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Abstract

Homophily and social influence are the fundamental mechanisms that drive
the evolution of attitudes, beliefs and behaviour within social groups. Ho-
mophily relates the similarity between pairs of individuals’ attitudinal states
to their frequency of interaction, and hence structural tie strength, while so-
cial influence causes the convergence of individuals’ states during interaction.
Building on these basic elements, we propose a new mathematical modelling
framework to describe the evolution of attitudes within a group of interacting
agents. Specifically, our model describes sub-conscious attitudes that have
an activator-inhibitor relationship. We consider a homogeneous population
using a deterministic, continuous-time dynamical system. Surprisingly, the
combined effects of homophily and social influence do not necessarily lead to
group consensus or global monoculture. We observe that sub-group forma-
tion and polarisation-like effects may be transient, the long-time dynamics
being quasi-periodic with sensitive dependence to initial conditions. This is
due to the interplay between the evolving interaction network and Turing
instability associated with the attitudinal state dynamics.
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1. Introduction

Our attitudes and opinions have a reciprocal relationship with those
around us: who we know depends on what we have in common, while si-
multaneously our beliefs influence, and are influenced by, those of our peers.
These two mechanisms—homophily and social influence—underpin a wide
range of social phenomena, including the diffusion of innovations [1, 2, 3, 4, 5],
complex contagions [6, 7, 8], collective action [9, 10, 11], opinion dynam-
ics [12, 13, 14, 15, 16, 17, 18, 19, 20] and the emergence of social norms
[21, 22, 23]. Thus homophily and social influence represent the atomistic
ingredients for models of social dynamics [24]. Starting with these basic ele-
ments, we investigate a new type of modelling framework intended to describe
the coevolution of sub-conscious attitudinal states and social tie strengths in
a population of interacting agents.

The first ingredient in our modelling framework, homophily, relates the
similarity of individuals to their frequency of interaction [25]. Thus ho-
mophily is structural, affecting the strength of ties between people and hence
the underlying social network. Homophily has been observed over a broad
range of sociodemographics: implicit characteristics, such as age, gender and
race; acquired characteristics, such as education, religion and occupation;
and internal states that govern attitudes and behaviour [26, 25]. Homophily
inextricably links state dynamics with the evolution of social tie strength,
and consequently a faithful model must be coevolutionary, connecting both
the dynamics of the social network and the dynamics on the social network
[27]. Such network models are known as coevolving or adaptive; see [28] for a
review. There has been a recent surge of interest in coevolving networks, par-
ticularly models of opinion dynamics [15, 16, 17, 20], which build on simple
models of voting behaviour.

The second ingredient is social influence, which affects people’s attitudi-
nal state through typically dyadic interactions. It is a fundamental result
of social psychology that people tend to modify their behaviour and atti-
tudes in response to the opinions of others [29, 30, 31], sometimes even when
this conflicts sharply with what they know to be true [32] or believe to be
morally justifiable [33]. Similarly to Flache and Macy [34], we use diffusion to
model social influence: agents adjust their state according to a weighted sum
of the differences between their state and their neighbours’. The weights,
which represent the strength of influence between pairs of agents, are the
corresponding elements of the undirected (dynamic) social network, whose

2



evolution is driven by homophily. Although our model is built on the notions
of homophily and social influence described above, we point out that differ-
entiating between the effects of these processes, particularly in observational
settings, may be very difficult [35, 36].

Social scientists have developed ‘agent-based’ models that incorporate ho-
mophily and social influence in order to examine a variety of social-phenomena,
including group stability [37], social differentiation [38] and cultural dissemi-
nation [39], where a culture is defined as an attribute that is subject to social
influence. In such models, an agent’s state is typically described by a vector of
discrete cultures and the more similar (according to some metric) two agent’s
states are, the higher the probability of dyadic interactions between them (ho-
mophily) in which one agent replicates certain attributes of the other (social
influence). Surprisingly, the feedback between homophily and social influence
does not necessarily lead to a global monoculture [39]. In fact, the dissolu-
tion of ties between culturally distinct groups, or equivalently the creation of
‘structural holes’ [40], may lead to cultural polarisation—equilibrium states
that preserve diversity. However, such multi-cultural states are not neces-
sarily stable when there is ‘cultural drift’, i.e. small, random perturbations
or noise, which inevitably drive the system towards monoculture [41]. There
have been a number of attempts to develop models with polarised states that
are stable in the presence cultural drift [27, 34], but this is still an open area
of research [24].

Two key features differentiate our approach from those described above.
Firstly, we specifically focus on sub-conscious attitude formation driven by a
general class of activator-inhibitor processes. This is motivated by neuropsy-
chological evidence that the activation of emotional responses are associated
with the (evolutionarily older) regions of the brain know as the limbic system
and our inhibitions are regulated by the (evolutionarily younger) prefrontal
cortex [42]. This has led psychologists to develop theories in which various
personality traits (such as extraversion, impulsivity, neuroticism and anxi-
ety) form an independent set of dimensions along which different types of
behaviour may be excited or regulated [43, 44, 45]. Thus it is natural in our
modelling framework for these processes to be communicated independently
and in parallel through distinct transmission channels and hence via distinct
diffusion coefficients. The consequence of activator-inhibitor attitudinal state
dynamics is that we would expect to encounter Turing instability, since the
rates at which social influence can change homophilious attributes may differ
dramatically.
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Secondly, and in sharp contrast to recent models of cultural dissemination
[39, 27, 34] and indeed many other types of behavioural model [24] that
are stochastic or probabilistic1, we consider a deterministic, continuous-time
dynamical systems formulation. While this does not reflect the mercurial
nature seemingly ingrained in human interaction, it allows us to probe the
underlying mechanisms driving dynamical phenomena. In fact, our principle
observation is that the tension between Turing instability and the coevolution
of the social network and attitudinal states gives rise to aperiodic dynamics
that are sensitive to initial conditions and surprisingly unpredictable. This
begs the question, are the mechanisms that govern our behaviour the cause
of its volatility? For parsimony, we also consider systems of homogeneous
agents. This allows us to identify parameters that destabilise the global
monocultural steady state, giving rise to transient sub-group formation.

This paper is organised as follows: in Section 2, we describe our model in
detail, analyse the stability of global monoculture and describe the underlying
dynamical mechanisms; in Section 3 we illustrate typical numerical results
from both a large population of individuals and a simple example consisting
of just two agents; in Section 4 we summarise our work and finally in Section 5
we discuss our results in the context of other models of cultural dynamics
and polarisation phenomena.

2. A deterministic model of cultural dynamics

Consider a population of N identical individuals (agents/actors), each
described by a set of M real attitude state variables that are continuous
functions of time t. Let xi(t) ∈ R

M denote the ith individual’s attitudinal
state. In the absence of any influence or communication between agents we
assume that each individual’s state obeys an autonomous rate equation of
the form

ẋi = f(xi), i = 1, ..., N, (1)

where f is a given smooth field over R
M , such that f(x∗) = 0 for some x∗.

Thus (1) has a uniform population equilibrium xi = x∗, for i = 1, ..., N ,
which we shall assume is locally asymptotically stable. As discussed in the

1A notable exception is the deterministic, discrete-time model of Friedkin and Johnsen
[12]; see also [13] and references therein.
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introduction, we shall more specifically assume that (1) is drawn from a class
of activator-inhibitor systems.

Now suppose that the individuals are connected up by a dynamically
evolving weighted network. Let A(t) denote the N ×N weighted adjacency
matrix for this network at time t, with the ijth term, Aij(t), representing the
instantaneous weight (frequency and/or tie strength) of the mutual influence
between individual i and individual j at time t. Throughout we assert that
A(t) is symmetric, contains values bounded in [0,1] and has a zero diagonal
(no self influence). We extend (1) and adopt a first order model for the
coupled system:

ẋi = f(xi) +D
N
∑

j=1

Aij (xj − xi) , i = 1, ..., N. (2)

Here D is a real, diagonal and non-negative matrix containing the maximal
transmission coefficients (diffusion rates) for the corresponding attitudinal
variables between neighbours. Thus some of the attitude variables may be
more easily or readily transmitted, and are therefore influenced to a greater
extent by (while simultaneously being more influential to) those of neigh-
bours. Note that xi = x∗, for i = 1, ..., N , is also a uniform population
equilibrium of the augmented system.

Let X(t) denote the M × N matrix with ith column given by xi(t), and
F(X) be the M×N matrix with ith column given by f(xi(t)). Then (2) may
be written as

Ẋ = F(X)−DX∆. (3)

Here ∆(t) denotes the weighted graph Laplacian for A(t), given by ∆(t) =
diag(k(t))−A(t), where k(t) ∈ R

N is a vector containing the degrees of the
vertices (ki(t) =

∑N

j=1
Aij(t)). Equation (3) has a rest point at X = X∗,

where the ith column of X∗ is given by x∗ for all i = 1, ..., N .
To close the system, consider the evolution equation for A(t) given by

Ȧ = αA ◦ (1−A) ◦ (ε1− Φ(X)) . (4)

Here 1 denotes the adjacency matrix of the fully weighted connected graph
(with all off-diagonal elements equal to one and all diagonal elements equal to
zero); ◦ denotes the element-wise ‘Hadamard’ matrix product; α > 0 is a rate
parameter; ε > 0 is a homophily scale parameter; and Φ : RN×N → R

N×N is a
symmetric matrix function that incorporates homophily effects. We assume
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Φ to be of the form Φij := φ(|xi − xj|) ≥ 0, where |·| is an appropriate
norm or semi-norm, and the real function φ is monotonically increasing with
φ(0) = 0. Note that the sign of the differences held in ε1 − Φ(X) controls
the growth or decay of the corresponding coupling strengths. All matrices in
(4) are symmetric, so in practice we need only calculate the super-diagonal
terms. For the ijth edge, from (4), we have

Ȧij = αAij(1− Aij)(ε− φ(|xi − xj |).

The nonlinear “logistic growth”-like term implies that the weights remain in
[0,1], while we refer to the term ε− φ(|xi − xj|) as the switch term.

2.1. Stability analysis

By construction, there are equilibria at X = X∗ with either A = 0 or
A = 1. To understand their stability, let us assume that α → 0 so that A(t)
evolves very slowly. We may then consider the stability of the uniform pop-
ulation, X∗, under the fast dynamic (3) for any fixed network A. Assuming
that A is constant, writing X(t) = X∗ + X̃(t) and Linearising (3) about X∗,
we obtain

˙̃
X = df(x∗)X̃−DX̃∆. (5)

Here df(x∗) is an M × M matrix given by the linearisation of f(x) at x∗.
Letting (λi,wi) ∈ [0,∞)×R

N , i = 1, ..., N , be the eigen-pairs of ∆, then we
may decompose uniquely [46]:

X̃(t) =

N
∑

i=1

ui(t)w
T
i ,

where each ui(t) ∈ R
M . The stability analysis of (5) is now trivial since

decomposition yields
u̇i = (df(x∗)−Dλi)ui.

Thus the uniform equilibrium, X∗, is asymptotically stable if and only if
all N matrices, (df(x∗) − Dλi), are simultaneously stability matrices; and
conversely is unstable in the ith mode of the graph Laplacian if (df(x∗)−Dλi)
has an eigenvalue with positive real part.

Consider the spectrum of (df(x∗)−Dλ) as a function of λ. If λ is small
then this is dominated by the stability of the autonomous system, df(x∗),
which we assumed to be stable. If λ is large then this is again a stability ma-
trix, since D is positive definite. The situation, dependent on some collusion

6



between choices of D and df(x∗), where there is a window of instability for an
intermediate range of λ, is know as a Turing instability. Turing instabilities
occur in a number of mathematical applications and are tied to the use of
activator-inhibitor systems (in the state space equations, such as (1) here),
where inhibitions diffuse faster than activational variables.

Now we can see the possible tension between homophily and Turing insta-
bility in the attitude dynamics when the timescale of the evolving network, α,
is comparable to the changes in agents’ states. There are two distinct types of
dynamical behaviour at work. In one case, ∆(t) has presently no eigenvalues
within the window of instability and each individual’s states xi(t) approach
the mutual equilibrium, x∗; consequently all switch terms become positive
and the edge weights all grow towards unity, i.e. the fully weighted clique.
In the alternative case, unstable eigen-modes cause the individual states to
diverge from x∗, and subsequently some of the corresponding switch terms
become negative, causing those edges to begin losing weight and hence par-
titioning the network.

The eigenvalues of the Laplacian for the fully weighed clique, A = 1, are
at zero (simple) and at N (with multiplicity N − 1). So the interesting case
is where the system parameters are such that λ = N lies within the window
of instability. Then the steady state (X, A) = (X∗, 1) is unstable and thus
state variable patterns will form, echoing the structure of (one or many of)
the corresponding eigen-mode(s). This Turing driven symmetry loss may
be exacerbated by the switch terms (depending upon the choice of ε being
small enough), and then each sub-network will remain relatively well intra-
connected, while becoming less well connected to the other sub-networks.
Once relatively isolated, individuals within each of these sub-networks may
evolve back towards the global equilibrium at x∗, providing that A(t) is such
that the eigenvalues of ∆ have by that time left the window of instability.
Within such a less weightily connected network, all states will approach x∗,
the switch terms will become positive, and then the whole qualitative cycle
can begin again.

Thus we expect aperiodic or pseudo-cyclic emergence and diminution of
patterns, representing transient variations in attitudes in the form of dif-
ferent norms adopted by distinct sub-populations. As we shall see though,
the trajectory of any individual may be sensitive and therefore effectively
unpredictable, while the dynamics of the global behaviour is qualitatively
predictable.

In the next section we introduce a specific case of the more general setting
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described here.

3. Examples

We wish to consider activator-inhibitor systems as candidates for the
attitudinal dynamics in (1) and hence (3). The simplest such system has
M = 2, with a single inhibitory variable, x(t), and a single activational vari-
able, y(t). Let xi(t) = (xi(t), yi(t))

T in (2), and consider the Scnackenberg
dynamics defined by the field

f(xi) = (p− xiy
2

i , q − yi + xiy
2

i )
T , (6)

where p > q ≥ 0 are constants. The equations have the required equilibrium
point at

x∗ =

(

p

(p+ q)2
, p+ q

)T

, (7)

and in order that df be a stability matrix, we must have

p− q < (p+ q)3.

We employ φij = (xi − xj)
2 as the homophily function and we must have

D = diag(D1, D2) in (3).
WhenM = 2, the presence of Turing instability depends on the sign of the

determinant of (df(x∗)−Dλ), which is quadratic in λ. For the Schnakenberg
dynamics defined above, the roots of this quadratic are given by

λ± =
(p− q)− D2

D1

(p+ q)3 ±

√

[

(p− q)− D2

D1

(p+ q)3
]2

− 4D2

D1

(p+ q)4

2D2(p+ q)
> 0.

It is straightforward to show that if

D2

D1

<
3p+ q − 2

√

2p(p+ q)

(p+ q)3
:= σc, (8)

then λ± are real positive roots and hence (df(x∗)−Dλ) is a stability matrix
if and only if λ lies outside of the interval (λ−, λ+), the window of instability.
Inside there is always one positive and one negative eigenvalue, and the
equilibrium X∗ is unstable for any fixed network A. Note that, as is well
known, it is the ratio of the diffusion constants that determines whether
there is a window of instability.
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Figure 1: Trajectories of δij := xi − xj and Aij for all (i, j) pairs for unstable parameters
integrated until t ≈ 440. Parameter values and initial conditions are described in the
main text. In the light grey shaded region, δij < ε and the direction of trajectories are
indicated with arrows. The grey horizontal line indicates the scaled stability threshold
(unstable above, stable below).

3.1. Group dynamics

We now present simulations of the Schnakenberg dynamics with N = 10.
Parameter values are p = 1.25, q = 0.1, α = 104, ε = 10−6, D1 ≈ 0.571 and
D2 ≈ 0.037. The ratio of the diffusion constants is D2/D1 := σ = 0.9σc,
and to ensure that the window of instability is centred on the fully coupled
system we have

D1 =
(p− q)− σ(p + q)3

2σN(p+ q)
. (9)

The initial coupling strengths were chosen uniformly at random between 0.1
and 0.5. The initial values of x and y were chosen at equally spaced intervals
on a circle of radius 10−3 centred on the uniform equilibrium.

In Figure 1 we illustrate the trajectories of δij := xi − xj and the cor-
responding coupling strengths Aij up to t ≈ 440. The shaded region corre-
sponds to δij < ε, within which the Aij increase and outside of which they
decrease, indicated by the dark grey arrows. The horizontal grey line marks
the scaled instability threshold λ−/N , which is indicative of the boundary
of instability, above being unstable and below being stable. Because agents
are only weakly coupled initially, their attitudes move towards the steady
state x∗, which causes the differences δij to decrease. The switch terms sub-
sequently become positive and hence the coupling strengths increase, along
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with the eigenvalues of the Laplacian λi. When one or more of the λi are
within the window of instability, some of the differences δij begin to diverge.
However, this eventually causes their switch terms to become negative, reduc-
ing the corresponding coupling strengths and hence some of the λi. This then
affects the differences δij, which start to decrease, completing the qualitative
cycle. As the system evolves beyond t > 440, this quasi-cyclic behaviour
becomes increasingly erratic.

Although the long term behaviour of any given agent is unpredictable,
the behaviour of the mean coupling strength of the system fluctuates around
the instability boundary k−/N . In Figure 2(a), we plot the time series of
the mean coupling strength, Ā(t), between t = 5× 103 and 104. The dashed
line indicates the instability boundary k−/N ≈ 0.6372, which is very close
to the time-averaged mean coupling strength 〈A〉 ≈ 0.6343. Also plotted in
Figure 2 are snapshots of the network at six sequential times. To improve
the visualisation of the network, the positions of nodes have been rotated by
approximately 72◦, since the differences in diffusion rates mean that the un-
rotated coordinates, (x, y), become contracted in one direction. The shading
of the nodes corresponds to their average coupling strength and the shading
of the edges correspond to their weight. The sequence of figures illustrate
the general scenario: agents’ trajectories cycle around the origin with the
network repeatedly contracting and expanding as agents become more and
less similar in attitude respectively.

We now illustrate how the quasi-equilibrium end state changes as the
window of instability is moved. We fix all parameters as above, but consider
a range of values of D1 whilst keeping the ratio D2/D1 = 0.9σc held fixed.
This has the effect of shifting the window of instability from above 〈A〉 = 1 to
below as D1 increases. We integrate until t = 1.5×105 and then compute the
mean coupling strength 〈A〉 for t ≥ 104. We compute 50 realisations for each
set of parameters, the results of which are plotted in Figure 3. The shaded
region corresponds to the (scaled) region of instability, the dashed grey line
is where 〈A〉 = 1, the black line is the median of the fifty realisations and the
dots are the values from each of the realisations. At low values of D1, where
the A = 1 equilibrium first becomes unstable, the mean coupling strength
fits tightly to the lower edge of the instability boundary at λ−/N . When the
A = 1 equilibrium restabilises (at D1 ≈ 0.78), the long time behaviour of
the mean coupling strength changes, moving away from the λ−/N boundary.
In the region between D1 ≈ 1.5 and D1 ≈ 2.3, some realisations return to
the fully coupled equilibrium A = 1, but not all. We would expect that
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Figure 2: Panel (a): mean coupling strength, Ā(t), time series. Panels (b)–(g): network
snapshots at sequential time intervals. Node positions are plotted in the rotated coordi-
nates (x′, y′), shading illustrates coupling strength for edges and mean coupling strength
for nodes.
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Figure 3: Mean coupling strength at large times for different values of D1. Shading
indicates the window of instability, the dashed grey line indicates where A = 1. The black
line is the median of 50 realisations and the black markers are the mean coupling strengths
for each of the realisations.

simulating for longer would result in more realisations reaching the fully
coupled equilibrium, although it is possible that its basin of attraction does
not include every initial condition in the set that we are sampling from.

3.2. Dyad dynamics

To probe the mechanism driving the aperiodic dynamics illustrated in
Section 3.1, we consider a simpler dynamical setting consisting of just two
agents. This reduces the coupling strength evolution (4) to a single equation,
and hence five equations in total,

ẋ1 = p− x1y
2

1 −D1a(x1 − x2), (10)

ẋ2 = p− x2y
2

2 +D1a(x1 − x2), (11)

ẏ1 = q − y1 + x1y
2

1 −D2a(y1 − y2), (12)

ẏ2 = q − y2 + x2y
2

2 +D2a(y1 − y2), (13)

ȧ = αa(1− a)
[

ε− (x1 − x2)
2
]

. (14)

In Figure 4, we plot the trajectories for each of the two agents (black
and grey lines) in (x, y) space, and in (x, y, a) space in the upper-right inset.
The parameter values are p = 1.25, q = 0.1, α = 104, ε = 10−6, D1 ≈ 2.857
and D2 ≈ 0.184. Again, the diffusion constants have the ratio D2/D1 =
0.9σc and the window of instability is centred on the fully coupled system
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Figure 4: Main: Trajectories of dyadic system in (x, y) space with unstable parameters.
Upper-right inset: Trajectories in (x, y, a) space. Lower-left inset: zoom of boxed region
in the main plot. Parameters described in the main text.
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via (9). The initial conditions are chosen near to the uniform equilibrium
x∗ = (x∗, y∗)T , specifically x1(0) = x∗ + 1.5× 10−4, x2(0) = x∗ − 1.5× 10−4,
y1(0) = y∗ − 1× 10−6, y2(0) = y∗ + 1× 10−6; the initial coupling strength is
a(0) = 0.1. This system is numerically stiff—on each cycle, trajectories get
very close to the equilibrium x∗ and the invariant planes a = 0 and a = 1—
thus very low error tolerances are necessary in order to accurately resolve the
trajectories.

The mechanisms driving the near cyclic behaviour illustrated in Figure 4
are qualitatively similar to those described in Section 2.1, but the present case
is much simpler since the coupling constant, a, is a scalar. If we consider
a as a parameter in the attitudinal dynamics (10–13), then a Turing insta-
bility occurs as a pitchfork bifurcation at some a = a∗, where 0 < a∗ < 1.
The equilibria at (x, a) = (x∗, 0) and (x∗, 1) are both saddle-foci, where
the unstable manifolds are respectively parallel to the a-axis and entirely
within the attitudinal state space, x. Near to the (x∗, 1) equilibrium, a given
trajectory tracks the unstable manifold of (x∗, 1) in one of two opposing di-
rections, the choice of which is sensitively dependent on its earlier position
when a ≈ a∗. The combination of this sensitivity together with the spiral
dynamics around the unstable manifold of (x∗, 0), leads to an orbit switching
sides unpredictably on each near-pass of (x∗, 1) (c.f. the top-right inset of
Figure 4). The mechanism by which this chaotic behaviour arises is not stan-
dard (e.g. via a Shilnikov bifurcation or homoclinic explosion) and warrants
its own study, which we address in an article currently in preparation.

4. Conclusions

We have proposed a new modelling framework to describe the evolution
of sub-conscious attitudes within social groups. We based this framework
on the fundamental mechanisms of homophily and social influence, but it
differs from previous approaches in two respects. Firstly, we have focused on
sub-conscious attitudes, where it is natural to consider dynamics described
by a class of activator-inhibitor processes. Secondly, we have formulated a
deterministic system, enabling us to highlight (via mathematical analysis and
simulation) the mechanisms driving dynamical phenomena. Specifically, we
have illustrated that the tension between Turing instability and the evolving
network topology gives rise to behaviour that at the system level is qualita-
tively predictable — sub-group formation and dissolution — yet at the level
of individual agent journeys is entirely unpredictable. We point out that a
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stochastic model based on similar principles to those described in this paper
is presented in [47], where qualitatively similar dynamical phenomena are
also observed. Thus we might conclude that even if stochasticity is entirely
absent, the mechanisms that govern human behaviour seem to give rise to
unpredictable dynamics.

5. Discussion

While we have differentiated our modelling framework from other models
of attitudinal dynamics [39, 27, 34], we now discuss our findings in the context
of more general cultural models and cultural polarisation.

Current interest in cultural models largely stems from the work of Ax-
elrod [39], who demonstrated that local convergence could lead to cultural
polarisation. This topic has particular resonance in our digital society: will
global connectivity accelerate a descent into monoculture, or can diversity
persist? Models such as Axelrod’s provide us with an optimistic outlook,
suggesting that even the most basic mechanisms that model social influence
and homophily can lead to cultural diversity. But by no means is there
presently a completely satisfactory understanding of this phenomena. The
polarised states of the Axelrod model are fragile; even low rates of random
perturbations to cultural traits can reinstate global monoculture [41]. Thus
additional dynamical rules have been investigated in this context. The vari-
ant of the Axelrod model proposed by Centola et al. [27] allows agents to
disassociate themselves from neighbours that have no similar traits and se-
lect a new neighbour at random. Similarly, a number of adaptive network
models of opinion dynamics have also found absorbing polarised states, in
which groups with differing opinions are completely disconnected [16, 17, 20].
Such polarised states seem artificial and we conjecture that a form of cultural
drift, characterised by random rewiring of a small number of edges, would
destabilise these states.

This touches on another key issue: in the absence of noise, the mecha-
nisms employed by cultural dissemination models typically reduce diversity.
It is not surprising then that these types of models can be perturbed in such
a way that the eventual result is monoculture. An approach that allows di-
versity to increase has been suggested by Flache and Macy [34]. They model
social influence via diffusion, whereby an agent adjusts their cultural state,
described by a vector of continuous real variables, according to a weighted
sum of the differences between their state and their neighbours’. The weights
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are dynamic and their evolution is driven by homophily. In some sense, the
corresponding elements of our model are like a continuous-time version of the
Flache and Macy model. However, Flache and Macy consider the weights
embedded on a clustered network and, more importantly, allow their weights
to be negative, representing xenophobia. It is this feature that allows diver-
sity to both decrease and increase via diffusion and convergence respectively.
The effects of cultural drift on polarised states in the Flache and Macy model
have not been investigated in detail, but perturbations can cause agents to
switch groups [34] and so we would expect that sustained noise would erode
smaller groups. Monoculture is also a stable fixed point of their model.

The key element that differentiates our model is that agents’ cultural
states have an activator-inhibitor dynamic that is independent of other agents.
The presence of diffusion allows for Turing instability and hence means that
diversity can increase. Moreover, we can identify regions in which global
monoculture is unstable. For fixed or slowly evolving networks, instability
gives rise to stable ‘Turing patterns’ [46], which could be interpreted as cul-
turally polarised states. However, one would expect inter-group connections
to be weaker than intra-group connections within polarised states. But if ho-
mophily dissolves such inter-group ties then the patterned or polarised states
can no longer be stable, since it is precisely the differences in culture that
balance individuals’ attitudinal dynamics with diffusion. If non-trivial stable
equilibria were to exist in our model, they would involve a delicate balance
of cultural differences within the switching terms. However, we have seen
no evidence of this occurring in numerical simulations. Thus in its present
form, sub-group formation and polarisation are transient phenomena in our
model.

It is possible however that extensions to our model could produce stable
polarised states. For example, introducing agent heterogeneity, in the form of
distinct uncoupled equilibria, offers some promise. Agents could then adopt a
state close to their uncoupled equilibrium, allowing distinct groups to form,
but Turing instability could still destabilise the monocultural equilibrium.
Alternatively, the network evolution equations could include higher order
effects such as edge snapping [48] or triangulation. These ideas will be inves-
tigated further in follow-up work and we hope that our model may provide
a new paradigm from which to explore cultural polarisation phenomena.
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