed chains of di¤erent
lengths and chains without bending potentials. However, for clarity and in the interest of space, we do not include these
results unless they produce something qualitatively di¤erent from our N = 150 and kb = 3 chains.
An instantaneous chain con�guration is visually compared with the mean paths in Fig.1 (a) and (b).We see that

the mean paths are smoother than the chains and fast �uctuations and small-scale wiggles are averaged out. Fig.1(b)
illustrates that visually it is much easier to identify entangled chains by looking at their mean paths rather than at
the instantaneous positions. If the averaging time is too large (i.e. 106 steps), than the local topology of mean paths
is di¤erent from the topology of the chains. This is because the monomer motion on large scale is predominantly
along the mean path. For example, if the chain moves along the circle of radius r, the mean path will make a smaller
circle with the decreasing radius as the averaging time increases. Thus, we expect that with averaging the contacts
will become more stable and well de�ned when the small �uctuations will be averaged out, but overaveraging will
destroy some contacts. An algorithm for averaging over much longer times which avoids described artifacts is presented
elsewhere[11]. To quantify the number of mean paths lying on top of each other (and thus violating topology) we plot
interchain pair-distribution function g(r) for the mean paths with di¤erent averaging time in Fig.2(b). For reference,
Fig.2(a) shows all three pair distribution function for instantaneous positions. We see that for averaging time �av � 104
steps, the probability for two mean paths to overlap is negligible, whereas for larger averaging times it is non-zero and
topology is not preserved.
If one wants to preserve the topology but increase the averaging time further, one can use so called iso-con�gurational

ensemble averaging[12]. One can start many short simulations from the same con�guration but using di¤erent initial
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Figure 1: Illustration of mean path and contacts, for N = 150; kb = 3 system. (a) Instantaneous positions of one chain
and 4 pieces of other neighbor chains. (b) mean paths of the same chains. (c) Mean path of one chain with pieces of
other mean paths which pass within distance 2� of the selected chain. (d) Same but with only tight long-lived contacts
(q < 1:5; � > 10)

Figure 2: (a) Total, interchain and intrachain pair distribution functions for instantaneous monomer positions. (b)
Interchain pair distribution function for mean paths with di¤erent averaging time, given in units of MD timestep
�t = 0:012
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Figure 3: (a) Time evolution of the minimum distance between two chains � a tight contact is clearly ideti�able for
time 47 < t=�av < 112. Corresponding pieces of mean paths are shown. (b) Monomers i1 and i2 participating in
entanglement as a function of time.

velocities and/or random numbers of the thermostat. After running them for �av; the ensemble averaged mean path is
obtained by averaging the mean paths from each simulation. As can be seen from Fig. 2(b, line), these paths do not
lie on top of each other even for averaging times �av = 105 steps, but do get closer to each other than 1 bead size �.
They also look smoother and entanglements are visually better resolved. A similar construction was used in ref.[13].
In this paper we will not use ensemble-averaged paths since it�s much more expensive and does not bring signi�cant
advantages since our algorithms will not require topology preservation.
One is tempted to associate all contacts between the mean paths with entanglements. However, as Fig.1(c) illustrates,

there are too many such contacts. Indeed, we showed all chains passing within a distance of 2� from the selected chain
� clearly there are much more contacts than the expected number of entanglements. Most of these contacts are very
short lived, and thus probably irrelevant for slow dynamics. The majority of the short-lived contacts can be modelled by
random and frictional forces. However, visualisation of time evolution of mean paths shows that there are very persistent
contacts which also look like entanglements. We can illustrate this by plotting the minimum distance between two mean
paths (with �av = 105 steps) as a function of time. Fig.3(top) shows this distance d2min(j1; j2; t) de�ned as

d2min(j1; j2; t) = min
i1;i2

(r̂i1;j1(t)� r̂i2;j2(t))2 (4)

where r̂i;j is the mean position of monomer i of chain j.
We observe a very characteristic behavior: a very tight contact appears at around tb = 47�av and disappears at

te = 112�av. Between these times, the average minimal distance between the two chains is very small (smaller than 1
�2 in this example), and it does not exceed 4�2 at any time between tb and te. In contrast, outside this time interval
the minimal distance is much larger and �uctuates much stronger. In Fig.3 (bottom) we also show the monomers i1
and i2 corresponding to the minimum distance at each time. We notice that around creation and destruction time
one of the monomers i1 and i2 is close to the end of the chain. This agrees very well with our mental picture of an
entanglement: it has to be created and destroyed by one of the chain ends passing around the other chain (see however
section 5.4 later for opposite examples). We also illustrated that the mean paths sometimes cross each other (in the
frames t=�av = 64::66), however this does not a¤ect the minimal distance between them.
These observations give us a hope that long-lived contacts which look like entanglements do exist and can be

quanti�ed. However, the minimal distance alone as de�ned in eq.4 is not su¢ cient: indeed knowing that d2min(j1; j2; t)
is small does not tell us how many entanglements exist between the chains j1 and j2. Thus, we should also resolve
which monomers are in contact at which time. In order to do this, next section will introduce a notion of contact map.
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Figure 4: Contact map for a pair of chains. Di¤erent clusters are shown by di¤erent colours, one bigger sphere per time
in each cluster show monomers participating in entanglement.

3 Contact maps

In order to quantify how many entanglements exist between a pair of chains as a function of time, we create a contact
map. Each time the monomer i1 of chain j1 is within a certain distance dcut of the monomer i2 of chain j2, we add a
point (i1; i2; t) to a three-dimensional graph. For each pair of chains (j1; j2) in a simulation box we create such contact
map, where we mark all mean monomers positions within certain distance of each other every �av along the horizontal
time axis. An example of such contact map is shown in Fig.4, where we plot all contacts with distance d2 < 4. We see
that contacts can be grouped into clusters, each of which can be identi�ed with a single entanglement. Moreover, the
most important property of these clusters is that they are continuous in time, i.e. once an entanglement is created, it
exists every time frame until it is destroyed. This allows us to separate clusters from each other, as shown by di¤erent
colors in Fig.4. We say that two contacts belong to the same cluster if they are less than icut monomers apart along
each chain and are in the adjacent or the same timeframe. We chose icut = 20, which we found to be a maximum
number of monomers a chain can slide between the adjacent frames.
Even within each cluster, some time frames contain more than 1 contact. In order to be able to say which monomers

are involved in an entanglement at a particular time, we develop an algorithm which processes each cluster of contacts
and returns one monomer pair i1(t) and i2(t) for each time. We then calibrate this algorithm by looking at the
mean paths con�gurations and verifying that an entanglement is near these monomers. We formulate the following
requirements

� i1(t) and i2(t) should be continuous, and thus we should penalize large changes of these variables between con-
secutive moments of time.

� If we de�ne the real-space position of an entanglement as

re(t) =
r̂(j1; i1(t)) + r̂(j2; i2(t))

2
; (5)

it should also be continuous in time, i.e. we should penalize large entanglement jumps.

� we will assume that the long-lived entanglements are the most important ones. Thus, if the contact cluster
branches, we shall select the longest branch.

We incorporate these requirements into a Dijkstra�s algorithm of �nding the shortest path on a graph [14]. For each
cluster, we �rst select it�s creation and destruction points. These are the contacts with the smallest and the largest
time. We then compute the shortest path between these points. It should consist of one point at each time and the
distance between the points at consecutive times is de�ned as

d2(i1; i2; i
0
1; i

0
2) = (i1 � i01)2 + (i2 � i02)2 + Cl(re(t)� re(t+ 1))2 (6)

where re(t) is the mid-point between two monomers participating in entanglement as de�ned by eq.5. Here (i1; i2) and
(i01; i

0
2) are monomers participating in an entanglement at times t and t + 1 respectively. If there are several possible

starting and �nishing points of the contact cluster, we select the pair with the smallest distance. The coe¢ cient Cl is
the weighting of real space displacement as compared to the monomer-space displacements. The results are not very
sensitive to it, and throughout the paper we set it to 5=�2. Larger spheres in the contact map Fig.4 are the contacts
selected by the shortest route algorithm, whereas all other contacts are shown by the smaller spheres.

6



Our contact map algorithm has three parameters: mean path averaging time �av, the cut-o¤ distance which de�nes
a contact dcut, and the coe¢ cient Cl in eq.6. The last parameter has only minor in�uence on determining the position of
entanglements but not on the life time distribution or other important properties. In contrast, the �rst two parameters
are very important and what we call an entanglement would depend on their choice.

4 Properties of individual entanglements

The algorithm of the previous section separates all contacts into clusters in monomer/time space. We now de�ne and
study the individual properties of these clusters which we shall call entanglements. There is clearly a multitude of such
properties, and we select here just a few which seem to be correlated with the physical observations. The purpose of
these properties is to separate essential entanglements, which determine long time dynamics, from the other short and
random collisions.
First such property was already mentioned: it is the average of the minimum square distance between the monomers

participating in the entanglements

q =
1

te � tb + 1

teX
t=tb

(r̂i1;j1(t)� r̂i2;j2(t))2

where (j1; i1) and (j2; i2) are chain and monomer number participating in the entanglement at time t. If only one
contact at each time exists, this quantity has a simple meaning of average square �uctuation in Fig.3 during the life of
entanglement. As we show later, this property is the most e¤ective characteristic of the entanglement strength, with
strong entanglements corresponding to the small q: Since q characterizes the amount of �uctuations in the entanglement,
which are facilitated by the slack in the two chains participating in it, we will call q an entanglement slack.
Intuitively, entanglements are associated with chains wrapping around each other. In topology, a linking number is

used to describe linking between two closed curves. It is de�ned by the following double contour integral

l =
1

4�

I I
r1 � r2
jr1 � r2j3

(dr1 � dr2)

where � means a vector product, and the integration is over r1 and r2 running through all points along the two
contours. For closed loops, this number is always an integer, and it is 0 if two loops are not linked (i.e. can be separated
without cutting them). Although these properties are lost for open pieces of the chains, we found that it still contains
information about how much the two chains are linked. We de�ne a local linking number between the two pieces of
chains as

l(t) =
1

4�

i1+�i�1X
k1=i1��i

i2+�i�1X
k2=i2��i

D(r̂k1;j1(t); r̂k1+1;j1(t); r̂k2;;j2(t); r̂k2+1;j2(t)) [(r̂k1+1;j1(t)� r̂k1;j1(t))� (r̂k2+1;j2(t)� r̂k2;j2(t))]

where

D(r1; r2; r3; r4) =
1

(K + 1)2

KX
m=0

KX
n=0

�
r1 +

m
K (r2 � r1)� r3 �

n
K (r4 � r3)

���r1 + m
K (r2 � r1)� r3 �

n
K (r4 � r3)

��3
Here we consider two pieces of chains having 2�i + 1 monomers (we will use �i = 10 throughout the paper). The
integral along each bond is approximated by the sums over K + 1 points. In practice we found that the simplest
approximation with K = 1 works very well:

D(r1; r2; r3; r4) �
1

4

 
r1 � r3
jr1 � r3j3

+
r1 � r4
jr1 � r4j3

+
r2 � r3
jr2 � r3j3

+
r2 � r4
jr2 � r4j3

!

We veri�ed that entanglements with the high local linking number intuitively look right, which gives us hope that
they will not appear and disappear frequently, but will be stable and long-lived. As discussed before, mean paths do
not strictly preserve the topology, and therefore at some times the mean paths can be in a wrong topological state. We
thus expect occasional strong �uctuations in the local linking number. This is indeed seen in Fig.5, where we plotted
local linking number as a function of time for the same entanglement as shown in Fig.3. We see that about 25% of
points are scattered around zero, whereas the rest are scattered around 0.84. Calculating the average linking number
by averaging all the points does not make sense in this situation. Instead, we perform clustering analysis of the data
using soft K-means algorithm assuming that the data are drawn from the sum of two Gaussian distributions[15]. If such
clustering is successful, we de�ne the average of the dominant cluster (0.84 in this case) as the local linking number of
an entanglement.
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Figure 5: Time evolution of the local linking number for the same entanglement as in Fig.3.

With the de�nitions of entanglement slack and local linking number at hand, we can now investigate their probability
distributions in a typical simulations. We perform contact map analysis with di¤erent cut-o¤ distances for our chains
with bending energy (kb = 3), and for analogous system without bending potentials and with the similar number of
entanglements (N = 512), and then compute the slack, life-time and local linking number of each contact cluster or
entanglement. The slack distribution is shown for these two cases in Fig.6
We see that if all contacts are considered (tc = 1), the slack distribution is very broad and decays only at cut-o¤

q = d2cut, which is to be expected since no contact cluster can have slack larger than d
2
cut by de�nition of contact. This

is especially clear from the middle and the bottom panels of Fig.6, where we compare the same simulation analyzed
with the di¤erent cut-o¤ values. However if we consider only persistent contacts, i.e. contacts who live longer than a
minimal time of tc (measured in �av units), we see that the distribution narrows down signi�cantly, and it is very sharply
peaked around the most probable value, which is system and dcut dependent. In case of �exible chains kb = 0 we even
observe a two-peaked distribution for tc = 20, consisting of tight entanglements with q � 6 and weaker entanglements
with q � 8. Varying tc shows that long-lived entanglements do indeed have smaller slack. However this e¤ect is not so
easy to spot, and chains with bending potential do not show clear bimodal distribution at all.
In contrast, a clear bimodal distribution for chains with bending potential can be obtained in two-dimensional

probability density of slack and local linking number P (q; l), as plotted in Fig.7 for kb = 3, N = 150 chain. We see that
short-lived contacts with life-time � < 50 have small linking number and a slack with the maximum around q = 2:5. In
contrast, long-lived entanglements have high linking number and small slack, with the maximum around l � 0:65 and
q � 1:4. This plot represents clear evidence that long-lived persistent contacts have di¤erent properties as compared to
short collisions. Since these tight persistent contacts are most likely candidates for entanglements, we now focus our
attention on their properties.
To illustrate individual entanglements, we plot 25 randomly selected contacts with q < 1:5 and � > 100 at random

time frame in Fig.8 (left). We see that many of them indeed have two mean paths wrapping around each other, but there
are also some less obvious examples. We also see that the curvature of the mean paths is not directly correlated with
the precence of another chain - this is a consequence of insu¢ cient averaging. Additional iso-con�gurational averaging
improves the pictures a little, as shown on the right. A much clearer picture is achieved with a new averaging algorithm
published elsewhere[16], where we �nd very good correspondence between the curvature of the averaged path (called
the tube axis) and the close contacts with other chains.
Another conclusion, which is obvious from the mean path visualization, is that all entanglements are very di¤erent

from each other, even if only tight and long-lived ones are selected. This is illustrated in Fig.9, where we plotted all
mean paths entangled with a particular pink mean path with entanglements with q < 1:5 and � > 100. To clarify the
picture, we used ensemble average mean paths with 50 trajectories in the ensemble. It is obvious that di¤erent chains
have di¤erent degrees of in�uence on the con�guration of the pink chain. Whether such individuality of entanglements
is important deserves further attention.
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Figure 6: Entanglement slack distribution for contacts with di¤erent cut-o¤ distance and chain sti¤ness and for di¤erent
entanglement life times.
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Figure 7: Probability density to �nd entanglements with certain slack and local linking number, normalized by the
maximum density. Dashed lines show contour plot for all entanglements with lifetime smaller than 50�av, and solid
lines � for entanglements with lifetime longer than 50�av:
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Figure 8: Left: Randomly selected entanglements with q < 1:5 and � > 100 at one moment of time for the mean path
analysis. Right: the same from analysis of mean paths with con�gurational averaging over 50 trajectories, for q < 2

and � > 50.

Figure 9: All mean paths entangled with the pink chain with tight longlived entanglements.
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Figure 10: Probability density that a randomly selected entanglement within a certain slack range will have a lifetime
� .

5 Results and discussion

5.1 Entanglement survival probability

The persistence of contact clusters allow us to compute the lifetime of each entanglement, which is simply the length
of each colored cluster in Fig.4 in horizontal direction. The easiest quantity to compute is the probability density of
entanglement lifetime �(�). We created a list of all entanglements with di¤erent slack, pick an entanglement at random
from this list and compute the probability density of it having a lifetime � . The result is shown in Fig.10. The probability
density decays rather quickly, which might lead to an erroneous conclusion that the long-lived entanglements are very
rare. This is however not the distribution which is physically relevant. For stress, birefringence or dielectric relaxation,
one is interested in the survival probability P (t) that an entanglement picked at random from all entanglements which
exist at time 0 will still exist at time t. It is easy to see that P (t) is connected with �(�) with a simple relationship

P (t) =

R1
t
�(�)(� � t)d�R1
0
�(�)�d�

Indeed, the probability to pick up an entanglement which exists at a particular time is proportional to ��(�) (with
appropriate normalization in denominator), and the probability of it surviving for time t is ��t

� for � > t, thus the
integration is performed over � from t to in�nity.

The resulting survival probability P (t) is plotted in Fig.11 for entanglements with di¤erent slack, and compared with
physical observables such as stress relaxation G(t) (circles), end-to-end relaxation �(t) (triangles), and chain orientation
tensor auto-correlation function Sa(t) (squares). The chain orientation tensor is de�ned as [17],[2]

O��j =
1

N

NX
i=1

�
R�i;j �R�i�1;j

� �
R�i;j �R

�
i�1;j

�
where R�i;j is �-th Cartesian component of monomer i position on chain j. The autocorrelation Sa(t) is then de�ned as

Sa(t) =
1

Nc

NcX
j=1

D
O��j (t)O��j (0)

E
where Nc is number of chains and we average over all o¤-diagonal components of the orientation tensor � 6= �:

Physical observables were shifted vertically to be 1 at around t = 1000. This �gure reveals a very interesting story.
First, we see that tight entanglements (q < 1:5) survival function decays at a very similar time to the stress and
orientation relaxation. This is in drastic contrast to entanglements with slightly higher slack, who seem to relax much
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Figure 11: Entanglement survival probability function P (t) compared with stress relaxation (circles), end-to-end relax-
ation (triangles) and orientation tensor auto-correlation (squares) functions.

faster. Note that according to Fig.6 there are very few entanglements with q < 1, so decreasing the q range further
does not result in P (t) being any closer to G(t). According to the simple double reptation idea[18], the end-to-end
relaxation should be slower than the stress relaxation, with approximate relation given by �(t) �

p
G(t). Indeed, we

see that
p
P (t) for tight entanglements agrees quite well with the end-to-end relaxation function. Finally, we notice

that the agreement of G(t) and �(t) with survival probability is not perfect: the physical observables relax about 30%
slower than predicted by P (t). This is not surprising since a simple tube picture assumes that once the entanglement
disappears, the stress associated with it is relaxed immediately. In reality, the chain still needs some time to explore all
available con�gurations. If during this exploration it is caught by another entanglement, this process is stopped again.
Thus, predicting physical observables from entanglement survival probability remains a challenge for the future.

5.2 Entanglement density along the chain

We can now compute entanglement density �e(i) along the chain, which we de�ne as the probability to �nd entanglement
at monomer i at a particular moment of time. This is plotted in Fig.12 for entanglements of di¤erent slack and lifetime.
The �rst striking feature of this �gure is the higher density of entanglements near chain ends as compared to the middle
of the chain. This however should not be so surprising if we remember that entanglements were de�ned as contacts
between di¤erent chains, i.e. self-entanglements were neglected. The chain ends indeed have more contacts with other
chains in comparison to the middle monomers because of excluded volume interactions. A middle monomer has two
pieces of its own chain attached to it, which repel other chains. In contrast, the end monomer has only one such chain,
which allows more other chains to approach it. This e¤ect is however reduced for tight entanglements q < 1:5 (black
squares), which do not show any maxima towards chain ends. This is likely to be caused by the fact that entanglements
situated near chain ends have typically more slack, which partially cancels the e¤ect explained above.

5.3 Tube segment survival function

The tube theory operates with the tube segment survival probability  (s; t), which is de�ned as the probability for
segment s to survive at least time t if it exists at time 0. Here s is a distance from the tube end along the tube contour.
Doi and Edwards[19] postulated that if one neglects contour length �uctuations (CLF) and constraint release (CR),
this function obeys a simple di¤usion equation with absorbing boundary conditions at the ends, re�ecting the fact that
the tube segment dies if reached by either of the chain end. The solution of this equation is well known

 (s; t) =
4

�

X
p;odd

1

p
sin
��ps
L

�
exp

�
�p

2t

�d

�
; �d =

L2

�2Dc
(7)
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Figure 12: Entanglement density along the chain for di¤erent entanglement slack. Open symbols show all entnglements,
whereas �lled symbols - only entanglements with life time � > 50.

where the disentanglement time �d is the characteristic time of the longest mode, L is the tube length and Dc is
center-of-mass di¤usion coe¢ cient along the tube (one-dimensional di¤usion). Including CLF has two e¤ects of  (s; t)
function. First, it will decrease signi�cantly faster close to the ends of the tube. Second, the relaxation of the middle
segments of the chain will still be described by eq.7, but with an e¤ective tube length Leff , which is reduced by CLF
as compared to the original L.
We would like to compare and contrast entanglement survival probability with the tube survival probability. An

entanglement in our de�nition is made by two chains, and therefore is characterized by two participating monomer
indices. Thus, the meaningful survival probability of entanglement is a function of time and participating monomers on
both chains P (s1; s2; t), where s1;2 = i1;2=N and i1 and i2 are monomers of participating chains. Note that similar to
the tube theory, s1 and s2 in the argument are the entanglement positions at time 0. This function is plotted in Fig.13
as determined from observing tight entanglements with q < 1:5:
The overall entanglement survival function P (t) introduced earlier is obviously just an average of the monomer-

resolved function

P (t) =

Z 1

0

ds1

Z 1

0

ds2P (s1; s2; t)

Note however that this formula is assuming a uniform entanglement density along the chain, which is slightly untrue
near the chain ends (Fig.12).
To establish the connection of P (s1; s2; t) with the tube survival probability, we assume that two chains participating

in the entanglement move independently of each other, at least move independently along the tube, and at least on
long timescales. This means that in order for entanglement to survive, neither of the chains should reach it with either
of their ends. This assumption leads to a very simple relation

P (s1; s2; t) =  (s1; t) (s2; t) (8)

This means that  (s; t) can be calculated from the measured P (s1; s2; t) as

 (s; t) =

R 1
0
P (s; s0; t)ds0qR 1

0
ds
R 1
0
ds0P (s; s0; t)

The overall tube survival probability

�(t) =

Z 1

0

 (s; t)ds
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Figure 13: Entanglement survival probability for t = 64; 128; 256; 512 in units of �av = 1200. The chain is N = 150

with bending energy kb = 3:

is then simply given by
�(t) =

p
P (t)

which is what we used in Fig.11 (dashed line).
We followed this procedure and computed  (s; t) for di¤erent times, and �tted them with Doi-Edwards expression

eq.7, as shown in Fig.14. We have used two �tting parameters and successfully �tted all times simultaneously, excluding
points with js�1=2j > 0:35, which are a¤ected by CLF and other end-e¤ects. The �tting parameters were the terminal
time �d and an e¤ective tube length Leff ; and the obtained values are given in the Figure 14. The reptation time can
be compared with the the longest relaxation time of the end-to-end vector (triangles in Fig.11) �� = 4:7 � 105. Once
again, end-to-end relaxation is slightly slower than the entanglement survival time.
We can also validate our assumption of independent reptation of two chains by predicting P (s1; s2; t) from  (s; t)

using eq.8 and comparing it with the actual measured function. We performed such veri�cation along the two lines
in (s1; s2) plane, namely s1 = s2 and s2 = 1=2, with results shown in Fig.15. We see that we can indeed recover the
function of three variables P (s1; s2; t) from the convoluted function of two variables  (s; t).

One must comment on an unexpectedly large Leff as compared to the predictions of the tube theory. Indeed, the
tube theory assumes that the chain inside the tube behaves as a free Rouse chain stretched by the ends, with the same
statistical segment as the unentangled chain in 3 dimensions. In the language of our recent paper[11], it assumes that
b1d = b3d: In this case, the tube is predicted to be shortened by CLF[20],[21] as

Leff
L

= 1� 1:69p
Z
+
2

Z
� 1:24

Z3=2
+O

�
1

Z2

�
(9)

where Z = N=Ne is called the number of entanglements. According to the tube theory, our chains must have Z = 7::15
entanglements, and therefore we expect Leff=L = 0:58::0:68, i.e. the tube should appear shorter than the expected
value without CLF by 30 or 40%. This is however not the case, and we only observe shortening by about 13%.
Several possible explanations of this e¤ect spring to mind. First of all, as demonstrated in ref.[11], the one-

dimensional statistical segment inside the tube b1d can be di¤erent from its three dimensional counterpart. Smaller
b1d will result in reduction of the CLF e¤ect. In particular this is to be expected for the slightly semi-�exible chains
analyzed here. Another reason for weakening of the e¤ect of CLF can be higher entanglement density near chain ends,
which acts against CLF. More systematic investigation is required on this subject.

5.4 Creation/destruction of entanglements

According to the tube concept, entanglements can be created or destroyed by the chain ends. For example, to destroy
an entanglement, one of the chains must reptate in such a way that entanglement will slide o¤ the chain. This suggests
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Figure 14: Tube survival probability extracted from the entanglement survival probability for 5 di¤erent times (symbols)
compared to Doi-Edwards predictions with e¤ective tube length.

Figure 15: Entanglement survival probability along s1 = s2 and s2 = 1=2 lines (symbols) compared with predictions
obtained from  (s; t) function (lines).
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Figure 16: Closest distance to the chain end at the moment of entanglement creation.

that at the moment of entanglement destruction one of participating monomers s1; s2 must be close to either 0 or 1: The
same is true for entanglement creation since we are talking about equilibrium time-reversible dynamics. Graphically,
that means that in the contact map on Fig.4 the clusters must start and end close to the edges of (s1; s2) square. We
test this assumption by computing the probability distribution of the closest monomer to the edge of unit square at the
moment of creation or destruction of entanglements, as shown in Fig.16. In computing this probability density, we of
course took into account that the area of the unit square with distance x::x + dx to the nearest edge is a function of
x. We normalize the results to be 1 far from the edge for ease of comparison.
We see that the creation probability is higher near the chain ends, but a signi�cant number of entanglements are

created far away from the chain ends. This is true even for long-lived entanglements � > 100�av, as shown by red squares.
The creation rate seem to be independent on monomer index for i > 20; thus we can say that all entanglements created
further than 20 monomers away from any chain end are created in the middle of the chain. Cumulative probability
curves (lines) show that there are about 40-50% of entanglements in our particular system which are created far from the
chain ends (the percentage of course depends on the chain length). This means that either our de�nition of entanglement
or entanglement creation is �awed, or the �aw lies in the tube theory assumption. The likely answer is that both are
maybe to blame, and the likely cause of this observation are the multi-chain e¤ects. Further investigations are needed
to understand this e¤ect.

5.5 Entanglement motion in space

Once entanglements are de�ned, one can also investigate their motion in real space. We de�ne an entanglement position
as an average of positions of two monomers participating in an entanglement, eq.5. We then select all entanglements
who live longer than 200�av, and plot their mean-square displacement in space during their lifetime (green triangles
in Fig.17). We also show here the same data for longer chains in order to illustrate the trend, where we selected
entanglements who live even longer. For comparison, we plot the mean square displacement of the middle monomers
of the same chains. We see that entanglements are not stationary in space even for very long chains of N = 512, and
the volume it explores keeps growing. Since this plot is conditional on the entanglement to exist, this motion must be
due to other entanglements appearing and disappearing in the vicinity. It can also be because of triple entanglements
brie�y analyzed in ref.[16]. Whether this process is important for stress relaxation or models of constraint release, and
whether is has to be taken into account in the slip-springs model, deserves further investigation.

6 Conclusions

The main result of this paper is very clear observation of tight long-lived contacts between polymer chains in molecular
dynamics simulations, which we propose to call entanglements. The key to this result is the analysis of contacts between
the mean paths, composed from the mean positions of every monomer over time �av. We �nd that the contacts between
two mean paths are very tight and persist for the time very close to reptation time of the whole chain. Moreover, these
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Figure 17: Mean square displacement of entanglement position in real space for chains with bending (kb = 3) and
di¤erent lengths. For comparison, the usual mean square displacement of the middle monomer is also shown.

long-lived contacts have high local linking number, and visually look very much like simple entanglements we imagine
can happen between two ropes.
Motivated by these observations, we presented the �rst study of individual entanglements. We found that entangle-

ment survival probability follows stress relaxation rather well, providing only tight entanglements are selected. We have
also constructed tube survival probability, which �ts well with reptation theory. There are however a few surprising
observations which require further study. We found that entanglement density near the chain ends is higher than in the
middle of the chain, which is a consequence of excluded volume interactions. We have also observed that contour length
�uctuations are less e¢ cient than predicted by the tube model. Although many entanglements are created by the chain
ends, there is also a signi�cant fraction of entanglements created far away from the ends of two participating chains.
And �nally, entanglements which exist for about reptation time, are moving in the volume which is increasing with
time. These observation require separate detailed study, which should determine whether they need to be incorporated
into the tube or slip-spring models.
A word of caution must be added concerning the number of entanglements. In the last 10 years there was a

signi�cant e¤ort to �nd a single number Ne, which is the main parameter of the tube theory[22],[23],[24],[25]. Many
competing de�nition were given and more and more advanced algorithms are being proposed to measure this number
in MD simulations. We note that these e¤orts are only meaningful if the tube theory is valid, and if it is indeed a one
parameter theory. If this would be true, it would be very easy to validate the methods of obtaining Ne: one would
expect that simply substituting measured Ne into the tube theory one should be able to predict all observables measured
in MD. This is however almost never attempted or at least never reported, simply because no such one-parameter tube
theory exists. In recent publications, we described several limitations of the tube theory and argued that its detailed
quantitative comparison with MD is quite meaningless at this stage[11], [2].
In such situation we do not think that determining number of entanglements or Ne is a well de�ned task worth

pursuing. Instead, one must search for a better model and then seek to determine its parameters from MD. The
slip-spring model[5] seem to be a reasonable candidate, and this paper aims to inform slip-spring model by studying
behavior and properties of individual entanglements, which can be potentially modelled by the slip-springs. This is a
subject of our next paper. Here we just note that the number of tight contacts depends strongly on the cut-o¤ distance
dcut, average entanglement slack q, and the smallest lifetime of an entanglement. Although some reasonable choices
can be made with some plausible qualitative arguments, this is not good enough for quantitative modelling.
The tube theory uses the tube length L and the chain end-to-end vector Ree to de�ne its main parameters a �


R2ee
�
=L and Z = L2=



R2ee
�
, which are often called tube diameter and the number of entanglements respectively. Both

names are confusing and often misinterpreted. The parameter a has nothing to do with the �uctuations of the chain
perpendicular to the tube (as the name suggests), but rather describes the tube properties along its contour. Thus,
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a better name would be the tube Kuhns step. Indeed, the Kuhn step is de�ned in exactly the way a is de�ned. In
turn, Z is then a number of tube Kuhn steps. The physical meaning of a and Z are the following: if we construct
a freely jointed chain with the same contour length and the same average square end-to-end distance, this equivalent
chain must have Z steps of length a. Note that this de�nition does not assume that the tube is a freely-jointed chain.
Interpreting tube theory equations in this precise manner shows that the number of entanglements, however we choose
to de�ne them in microscopic simulations, does not have to be equal to Z as de�ned by the tube theory.
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