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THE FULL INFINITE DIMENSIONAL MOMENT PROBLEM ON

SEMI-ALGEBRAIC SETS OF GENERALIZED FUNCTIONS

M. INFUSINO∗,+, T. KUNA+, A. ROTA+

Abstract. We consider a generic basic semi-algebraic subset S of the space of
generalized functions, that is a set given by (not necessarily countably many)

polynomial constraints. We derive necessary and sufficient conditions for an in-

finite sequence of generalized functions to be realizable on S, namely to be the
moment sequence of a finite measure concentrated on S. Our approach com-

bines the classical results about the moment problem on nuclear spaces with

the techniques recently developed to treat the moment problem on basic semi-
algebraic sets of Rd. In this way, we determine realizability conditions that

can be more easily verified than the well-known Haviland type conditions. Our

result completely characterizes the support of the realizing measure in terms of
its moments. As concrete examples of semi-algebraic sets of generalized func-

tions, we consider the set of all Radon measures and the set of all the measures

having bounded Radon-Nikodym density w.r.t. the Lebesgue measure.

Introduction

It is often more convenient to consider characteristics of a random distribution
instead of the random distribution itself and try to extract information about the
distribution from these characteristics. In this paper, we are more concretely in-
terested in distributions on functional objects like random fields, random points,
random sets and random measures. The characteristics under study are polynomials
of these objects like the density, the pair distance distribution, the covering func-
tion, the contact distribution function, etc.. This setting is considered in numerous
areas of applications: heterogeneous materials and mesoscopic structures [44], sto-
chastic geometry [29], liquid theory [14], spatial statistics [43], spatial ecology [30]
and neural spike trains [7, 16], just to name a few.

The subject of this paper is the full power moment problem on a pre-given subset
S of D ′(Rd), the space of all generalized functions on Rd. This framework choice is
mathematically convenient and general enough to encompass all the aforementioned
applications. More precisely, our paper addresses the question of whether certain
prescribed generalized functions are in fact the moment functions of some finite
measure concentrated on S. If such a measure does exist, it will be called realizing.
The main novelty of this paper is to investigate how one can read off support
properties of the realizing measure directly from positivity properties of its moment
functions.

To be more concrete, homogeneous polynomials are defined as powers of lin-
ear functionals on D ′(Rd) and their linear continuous extensions. We denote
by PC∞c (D ′(Rd)) the set of all polynomials on D ′(Rd) with coefficients in C∞c (Rd),
which is the set of all infinite differentiable functions with compact support in Rd.
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In this paper, we try to find a characterization via moments of measures con-
centrated on basic semi-algebraic subsets of D ′(Rd), i.e. sets that are given by
polynomial constraints and so are of the following form

S =
⋂
i∈Y

{
η ∈ D ′(Rd)

∣∣ Pi(η) ≥ 0
}
,

where Y is an arbitrary index set (not necessarily countable) and each Pi is a
polynomial in PC∞c (D ′(Rd)). Equality constraints can be handled using Pi and
−Pi simultaneously. As far as we are aware, the infinite dimensional moment
problem has only been treated in general on affine subsets [4, 2] and cones [42] of
nuclear spaces (these results are stated in Section 2 and Subsection 5.3). Special
situations have also been handled; see e.g. [46, 3, 17].

Previous results.
Characterization results via moments are built up out of five completely different
types of conditions

I. positivity conditions on the moment sequence
II. conditions on the asymptotic behaviour of the moments as a sequence of their

degree
III. properties of the putative support of the realizing measure
IV. regularity properties of the moments as generalized functions
V. growth properties of the moments as generalized functions.

Conditions of type IV and V are only relevant for the infinite dimensional moment
problem. The general aim in moment theory is to construct a solution which
is as weak as possible w.r.t. some combination of the above different types of
conditions, since it seems unfeasible to get one solution which is optimal in all
types simultaneously.

Let us give a review of some previous results on which our approach is based
and describe the different types of conditions involved in each of them.
Given a sequence m of putative moments, one can introduce on the set of all poly-
nomials the so-called Riesz functional Lm, which associates to each polynomial its
putative expectation. If a polynomial P is non-negative on the prescribed sup-
port S, then a necessary condition for the realizability of m on S is that Lm(P ) is
non-negative as well. The question whether this condition alone is also sufficient
for the existence of a realizing measure concentrated on S ⊆ Rd is answered by the
Riesz-Haviland theorem [36, 15]; for infinite dimensional versions of this theorem
see e.g [24, 25, 28] for point processes and [19, 20] for the truncated case. The
disadvantage of this type of positivity condition is that it may be rather difficult
and also computationally expensive to identify all non-negative polynomials on S,
especially if the latter is geometrically non-trivial.

A classical result shows that all non-negative polynomials on R can be written
as the sum of squares of polynomials (see [32]). Hence, it is already sufficient for
realizability on S = R to require that Lm is non-negative on squares of polynomials,
that is, m is positive semidefinite. For the moment problem on S = Rd with
d ≥ 2, the positive semidefiniteness of m is no longer sufficient, as already pointed
out by D. Hilbert in the description of his 17th problem. However, the positive
semidefiniteness of m becomes sufficient if one additionally assumes a condition of
type II, that is, a bound on a certain norm of the n−th putative moment m(n). For
example, one could require that |m(n)| does not grow faster than BCnn! or than
BCn (n ln(n))

n
for some constants B,C > 0. The weakest known growth condition

of this kind is that the sequence m is quasi-analytic (see Appendix 6). We will call
such a sequence determining, because this property guarantees the uniqueness of
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the realizing measure. The determinacy condition in the infinite dimensional case
additionally involves the types IV and V.

Beyond the results for S = Rd, for a long time the moment problem was only
studied for specific proper subsets S of Rd rather than general classes of sets. How-
ever, enormous progress has recently been made for the moment problem on general
basic semi-algebraic sets of Rd. Let us mention just a few key works which were in-
spiring for the results presented here; for a more complete overview see [21, 23, 27].
The common feature of these works is that the support properties of the realizing
measure are encoded in a positivity condition stronger than the positive semidef-
initeness; namely, the condition that Lm is non-negative on the quadratic-module
generated by the polynomials (Pi)i∈Y defining the basic semi-algebraic set S, that
is the set of all polynomials given by finite sums of the form

∑
iQiPi where Qi

is a sum of squares of polynomials. Semidefinite programming allows an efficient
numeric treatment of such positivity conditions; see e.g. [21]. In 1982, C. Berg and
P. H. Maserick showed in [6] that for a compact basic semi-algebraic S ⊂ R the
positivity condition involving the quadratic module is also sufficient. Concerning
the higher dimensional case, a few years later K. Schmüdgen proved in his seminal
work [38] that for a compact basic semi-algebraic S ⊂ Rd a slightly stronger positiv-
ity condition, that is, Lm is non-negative on the pre-ordering generated by (Pi)i∈Y ,
is sufficient. This result was soon refined by M. Putinar in [34] for Archimedean
quadratic modules. Since then, the problem to extend their results to wider classes
of S has been intensively studied, (see e.g. [33, 18, 9]). By additionally assum-
ing a growth condition of the type discussed above, J. B. Lasserre has recently
showed in [22] that the non-negativity of Lm on the quadratic module is sufficient
for realizability on a general basic semi-algebraic set S ⊆ Rd.

Using the central idea of these works, we prove in this paper that also for a
moment problem on an infinite-dimensional basic semi-algebraic set S, the non-
negativity of Lm on the associated quadratic module is sufficient for realizability
under an appropriate growth condition on the sequence m.

Outline of the contents.
Let us outline the contents and the contributions of this paper.

In Section 1, we state the moment problem on a subset S of the dual Ω′ of a
general nuclear space Ω that is the projective limit of a family of separable Hilbert
spaces. In an infinite dimensional context, the moment problem is also called
realizability problem.

In Section 2, we recall the general result obtained by Y. M. Berezansky, Y. G.
Kondratiev and S. N. Šifrin for the moment problem on S = Ω′. The assumptions
in their result contain a growth condition on the sequence of putative moment
functions that expresses the conflicting nature of the Condition type II, IV and V
(see Remarks 2.4 and 4.6). We actually introduce their result under a slightly more
general condition of such a kind, which is given in Definition 2.2. This modification
is essential to get the main results of this paper.

In Section 3, some results about generalized functions, which are particularly
relevant for this paper, are recalled. Beside the standard inductive topology on the
space of test functions C∞c (Rd), we also represent this space as the uncountable
intersection of weighted Sobolev spaces Hk and we equip it with the associated
strictly weaker projective topology. The corresponding space of generalized func-
tions D ′proj(Rd) is strictly smaller than D ′ind(Rd) as it contains only generalized
functions of finite order. The projective description is needed to apply the results
of Section 2.
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In Section 4, we formulate the main result of the paper, i.e. Theorem 4.4. The
only regularity assumption in the sense of Condition IV is that the putative mo-
ments are generalized functions. Note that this requirement is equivalent to as-
suming that for each n ∈ N, the n−th moment function lies in the n− fold tensor
product of the dual of one Hk, where the choice of the space may be different for
each moment function. Furthermore, our main result holds for the whole class of
basic semi-algebraic sets of D ′proj(Rd), including the ones defined by an uncount-
able family of polynomials. To consider these kinds of sets, the inductive topology
on C∞c (Rd) plays an essential role, since S is closed w.r.t. the strong topology on
D ′ind(Rd) and the latter space is Radon.

In Section 5, we use our main theorem to derive realizability results in more
concrete cases. Fundamentally, given a specific desired support S, one has to find
a representation of S as a basic semi-algebraic set of the space of generalized func-
tions. Note that the result may depend on the chosen representation of S. In Sub-
section 5.1, we describe how the new ideas employed in the proof of our main result
allow us to extend the previous finite dimensional results to basic semi-algebraic sets
defined by an uncountable family of polynomials and to the most general bound of
type II. In Subsection 5.2, a more explicit description of the determinacy condition
in terms of the scale of Sobolev spaces is introduced in the case when all moment
functions are Radon measures. To avoid an extra unnecessary factorial factor in
the determinacy bound obtained via Sobolev embedding (see Proposition 5.5 and
Remark 5.6), it is indispensable to use our more general definition of determining
sequence which does not involve the norm of the moment functions as elements of
the tensor product of the duals of the weighted Sobolev spaces. In Subsection 5.3
we investigate conditions under which such moment functions are realized by a
random measure, that is by a finite measure concentrated on Radon measures. A
spectral theoretical result of S. N. Šifrin [42] allows us also to essentially weaken
the determinacy condition. In Subsection 5.4 we show how to characterize, via
moments, measures that are supported on the set of Radon measures with Radon-
Nikodym density w.r.t. the Lebesgue measure fulfilling an a priori L∞ bound.
These examples also demonstrate that, in contrast to the finite dimensional case, a
semi-algebraic set defined by uncountably many polynomials leads to very natural
and treatable conditions on the moments in the infinite dimensional context. These
positivity conditions can be seen as natural extensions of the classical conditions
in the finite dimensional case, see Remarks 5.10 and 5.13. In a forthcoming paper,
we will treat further applications that require new additional ideas.

In Appendix 6.1 and Appendix 6.2, we present some results from the theory of
quasi-analyticity used in this paper and some considerations complementary to Sub-
section 3.1, respectively. Finally, in Appendix 6.3 we give an explicit construction
of a total subset of test functions fulfilling the requirement of the aforementioned
determinacy condition. This construction allows us to obtain improved determi-
nacy conditions in the particular cases considered in Section 5.
We are convinced that the results contained in this paper are just the template for
a multitude of forthcoming applications guided by their practical usefulness.

1. Preliminaries

In the following we will consider all the spaces as being separable and real.
Let us consider a family (Hk)k∈K of Hilbert spaces (K is an index set contain-

ing 0) which is directed by topological embedding, i.e.

∀ k1, k2 ∈ K ∃ k3 : Hk3 ⊆ Hk1 , Hk3 ⊆ Hk2 .
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We assume that each Hk is embedded topologically into H0. Let Ω be the projective
limit of the family (Hk)k∈K endowed with the associated projective limit topology
and let us assume that Ω is nuclear, i.e. for each k1 ∈ K there exists k2 ∈ K such
that the embedding Hk2 ⊆ Hk1 is quasi-nuclear.

Let us denote by Ω′ the topological dual space of Ω. We control the classical
rigging by identifying H0 and its dual H ′0. With this identification one can define
the duality pairing between elements in Hk and in its dual H ′k = H−k using the
inner product in H0. For this reason, in the following we will denote by 〈f, η〉 the
duality pairing between η ∈ Ω′ and f ∈ Ω (see [1, 2] for more details).

Consider the n−th (n ∈ N0) tensor power Ω⊗n of the space Ω which is defined
as the projective limit of H⊗nk ; for n = 0, H⊗nk = R. Then its dual space is

(1)
(
Ω⊗n

)′
=
⋃
k∈K

(
H⊗nk

)′
=
⋃
k∈K

(H ′k)⊗n =
⋃
k∈K

H⊗n−k ,

which we can equip with the weak topology.
A generalized process is a finite measure µ defined on the Borel σ−algebra on Ω′.

Moreover, we say that a generalized process µ is concentrated on a measurable sub-
set S ⊆ Ω′ if µ (Ω′ \ S) = 0.

Let us introduce the main objects involved in the realizability problem.

Definition 1.1 (Finite n−th local moment).
Given n ∈ N, a generalized process µ on Ω′ has finite n−th local moment (or local
moment of order n) if for every f ∈ Ω we have∫

Ω′
|〈f, η〉|nµ(dη) <∞.

The latter condition is equivalent to the fact that

(2) (f1, . . . , fn) 7→
∫

Ω′
〈f1 ⊗ · · · ⊗ fn, η⊗n〉µ(dη).

is a well-defined multilinear functional on Ω×n. In fact, since µ has finite n−th
local moment, for any f1, . . . , fn ∈ Ω we get∫

Ω′
〈f1⊗· · ·⊗fn, η⊗n〉µ(dη) ≤

∫
Ω′

n∏
i=1

|〈fi, η〉|µ(dη) ≤
n∏
i=1

(∫
Ω′
|〈fi, η〉|nµ(dη)

) 1
n

<∞.

The functional in (2) is the n−th moment function of µ. In the following, we require
slightly more regularity on the moment functions, but this assumption is easy to
check in most of applications (e.g. it holds automatically for Ω = D(Rd)).

Definition 1.2 (n−th generalized moment function).
Given n ∈ N, a generalized process µ on Ω′ has n−th generalized moment function
in the sense of Ω′ if µ has finite n−th local moment and if the functional (2) is
symmetric in the entries f1, . . . , fn and continuous in Ω×n.
In fact, by the Kernel Theorem, for such a generalized process there exists a sym-

metric functional m
(n)
µ ∈ (Ω⊗n)′, which will be called the n−th generalized moment

function in the sense of Ω′, such that for any f1, . . . , fn ∈ Ω the following holds

〈f1 ⊗ · · · ⊗ fn,m(n)
µ 〉 =

∫
Ω′
〈f1 ⊗ · · · ⊗ fn, η⊗n〉µ(dη).

By convention, m
(0)
µ := µ(Ω′).
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Proposition 1.3.
If µ is a generalized process on Ω′ with generalized moment functions (in the sense
of Ω′) of any order, then for any n ∈ N and for any f (n) ∈ Ω⊗n we have∫

Ω′
〈f (n), η⊗n〉µ(dη) <∞ and 〈f (n),m(n)

µ 〉 =

∫
Ω′
〈f (n), η⊗n〉µ(dη).

For a generalized processes µ the moment functions m
(n)
µ are given by an explicit

formula. The moment problem, which in an infinite dimensional context is often
called the realizability problem, addresses exactly the inverse question.

Problem 1.4 (Realizability problem on S ⊆ Ω′).

Let N ∈ N0 ∪ {+∞} and let m = (m(n))Nn=0 be such that each m(n) ∈ (Ω⊗n)
′

is a
symmetric functional. Find a generalized process µ with generalized moments (in
the sense of Ω′) of any order and concentrated on a measurable subset S of Ω′ s.t.

m(n) = m(n)
µ for n = 0, . . . , N,

i.e. m(n) is the n−th generalized moment function of µ for n = 0, . . . , N .

If such a measure µ does exist we say that (m(n))Nn=0 is realized by µ on S. Note
that the definition requires that one finds a measure concentrated on S and not
only on Ω′. In other words one can see the solution to the realizability problem as
a way to read off from the moments support properties for any realizing measure.

In the case N = ∞ one speaks of the “full realizability problem”, otherwise of
the “truncated realizability problem”.

2. Realizability problem on nuclear spaces

To simplify the notation in the following we denote byM∗(S) the collection of all
generalized processes concentrated on a measurable subset S of Ω′ with generalized
moment functions (in the sense of Ω′) of any order and by F(Ω′) the collection

of all infinite sequences (m(n))n∈N0
such that each m(n) ∈ (Ω⊗n)

′
is a symmetric

functional, namely the tensor product (Ω′)
⊗n

is considered to be symmetric.
An obvious positivity property which is necessary for an element in F(Ω′) to be

the moment sequence of some measure on Ω′ is the following.

Definition 2.1 (Positive semidefinite sequence).
A sequence m ∈ F(Ω′) is said to be positive semidefinite if for any f (j) ∈ Ω⊗j we
have

∞∑
j,l=0

〈f (j) ⊗ f (l),m(j+l)〉 ≥ 0.

This is a straightforward generalization of the classical notion of positive semidef-
initeness of the Hankel matrices considered in the finite dimensional moment prob-
lem. Note that, as we work with real spaces, we choose the involution on Ω consid-
ered in [2] to be the identity.

Let us introduce the concept of determining sequence, which essentially is a
growth condition on the sequence of the m(n)’s. We will see that this property
gives the uniqueness of the realizing measure.

Definition 2.2 (Determining sequence).
Let m ∈ F(Ω′) and E be a total subset of Ω, i.e. the linear span of E is dense in Ω.
Let us define the sequence (mn)n∈N0

as follows

(3) m0 :=
√
|m(0)| and mn :=

√
sup

f1,...,f2n∈E
|〈f1 ⊗ · · · ⊗ f2n,m(2n)〉|, ∀n ≥ 1.
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The sequence m is said to be determining if and only if there exists a total subset
E of Ω such that for any n ∈ N0, mn < ∞ and the class C{mn} is quasi-analytic
(see Definition 6.2 and Theorem 6.4).

Note that from (1) it follows that for any sequence m ∈ F(Ω′) there exists a
sequence (k(n))n∈N0 ⊂ K such that for any n ∈ N0 we have m(n) ∈ H⊗n−k(n) . If we

denote by d(k(n), E) := supf∈E ‖f‖Hk(n)
, then for the mn’s defined in (3) we have

(4) mn ≤ (d(k(2n), E))n‖m(2n)‖
1
2

H⊗2n

−k(2n)

.

Hence, we can see that a preferable choice for E is the one for which
(
d(k(2n), E)

)
n∈N

grows as little as possible, (see Lemma 4.5).

Let us state now the fundamental result for the full realizability problem in the
case S = Ω′ (see [2, Vol. II, Theorem 2.1, p.54] and [4]).

Theorem 2.3.
If m ∈ F(Ω′) is a positive semidefinite sequence which is also determining, then
there exists a unique non-negative generalized process µ ∈ M∗(Ω′) such that for
any f (n) ∈ Ω⊗n 〈

f (n),m(n)
〉

=

∫
Ω′

〈
f (n), η⊗n

〉
µ(dη).

Remark 2.4.
The original proof of Theorem 2.3 in [2] uses a slightly less general definition of
determining sequence. Indeed, the authors require that the class

C

{
d(k(2n), E)n

∥∥∥m(2n)
∥∥∥1/2

H⊗2n

−k(2n)

}
is quasi-analytic, which in turn implies that the class C{mn} is also quasi-analytic.
Nevertheless, their proof also applies just using the bound given by Definition 2.2.
The latter has actually the advantage to guarantee, whenever m is realizable on Ω,
the log-convexity of the sequence (mn)n∈N0 . This property is essential in the proof
of the main result of this paper.
Let us also note that the proof of Theorem 2.3 actually shows that the measure µ
is concentrated on one of the Hilbert spaces H−k′ for some index k′ ∈ K depending
on the sequence m. Indeed, the index k′ is the one such that the embedding of Hk′

into Hk(2) is quasi-nuclear (see [2, Remark 1, pg. 72]). However, note that the
assumptions of Theorem 2.3 do not require that all m(n) ∈ H⊗n−k′ .

In the following we are going to apply Theorem 2.3 for Ω = Dproj(Rd), the pro-

jective limit of a family of weighted Sobolev spaces Hk := W k1
2 (Rd, k2(r)dr) which

is nuclear (see Section 3.1). Since Ω⊗n = Dproj(Rdn), in this case the sequence m

consists of symmetric generalized functions, i.e.m(n) ∈ D ′proj(Rdn). Theorem 2.3

gives a solution for the full realizability problem on S = D ′proj(Rd) whenever the
sequence m is positive semidefinite and determining.

3. The space of generalized functions

Let us first recall some standard general notations.
For Y ⊆ Rd let us denote by B(Y ) the Borel σ-algebra on Y , by Cc(Y ) the space of

all real-valued continuous functions on Rd with compact support contained in Y and
by C∞c (Y ) its subspace of all infinitely differentiable functions. Moreover, C+

c (Y )
and C+,∞

c (Y ) will denote the cones consisting of all non-negative functions in Cc(Y )
and C∞c (Y ), respectively. For any r = (r1, . . . , rd) ∈ Rd and α = (α1, . . . , αd) ∈ Nd0
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one defines rα := rα1
1 · · · r

αd
d . Moreover, for any β ∈ Nd0 the symbol Dβ denotes the

weak partial derivative ∂|β|

∂r
β1
1 ···∂r

βd
d

where |β| :=
d∑
i=1

βi.

We will denote by Ωτ the space Ω endowed with the topology τ and by Ω′τ its
topological dual space.

In the following we introduce two different topologies on C∞c (Rd), both making
this space into a complete locally convex nuclear vector space.

3.1. Topological structures on C∞c (Rd).
The classical topology considered on C∞c (Rd) is the inductive topology τind, given
by the standard construction of this space as the inductive limit of spaces of smooth
functions with supports lying in an increasing sequence of compact subsets of Rd
(see Definition 6.9). We denote by Dind(Rd) the space C∞c (Rd) equipped with τind.
On the other hand, the space C∞c (Rd) can be also endowed with a projective topol-
ogy τproj in the following way (see Definition 6.10 for an equivalent definition and
see [1, Chapter I, Section 3.10] for more details).

Definition 3.1.
Let I be the set of all k = (k1, k2(r)) such that k1 ∈ N0, k2 ∈ C∞(Rd) with k2(r) ≥ 1

for all r ∈ Rd. For each k = (k1, k2(r)) ∈ I, consider the space W k1
2 (Rd, k2(r)dr)

defined as the completion of C∞c (Rd) w.r.t. the following weighted norm

(5) ‖ϕ‖
W
k1
2 (Rd,k2(r)dr)

:=

 ∑
|β|≤k1

∫
Rd

∣∣(Dβϕ)(r)
∣∣2 k2(r)dr

 1
2

.

Then we define

Dproj(Rd) := proj lim
(k1,k2(r))∈I

W k1
2 (Rd, k2(r)dr),

and we denote by τproj the projective limit topology induced on C∞c (Rd) by this
construction.

The previous definition of Dproj(Rd) is due to Y. M. Berezansky who also proved
that such a projective limit is nuclear (see [1, Thm 3.9, p.78] for the proof of
this result). The latter property, as well as the construction of Dproj(Rd) as the
projective limit of Hilbert spaces, is needed to apply the results of Section 2.

Note that as sets, Dind(Rd) and Dproj(Rd) coincide but the topologies τind and
τproj are not equivalent. In fact, it easily follows from the definitions of the two
topologies that τproj ⊂ τind. Hence, we have that D ′proj(Rd) ⊆ D ′ind(Rd) but this
inclusion is actually strict.

3.2. Measurability of D ′proj(Rd) in D ′ind(Rd).
The weak topology τprojw [τ indw , resp.] on D ′proj(Rd) [D ′ind(Rd), resp.] is the smallest

topology such that the mappings η 7→ 〈f, η〉 are continuous for all f ∈ C∞c (Rd).
It is easy to see that τprojw coincides with the relative topology given by τ indw

on D ′proj(Rd) ⊂ D ′ind(Rd). As a consequence, the Borel σ−algebras generated
by the two topologies also coincide and we can easily conclude that

(6) σ(τprojw ) = σ(τ indw ) ∩D ′proj(Rd).

Let us recall some properties of D ′ind(Rd).
Consider the strong topology τ inds on D ′ind(Rd). It is well known that τ inds coincides
with the topology of compact convergence τ indc and so, by Corollary 1 in [40, Chap-
ter II, p.115],

(
D ′ind(Rd), τ indc

)
is Lusin. Moreover, since τ indw ⊂ τ inds , the space(

D ′ind(Rd), τ indw

)
is also Lusin. Hence, by Theorem 9 in [40, Chapter II, p.122]),

the following proposition holds.
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Proposition 3.2.(
D ′ind(Rd), τ indw

)
is a Radon space, i.e. every finite Borel measure on D ′ind(Rd) is

inner regular.

We were unable to find in the literature an analogous result establishing whether(
D ′proj(Rd), τprojw

)
is a Radon space or not. In fact, the techniques used in [40] do

not apply to D ′proj(Rd).
On the level of Borel σ−algebras on D ′ind(Rd), we have that any Borel σ−algebra

generated by a topology weaker than τ inds coincides with the one generated by τ inds ,
since

(
D ′ind(Rd), τ inds

)
is a Lusin space and so Suslin (see [40, Corollary 2, p.101]).

4. Realizability problem on basic semi-algebraic subsets of D ′proj(Rd)

Let PC∞c
(
D ′ind(Rd)

)
be the set of all polynomials on D ′ind(Rd) of the form

(7) P (η) :=

N∑
j=0

〈p(j), η⊗j〉,

where p(0) ∈ R and p(j) ∈ C∞c (Rdj), j = 1, . . . , N with N ∈ N. Note that as
D ′proj(Rd) ⊂ D ′ind(Rd), these polynomials are also polynomials on D ′proj(Rd).
We denote by ΣC∞c (D ′proj(Rd)) the subset of all polynomials in PC∞c

(
D ′proj(Rd)

)
which can be written as sum of squares of polynomials.

A subset S of D ′proj(Rd) is said to be basic semi-algebraic if it can be written as

(8) S =
⋂
i∈Y

{
η ∈ D ′proj(Rd)| Pi(η) ≥ 0

}
,

where Y is an index set and Pi ∈ PC∞c
(
D ′proj(Rd)

)
. Note that the index set Y is

not necessarily countable. Moreover, let PS be the set of all the polynomials Pi’s
defining S. W.l.o.g. we assume that P0 is the constant polynomial P0(η) = 1 for all
η ∈ D ′proj(Rd) and that 0 ∈ Y . We define the quadratic module Q(PS) associated

to the representation (8) of S as the convex cone in PC∞c (D ′proj(Rd)) given by

Q(PS) :=
⋃
Y0⊂Y
|Y0|<∞

{∑
i∈Y0

QiPi : Qi ∈ ΣC∞c (D ′proj(Rd))

}
.

Proposition 4.1.
Every polynomial in PC∞c

(
D ′ind(Rd)

)
is continuous w.r.t. τ inds . Hence, the basic

semi-algebraic set S defined in (8) is closed in (D ′ind(Rd), τ inds ).

Proof.
To show the continuity of a generic polynomial of the form (7), it suffices to prove
that for all j ∈ N the functions

D ′ind(Rd) → R
η 7→ 〈p(j), η⊗j〉

are continuous w.r.t. τ inds .
For any fixed j ∈ N, we first consider the mapping η 7→ η⊗j which is continu-

ous as a function from the space (D ′ind(Rd), τ inds ) to the algebraic tensor product(
D ′ind(Rd)

)⊗j
endowed with the π−topology (see [45, Definition 43.2]). Moreover,

the closure of the latter space is isomorphic to (D ′ind(Rjd), τ inds ) (see [45, Theo-

rem 51.7]). Finally, the function ζ 7→ 〈p(j), ζ〉 on D ′ind(Rjd) is continuous w.r.t. the
weak topology on this space and hence, it is also continuous w.r.t. the strong one.

�
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Corollary 4.2.
The semi-algebraic set S defined as in (8) is measurable w.r.t. the Borel σ−algebra
σ(τ indw ) generated by the weak topology on D ′ind(Rd).

Proof.
The previous proposition implies that S ∈ σ(τ inds ). As (D ′ind(Rd), τ inds ) is a Lusin
space and so Suslin, σ(τ indw ) and σ(τ inds ) coincide (see [40, Corollary 2, p.101]).
Hence, S ∈ σ(τ indw ).

�

In the following, we are going to investigate the full realizability problem (see
Problem 1.4) on S of the form (8). Let us introduce the version of the Riesz linear
functional for the moment problem on D ′proj(Rd).

Definition 4.3.
Given m ∈ F

(
D ′proj(Rd)

)
, we define its associated Riesz functional Lm as

Lm : PC∞c
(
D ′proj(Rd)

)
→ R

P (η) =
N∑
n=0
〈p(n), η⊗n〉 7→ Lm(P ) :=

N∑
n=0

〈p(n),m(n)〉.

Note that in the case when the sequence m is realized by a non-negative measure
µ ∈ M∗(S) on a subset S ⊆ D ′proj(Rd), then a direct calculation shows that for

any polynomial P ∈PC∞c (D ′proj(Rd))

(9) Lm(P ) =

∫
S
P (η)µ(dη).

The Riesz functional allows us to state our main result in a concise form.

Theorem 4.4.
Let m ∈ F

(
D ′proj(Rd)

)
be determining and S be a basic semi-algebraic set of the

form (8). Then m is realized by a unique non-negative measure µ ∈ M∗(S) if and
only if the following inequalities hold

(10) Lm(h2) ≥ 0, Lm(Pih
2) ≥ 0 , ∀h ∈PC∞c

(
D ′proj(Rd)

)
, ∀i ∈ Y.

Equivalently, if and only if the functional Lm is non-negative on the quadratic
module Q(PS).

Despite of the apparently abstract character of the determinacy condition given
in Definition 2.2, the latter becomes actually concrete whenever one can explicitly
construct the set E. This is possible for the nuclear space Dproj(Rd). In fact, using
a technique similar to the one of [13, Chapter 4, Section 9] we get the following
result (see Appendix 6.3 for a detailed proof).

Lemma 4.5.
Let cn be an increasing sequence of positive numbers which is not quasi-analytic

and let m ∈ F(Ω′). For any n ∈ N0, let k(n) := (k
(n)
1 , k

(n)
2 ) ∈ I be such that

m(n) ∈ H⊗n−k(n) where Hk(n) := W
k
(n)
1

2 (Rd, k(n)
2 (r)dr) and I is as in Definition 3.1.

Then the set

E :=

f ∈ Dproj(Rd)

∣∣∣∣∣∣∣∀ n ∈ N0, ‖f‖H
k(n)
≤ cd

k
(n)
1

sup
z∈Rd
‖z‖≤n

sup
x∈[−1,1]d

√
k

(n)
2 (z + x)


is total in Dproj(Rd).
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For such a set E, using (4), we get that

mn ≤ cdnk(n)
1

 sup
z∈Rd
‖z‖≤n

sup
x∈[−1,1]d

√
k

(n)
2 (z + x)


n

‖m(2n)‖
1
2

H⊗2n

−k(2n)

.

Remark 4.6.
The more regularity is known on the sequence m the weaker is the restriction on
the growth of the m(2n) required in Theorem 4.4. Let us discuss two extremal cases.

• If each m(n) is in H⊗n−k where k = (k1, k2(r)) ∈ I with both k1 and k2 inde-

pendent of n, then both c
k
(n)
1

and sup
z∈Rd
‖z‖≤n

sup
x∈[−1,1]d

√
k

(n)
2 (z + x) in Lemma 4.5

are constant w.r.t. n and so a sufficient condition for the determinacy of

m is the quasi-analyticity of the class C{
∥∥m(2n)

∥∥1/2

H⊗2n
−k
}.

• If each m(n) is in H⊗n−k(n) where k(n) = (k1, k
(n)
2 (r)) ∈ I with k1 independent

of n, then c
k
(n)
1

in Lemma 4.5 is constant w.r.t. n and so a sufficient

condition for the determinacy of m is the quasi-analyticity of the class

C


 sup

z∈Rd
‖z‖≤n

sup
x∈[−1,1]d

√
k

(n)
2 (z + x)


n ∥∥∥m(2n)

∥∥∥1/2

H⊗2n

−k(n)

 .

Hence, the condition on m of being determining also contains the growth of

the sequence of functions (k
(n)
2 )n∈N.

Before proving Theorem 4.4 we need to show some preliminary results. Remind
that throughout the whole section we consider a sequence m ∈ F

(
D ′proj(Rd)

)
.

Definition 4.7.
Given a polynomial P ∈PC∞c (D ′proj(Rd)) of the form P (η) :=

∑N
j=0〈p(j), η⊗j〉, we

define the sequence Pm =
(
(Pm)(n)

)
n∈N0

in F
(
D ′proj(Rd)

)
as follows

∀f (n) ∈ C∞c (Rnd), 〈f (n), (Pm)(n)〉 :=

N∑
j=0

〈p(j) ⊗ f (n),m(n+j)〉.

In terms of the Riesz functional introduced in Definition 4.3, the previous defi-
nition takes the following form

(11) ∀P,Q ∈PC∞c (D ′proj(Rd)), L
Pm(Q) := Lm(PQ).

Remark 4.8.
The conditions (10) can be interpreted as that the sequence (m(n))n∈N0

and all
its shifted versions ((Pim)(n))n∈N0

are positive semidefinite in the sense of Defini-
tion 2.1.

Lemma 4.9.
Let P ∈PC∞c (D ′proj(Rd)). If m is realized on D ′proj(Rd) by a non-negative measure

µ ∈M∗(D ′proj(Rd)), then the sequence Pm is realized by the signed measure Pµ on

D ′proj(Rd).

Proof.
Let n ∈ N and Q(η) := 〈f (n), η⊗n〉 with f (n) ∈ C∞c (Rnd). Then, using (9) and (11),
one gets that∫

D′proj(Rd)

〈f (n), η⊗n〉P (η)µ(dη) = Lm(QP ) = L
Pm(Q) = 〈f (n), (Pm)(n)〉.
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�

Proposition 4.10.
If m is realized by a measure µ ∈ M∗(D ′proj(Rd)) and m is determining, then the
sequence Pm is also determining.

Proof.
Let us first recall that Dproj(Rd) = proj lim

k∈I
Hk, where I is as in Definition 3.1 and

Hk := W k1
2 (Rd, k2(r)dr) for any k = (k1, k2(r)) ∈ I (see Section 3.1).

Since m is determining in the sense of Definition 2.2, there exists a subset E
total in Dproj(Rd) such that for any n ∈ N0, mn < ∞ and the class C{mn} is
quasi-analytic, where

mn :=
√

sup
f1,...,f2n∈E

∣∣〈f1 ⊗ · · · ⊗ f2n,m(2n)〉
∣∣.

It is easy to see that, since m is realized by a measure µ ∈ M∗(D ′proj(Rd)), the
sequence (mn)n∈N0

is also log-convex.
We will show that there exists a finite positive constant cP such that

(12) m̃n :=
√

sup
f1,...,f2n∈E

∣∣〈f1 ⊗ · · · ⊗ f2n, (Pm)(2n)〉
∣∣ ≤ √cPm2n.

The latter bound is sufficient to prove that the sequence Pm is determining. In
fact, the log-convexity of (mn)n∈N0 and the quasi-analiticity of C{mn} imply that
the class C{√cPm2n} is also quasi-analytic (see Lemma 6.8 and Proposition 6.5).
Hence, (12) gives that C{m̃n} is also quasi-analytic.

It remains to show the bound in (12).
Let us fix n ∈ N. Using Definition 4.7 and the assumption that m is realized by µ
on D ′proj(Rd), we get that for any f1, . . . , f2n ∈ C∞c (Rd)∣∣∣〈f1 ⊗ · · · ⊗ f2n, (Pm)(2n)〉

∣∣∣ ≤ N∑
j=0

∣∣∣∣∣
∫

D′proj(Rd)

〈p(j), η⊗j〉〈f1 ⊗ · · · ⊗ f2n, η
⊗(2n)〉µ(dη)

∣∣∣∣∣
≤ cP

(∫
D′proj(Rd)

∣∣〈f1 ⊗ · · · ⊗ f2n, η
⊗2n〉

∣∣2 µ(dη)

) 1
2

= cP

∣∣∣〈f⊗2
1 ⊗ · · · ⊗ f⊗2

2n ,m
(4n)〉

∣∣∣ 12 ,
where

cP :=

N∑
j=0

(∫
D′proj(Rd)

∣∣∣〈p(j), η⊗j〉
∣∣∣2 µ(dη)

) 1
2

.

Note that cP is a finite positive constant since the realizing measure µ has finite
local moments of any order. Hence, using the definition of mn and m̃n, we get (12).

�
Proof. (Theorem 4.4).
Necessity
Assume that m is realized on S by a non-negative measure µ ∈M∗(S). Using (9),
we get that for any h ∈PC∞c

(
D ′proj(Rd)

)
and for any i ∈ Y the following hold

Lm(h2) =

∫
S
h2(η)µ(dη) and Lm(Pih

2) =

∫
S
Pi(η)h2(η)µ(dη).
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Since integrals of non-negative functions w.r.t. a non-negative measure are non-
negative, the inequalities in (10) hold.

Sufficiency
As already observed in Remark 4.8, the assumptions in (10) mean that the se-
quence m and Pm are positive semidefinite. Since m is assumed to be deter-
mining, Theorem 2.3 guarantees the existence of a unique non-negative measure
µ ∈ M∗(D ′proj(Rd)) realizing m. On the one hand, according to Lemma 4.9 the

sequence Pim is realized by the signed measure Piµ, i.e. for any f (n) ∈ C∞c (Rnd)

(13) 〈f (n), (Pim)(n)〉 =

∫
D′proj(Rd)

〈f (n), η⊗n〉Pi(η)µ(dη).

On the other hand, by Proposition 4.10, the sequence Pim is also determining.
Hence, applying again Theorem 2.3, the sequence Pim is realized by a unique non-
negative measure ν ∈M∗(D ′proj(Rd)), namely for any f (n) ∈ C∞c (Rnd)

(14) 〈f (n), (Pim)(n)〉 =

∫
D′proj(Rd)

〈f (n), η⊗n〉ν(dη).

Let Ai :=
{
η ∈ D ′proj(Rd) : Pi(η) ≥ 0

}
and let us define µ+

i (B) := µ(B ∩ Ai) and

µ−i (B) := µ(B ∩ (D ′proj(Rd) \ Ai)), for all B ∈ B(D ′proj(Rd)). Moreover, let us

consider the non-negative measures σ+
i and σ−i given by σ+

i (B) :=
∫
B
Pi(η)µ+

i (dη)

and σ−i (B) := −
∫
B
Pi(η)µ−i (dη), for all B ∈ B(D ′proj(Rd)). Hence, we have that

µ = µ+
i + µ−i and Piµ = σ+

i − σ
−
i . According to this notation, (13) and (14) can

be rewritten as
(15)∫
D′proj(Rd)

〈f (n), η⊗n〉σ+
i (dη) =

∫
D′proj(Rd)

〈f (n), η⊗n〉σ−i (dη) +

∫
D′proj(Rd)

〈f (n), η⊗n〉ν(dη).

Since m is determining and since µ+ ≤ µ, the sequence m+ consisting of all moment
functions of µ+ is also determining. By Proposition 4.10, the sequence Pim

+ is
determining, too.
As the two non-negative measures σ+

i and σ−i + ν both realize the determining
sequence Pim

+, they coincide because Theorem 2.3 also guarantees the uniqueness
of the realizing measure. This implies that the signed measure Piµ is actually a
non-negative measure on D ′proj(Rd) and therefore, we have that

(16) ∀ i ∈ Y, µ
(
D ′proj(Rd) \Ai

)
= 0.

The set S =
⋂
i∈Y Ai ∈ σ(τ indw ) by Corollary 4.2 and hence, S ∈ σ(τprojw ) by (6). It

remains to show that µ is concentrated on the set S, i.e. µ
(
D ′proj(Rd) \ S

)
= 0. If Y

is countable, then the conclusion immediately follows from (16) using the countable
subadditivity of µ. In the case when Y is uncountable, the latter argument does
not work anymore but we can still get that the measure is concentrated on S
proceeding as follows. First, let us extend µ to a measure µ′ on D ′ind(Rd) by
defining µ′(M) := µ(M ∩ D ′proj(Rd)), for all M ∈ σ(τ indw ). As (D ′ind(Rd), τ indw ) is
a Radon space (see Proposition 3.2), the finite measure µ′ is inner regular. This
means that for any M ∈ σ(τ indw ) and for any ε > 0 there exists a compact set
Kε ∈ σ(τ indw ) such that Kε ⊆M, with

(17) µ′(M) < µ′(Kε) + ε.

Let us apply this property to M = D ′ind(Rd)\S =
⋃
i∈Y

(
D ′ind(Rd) \Ai

)
. Since the

sets D ′ind(Rd)\Ai form an open cover ofKε, the compactness ofKε in
(
D ′ind(Rd), τ indw

)
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implies that there exists a finite open subcover of Kε, i.e. there exists a finite subset
J ⊂ Y such that Kε ⊆

⋃
i∈J
(
D ′ind(Rd) \Ai

)
. Therefore, we have that

0 ≤ µ′(Kε) ≤ µ′
(⋃
i∈J

(
D ′ind(Rd) \Ai

))
≤
∑
i∈J

µ
((

D ′ind(Rd) \Ai
)
∩D ′proj(Rd)

)
= 0,

where in the last equality we used (16). Moreover, by (17), we have that

µ′
(
D ′ind(Rd) \ S

)
≤ µ′(Kε) + ε = ε.

Since this holds for any ε > 0, we get µ′
(
D ′ind(Rd) \ S

)
= 0 and hence, 0 =

µ′
(
D ′ind(Rd) \ S

)
= µ

(
(D ′ind(Rd) \ S) ∩D ′proj(Rd)

)
= µ

(
D ′proj(Rd) \ S

)
.

�

Theorem 4.4 does still hold for any basic semi-algebraic set S which is subset of
D ′ind(Rd) (instead of D ′proj(Rd)) and gives a realizing measure actually concentrated

on S ∩ D ′proj(Rd). If S ∩ D ′proj(Rd) = ∅, then there is no contradiction because
Theorem 4.4 shows that the only realizing measure is identically equal to zero,
and so we know a posteriori that all the moment functions were zeros. However,
the case S ∩D ′proj(Rd) 6= ∅ is very common, since D ′proj(Rd) contains all tempered
distributions, Radon measures and all locally integrable functions. Hence, if at least
a single one of such generalized functions is contained in S then S ∩D ′proj(Rd) 6= ∅
and Theorem 4.4 can be applied to get a non-zero realizing measure supported on
S, indeed on S ∩ D ′proj(Rd). Note that in Theorem 4.4 it is not sufficient to just

assume that m ∈ F
(
D ′ind(Rd)

)
. However, the assumption m ∈ F

(
D ′proj(Rd)

)
is

not a restrictive requirement in any application.

5. Applications

In this section we give some concrete applications of Theorem 4.4.
In Subsection 5.1, we present Theorem 4.4 in the finite dimensional case. This the-
orem generalizes the results already know in literature about the classical moment
problem on a basic semi-algebraic set of Rd.
In Subsection 5.2, we study the case when we assume more regularity of type IV
on the putative moment functions, that is, we require that they are non-negative
symmetric Radon measures. The advantage of this additional assumption is that
it allows us to simplify the condition of determinacy and hence, to give an adapted
version of Theorem 4.4. In Subsection 5.3, we derive conditions on the putative
moment functions to be realized by a random measure, that is, we assume S to be
the set of all Radon measures on Rd. In this case, the fact that all the moment
functions are themselves Radon measures is a necessary condition and so the results
of Subsection 5.2 can be exploited. In Subsection 5.4, we consider the case when
S is the set of Radon measures with Radon-Nikodym densities w.r.t. the Lebesgue
measure fulfilling an a priori L∞ bound.

From now on let us denote by R(Rd) the space of all Radon measures on Rd,
namely the space of all non-negative Borel measures that are finite on compact sets
in Rd.

5.1. Finite dimensional case.
The d−dimensional moment problem on a closed basic semi-algebraic set S of Rd is
a special case of Problem 1.4 for Ω = H0 = Rd. Hence, Theorem 4.4 can be applied
also in the finite dimensional case, where the condition m := (m(n))n∈N0

∈ F
(
Rd
)

holds for any multi-sequence of real numbers. In fact, if we denote by {e1, . . . , ed}
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the canonical basis of Rd then we have that for each n ∈ N0,

m(n) :=
∑

n1,...,nd∈N0
n1+···+nd=n

m(n)
n1,...,nd

e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
n1 times

⊗ · · · ⊗ ed ⊗ · · · ⊗ ed︸ ︷︷ ︸
nd times

∈ Rdn

The notion of polynomials, quadratic module and Riesz’s functional given at the
beginning of Section 4, in the d−dimensional case coincide with the classical ones.
The condition of determinacy on m reduces to the requirement that the class

C


√

max
n1,...,nd∈N0

n1+···+nd=2n

|m(2n)
n1,...,nd |

 is quasi-analytic. This follows by taking the subset

E := {e1, . . . , ed} in Definition 2.2.
In this framework, the whole proof we made in the infinite dimensional case can be
employed as well, taking in consideration that Rd is Polish and so Radon. Actually,
we can even get a stronger result by refining our proof in finite dimensions. Indeed,
if we replace the assumption of m being determining with the classical multivariate

Carleman condition, that is for any i ∈ {1, . . . , d} the class C

{√
|m(2n)

0,...,0,2n,0,...,0|
}

is quasi-analytic (where 2n is at the i − th position of the index d−tuple), then
we can still use the same proof but we need to substitute Theorem 2.3 with the
d−dimensional version of Hamburger’s theorem (see e.g. [41, 31, 5]). In this way,
we obtain the following general result.

Theorem 5.1.
Let m be a multi-sequence of real numbers, which fulfills the classical multivariate
Carleman condition and let

S =
⋂
i∈Y

{
r ∈ Rd| Pi(r) ≥ 0

}
,

where Y is an index set not necessarily countable and Pi ∈ PR
(
Rd
)

that is poly-

nomial on Rd with real coefficients. Then m is realized by a unique non-negative
measure µ ∈M∗(S) if and only if the following inequalities hold

Lm(h2) ≥ 0, Lm(Pih
2) ≥ 0 , ∀h ∈PR

(
Rd
)
, ∀i ∈ Y.

Equivalently, if and only if the functional Lm is non-negative on the quadratic
module Q(PS).

This theorem extends the result given by Lasserre in [22]. In fact, Theorem 5.1
includes the case when S is defined by an uncountable family of polynomials. Fur-
thermore, the classical multivariate Carleman condition assumed in Theorem 5.1 is
a more general bound than the one assumed in [22].

5.2. Realizability of Radon measures.

Definition 5.2.
A sequence m ∈ F

(
R(Rd)

)
satisfies the weighted Carleman type condition if for

each n ∈ N there exists a function k
(n)
2 ∈ C∞(Rd) with k

(n)
2 (r) ≥ 1 for all r ∈ Rd

such that

(18)

∞∑
n=1

1 sup
z∈Rd
‖z‖≤n

sup
x∈[−1,1]d

√
k̃

(n)
2 (z + x)

 2n

√∫
R2nd

m(2n)(dr1,...,dr2n)∏2n
l=1 k

(2n)
2 (rl)

=∞,

where k̃
(n)
2 ∈ C∞(Rd) such that k̃

(n)
2 (r) ≥

∣∣∣(Dκk
(n)
2 )(r)

∣∣∣2 for all |κ| ≤ dd+1
2 e.
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As suggested by the name, the condition (18) is an infinite-dimensional weighted
version of the classical Carleman condition, which ensures the uniqueness of the
solution to the d−dimensional moment problem (for d = 1 see [8], for d ≥ 2 see
e.g. [41, 31, 5, 11]) .

Corollary 5.3.
Let m ∈ F

(
R(Rd)

)
fulfill the weighted Carleman type condition in Definition 5.2

and let S ⊆ D ′proj(Rd) be a basic semi-algebraic of the form (8). Then m is realized
by a unique non-negative measure µ ∈M∗(S) with

(19)

∫
S
〈 1

k
(n)
2

, η〉nµ(dη) <∞, ∀n ∈ N0,

if and only if the following inequalities hold

(20) Lm(h2) ≥ 0, Lm(Pih
2) ≥ 0, ∀h ∈PC∞c

(
D ′proj(Rd)

)
, ∀i ∈ Y,

and for any n ∈ N0 we have

(21)

∫
R2nd

m(2n)(dr1, . . . , dr2n)∏2n
l=1 k

(2n)
2 (rl)

<∞.

Remark 5.4.
If m is realized by a non-negative measure µ ∈M∗(D ′proj(Rd)) and m satisfies (18)
then (21) holds also for the odd orders.

Corollary 5.3 is essentially a consequence of the following proposition.

Proposition 5.5.
If m satisfies (18) and (21), then m is a determining sequence in the sense of
Definition 2.2.

Proof.
Let us preliminarily recall that R(Rd) ⊂ D ′proj(Rd) and so m is automatically in

F(D ′proj(Rd)) as required by Definition 2.2.

For any f1, . . . , fn ∈ C∞c (Rd) and any n ∈ N we can easily see that

(22)
∣∣∣〈f1 ⊗ · · · ⊗ fn,m(n)

〉∣∣∣ ≤ ∫
Rnd

n∏
l=1

k
(n)
2 (rl) |fl(rl)|

m(n)(dr1, . . . , drn)∏n
l=1 k

(n)
2 (rl)

.

By the Sobolev embedding theorem for weighted spaces (see [1]), we get that for any

k̃
(n)
2 ∈ C∞(Rd) with k̃

(n)
2 (r) ≥

∣∣∣(Dκk
(n)
2 )(r)

∣∣∣2 for all |κ| ≤
⌈
d+1

2

⌉
, Cc(Rd) ⊆ Hk̃(n) ,

where Hk̃(n) := W
d d+1

2 e
2 (Rd, k̃(n)

2 (r)dr) and k̃(n) :=
(⌈

d+1
2

⌉
, k̃

(n)
2

)
. Using this result

in (22), we have that there exists a finite positive constant C such that

∣∣∣〈f1 ⊗ · · · ⊗ fn,m(n)
〉∣∣∣ ≤ Cn

n∏
l=1

‖fl(rl)‖H
k̃(n)

∫
Rnd

m(n)(dr1, . . . , drn)∏n
l=1 k

(n)
2 (rl)

.
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Hence, by choosing E as in Lemma 4.5, we have that

mn :=
√

sup
f1,...,f2n∈E

∣∣〈f1 ⊗ · · · ⊗ f2n,m(2n)〉
∣∣

≤

√√√√√C2n

(
sup
f∈E
‖f‖H

k̃(n)

)2n ∫
R2nd

m(2n)(dr1, . . . , drn)∏2n
l=1 k

(2n)
2 (rl)

≤

Ccdd d+1
2 e

sup
z∈Rd
‖r‖≤n

sup
x∈[−1,1]d

√
k̃

(2n)
2 (z + x)


n√√√√ ∫

R2nd

m(2n)(dr1, . . . , dr2n)∏2n
l=1 k

(2n)
2 (rl)

.(23)

Then the condition (21) guarantees that the mn’s are finite and (18) implies that
the class C{mn} is quasi-analytic.

�

Proof. (Corollary 5.3).
Since the necessity part follows straightforwardly, let us focus on the sufficiency.
Since m is determining by Proposition 5.5 and (20) holds by assumption, we can
apply Theorem 4.4 to get that m is realized by µ ∈M∗(S).

It remains to show (19). For any positive real number R let us define a function
χR such that

(24) χR ∈ C∞c (Rd) and χR(r) :=

{
1 if |r| ≤ R
0 if |r| ≥ R+ 1.

Since m is realized by µ ∈M∗(S), for any n ∈ N0 and for any positive real number
R we have that∫

S
〈 χR
k

(n)
2

, η〉nµ(dη) =

∫
Rnd

n∏
l=1

χR(rl)

k
(n)
2 (rl)

m(n)(dr1, . . . , drn).

Hence, the monotone convergence theorem for R→∞ and Remark 5.4 give (19).
�

Remark 5.6.
The proof of Proposition 5.5 is a particular instance of what we were pointing out in
Remark 4.6. In fact, the regularity assumed on the sequence m, that is m consisting
of Radon measures, allowed us to get the bound (23) from (18) and (21) for some

index k̃(n) = (k̃
(n)
1 , k̃

(n)
2 ) with k̃

(n)
1 =

⌈
d+1

2

⌉
and so independent of n.

Note that to obtain this result it was important to use our definition of determining
sequence (see Definition 2.2). In fact, if we used the one given in [2] involving the

norms ‖m(2n)‖H⊗2n

−k(2n)
(see Remark 2.4), we would have got k̃

(n)
1 >

⌈n(d+1)
2

⌉
and as

a consequence an extra factor of at least order (2n)! under the root in (18). This
observation is in line with Remark 3 in [2, Vol. II, p.73].

If we assume even more regularity on m, then Corollary 5.3 takes the following
simpler form.

Corollary 5.7.
Let m ∈ F

(
R(Rd)

)
be such that for some k2 ∈ C∞(Rd), independent of n, with

k2(r) ≥ 1 for all r ∈ Rd the following holds
∞∑
n=1

1

2n

√∫
R2nd

m(2n)(dr1,...,dr2n)∏2n
l=1 k2(rl)

=∞.
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If S ⊆ D ′proj(Rd) is a basic semi-algebraic of the form (8), then m is realized by a
unique non-negative measure µ ∈M∗(S) with∫

S
〈 1

k2
, η〉nµ(dη) <∞, ∀n ∈ N0,

if and only if the following inequalities hold

Lm(h2) ≥ 0, Lm(Pih
2) ≥ 0, ∀h ∈PC∞c

(
D ′proj(Rd)

)
, ∀i ∈ Y,

and for any n ∈ N0 we have∫
R2nd

m(2n)(dr1, . . . , dr2n)∏2n
l=1 k2(rl)

<∞.

5.3. Realizability on the space of Radon measures R(Rd).

Example 5.8.
The set R(Rd) of all Radon measures on Rd is a basic semi-algebraic subset of
D ′proj(Rd), i.e.

(25) R(Rd) =
⋂

ϕ∈C+,∞c (Rd)

{
η ∈ D ′proj(Rd) : Φϕ(η) ≥ 0

}
where Φϕ(η) := 〈ϕ, η〉.

Proof.
The representation (25) follows from the fact that there exists a one-to-one cor-
respondence between the Radon measures on Rd and the continuous non-negative
linear functionals on the space Dproj(Rd). In fact, for any η ∈ R(Rd) the functional

C∞c (Rd) → R

ϕ 7→ 〈ϕ, η〉 =

∫
Rd
ϕ(r)η(dr)

is non-negative and it is an element of D ′proj(Rd). Conversely, by a theorem due
to L. Schwartz (c.f. [39, Theorem V] ), every non-negative linear functional on
C∞c (Rd) can be represented as integral w.r.t. a Radon measure on Rd.

�

Using the representation (25), we obtain a realizability theorem for S = R(Rd),
namely Corollary 5.3 becomes

Theorem 5.9.
Let m ∈ F

(
R(Rd)

)
fulfill the weighted Carleman type condition (18). Then m is

realized by a unique non-negative measure µ ∈M∗(R(Rd)) with∫
S
〈 1

k
(n)
2

, η〉nµ(dη) <∞, ∀n ∈ N0,

if and only if the following inequalities hold

Lm(h2) ≥ 0 , ∀h ∈PC∞c
(
D ′proj(Rd)

)
,(26)

Lm(Φϕh
2) ≥ 0 , ∀h ∈PC∞c

(
D ′proj(Rd)

)
, ∀ϕ ∈ C+,∞

c (Rd),(27) ∫
R2nd

m(2n)(dr1, . . . , dr2n)∏2n
l=1 k

(2n)
2 (rl)

<∞, ∀n ∈ N0.(28)

Note that if µ is concentrated on R(Rd) then m
(n)
µ ∈ R(Rdn) for all n ∈ N0.
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The previous theorem still holds even when m does not consist of Radon mea-
sures. In this case, instead of (18) and (28), one has to assume thatm is determining
in the sense of Definition 2.2

The assumption (18) can be actually weakened by taking into account a result
due to S.N. Šifrin about the infinite dimensional moment problem on dual cones in
nuclear spaces (see [42]). Indeed, applying Šifrin’s results to the cone C+,∞

c (Rd), it is
possible to obtain a particular instance of our Theorem 4.4 for the case S = R(Rd)
(the latter is in fact the dual cone of C+,∞

c (Rd)) but with the difference that in
the determinacy condition the quasi-analyticity of the mn’s is replaced by the so-

called Stieltjes condition
∑∞
n=1m

− 1
2n

n = ∞. As a consequence, the condition (18)
in Theorem 5.9 can be replaced by the following weaker one

∞∑
n=1

1√√√√ sup
z∈Rd
‖z‖≤n

sup
x∈[−1,1]d

√
k̃

(n)
2 (z + x) 4n

√∫
R2nd

m(2n)(dr1,...,dr2n)∏2n
l=1 k

(2n)
2 (rl)

=∞,

which we call weighted generalized Stieltjes condition.

Remark 5.10.
The condition (26) can be rewritten as∑

i,j

〈h(i) ⊗ h(j), m(i+j)〉 ≥ 0, ∀h(i) ∈ C∞c (Rid),

and (27) as∑
i,j

〈h(i) ⊗ h(j) ⊗ ϕ, m(i+j+1)〉 ≥ 0, ∀h(i) ∈ C∞c (Rid), ∀ϕ ∈ C+,∞
c (Rd).

Recalling Definition 4.7, we can restate these conditions as follows: the sequence
(m(n))n∈N0

and its shifted version ((Φϕm)(n))n∈N0
are positive semidefinite in the

sense of Definition 2.1.
In particular, if for each n ∈ N0, m(n) has a Radon-Nikodym density, that is there
exists α(n) ∈ L1(Rn, λ) s.t. m(n)(dr1, . . . , drn) = α(n)(r1, . . . , rn)dr1 · · · drn, then
(26) and (27) can be rewritten as∑

i,j

∫
Rd(i+j) h

(i)(r1, . . . , ri)h
(j)(ri+1, . . . , ri+j)α

(i+j)(r1, . . . , ri+j)dr1 · · · dri+j ≥ 0,

∑
i,j

∫
Rd(i+j+1) h

(i)(r1, . . . , ri)h
(j)(ri+1, . . . , ri+j)ϕ(y)α(i+j+1)(r1, . . . , ri+j ,y)dr1 · · · dri+jdy ≥ 0.

These conditions can be interpreted as that (α(n))n∈N0
is positive semidefinite

and that for λ−almost all y ∈ Rd the sequence (α(n+1)(·,y))n∈N0
is positive semi-

definite, where the positive semidefiniteness is intended in a generalized sense. In
this reformulation the analogy with the Stieltjes moment problem is evident, since
necessary and sufficient conditions for the realizability on R+ of a sequence of num-
bers (mn)n∈N0 are that (mn)n∈N0 and (mn+1)n∈N0 are positive semidefinite.

The measure constructed in Theorem 5.9 lives on the Borel σ−algebra generated
by the weak topology τprojw on D ′proj restricted to its subset R(Rd). A natural

topology on R(Rd) is the vague topology τv, i.e. the smallest topology such that
the mappings

η 7→ 〈f, η〉 =

∫
Rd
f(r)η(dr)

are continuous for all f ∈ Cc(Rd). These two topologies actually coincide on R(Rd).
This result directly follows from the Hausdorff criterion if one intersects the

neighbourhood bases with sets of the following form

Uχϕ;N :=
{
η ∈ R(Rd) : |〈χϕ, η − ν〉| < N

}
,



20 M. INFUSINO, T. KUNA, A. ROTA

where N is a positive integer and χϕ is a smooth characteristic function of the
support of a function ϕ ∈ Cc(Rd) (see (24)).
As a consequence of the equivalence of the two topologies, the associated Borel
σ−algebras also coincide and they are equal to σ(τprojw ) ∩R(Rd).

5.4. Realizability on the set of measures with bounded density.

Example 5.11.
Let c ∈ R+. The set Sc of all Radon measures with density w.r.t. the Lebesgue
measure λ on Rd which is L∞−bounded by c, i.e.

(29) Sc :=
{
η ∈ R(Rd) : η(dr) = f(r)λ(dr) with f ≥ 0 and ‖f‖L∞ ≤ c

}
is a semi-algebraic subset of D ′proj(Rd). More precisely, we get that

(30) Sc = R(Rd) ∩
⋂

ϕ∈C+,∞c (Rd)

{
η ∈ D ′proj(Rd) : c〈ϕ, λ〉 − 〈ϕ, η〉 ≥ 0

}
.

Proof.
Step I: ⊆
Let η ∈ Sc, then by definition (29), we get that for any ϕ ∈ C+,∞

c (Rd)

〈ϕ, η〉 =

∫
Rd
ϕ(r)f(r)λ(dr) ≤ ‖f‖L∞

∫
Rd
ϕ(r)λ(dr) ≤ c〈ϕ, λ〉.

Step II: ⊇
Let η ∈ R(Rd) such that

(31) c〈ϕ, λ〉 − 〈ϕ, η〉 ≥ 0, ∀ϕ ∈ C+,∞
c (Rd).

By density, the previous condition holds for all ϕ ∈ L1(Rd, λ− η) and in particular
for ϕ = 11A, where A ∈ B(Rd) bounded. Hence, η � λ and so, by the Radon-
Nikodym theorem, there exists f ≥ 0 such that

(32) η(dr) = f(r)λ(dr).

By (32) and by (31), for any A ∈ B(Rd) bounded we get that∫
A

f(r)λ(dr) =

∫
A

η(dr) ≤ c
∫
A

λ(dr).

Hence, f(r) ≤ c λ−a.e. in each bounded A and therefore ‖f‖L∞ ≤ c.
�

Using the representation (30), we can explicitly rewrite Corollary 5.3 for S = Sc
as follows.

Theorem 5.12.
Let c ∈ R+. Let m ∈ F

(
R(Rd)

)
fulfill the weighted Carleman type condition (18).

Then m is realized by a unique non-negative measure µ ∈M∗(Sc) with∫
S
〈 1

k
(n)
2

, η〉nµ(dη) <∞, ∀n ∈ N0,

if and only if the following inequalities hold.

Lm(h2) ≥ 0, ∀h ∈PC∞c
(
D ′proj(Rd)

)
,(33)

Lm(Φϕh
2) ≥ 0, ∀h ∈PC∞c

(
D ′proj(Rd)

)
,∀ϕ ∈ C+,∞

c (Rd),(34)

Lm(Γc,ϕh
2) ≥ 0, ∀h ∈PC∞c

(
D ′proj(Rd)

)
,∀ϕ ∈ C+,∞

c (Rd),(35) ∫
R2nd

m(2n)(dr1, . . . , dr2n)∏2n
l=1 k

(2n)
2 (rl)

<∞ , ∀n ∈ N0,

where Φϕ(η) := 〈ϕ, η〉 and Γc,ϕ(η) := c〈ϕ, λ〉 − 〈ϕ, η〉.
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Remark 5.13.
Proceeding as in Remark 5.10, we can work out the analogy between the realizability
problem on Sc and the moment problem on [0, c]. Indeed, if each m(n) has density
α(n) w.r.t. the Lebesgue measure, then (33), (34) and (35) mean just that (α(n))n∈N0

is positive semidefinite and that, for λ−almost all y ∈ Rd, (α(n+1)(·,y))n∈N0
and

(cα(n)(·)−α(n+1)(·,y))n∈N0 are positive semidefinite. Similarly, necessary and suf-
ficient conditions for the realizability on [0, c]of a sequence of numbers (mn)n∈N0

,
where

[0, c] = {x ∈ R : x ≥ 0} ∩ {x ∈ R : c− x ≥ 0},
are that (mn)n∈N0 , (mn+1)n∈N0 and (c ·mn −mn+1)n∈N0 are positive semidefinite
(see [12] and [6]).

6. Appendix

6.1. Quasi-analiticity.
Let us recall the basic definitions and state the results used throughout this paper
concerning the theory of quasi-analiticity.

Definition 6.1 (The class C{Mn}).
Given a sequence of positive real numbers (Mn)n∈N0

, we define the class C{Mn} as
the set of all functions f ∈ C∞(R) such that for any n ∈ N0

‖Dnf‖∞ ≤ βfB
n
fMn,

where Dnf is the n−th derivative of f , ‖Dnf‖∞ := sup
x∈R
|Dnf(x)|, and βf , Bf are

positive constants only depending on f .

Definition 6.2 (Quasi-analitycal class).
A class C{Mn} is said to be quasi-analytic if the conditions

f ∈ C{Mn}, (Dnf)(0) = 0, ∀n ∈ N0,

imply that f(x) = 0 for all x ∈ R.

The main result in the theory of quasi-analiticity is the Denjoy-Carleman Theo-
rem, which is easy to prove when the sequence is log-convex and has the first term
equal to 1 (see [37] for a proof of the theorem in this case).

Definition 6.3 (Log-convexity).
A sequence of positive real numbers (Mn)n∈N0

is said to be log-convex if and only
if for all n ≥ 1 we have that M2

n ≤Mn−1Mn+1.

However, when we deal with classes of functions, the assumption of log-convexity
and the assumption M0 = 1 actually involve no loss of generality. In fact, one can
prove that for any sequence (Mn)n∈N0 there always exists a log-convex sequence
(M c

n)n∈N0
such that the classes C{Mn} and C{M c

n} coincide. More precisely, the
sequence (M c

n)n∈N0
is the convex regularization of (Mn)n∈N0

by means of the loga-
rithm (for more details on this regularization see [26]). Hence, we have that C{Mn}
is quasi-analytic if and only if C{M c

n} is quasi-analytic (see [26, Chapter VI, The-
orem 6.5.III]). Clearly, if (Mn)n∈N0 is log-convex then M c

n ≡ Mn for all n ∈ N0.
Furthermore, if M0 6= 1 then one can always normalize the sequence and consider
(Mn

M0
)n∈N0 , since it is easy to see that the classes C{Mn} and C{Mn

M0
} coincide.

Using the convex regularization by means of the logarithm and the observations
above, it is possible to show the Denjoy-Carleman Theorem in his general form (see
[10] for a detailed proof).
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Theorem 6.4 (The Denjoy-Carleman Theorem).
Let (Mn)n∈N0

be a sequence of positive real numbers. Then the following conditions
are equivalent

(1) C{Mn} is quasi-analytic,

(2)
∞∑
n=1

1
βn

=∞ with βn := infk≥n
n
√
Mn,

(3)
∞∑
n=1

1
n
√
Mc
n

=∞,

(4)
∞∑
n=1

Mc
n−1

Mc
n

=∞,

where (M c
n)n∈N0

is the convex regularization of (Mn)n∈N0
by means of the logarithm.

Let us now state a simple result which has been repeatedly used throughout this
paper.

Proposition 6.5.
Let (Mn)n∈N0

be a sequence of positive real numbers. Then, C{Mn} is quasi-
analytic if and only if for any positive constant δ the class C{δMn} is quasi-analytic.

In conclusion, let us introduce some interesting properties of log-convex se-
quences.

Remark 6.6.
For a sequence of positive real numbers (Mn)n∈N0 the following properties are equiv-
alent

(a): (Mn)∞n=0 is log-convex.

(b):
(

Mn

Mn−1

)∞
n=1

is monotone increasing.

(c): (ln(Mn))
∞
n=1 is convex.

Note that the log-convexity is a necessary condition for a sequence to be a mo-
ment sequence.

Proposition 6.7.
If the sequence (Mn)n∈N0 is log-convex and M0 = 1, then ( n

√
Mn)∞n=1 is monotone

increasing.

Lemma 6.8.
Assume that (Mn)n∈N0

is a log-convex sequence. The class C{Mn} is quasi-analytic
if and only if for any j ∈ N the class C{ j

√
Mjn} is quasi-analytic.

Proof.
W.l.o.g.we can assume that M0 = 1. (In fact, if M0 6= 1 then one can always apply
the following proof to the sequence (Mn

M0
)n∈N0 by Proposition 6.5.) Let us first note

that by Theorem 6.4 it is enough to prove that
∞∑
n=1

1
n
√
Mn

=∞ if and only if for all

j ∈ N,
∞∑
n=1

1
jn
√
Mjn

=∞. Let us fix j ∈ N, then

∞∑
n=1

1
n
√
Mn

=

∞∑
n=1

(
1

jn
√
Mjn

+
1

jn+1
√
Mjn+1

+ . . .+
1

jn+(j−1)
√
Mjn+j−1

)
+

j−1∑
n=1

1
n
√
Mn

≤ j

∞∑
n=1

1
jn
√
Mjn

+

j−1∑
n=1

1
n
√
Mn

,
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where the last inequality is due to Proposition 6.7. Hence, if
∞∑
n=1

1
n
√
Mn

diverges then

∞∑
n=1

1
jn
√
Mjn

diverges as well. On the other hand, if the series
∞∑
n=1

1
jn
√
Mjn

diverges for

some j ∈ N, then also
∞∑
n=1

1
n
√
Mn

diverges since the latter contains more summands.

�

6.2. Complements about the space C∞c (Rd).
Let us recall the definition of the inductive topology on C∞c (Rd) (see [35, Sec-
tion V.4, vol. I]) for a more detailed account on this topic).

Definition 6.9.
Let (Λn)n∈N be an increasing family of relatively compact open subsets of Rd such
that Rd =

⋃
n∈N

Λn. Let us consider the space C∞c (Λn) of all infinitely differentiable

functions on Rd with compact support contained in Λn and let us endow C∞c (Λn)
with the Frechét topology generated by the directed family of seminorms given by

(36) ‖ϕ‖≤a :=
∑
|β|≤a

max
r∈Λn

∣∣Dβϕ(r)
∣∣ .

Then as sets

C∞c (Rd) =
⋃
n∈N
C∞c (Λn).

We denote by Dind(Rd) the space C∞c (Rd) endowed with the inductive limit topology
τind induced by this construction.

It is easy to see that the previous definition is independent of the choice of the
Λn’s.

In Subsection 3.1, we gave a construction due to Y. M. Berezansky that allows
to write C∞c (Rd) as projective limit of a family of weighted Sobolev space (see Def-
inition 3.1). Berezansky actually proved that Definition 3.1 is equivalent to the
following standard one (see [1, Chapter I, Section 3.10] for more details).

Definition 6.10.
Let I be as in Definition 3.1, i.e. the set of all k = (k1, k2(r)) such that k1 ∈ N0,
k2 ∈ C∞(Rd) with k2(r) ≥ 1 for all r ∈ Rd. For each k ∈ I, let us introduce a norm
on C∞c (Rd) by setting

‖ϕ‖Dk(Rd) := max
r∈Rd

k2(r)
∑
|β|≤k1

∣∣(Dβϕ)(r)
∣∣ .

Denote by Dk(Rd) the completion of C∞c (Rd) w.r.t. the norm ‖·‖Dk(Rd). Then as
sets

C∞c (Rd) =
⋂
k∈I

Dk(Rd).

We denote by Dproj(Rd) the space C∞c (Rd) endowed with the projective limit topology
τproj induced by this construction.

Furthermore, as already mentioned, Berezansky showed that

Dproj(Rd) = proj lim
(k1,k2(r))∈I

W k1
2 (Rd, k2(r)dr)

is a nuclear space (where I is as in Definition 6.10). The nuclearity of Dproj(Rd)
follows from the fact that the index set I always fulfills the following condition.
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Definition 6.11 (Condition (D)).
We say that the set K0 ⊆ I satisfies Condition (D) if:
“For any pair k = (k1, k2(r)) ∈ K0 there exists k′ = (k′1, k

′
2(r)) ∈ K0 such that

• k′1 ≥ k1 + l (where l is the smallest integer greater than d
2 )

• k′2(r) ≥
(

max
|β|≤l

|(Dβq)(r)|
)2

, ∀ r ∈ Rd, for some function q(r) ∈ Cl(Rd)

chosen such that

q2(r) ≥ k2(r), ∀ r ∈ Rd and

∫
Rd

k2(r)

q2(r)
dr <∞.

Note that the function q(r) depends on k2(r) and d.”

Condition (D) is sufficient for proj lim
(k1,k2(r))∈K0

W k1
2 (Rd, k2(r)dr) to be nuclear.

Let us give some concrete examples of classes K0 which satisfy Condition (D) in
the case d = 1.

Example 6.12.
Let K0 := {(k1, k2(r)) | k1 ∈ N0, k2(r) = C(1 + r2n), n ∈ N, 1 ≤ c ∈ R}.
Let us fix a pair k = (k1, k2(r)) ∈ K0, namely we fix k = (k1, C(1 + r2n)) for some
k1 ∈ N0, some n ∈ N and some real constant C ≥ 1. For the same fixed n and C,
we define the function q(r) := (2C(1 + r2n+2))

1
2 ∈ C∞(R).

Then we have that q2(r) = 2C(1 + r2n+2) ≥ k2(r) for all r ∈ R and∫
R

k2(r)

q2(r)
dr =

∫
R

1 + r2n

2(1 + r2n+2)
dr <∞.

Hence, using the special form of q(r), we get that

∀r ∈ R, |Dq(r)| ≤ (n+ 1)|q(r)|.
Consequently, choosing k′ = (k′1, k

′
2(r)) ∈ K0 such that

k′1 := k1 + 1, k′2(r) := (n+ 1)2q(r)2, ∀r ∈ R,

we obtain that for all r ∈ R, k′2(r) ≥ (max{|q(r)|, |Dq(r)|})2
and hence, Condi-

tion (D) is fulfilled by K0.

Example 6.13.
Let K0 := {(k1, k2(r)) | k1 ∈ N0, k2(r) = 1 + enr, n ∈ N, 1 ≤ c ∈ R}.
Let us fix a pair k = (k1, k2(r)) ∈ K0, namely we fix k = (k1, C(1 + enr)) for some
k1 ∈ N0, some n ∈ N and some real constant C ≥ 1. For the same fixed n and C,
we define the function q(r) := (C(1 + enr)(1 + r2))

1
2 ∈ C∞(R).

Then we have that q2(r) = C(1 + enr)(1 + r2) ≥ k2(r) for all r ∈ R and∫
R

k2(r)

q2(r)
dr =

∫
R

1

1 + r2
dr <∞.

Hence, using the special form of q(r), we get that

∀r ∈ R, |Dq(r)| ≤
(n

2
+ 1
)
|q(r)|.

Consequently, if B := sup
r∈R

(1+enr)(1+r2)
1+e(n+1)r and if we choose k′ = (k′1, k

′
2(r)) ∈ K0 such

that

k′1 := k1 + 1, k′2(r) := BC
(n

2
+ 1
)2

(1 + e(n+1)r), ∀r ∈ R,

then we obtain that for all r ∈ R,

k′2(r) ≥ C
(n

2
+ 1
)2

(1 + enr)(1 + r2) =
(n

2
+ 1
)2

q2(r) ≥ (max{|q(r)|, |Dq(r)|})2
.
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6.3. Construction of a total subset of test functions.
In this subsection, we provide an outline of the proof of Lemma 4.5 about the
explicit construction of a set E of the kind required in Definition 2.2. For conve-
nience, we give here the proofs only in the case when E ⊂ D ′proj(R). The higher
dimensional case follows straightforwardly.

For any n ∈ N0, let k(n) := (k
(n)
1 , k

(n)
2 ) ∈ I, i.e. k

(n)
1 ∈ N0 and k

(n)
2 : R → [1,∞[

such that k
(n)
2 ∈ C∞(R). Let us consider the norm ‖ · ‖H

k(n)
defined in (5), where

Hk(n) := W
k
(n)
1

2 (R, k(n)
2 (x)). We will denote by ‖ · ‖H−k(n)

the norm on its dual

space W
−k(n)

1
2 (R, k(n)

2 (x)).
Let dn be a positive sequence which is not quasi-analytic, then there exists a

non-negative infinite differentiable function ϕ with support [−1, 1] such that for all

x ∈ R and n ∈ N0 holds | d
n

dxnϕ(x)| ≤ dn (see [37]).

Lemma 6.14.
Let dn be a log-convex increasing positive sequence which is not quasi-analytic, let
ϕ be as above. Define

E0 := {fy,p(·) := ϕ(· − y)eip· | y, p ∈ Q}

Then for any y, p ∈ Q and for any n ∈ N0 we get

‖fy,p‖H
k(n)
≤ Ck

(n)
1
p d

k
(n)
1

sup
x∈[−1,1]

√
k

(n)
2 (y + x)

where Cp :=
√

2(1 + |p|) and E0 is total in Dproj(R).

Proof.
For any y, p ∈ Q we have that

(‖fy,p‖H
k(n)

)2 ≤
k
(n)
1∑
k=0

∫
R

(
k∑
l=0

(
k

l

)
|p|k−l

∣∣∣∣ dldxlϕ(x− y)

∣∣∣∣
)2

k
(n)
2 (x)dx

≤ (1 + |p|)k
(n)
1

k
(n)
1∑
k=0

k∑
l=0

(
k

l

)
|p|k−l

∫
[−1,1]

∣∣∣∣ dldxlϕ(x)

∣∣∣∣2 k(n)
2 (x+ y)dx

Using the bound for derivative of ϕ and the fact that the sequence (dl)l is monotone
increasing we get

(37) ‖fy,p‖H
k(n)
≤
√

2 d
k
(n)
1

(
√

2(1 + |p|))k
(n)
1 sup

x∈[−1,1]

√
k

(n)
2 (x+ y).

Let us show that E0 is total in Dproj(R).
If E0 was not total then by Hahn-Banach there would exist η ∈ D ′proj(R) with η 6= 0
such that for all f ∈ span(E0), η(f) = 0. For such a η we get in particular that
∀ y, p ∈ Q, 〈fy,p, η〉 = 0. Since the function (y, p) 7→ fy,p from Q × Q to Dproj(R)
is sequentially continuous, then

(38) ∀y, p ∈ R, 〈fy,p, η〉 = 0.

Let ρε(·) := ε−1ρ(ε−1·) where ρ is a non-negative function with compact support,
i.e. ρε is an approximating identity then

(39) lim
ε↓0

∫
[−1,1]

fy,p(x)ρε ∗ η(x)dx = 〈fy,p, η〉 = 0,
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where the last equality is due to (38). Since η is in some space H−k(n) and as (37),
holds, we get that

(40) |〈fy,p, ρε ∗ η〉| ≤ ‖fy,p‖H
k(n)
‖ρε ∗ η‖H−k(n)

≤ c(1 + |p|)k
(n)
1 ‖ρε ∗ η‖H−k(n)

,

where c := d
k
(n)
1

(
√

2)k
(n)
1 +1 sup

x∈[−1,1]

√
k

(n)
2 (x+ y) and so it depends only on k

(n)
1 , k

(n)
2 , y.

Since ρε is an approximating identity we get that

lim
ε↓0
‖ρε ∗ η‖H−k(n)

= ‖η‖H−k(n)

The latter together with (40) imply that the function 〈fy,p, ρε ∗ η〉 is uniformly
bounded in p and ε. By Lebesgue’s dominated convergence theorem and by (39),

for any integrable function ψ such that the Fourier transform ψ̂ ∈ Dproj(R) and for
any y ∈ R the following holds

0 = lim
ε→0

∫
R
ψ(p)

∫
[−1,1]

fy,p(x)ρε ∗ η(x)dxdp〈ϕ(· − y)ψ̂, η〉 = 〈ψ̂, ϕ(· − y)η〉.

As any test-function in Dproj(R) is of the form ψ̂, we have that also as a distribution
for any y ∈ R, ϕ(· − y)η ≡ 0.
Since ϕ is not zero there exists an open ball B on which ϕ is never zero. Define
a partition of unity (χn)n∈N0 , where each χn is supported in a ball of the form
yn +B. Hence, for all ψ ∈ C∞c (R)

〈ψ, η〉 =

∞∑
n=0

〈χn(·) ψ(·)
ϕ(· − yn)

, ϕ(· − yn)η〉 = 0,

which means that η ≡ 0. �

Making use of the previous result, we are going to prove Lemma 4.5 that we
rewrite here for convenience.

Lemma 6.15.
Let cn be an increasing sequence of positive numbers which is not quasi-analytic.
Then the set

E :=

f ∈ Dproj(R)

∣∣∣∣∣∣∀ n ∈ N0, ‖f‖H
k(n)
≤ c

k
(n)
1

sup
z∈R
|z|≤n

sup
x∈[−1,1]

√
k

(n)
2 (z + x)


contains a countable subset which is total in Dproj(R). Hence, E is total in Dproj(R).

Proof.
Let us first show that the proof reduces to find an increasing sequence (dn)n∈N0

of
positive numbers which is not quasi-analytic and which is such that for any real
constant C > 0

(41) lim
j→∞

Cjdj
cj

= 0.

In this case, we can always define 1
q := sup

n

Ck
(n)
1 d

k
(n)
1

c
k
(n)
1

. and so, by Lemma 6.14, for

any y, p ∈ Q, every function of the form qfy,p is such that

‖qfy,p‖H
k(n)
≤ qCk

(n)
1
p d

k
(n)
1

sup
x∈[−1,1]

√
k

(n)
2 (y + x) ≤ c

k
(n)
1

sup
z∈R
|z|≤n

sup
x∈[−1,1]

√
k

(n)
2 (y + x).

Hence, the set E contains qE0. Consequently, since E0 is total in D(Rd), the same
is true for qE0 and hence, for E.
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It remains to construct an increasing sequence (dn)n of positive numbers not quasi-
analytic and such that (41) holds. First note that our requirement is equivalent to
define an increasing sequence (dn)n of positive numbers such that

∑∞
n=1

1
n√dn

<∞
and limn→∞

n√dn
n
√
cn

= 0. Indeed, for each C and for each ε > 0 there exist N such

that for all n ≥ N holds dn ≤
(
ε
C

)n
cn and hence also Cndn ≤ εncn.

Our problem reduces to find, given a decreasing sequences (an)n of positive numbers
with

∑∞
n=1 an < ∞, a decreasing sequence (bn)n of positive numbers such that∑∞

n=1 bn <∞ and limn→∞
bn
an

=∞.
For any k ∈ N let us define Nk := min{m|

∑∞
n=m an ≤

1
k2 } and also

bn := min

an
1 +

∑
k∈N : Nk≤n

√
k

 , bn−1

 ,

with b0 := a0

(
1 +

∑
k∈N : Nk=0

√
k

)
. Then

∞∑
n=1

bn ≤
∞∑
n=1

an

1 +
∑

k∈N : Nk≤n

√
k

 ≤ ∞∑
n=1

an +

∞∑
k=1

k−3/2 <∞,

It follows that limn→∞ bn = 0. Then latter together with the definition (bn)n
implies that there exists an infinite subsequence (bnj )j ⊂ (bn)n such that

∀ j ∈ N : bnj = anj

1 +
∑

k∈N : Nk≤nj

√
k

 .

For such a subsequence we have that

(42) lim
j→∞

bnj
anj

= lim
j→∞

1 +
∑

k∈N : Nk≤nj

√
k

 =

(
1 +

∞∑
k=1

√
k

)
=∞.

Now let us note that for any n ∈ N we have either that bn
an

= bn−1

an
≥ bn−1

an−1
or that

bn
an

=

an

(
1 +

∑
k∈N : Nk≤n

√
k

)
an

=

1 +
∑

k∈N : Nk≤n

√
k

 ≥
1 +

∑
k∈N : Nk≤n−1

√
k

 ≥ bn−1

an−1
.

Hence, the sequence (bn/an)n is increasing and has a subsequence such that (42)
holds, then we get that limn→∞

bn
an

=∞.
�
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