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Hybrid numerical-asymptotic approximation for high frequ ency
scattering by penetrable convex polygons
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Abstract: We consider time-harmonic scattering by penetrable convex polygons, a Helmholtz transmis-
sion problem. Standard numerical schemes based on piecewise polynomial approximation spaces become
impractical at high frequencies due to the requirement that the number of degrees of freedom in any ap-
proximation must grow at least linearly with respect to frequency in order to represent the oscillatory
solution. High frequency asymptotic methods on the other hand are non-convergent and may be insuffi-
ciently accurate at low to medium frequencies. Here, we design a hybrid numerical-asymptotic boundary
element approximation space that combines the best features of both approaches. Specifically, we com-
pute the classical geometrical optics solution using a beam tracing algorithm,and then we approximate
the remaining diffracted field using an approximation space enriched with carefully chosen oscillatory
basis functions. We demonstrate via numerical simulations that this approach permits the accurate and
efficient representation of the boundary solution and the far field pattern.

Keywords: Helmholtz transmission problem, high frequency scattering, numerical-asymptotic approxi-
mation, boundary integral equation method

1 Introduction

The scattering and absorption of time-harmonic electromagnetic and acoustic waves by penetrable (i.e. partially
transparent) scatterers arises in numerous applications of mathematical and physical interest, for example the
scattering of light waves by atmospheric particles such as ice crystals and aerosols (see, e.g., Baran (2012)).
When both the penetrable scatterer and the exterior medium ofpropagation are homogeneous, a natural ap-
proach is to reformulate the problem as a system of integral equations that hold on the boundary of the scatterer.
This replaces a problem on an unbounded domain with one on a bounded domain of reduced dimension. The
study of boundary integral equation (BIE) formulations forsuch problems, and their numerical solution (the
Boundary Element Method (BEM), often called the Method Of Moments in the electromagnetic community),
has a long history. Single smooth penetrable scatterers have been studied by, e.g., Kress & Roach (1978),
Kleinman & Martin (1988), Zinn (1989), Rapún & Sayas (2006), Doḿınguez et al. (2008), Hsiao & Xu (2011),
Kleefeld (2012), whilst Costabel & Stephan (1985) considered both smooth and polygonal scatterers, and Tor-
res & Welland (1993), Raṕun & Sayas (2008), Laliena et al. (2009), von Petersdorff (1989) and Hiptmair &
Jerez-Hanckes (2012) have considered Lipschitz domains, the latter two describing formulations for multiple
penetrable scatterers.

All of the numerical approaches listed above suffer howeverfrom the well known limitation (common to
all conventional numerical methods for wave scattering simulations implemented using piecewise polynomial
approximation spaces) that a fixed number of degrees of freedom is required per wavelength in order to rep-
resent the oscillatory solution. This can lead to prohibitive computational expense when the scatterer is large
relative to the wavelength, as is often the case in applications. In this “high frequency” regime one can alterna-
tively appeal to asymptotic approximation techniques suchas Geometrical Optics (GO), Physical Optics (PO,
sometimes called the “Kirchoff approximation”) and the Geometrical Theory of Diffraction (GTD). However,
although such approximations have a low (in fact, often frequency-independent) computational cost, the price
one pays is that they are only accurate for “sufficiently high” frequencies. The question of how high the fre-
quency needs to be for “sufficient accuracy” depends on the particular scattering problem being considered, and
moreover is usually not known a priori. In many applications(in particular for the example of light scattering
by atmospheric particles mentioned above) there is a significant and important range of frequencies for which
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neither conventional numerical methods nor asymptotic methods give satisfactory results.
Thehybrid numerical-asymptotic(HNA) approach is a general methodology for scattering problems which

aims to fuse conventional numerical methods with high frequency asymptotics to create algorithms that are
controllably accurate and computationally feasible over the whole frequency range. The key idea is to enrich
the BEM approximation space with oscillatory functions, chosen using partial knowledge of the high frequency
asymptotic behaviour of the solution. More explicitly, oneseeks to approximate the unknown solutionv of the
relevant BIE using an ansatz of the form

v(x,k)≈ v0(x,k)+
M

∑
m=1

vm(x,k) exp(ikψm(x)), x ∈ Γ , (1.1)

wherek (the wavenumber) is proportional to the frequency of the waves, andΓ is the boundary of the scatterer.
In this representation,v0 is a known (generally oscillatory) function (derived from the high frequency asymp-
totics), the phasesψm are chosen a priori (again, using the high frequency asymptotics) and the amplitudesvm,
m= 1, . . . ,M, are approximated numerically using piecewise polynomials. The expectation is that ifv0 andψm,
m= 1, . . . ,M, are chosen wisely, thenvm(·,k), m= 1, . . . ,M, will be much less oscillatory thanv(·,k) and so
can be more efficiently approximated by piecewise polynomials thanv itself.

For a number of important classes of scattering problems theHNA approach has been shown to provide a
dramatic reduction in the number of degrees of freedom required at high frequencies compared to conventional
methods. However, to date the HNA approach appears to have been applied exclusively to problems of scatter-
ing by impenetrablescatterers, i.e. where perfectly-conducting, sound-soft(Dirichlet), sound-hard (Neumann)
or impedance (Robin) boundary conditions are imposed on theboundaryΓ . Moreover, until very recently
(Chandler-Wilde et al., 2012b), its successful application was restricted to convex impenetrable scatterers, for
which multiple re-reflections and questions of partial illumination need not be considered. For a comprehensive
historical and technical review of the HNA approach in the BEM setting the reader is referred to Chandler-Wilde
et al. (2012a).

The purpose of the current paper is to begin the challenging task of generalising the HNA methodology to
the case of so-called “transmission problems” forpenetrablescatterers, where the scatterer is a region in which
the wave speed differs from that of the background propagation medium. Specifically, we consider the two-
dimensional case where the scattering region is bounded by aconvex polygon. We also consider the possibility
that the interior medium may be absorbing. For an illustration of a typical solution see Figure 1. Our aim is to

(a) Without absorption (b) With absorption

FIG. 1: Real part of the total field for scattering of a plane wave by a penetrable equilateral triangle. Details of
the parameter values used in these examples are given in§4.

show how effective HNA approximation spaces can be constructed for this problem, and moreover to demon-
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strate, by comparison with an “exact” reference solution (computed using a conventional BEM with a large
number of degrees of freedom), that these HNA approximationspaces can approximate the highly oscillatory
solution of the transmission problem accurately and efficiently, even at high frequencies. The development of
an HNA BEM based on these approximation spaces will be reported separately (Groth et al., 2013).

The main difficulty in the generalisation of the HNA methodology to the penetrable case is that the high
frequency asymptotic behaviour is significantly more complicated than in the impenetrable case. In particular,
the boundary of the scatterer represents the interface between two media with different wave speeds, and hence
two different wavenumbers, and we expect to need to modify the ansatz (1.1) to include terms oscillating at both
wavenumbers. In addition to the phenomena of reflection and diffraction that occur in the impenetrable case, in
the penetrable case we observe a new phenomenon,refraction, which occurs when a wave propagating in the
exterior medium is transmitted into the scatterer and vice versa. One key difficulty this presents is that a wave
propagating inside the scatterer can undergo multiple (in fact, infinitely many) internal reflections/diffractions
(this is described in more detail in§3). We therefore expect that, in order forvm, m= 1,2, . . ., to be non-
oscillatory, we would need to consider infinitely many different phasesψm. (This is in contrast to the case of
scattering by sound-soft convex polygons considered in Chandler-Wilde & Langdon (2007) and Hewett et al.
(2012), where the high frequency behaviour can be completely captured using just two phase functions, i.e.
M = 2 in (1.1), corresponding to waves travelling clockwise andanticlockwise around the boundary.) This
complicates the development of an ansatz of the form (1.1) for the transmission problem, because to create a
viable numerical algorithm we have to choose only a finite number of these phases. Depending on the refractive
index (the ratio of the interior to exterior wavenumbers), at each reflection/diffraction the amplitude of the
reflected wave decreases, and hence, as we will see in§4, truncating a series of re-reflections/re-diffractions
after a few terms (i.e. including only a small number of phases) is often sufficient to achieve an excellent
approximation of the true solution.

Moreover, the higher the absorption of the interior medium,the faster the decay of the amplitude of waves
passing through the scatterer, and, as a result, our HNA approximation spaces are more accurate at higher
absorptions, as we will see in§4. Indeed, for high absorption in the scatterer, a transmission problem can
be approximated by an appropriate exterior problem with impedance boundary condition (see, e.g., Antoine
& Barucq (2005) or Haddar et al. (2005) for details). The effectiveness of the HNA approach for scattering
by convex polygons with impedance boundary conditions was demonstrated in Chandler-Wilde et al. (2012c),
where it was shown that an approximation space could be constructed for which the number of degrees of
freedom required to achieve a prescribed level of accuracy for the best approximation grew only logarithmically
with respect to frequency (compared to at least linear growth for conventional approximation spaces). Thus the
HNA approach has been shown to work well for the transmissionproblem in the high absorption limit, with our
current paper focusing on extending those ideas to general absorptions and frequencies.

Another key difficulty is that the high frequency asymptotictheory for penetrable scatterers is not nearly
as well understood as for the impenetrable case. In particular, there is no known closed-form analytical (or
even asymptotic) solution to the canonical problem of diffraction by a penetrable wedge, despite many attempts
to derive one (see, e.g., Meister et al. (1994), Rawlins (1999), Budaev & Bogy (1999), Antipov & Silvestrov
(2007)). This means that we do not have a fully-developed GTDfor penetrable scatterers from which to infer the
correct choice of phasesψm in our HNA ansatz (1.1). Our approach in this paper chooses phase functions based
on heuristic generalisations of the asymptotic theory (GO and GTD) for the impenetrable case, and confirms the
validity of these choices via a series of numerical examples. In contrast to classical asymptotics, we do not seek
a complete representation of the high frequency behaviour of the solution, rather we just seek information about
the phase; this enables the construction of our hybrid numerical-asymptotic approximation space, with the non-
oscillatory amplitudes (vm in (1.1)) being approximated by standard piecewise polynomials on appropriately
graded meshes.

Problems of the type considered in this paper have been studied widely in the electromagnetics commu-
nity, where the state of the art in computational methods grounded in high frequency asymptotics appears to be
the so-called physical-geometric optics hybrid (PGOH) method detailed in Bi et al. (2011) (building on earlier
work in Yang & Liou (1995, 1996, 1997)). The PGOH approach is essentially a generalised PO (or Kirchoff)
approximation, being based on the classical boundary integral representation formula for the solution of the
scattering problem (cf. (2.6)-(2.7) below), with the (unknown) Cauchy data being replaced by its GO approxi-



4 of 26 S. P. GROTH, D. P. HEWETT, S. LANGDON

mation. This corresponds to using only the termv0 in the ansatz (1.1) (or more accurately the termvgo in the
generalised ansatz (3.1)–(3.2) which we introduce in§3). Our approach is considerably more ambitious, in that
our HNA approximation space (through the inclusion of the other terms in (1.1) (corresponding tovd in (3.1)))
also captures diffraction effects directly in the approximation of the boundary solution. A result is that, whereas
the PGOH approach is limited to high frequency (and cannot offer controllable accuracy for fixed frequency),
our approximation space is effective across the frequency spectrum (see§4).

An outline of the paper is as follows. We begin in§2 by stating precisely the scattering problem to be solved
and detailing its reformulation as a boundary integral equation. In §3 we describe our HNA approximation.
The first step is to compute the GO approximation, i.e. the leading order termv0 in (1.1), and we describe
our approach (a beam tracing algorithm) for doing this for a convex polygonal scatterer of arbitrary absorption
in §3.1. A key ingredient of the algorithm is the solution of the canonical problem of scattering of an incident
plane wave by a planar interface between two absorbing mediaof different wavenumbers. This classical problem
has been studied by a number of authors (see, e.g., Dupertuiset al. (1994), Chang et al. (2005), Yang & Liou
(2009)) but there does not seem to be a definitive reference suitable for our purposes. Indeed, we believe that
Chang et al. (2005) and Yang & Liou (2009) contain fundamental errors in certain formulae, and Dupertuis et al.
(1994) does not provide a complete prescription of how to make various important sign choices. We therefore
provide a complete derivation of the solution to this problem in the appendix.

In §3.2 we discuss how ideas from the GTD can be used to understandthe oscillatory behaviour of the
diffracted field in the penetrable scatterer, and we use thisknowledge to inform our choice of the phasesψm

in (1.1). We present two different levels of approximation,first just considering the effect of diffraction from
corners of the polygon onto adjacent sides (“ApproximationSpace 1”, described in§3.2.2), and then including
the higher order effect (in the sense of high frequency asymptotics) of diffraction from corners onto non-adjacent
sides (“Approximation Space 2”, described in§3.2.3). We put these approximation spaces to the test in§4, by
performing a least squares fit to a reference solution obtained using a standard BEM. The results of this fit
for different levels of absorption and a range of wavenumbers suggest that, compared to GO, a significant
improvement in accuracy can be achieved with a very modest number of degrees of freedom. Moreover, for a
fixed number of degrees of freedom the relative error in our best approximation does not grow significantly as
frequency increases.

2 Problem statement

We consider the two-dimensional problem of scattering of a time-harmonic incident plane wave

ui(x) := eik1di ·x (2.1)

by a penetrable convex polygon. Herek1 > 0 is the wavenumber in the medium surrounding the polygon,x =
(x1,x2) ∈R

2, anddi ∈R
2 is a unit direction vector. LetΩ2 denote the interior of the polygon, letΩ1 :=R

2\Ω2

denote the exterior unbounded domain, and letΓ = Γ1∪Γ2∪ . . .Γns denote the boundary of the polygon where
ns is the number of sides andΓj , j = 1, . . . ,ns, are the sides of the polygon, which we label in an anticlockwise
direction. The corners of the polygon are similarly labelled P1, . . . ,Pns, with Γj , j = 1, . . . ,ns, being the side
between the cornersP j andP j+1 (with the conventionPns+1 ≡ P1). The boundary value problem (BVP) we
wish to solve is: given the incident fieldui , determine the total fieldu1 in Ω1 andu2 in Ω2 such that, withk2

denoting the wavenumber inside the polygon andn denoting the outward unit normal toΓ ,

∆u1+k2
1u1 = 0, in Ω1, (2.2)

∆u2+k2
2u2 = 0, in Ω2, (2.3)

u1 = u2 and
∂u1

∂n
=

∂u2

∂n
, onΓ , (2.4)

and thescattered field us := u1−ui satisfies theSommerfeld radiation condition, that

∂us

∂ r
(x)− ik1us(x) = o(r−1/2), asr := |x| → ∞. (2.5)
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We shall assume throughout thatk1 > 0 and thatk2 ∈ C, with Re[k2] > 0 and Im[k2] > 0; when Im[k2] > 0
the scatterer is partially absorbing. The unique solvability of this BVP is well known (see, e.g., Laliena et al.
(2009, Proposition 2.1 and Corollary 3.4), which follows from results in Costabel & Stephan (1985) and Torres
& Welland (1993), and also the related result Marmolejo-Olea et al. (2012, Corollary 8.5)).

Now we state a BIE formulation for (2.2)–(2.5). Note that, inthis paper, we only actually solve this BIE
(using a standardhp-BEM) in order to compute reference solutions for our examples in§4. The main reason for
including this here is as a motivation for why we want to understand the approximation properties of the bound-
ary solution (as mentioned in§1, we will describe a BEM based on the HNA approximation spaceproposed in
this paper in Groth et al. (2013)). Ifu1 andu2 satisfy the BVP, then a form of Green’s representation theorem
holds, namely (cf., e.g., Chandler-Wilde et al. (2012a, Theorems 2.20 and 2.21))

u1(x) = ui(x)+
∫

Γ

(

u1(y)
∂Φ1(x,y)

∂n(y)
−Φ1(x,y)

∂u1(y)
∂n(y)

)

ds(y), x ∈ Ω1, (2.6)

u2(x) =

∫

Γ

(

Φ2(x,y)
∂u2(x)
∂n(y)

−u2(y)
∂Φ2(x,y)

∂n(y)

)

ds(y), x ∈ Ω2, (2.7)

whereΦ j(x,y) := (i/4)H(1)
0 (k j |x−y|), j = 1,2, are the fundamental solutions of the Helmholtz equations(2.2)

and (2.3), respectively, withH(1)
ν denoting the Hankel function of the first kind of orderν . Henceforth we shall

denoteu1 andu2 onΓ simply byu sinceu1 = u2 onΓ and, similarly,∂u1/∂n and∂u2/∂n onΓ will be denoted
simply by∂u/∂n.

Using the standard jump relations for layer potentials (cf.Chandler-Wilde et al. (2012a, p.115)) it follows
that the unknown boundary datav := (u,∂u/∂n) satisfies the following BIE:

Av= f , (2.8)

where

A=

(

I +D2−D1 S1−S2

H2−H1 I +D′
1−D′

2

)

, f =

(

ui

∂ui/∂n

)

.

HereI is the identity operator andSj , D j , D′
j , H j , for j = 1,2, are, respectively, the single-layer, double-layer,

adjoint double-layer and hypersingular integral operators defined forφ ∈ L2(Γ ) by

Sjφ(x) :=
∫

Γ
Φ j(x,y)φ(y)ds(y), D jφ(x) :=

∫

Γ

∂Φ j(x,y)
∂n(y)

φ(y)ds(y),

D′
jφ(x) :=

∫

Γ

∂Φ j(x,y)
∂n(x)

φ(y)ds(y), H jφ(x) :=
∂

∂n(x)

∫

Γ

∂Φ j(x,y)
∂n(y)

φ(y)ds(y).

Our BIE (2.8) is similar to that in Colton & Kress (1983,§3.8) (where only smooth scatterers are considered),
and also to that proposed in Torres & Welland (1993) (albeit for an indirect method, in which the unknowns are
non-physical “densities”, rather than the boundary data itself). By the well-known mapping properties of the
integral operators (cf., e.g., Chandler-Wilde et al. (2012a, Theorems 2.17 and 2.18)),

A : Hs+1/2(Γ )×Hs−1/2(Γ )→ Hs+1/2(Γ )×Hs−1/2(Γ )

is a bounded operator for all−1/26 s6 1/2. In particular,A : H1(Γ )×L2(Γ )→ H1(Γ )×L2(Γ ) is bounded.
But alsoA : L2(Γ )×L2(Γ )→ L2(Γ )×L2(Γ ) is bounded because the differenceH2−H1 is bounded (in fact,
compact) fromL2(Γ ) to L2(Γ ) (see, e.g., Torres & Welland (1993, Lemma 6.2(vi))).

Whereas for the general transmission BVP we would only have that the trace ofu was inH1/2(Γ ) and
∂u/∂n in H−1/2(Γ ), here the extra smoothness of the solution follows from the smoothness of the incident
plane wave (this is analogous to the case of a bounded impenetrable scatterer, see Chandler-Wilde et al. (2012a,
Theorem 2.12)). Specifically, it follows from (2.1) thatf ∈H1(Γ )×L2(Γ ). The invertibility ofA from H1(Γ )×
L2(Γ ) → H1(Γ )× L2(Γ ) follows from a modification of the argument in Torres & Welland (1993, Proof of
Theorem 7.2) and hence the solutionv of (2.8) is inH1(Γ )×L2(Γ ), and hence inL2(Γ )×L2(Γ ). This is the
setting in which we work in this paper.
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We remark that other BIE formulations of the transmission problem are also possible - see, e.g., Costabel &
Stephan (1985), Rapún & Sayas (2008), Laliena et al. (2009), Hsiao & Xu (2011). Moreover, the approximation
results we derive in the following sections are equally relevant for any direct BIE formulation, not just the
particular one (2.8) described above.

3 Hybrid numerical-asymptotic approximation space

Our proposed high frequency HNA approximation space for theunknownv = (u,∂u/∂n) in the BIE (2.8) is
constructed in two stages. First we decompose

v(x) = vgo(x)+vd(x), x ∈ Γ , (3.1)

wherevgo = (ugo,∂ugo/∂n) is the GO approximation tov, with the remaindervd = (ud,∂ud/∂n) being inter-
preted as the diffracted field. The GO approximationvgo represents the leading-order behaviour at high frequen-
cies, and takes into account the basic GO phenomena of reflection and refraction by the edges of the polygon. It
can be computed analytically using a beam-tracing algorithm, which we describe in more detail in§3.1. It isvgo

which we take as our known leading order behaviourv0 in (1.1). Second, we aim to approximate the remaining
diffracted fieldvd using an ansatz of the form

vd(x)≈
M1

∑
m=1

v1,m(x,k1) exp(ik1ψ1,m(x))+
M2

∑
m=1

v2,m(x,k2) exp(ik2ψ2,m(x)), (3.2)

which generalises the standard HNA ansatz (1.1) to the case where two different wavenumbers are present. As
will be discussed in§3.2, the phasesψ j,m, j = 1,2, will be chosen based on heuristic high frequency asymptotics,
and the amplitudesv j,m, j = 1,2, will be approximated numerically by piecewise polynomials on appropriately
graded meshes. The efficacy of our proposed approximation spaces will be demonstrated in§4.

3.1 Geometrical optics approximation vgo

In the GO approximation, a ray from the incident field striking a point on a smooth portion of the boundary
Γ gives rise to areflectedray propagating back into the exterior domainΩ1 and arefractedray, propagating
into the interior of the polygonΩ2. Since we assume thatΩ2 is convex, the reflected ray propagates away
to infinity without re-intersecting the boundaryΓ . The refracted (ortransmitted) ray, on the other hand, does
re-intersectΓ , and if this intersection occurs on a smooth portion ofΓ then further reflection/refraction occurs,
with a refracted ray propagating out of the polygon into the exterior domain and an internally-reflected ray
propagating back into the polygon. This internally-reflected ray can, in turn, be re-reflected/refracted, and this
process continues indefinitely, giving an infinite number ofinternally-reflected rays, potentially all propagating
in different directions.

The directions of the reflected/refracted rays and the amplitudes/phases of the fields propagating along
them are governed by the well-known laws of reflection and refraction for a plane wave incident on an infinite
transmission interface (i.e. the Fresnel formulae and Snell’s Law). However, although these laws are completely
classical in the case when both propagation media are non-absorbing (see, e.g., Born & Wolf (1997)), the
generalisation to the case where one or more of the media are absorbing seems to have generated a certain
amount of confusion in the literature. As explained in§1, for completeness and to correct some mistakes in
earlier works we provide a full derivation of the reflection/refraction laws in the general case of transmission
between two absorbing media in Appendix A.

A number of numerical algorithms have been presented for computing the GO approximation for the trans-
mission problem using the Fresnel formulae and Snell’s law (see, e.g., Yang & Liou (1995), where the 2D
problem of this paper is considered, and also Bi et al. (2011)and Macke et al. (1996), where a 3D analogue is
studied). Many such algorithms (in particular, Yang & Liou (1995) and Macke et al. (1996)) adopt a ray-based
approach in which the incident wave is discretised into a large number of rays, each of which are traced indi-
vidually as they reflect/refract within the scatterer, withthe algorithm stopping after a certain (user-specified)
number of internal reflections. This approach is general, inthat it can be applied to smooth scatterers as well as
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to polygons/polyhedra. For polygons/polyhedra, however,the fact that the boundaryΓ is composed of straight
sides/faces means that the GO approximation consists of a collection of beamsof rays propagating in the same
direction and with the same amplitude. Each beam can be thought of as a plane wave with an associated propa-
gation direction and amplitude, restricted to a certain subset ofR2. As a result, one does not need to discretise
the incident wave into a large number of rays; rather, one need only compute the propagation direction and
amplitude of the plane wave associated with each beam, and record the position of the “limiting rays” which
form the edges of the beam. Once the algorithm has been run once for a given geometry and incident direction,
the GO approximationvgo is then readily computed at any observation point on the boundary, and for any fre-
quency, by simply summing over the contributions from each of the beams illuminating that observation point.
This is the approach we adopt in this paper. We note that a similar approach was proposed in Groth (2011,
Chapter 5), and for the 3D problem in Bi et al. (2011).

Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

ui

(a) Primary beams fromΓ1

Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

ui

(b) Primary beams fromΓ2

Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

ui

(c) Primary beams fromΓ3

Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

(d) Secondary beams arising from
transmitted beam in (a)

Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

(e) Secondary beams arising from
transmitted beam in (b)

Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

(f) Secondary beams arising from
transmitted beam in (c)

FIG. 2: Beam tracing in a hexagon. (a)-(c) show the primary reflected and transmitted beams arising from
the incidence ofui onto sidesΓ1-Γ3 respectively. (d)-(f) show the secondary beams arising from the internal
reflection and transmission to the exterior of the primary transmitted beams in (a)-(c) respectively. Note that in
each of (d) and (f) the rays associated with one of the transmitted beams point along the side - this corresponds
to total internal reflection (see§A.2.4).

As an illustration of the beam-tracing procedure, considerthe configuration in Figure 2 where a penetrable
hexagon is illuminated by a plane waveui(x) = eik1di ·x incident from the top left. In this case the incident wave
strikes three of the sides of the hexagon, generating three beams of reflected rays, which propagate away to
infinity, and three beams of transmitted waves, which propagate into the scatterer, as shown in Figure 2(a)–
(c). Each of these transmitted beams has associated with it aplane wave of the formaeik1(Dd+iEe)·x, where the
amplitudea, the propagation and decay direction vectorsd ∈R

2 ande∈R
2, and the constantsD > 0 andE > 0

are determined by the reflection/refraction laws presentedin Appendix A. Each beam is bounded by a pair
of limiting rays, which pass through the endpoints of the side of the polygon which generated the beam. Our
algorithm takes these limiting rays to be parallel to the propagation directiond, as illustrated in Figure 2 (but
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see the discussion in Remark 3.1 below). The algorithm then tracks these limiting rays as they propagate across
the interior of the scatterer, determines the points at which they re-intersect the boundary, and generates new
transmitted and internally-reflected beams as appropriate, with associated plane wave directions and amplitudes
again computed using the reflection/refraction laws in Appendix A. If the two re-intersection points of the
limiting rays with the boundary lie on different sides of thepolygon then multiple internally-reflected beams
will be produced. Figure 2(d)–(f) shows the two such internally-reflected beams arising from the re-reflection of
each of the three beams shown in Figure 2(a)–(c). The algorithm continues this process of internal re-reflection
until a (user-specified) stopping criterion is achieved. Inour experiments we stop tracking a beam when the
amplitude of the next re-reflected wave divided by the amplitude of the original incident wave falls below
machine precision. In our experiments this generally occurs after at most 50 orders of internal reflection (but
often much sooner). We emphasise that the computational cost of the beam-tracing algorithm is completely
independent of the wavenumber.

REMARK 3.1 For a beam with associated plane waveaeik1(Dd+iEe)·x, our algorithm takes the limiting rays
bounding the beam to be parallel to the propagation direction d. This is also the choice made in Bi et al.
(2011), and it certainly seems a natural choice when the plane wave has no decay (i.e. whenE = 0). But in
the general case (in particular in an absorbing medium) it isnot immediately obvious how to define the “ray
direction”, and hence where the “edges” of the beam should lie. What we are really asking, of course, is where
the shadow boundaries between transmitted and diffracted waves lie in the related canonical diffraction problem
of diffraction by an infinite absorbing transmission wedge (see§3.2.1 below). Given the lack of an exact (or
even asymptotic) solution for this infinite wedge problem (as discussed in§1), we cannot currently make any
further comment about this. But it is interesting to note that for the related (but simpler) problem of diffraction
of a general plane wave in a homogeneous absorbing medium by asound soft knife edge, for which an exact
solution is available in terms of a Fresnel integral, the correct location of the shadow boundary (defined to be the
Stokes lineacross which the incident field switches on/off) isnot parallel to the real propagation vector of the
plane wave beam. Rather, it is shifted somewhat in the direction of the imaginary propagation vector (Bertoni
et al., 1978). It would be interesting to see whether an analogous adjustment in our beam-tracing algorithm
improved the accuracy of the GO approximation, but we leave further investigation of this for future work.

3.2 Approximating the diffracted component vd

We now consider the approximation of the diffracted component vd by an HNA ansatz of the form (3.2). It
is perhaps helpful to briefly review the approach taken in Hewett et al. (2012) for the analogous impenetrable
problem of scattering by a sound soft convex polygon. In thiscase the HNA ansatz (1.1) (which involves
only one wavenumber) contains just two terms in the summation, with phasesψ±(x(s)) = ±s, wheres is
arc length measured anti-clockwise around the boundary. These correspond respectively to diffracted waves
travelling anticlockwise and clockwise around the boundary. It is proved rigorously in Hewett et al. (2012) that
this simple ansatz, when combined with piecewise polynomial approximation of the associated non-oscillatory
amplitudesv±, completely captures the oscillatory behaviour of the boundary solution. The remarkable success
of the HNA methodology in this case is due to two factors. Firstly, the high frequency asymptotic behaviour
of the solution to the canonical problem of diffraction by aninfinite sound soft wedge is known - in fact there
is an exact closed-form solution available (see, e.g., Bowman et al. (1969,§6.2)). This allows one to pick out
the phases required to capture the primary diffracted waves. Secondly, the only multiple scattering effects in
this case are the multiply-diffracted waves propagating around the boundary of the polygon. But each of these
waves has one of the same two phasesψ± already included in the approximation space, so their contribution
can be picked up in the amplitudesv±.

By contrast (as discussed in§1), no exact (or even asymptotic) solution has yet been derived for the analo-
gous canonical problem of diffraction by a penetrable wedge. Furthermore, for the penetrable case the multiply-
scattered field is extremely complicated, featuring multiple reflections/refractions of the incident and diffracted
fields, with potentially infinitely many different phases toconsider in the approximation ofvd. Our approach in
this paper is to first determine some qualitative information about the high frequency behaviour of the solution
of the canonical wedge problem, and then to apply heuristic arguments, motivated by the basic principles of
GTD for the impenetrable case, to design HNA approximation spaces incorporating just a small number of the
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most important phases. For a detailed exposition of the GTD for the impenetrable case, we refer the reader to,
e.g., Keller (1962), James (1986), or Borovikov & Kinber (1994).

3.2.1 Diffraction by a penetrable wedge

The canonical problem under consideration is the diffraction of a time-harmonic plane wave propagating in a
medium of wavenumberk1 by an infinite wedge of a second medium of wavenumberk2 6= k1, with the total
field and its normal derivative being continuous across the interface between the two media. For simplicity of
exposition, we restrict attention to the casek1,k2 > 0, and in particular to the case 0< k1 < k2 (although the
case 0< k2 < k1 can be dealt with similarly). Using the well-known correspondence (see, e.g., Borovikov &
Kinber (1994, p. 351)) between the singularities of solutions of the time-dependent wave equation and the high
frequency asymptotic behaviour of solutions of the Helmholtz equation, one can obtain qualitative information
about the high frequency behaviour of the frequency domain wedge problem by considering the analogous time
domain problem of diffraction of an incident plane pulse in amedium of wave speedc1 by a wedge of wave
speedc2, with 0< c2 < c1. Here one can determine the position of the leading wavefronts associated with each
of the components of the scattered field by appealing to Huygen’s principle.

α

c= c1

c= c2 < c1

O

(a) t < 0

c= c1

c= c2 < c1

O

N

P

Q
R

l

S T U V

W
l′

X

Y

Z

(b) t > 0

FIG. 3: Wavefront diagrams for time-domain diffraction by a penetrable wedge, in the case wherec2 < c1 and
α > cos−1(c2/c1). The incident wavefront is assumed not to be in contact with the wedge fort < 0 and to arrive
at the pointO at timet = 0. The dotted lines in (b) indicate shadow boundaries, and the thick dashed arrow
represents a ray path associated with the lateral wavefrontPT.

An illustration of the resulting wavefront diagrams for oneparticular scattering configuration is shown in
Figure 3. Here we have assumed that the incident wavefront isnot in contact with the wedge before it reaches
the diffracting corner (see Figure 3(a)). After it reaches the corner, the wavefront structure shown in Figure 3(b)
emerges. The incident wavefront now has two components (intersecting the wedge atN andX in Figure 3(b)),
and there exist two planar reflected wavefronts (NZ andXY) and two planar transmitted wavefronts (NU and
XR). The diffracted wavefronts in the exterior and interior are segments of the circles centered atO of radiusc1t
(PZYW) andc2t (QRSTUV) respectively (at timet > 0). In addition, Huygen’s principle predicts the existence
of so-calledlateral waves(sometimes known ashead wavesor bow waves), with associated planar wavefronts
(PT andWS). These waves can be associated with diffracted rays propagating along the exterior surface of the
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wedge at speedc1, which shed new rays propagating into the interior medium. Atypical ray path is shown as a
thick dashed arrow in Figure 3(b). Similar waves also appearin the scattering of the field due to a point source
by a planar interface (cf. Brekhovskikh (1960, Chapter IV) and Jones (1964)). We note that Figure 3 shows only
the simplest possible case, and more complicated wavefrontconfigurations are possible. For example, for small
enough wedge anglesα the transmitted and lateral waves generated by one face of the wedge can be internally
reflected by the other face, generating additional wavefronts. A sufficient and necessary condition for there to
be no such internal reflection of the lateral waves is thatα > cos−1(c2/c1).

In the original frequency domain wedge problem, we expect the structure of the field far from the corner to
be analogous to that described above. That is, in the exterior we expect: an incident plane wave; two reflected
plane wave beams, one bounded by the radial lines extendingON andOZ, and another bounded by the radial
lines extendingOX and OY; a diffracted wave with phase function eik1r , wherer represents radial distance
from the cornerO. In the interior we expect: two transmitted plane wave beams; a diffracted wave with phase
function eik2r ; lateral waves with the phase functions eik2l·x and eik2l′·x, wherel, l′ are the direction vectors shown
in Figure 3(b).

3.2.2 Approximation Space 1 - including diffraction from adjacent corners

We now use the qualitative analysis of the wedge diffractionproblem presented in§3.2.1 to develop an HNA
ansatz of the form (3.2) for the diffracted componentvd in the decomposition (3.1) of the solution to (2.8). In
principle, in order to completely capture the oscillatory behaviour we would have to include phases correspond-
ing to: (i) the diffracted and lateral waves emanating from each corner of the polygon, as described in§3.2.1;
(ii) the (infinitely many) multiple internal re-reflectionsof these waves. However, in§4 we present convincing
numerical evidence that an accurate and efficient approximation tovd can be achieved with only a small number
of carefully chosen phase functions. In fact we shall show results for two choices of approximation space for
the numerical approximation ofvd. Both incorporate phases relating to the diffracted waves emanating from
each of the corners of the polygon. Phases associated with the lateral waves and the multiple re-reflections of
the diffracted and lateral waves are not included, but we give some ideas about how these could be included in
future work in§3.2.4.

Our first approximation space (referred to as “Approximation Space 1” in§4) is defined as follows. On each
side of the polygon we include phases corresponding to diffracted waves emanating from the corners adjacent
to that side. That is, on each side of the polygon the phase functions in the approximation space are

{eik1s,e−ik1s,eik2s,e−ik2s}, (3.3)

wheres is arc length measured anticlockwise around the boundary. The phase functions (3.3) describe waves of
both wavenumbers, propagating in both directions (clockwise and anticlockwise) around the boundary. This is
the obvious generalisation of the approximation space usedin Hewett et al. (2012) for the sound soft case, and
leads to the following HNA ansatz for the total solutionv= (u,∂u/∂n):

v(x)≈ vgo(x)+v+1 (x)e
ik1s(x)+v−1 (x)e

−ik1s(x)+v+2 (x)e
ik2s(x)+v−2 (x)e

−ik2s(x), x ∈ Γ . (3.4)

Herev+1 , v+2 , v−1 , v−2 are amplitude functions which will be approximated by piecewise polynomials supported
on overlapping graded meshes, designed to capture the expected singularities at the corners of the polygon.
More precisely, on a typical sideΓj of the polygon,v+1 andv+2 are approximated on a common geometric mesh
graded towards the cornerP j , andv−1 andv−2 are approximated on a common geometric mesh graded towards
the cornerP j+1, as illustrated in Figure 4.

To describe in more detail the meshes we use, we consider the case of a geometric mesh on the interval
[0,L], L > 0, refined towards 0. The meshes for approximatingv+1 , v+2 , v−1 , v−2 on each side of the polygon
are constructed from this basic building block by straightforward coordinate transformations. Givenn> 1 (the
number of layers in the mesh) we letGn(0,L) denote the set of meshpoints{xi}n

i=0 defined by

x0 := 0, xi := σn−iL, i = 1,2, . . . ,n,
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v+1 eik1s, v+2 eik2s

v−1 e−ik1s, v−2 e−ik2s

P jP j+1

s

FIG. 4: Illustration of overlapping geometrically graded meshes used to approximate the amplitudes
v+1 , v+2 , v−1 , v−2 associated with the phase functions (3.3) on a typical sideΓj .

where 0< σ < 1 is a grading parameter. A smaller grading parameter represents a more severe grading - in all
of our experiments we takeσ = 0.15, as in Hewett et al. (2012). Given a vectorp ∈ (N0)

n, we letPp,n(0,L)
denote the space of piecewise polynomials on the meshGn(0,L) with the degree vectorp, i.e.,

Pp,n(0,L) :=
{

ρ : [0,L]→ C : ρ |(xi−1,xi) is a polynomial of degree less than or equal to(p)i , i = 1, . . . ,n
}

.

For reasons of efficiency and conditioning it is common to decrease the order of the approximating polynomials
towards the singularity. Specifically, in all of our experiments we use a “linear slope” degree vectorp with

(p)i :=

{

p−
⌊

(n+1−i)
n p

⌋

, 16 i 6 n−1,

p, i = n,

where the integerp> 0 is the highest polynomial degree on the mesh.
For simplicity we assume the same number of layers,n, in each of the graded meshes on the polygon. We

adopt an “hp” refinement approach (as in Hewett et al. (2012)) in which thenumber of degrees of freedom is
increased by increasing the polynomial degreep, while simultaneously refining the meshes. Specifically, inall
our experiments we taken= p+1. On each graded mesh we have at most(p/2n)(n2−n+2)+2n−1= (p2+
3p)/2 degrees of freedom defining the piecewise polynomials. Since we have four amplitudes to approximate
on each side, each of which has an associated graded mesh, thetotal number of degrees of freedom in the
approximation space is at most 2ns(p2+3p).

3.2.3 Approximation Space 2 - including also diffraction from non-adjacent corners

Our second approximation space (referred to as “Approximation Space 2” in§4) is constructed by supplement-
ing Approximation Space 1 with the phases corresponding to diffracted waves emanating from non-adjacent
corners. That is, on a given sideΓj of the polygon the phase functions in the approximation space are

{eik1s,e−ik1s,eik2s,e−ik2s,eik2r1, . . . ,eik2rns−2}, (3.5)

wherer i , i = 1, . . . ,ns−2 are the radial distances from the corners non-adjacent to the side in question (there
arens−2 such corners since the polygon is convex), and the ansatz (3.4) is supplemented by a sum

w1(x)eik2r1(x)+ . . .+wns−2(x)eik2rns−2(x), x ∈ Γ , (3.6)

where the amplitudeswi , i = 1, . . . ,ns−2, are approximated numerically by piecewise polynomials.
We expect the amplitudeswi to have a (possibly infinite) number of discontinuities, to compensate for the

discontinuities inherent in the GO approximation (where wecut off the plane wave beams sharply across the
beam boundaries). In principle one should therefore approximate eachwi on a mesh refined towards each
of these discontinuities. However, for simplicity we take into account only those discontinuities arising from
the lowest order GO terms, i.e. the primary transmitted waves. In the configuration illustrated in Figure 3(b)
the discontinuities in question are across the shadow boundaries (indicated by the dotted lines) extendingOR
andOU.

To approximate an amplitudewi we therefore proceed as follows. We start with a single element living on
the whole sideΓj . Then if (during the beam-tracing algorithm for computing the GO term) the corner associated
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with the radial distancer i produced any beam boundaries associated with primary transmitted beams, we check
whether these beam boundaries intersect the sideΓj . If they do, we put new mesh points at the intersection
points; see Figure 5 for an illustration of this procedure. Since there are at most two such beam boundaries, the
sideΓj gets subdivided into at most three elements. On each of theseresulting elements we approximatewi by
a single polynomial of degreep, wherep is the same as for the Approximation Space 1 amplitudes. Carrying
out this procedure for eachi = 1, . . . ,ns−2 adds at most 3(ns−2)(p+1) degrees of freedom on the sideΓj ;
extending the same procedure to all the other sides results in at most 3ns(ns− 2)(p+ 1) degrees of freedom
being added in total when we go from Approximation Space 1 to Approximation Space 2.

ui

Shadow boundary
P1

P2

P3 Γ3

Γ2 Γ1

(a)

ui

Γ3

Γ2 Γ1

Shadow boundary
P1

P2

P3

(b)

FIG. 5: Shadow boundaries in an equilateral triangle. Determining the mesh onΓ3 associated with the ap-
proximation of the amplitude of the diffracted term arisingfrom the non-adjacent cornerP2. Mesh points are
introduced at the locations of the shadow boundaries associated with the primary transmitted waves from sides
Γ1 andΓ2, as illustrated in (a) and (b) respectively. The resulting mesh onΓ3 has three elements.

3.2.4 Including other phase functions

We expect that even more accurate approximations could be obtained by including the effects of higher order
terms in the asymptotic approximation. Firstly, one could include phases associated with the lateral waves
associated with each corner of the polygon. Secondly, one could include phases associated with the (multiple)
internal reflection of (i) the diffracted waves and (ii) the lateral waves. The phases for (i) could be computed
using an image method (i.e. introducing “image corners” in anon-physical image domain outside the scatterer).
The phases for (ii) could be determined using a simple modification of the beam-tracing algorithm described
in §3.1. We do not consider these generalisations any further here.

4 Numerical examples

In the previous section, two approximation spaces (“Approximation Space 1”, defined in§3.2.2, and “Approx-
imation Space 2”, defined in§3.2.3) were proposed for the approximation ofvd (note that we use the same
approximation space for each component ofvd). In this section we demonstrate via various numerical examples
that using these to approximatev with just a small number of degrees of freedom, either via theansatz (3.4),
or else supplementing that further with (3.6), provides a significant improvement over GO. More precisely, our
results below demonstrate that, for all absorptions and wavenumbers tested, the best fit from Approximation
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Space 2 to bothu and∂u/∂n onΓ is at least 50% more accurate (and in many cases much better than this) than
the approximation achieved using GO alone, using fewer than200 degrees of freedom. We show further (in
Table 2 below) that for a fixed number of degrees of freedom therelative error in our best approximation from
Approximation Space 2 to bothud and∂ud/∂n does not grow significantly as frequency increases.

For each example considered below, we first obtain a reference solutionvref ≈ v by solving (2.8) using a
conventionalhp-BEM with a sufficient number of degrees of freedom to ensure that the relative error

‖v−vref‖L2(Γ )/‖v‖L2(Γ )

is of the order of 10−4. Henceforth, for ease of presentation we shall denote this reference solutionvref simply
asv. Next, we compute an approximation tovgo, following the procedure described in§3.1. Finally, a least
squares approach is employed to find the best fit from each of Approximation Spaces 1 and 2 tovd = v−vgo in
theL2 norm. This is carried out by discretising theL2 norm to be minimised using a large number of equally
spaced quadrature points on each side, and solving the resulting discrete least squares problem. We denote the
approximation tov achieved via this procedure using Approximation Spacej by Vj = (U j ,Wj), j = 1,2.

Throughout this section, we consider scattering by an equilateral triangle with side length 2π. We consider
four different incident angles, as shown in Figure 6, and we consider four different levels of absorption, governed
by the imaginary part of the refractive index. Specifically,the real part of the refractive index is taken to be 1.31
throughout, which is approximately that of ice, the scattering properties of which are of great interest in aspects
of meteorology and physics (see, e.g., Baran (2012)), as mentioned in §1 (note though that the techniques
presented are applicable to convex polygons of any shape andany refractive index). So, for any given exterior
wavenumberk1, the interior wavenumber isk2 = k1(1.31+ ξ i), with the value ofξ determining the level of
absorption . The total field (computed using our reference solution) for angle 4,k1 = 10, and forξ = 0 (no
absorption) andξ = 0.05 is shown in Figure 1.
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FIG. 6: Incident directions used in numerical experiments (angles 1–4 are equally spaced).

In Figure 7(a) we plot the real part ofud = u−ugo (computed from the reference solution),U1−ugo and
U2−ugo (the approximations toud using Approximation Spaces 1 and 2 respectively), fork1 = 20,ξ = 0.025,
and incident angle 4. On the two sides that are illuminated bythe incident wave (Γ1 andΓ2), the best fit is fairly
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accurate for each approximation space. However, onΓ3, the side in shadow, Approximation Space 2 provides a
much better fit. This is not surprising, since this space alsoincludes the effect onΓ3 of the diffracted wave from
P2, which, for this incident direction, is relatively stronger than the effects onΓ1 andΓ2 of the diffracted waves
from P3 andP1 respectively. Figure 7(b) shows the differencesu−U1 andu−U2, to better illustrate the quality
of the two fits.
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(a) Real part ofud, U1−ugo andU2−ugo on the boundary.
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(b) Real part of the difference between the reference solution and the best approximationsU1 andU2.

FIG. 7: Scattering by the triangle in Figure 6 withk1 = 20, ξ = 0.025, and incident angle 4. Heres represents
arc length measured anti-clockwise fromP1.

In Figure 8, we show the accuracy of the approximation tou using GO and each approximation space, for
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a range of values ofk1, for ξ = 0.05, and for angles 1, 2, 3 and 4. Here and throughout this section we take
p= 4 for both Approximation Spaces 1 and 2, as detailed in§3.2.2 and§3.2.3, giving a total number of degrees
of freedom of 168 for Approximation Space 1, and 193 for Approximation Space 2. All norms in Figure 8
(and in Tables 1 and 2) are approximations to‖ · ‖L2(Γ ) computed using a large number of evaluation points.
For small values ofk1, Approximation Space 2 provides a noticeably better fit thanApproximation Space 1,
and in each case both approximation spaces achieve a significant improvement over GO for all values ofk1,
with the error in the approximation using Approximation Space 1 being less than half that of GO alone, and
the approximation obtained using Approximation Space 2 being better still. Ask1 increases, the difference
between Approximation Spaces 1 and 2 becomes less noticeable, reflecting the faster decay of diffracted waves
propagating within the scatterer at higher frequencies. For angles 3 and 4, and for larger values ofk1, the errors
in our approximation are close to the accuracy of our reference solution, indicating that, in these cases, we are
capturing the oscillatory behaviour of the diffracted fieldextremely well using the phase functions (3.5).
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FIG. 8: Relative errors in approximations for fixed absorptionξ = 0.05i, varying incident angle.

Next, in Table 1 we consider varying absorption for incidentangle 4 and for a range ofk1. Forξ > 0.0125,
the relative errors achieved by Approximation Space 2 are less than 1% for all values ofk1 tested, and Ap-
proximation Space 1 performs only slightly worse, particularly for largerk1. Even for zero absorption, the error
achieved with Approximation Space 2 is of the order of 2%–3%,whilst the error with GO alone is of the order of
10% even for reasonably largek1. As the absorptionξ decreases, the importance of including the extra diffrac-
tion term in Approximation Space 2 becomes apparent. These results are very promising, in that they show that
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k1 ξ ||u−ugo||
||u||

||u−U1||
||u||

||u−U2||
||u||

|| ∂u
∂n−(

∂u
∂n )go

||
|| ∂u

∂n ||
|| ∂u

∂n−W1||
|| ∂u

∂n ||
|| ∂u

∂n−W2||
|| ∂u

∂n ||

5 0.05 1.88×10−1 1.66×10−2 2.57×10−3 1.56×10−1 1.62×10−2 1.97×10−3

10 0.05 1.37×10−1 1.03×10−2 1.35×10−3 7.76×10−2 1.03×10−2 1.26×10−3

20 0.05 1.00×10−1 8.41×10−4 3.72×10−4 5.60×10−2 1.53×10−3 1.35×10−3

40 0.05 7.25×10−2 2.23×10−4 2.20×10−4 4.04×10−2 1.04×10−3 1.04×10−3

80 0.05 5.19×10−2 2.58×10−4 2.58×10−4 2.88×10−2 7.69×10−4 7.69×10−4

160 0.05 3.69×10−2 2.31×10−4 2.31×10−4 2.05×10−2 6.49×10−4 6.49×10−4

5 0.025 2.19×10−1 3.03×10−2 5.53×10−3 1.55×10−1 2.94×10−2 4.14×10−3

10 0.025 1.54×10−1 4.09×10−2 4.49×10−3 9.87×10−2 4.41×10−2 3.73×10−3

20 0.025 1.10×10−1 1.15×10−2 2.00×10−3 6.35×10−2 1.12×10−2 2.22×10−3

40 0.025 8.09×10−2 7.01×10−4 3.37×10−4 4.58×10−2 1.19×10−3 1.04×10−3

80 0.025 5.85×10−2 3.42×10−4 3.41×10−4 3.30×10−2 7.69×10−4 7.69×10−4

160 0.025 4.19×10−2 2.80×10−4 2.80×10−4 2.35×10−2 6.44×10−4 6.44×10−4

5 0.0125 2.48×10−1 4.05×10−2 8.02×10−3 1.90×10−1 3.94×10−2 5.96×10−3

10 0.0125 1.84×10−1 7.88×10−2 9.46×10−3 1.35×10−1 8.07×10−2 7.69×10−3

20 0.0125 1.28×10−1 4.53×10−2 9.42×10−3 8.05×10−2 4.41×10−2 8.49×10−3

40 0.0125 9.13×10−2 1.05×10−2 2.66×10−3 5.03×10−2 1.01×10−2 2.56×10−3

80 0.0125 6.69×10−2 1.87×10−3 1.79×10−3 3.61×10−2 1.04×10−3 9.07×10−4

160 0.0125 4.84×10−2 7.52×10−4 7.52×10−4 2.60×10−2 6.68×10−4 6.68×10−4

5 0 2.57×10−1 5.30×10−2 1.16×10−2 2.30×10−1 5.17×10−2 8.57×10−3

10 0 2.15×10−1 1.43×10−1 1.95×10−2 1.99×10−1 1.49×10−1 1.60×10−2

20 0 1.79×10−1 1.48×10−1 2.82×10−2 1.65×10−1 1.47×10−1 2.25×10−2

40 0 1.50×10−1 1.34×10−1 3.07×10−2 1.39×10−1 1.31×10−1 2.37×10−2

80 0 1.25×10−1 1.17×10−1 3.17×10−2 1.17×10−1 1.13×10−1 2.30×10−2

160 0 1.04×10−1 1.00×10−1 2.81×10−2 9.80×10−2 9.58×10−2 2.07×10−2

Table 1: Relative errors in approximation ofu and∂u/∂n, using GO and each approximation space, for a range
of values ofk1, for incident angle 4 and for varying absorptionξ .

by including the phases associated with the “leading order”diffracted waves in our approximation space (i.e.
Approximation Space 2), we can obtain an accuracy that is suitable for many applications. By including further
phase functions corresponding to higher order internal reflections of these diffracted waves and also the lateral
waves (as mentioned in§3.2.4) we conjecture that it might be possible to achieve even higher accuracy in our
approximation, although of course that would be at the expense of requiring more degrees of freedom.

In order to compare the relative accuracy of our best approximations from Approximation Spaces 1 and 2
to the diffracted componentvd ask1 increases, in Table 2 we show the approximation errors relative to ud and
∂ud/∂n for incident angle 4 and for the four values ofξ . These results demonstrate that for a fixed number
of degrees of freedom the relative error in our best approximation from Approximation Space 2 does not grow
significantly as frequency increases. The same is also true for Approximation Space 1 forξ > 0.0125, but when
ξ = 0 Approximation Space 1 does not give good results at higher frequencies, highlighting the need to include
the effect of diffraction from non-adjacent corners (as is included in Approximation Space 2) in this case. This
suggests that the phase functions in the two approximation spaces are correctly capturing the most significant
oscillations of the diffracted component of the scattered field.

Finally we look at how the accuracy of our approximations to the solution on the boundary affects the
approximation of the far field pattern. For many applications, such as light scattering by atmospheric particles, it
may be the scattering pattern far from the scatterer that is really of primary interest. In the 2D case, an asymptotic
expansion of the representation (2.6), taking into accountthe asymptotic behaviour of the Hankel functions for
large argument (see, e.g., Olver et al. (2010)), gives the expression for the scattered fieldus := u1−ui far from
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k1 ξ ||u−U1||
||ud||

||u−U2||
||ud||

|| ∂u
∂n−W1||
|| ∂ud

∂n ||
|| ∂u

∂n−W2||
|| ∂ud

∂n ||

5 0.05 8.85×10−2 1.37×10−2 1.41×10−1 1.71×10−2

10 0.05 7.52×10−2 9.88×10−3 1.32×10−1 1.62×10−2

20 0.05 8.40×10−3 3.71×10−3 2.73×10−2 2.41×10−2

40 0.05 3.08×10−3 3.04×10−3 2.56×10−2 2.56×10−2

80 0.05 4.98×10−3 4.97×10−3 2.67×10−2 2.67×10−2

160 0.05 6.24×10−3 6.24×10−3 3.16×10−2 3.16×10−2

5 0.025 1.39×10−1 2.53×10−2 1.90×10−1 2.67×10−2

10 0.025 2.65×10−1 2.91×10−2 4.20×10−1 3.78×10−2

20 0.025 1.04×10−1 1.81×10−2 1.76×10−1 3.50×10−2

40 0.025 8.66×10−3 4.16×10−3 2.60×10−2 2.26×10−2

80 0.025 5.84×10−3 5.83×10−3 2.33×10−2 2.33×10−2

160 0.025 6.69×10−3 6.69×10−3 2.73×10−2 2.73×10−2

5 0.0125 1.65×10−1 3.24×10−2 2.10×10−1 3.14×10−2

10 0.0125 4.28×10−1 5.14×10−2 6.00×10−1 5.72×10−2

20 0.0125 3.54×10−1 6.27×10−2 5.48×10−1 8.78×10−2

40 0.0125 1.15×10−1 3.25×10−2 2.01×10−1 5.65×10−2

80 0.0125 2.79×10−2 2.68×10−2 2.87×10−2 2.52×10−2

160 0.0125 1.55×10−2 1.55×10−2 2.57×10−2 2.57×10−2

5 0 2.06×10−1 4.51×10−2 2.25×10−1 3.72×10−2

10 0 6.55×10−1 9.09×10−2 7.49×10−1 8.07×10−2

20 0 8.26×10−1 1.58×10−1 8.91×10−1 1.37×10−1

40 0 8.98×10−1 2.05×10−1 9.45×10−1 1.71×10−1

80 0 9.38×10−1 2.53×10−1 9.67×10−1 1.97×10−1

160 0 9.59×10−1 2.52×10−1 9.78×10−1 1.89×10−1

Table 2: Relative errors in approximation ofud and∂ud/∂n, using each approximation space, for a range of
values ofk1, for incident angle 4 and for varying absorptionξ .

the scatterer as

us(x)∼ eiπ/4

2
√

2π
eikr
√

kr
F(x̂), asr := |x| → ∞,

wherex̂ := x/|x| ∈ S
1, the unit circle, and the far field patternF is given by

F(x̂) =−
∫

Γ
e−ikx̂·y

(

ik(x̂ ·n(y))u(y)+ ∂u
∂n

(y)
)

ds(y), x̂ ∈ S
1. (4.1)

We plot the far field patternF(x̂(t)), t ∈ [0,2π] for incident angle 4, absorptionξ = 0.05 and fork1 = 5 and
k1 = 160 in Figure 9, wheret = 0 corresponds to the direction from whichui is incident,x̂(t) is a point at
angular distancet round the unit circle, and we have computedF by inserting our reference solutionsu and
∂u/∂n into (4.1).

In Table 3 we compare the value ofF computed using the reference solutions with that computed using
GO (Fgo), Approximation Space 1 (F1) and Approximation Space 2 (F2). Here, the norms represent approxi-
mations to‖ · ‖L2(S1) computed using a large number of evaluation points. Even forthe worst incident angle,
namely angle 1, we still obtain approximations that are within roughly 1% of the reference far field pattern
using Approximation Space 2 (and in most cases the same is true for Approximation Space 1), representing a
significant improvement over GO, particularly for lower values ofk1. For the other angles, the results are even
better (note that the tailing off of the error ask1 gets large may be due to the fact that our reference solution is
only accurate to order 10−4). As mentioned in§1, the approach of mapping the GO solution on the boundary to
the far-field using an integral equation representation is sometimes called the physical-geometric optics hybrid
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FIG. 9: Far-field pattern,|F(x̂(t))|, for k1 = 5 andk1 = 160,ξ = 0.05, incident angle 4.

method (see Bi et al. (2011)). Our results demonstrate that it is possible to achieve a significant improvement
on this approach using a small amount of additional computation.

k1 Angle ||F−Fgo||
||F||

||F−F1||
||F||

||F−F2||
||F||

5 1 5.92×10−1 1.67×10−2 2.43×10−5

10 1 2.38×10−1 1.00×10−1 7.02×10−3

20 1 1.30×10−1 2.71×10−2 2.78×10−2

40 1 9.02×10−2 1.09×10−2 1.09×10−2

80 1 6.33×10−2 7.14×10−3 7.14×10−3

160 1 4.46×10−2 1.23×10−2 1.23×10−2

5 2 1.90×10−1 7.52×10−3 7.01×10−5

10 2 2.04×10−1 3.29×10−2 6.21×10−3

20 2 1.26×10−1 3.90×10−3 2.33×10−3

40 2 9.07×10−2 1.18×10−3 1.17×10−3

80 2 6.44×10−2 3.87×10−4 3.83×10−4

160 2 4.56×10−2 4.77×10−4 4.77×10−4

5 3 9.44×10−2 7.88×10−3 5.41×10−3

10 3 9.65×10−2 1.44×10−2 6.40×10−3

20 3 6.54×10−2 1.90×10−3 1.69×10−3

40 3 4.75×10−2 7.14×10−4 7.13×10−4

80 3 3.41×10−2 2.46×10−4 2.44×10−4

160 3 2.42×10−2 2.26×10−4 2.26×10−4

5 4 5.93×10−2 2.72×10−3 4.52×10−5

10 4 3.67×10−2 8.98×10−3 9.08×10−4

20 4 2.54×10−2 7.16×10−4 2.74×10−4

40 4 1.85×10−2 1.17×10−4 1.14×10−4

80 4 1.31×10−2 1.04×10−4 1.04×10−4

160 4 9.35×10−3 1.04×10−4 1.04×10−4

Table 3: Far-field errors for variousk1, with absorptionξ = 0.05, various incident angles.

In summary, our numerical examples demonstrate that HNA approximation spaces of the form (3.2) can
provide efficient approximations for problems of scattering by penetrable scatterers. The two specific approx-
imation spaces we considered are perhaps the simplest extensions to the penetrable case of the spaces used
for impenetrable scatterers (see Chandler-Wilde et al. (2012a)). Regardless, we have shown that they pro-
vide an accuracy sufficient for many applications, across a range of absorptions and frequencies, significantly
outperforming GO in each case with only a small number of degrees of freedom, fixed independently of the
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wavenumber. We anticipate that the addition of further phase functions corresponding to lateral waves and the
reflections of diffracted waves would allow for higher accuracy to be achieved, although at the expense of a
higher complexity in the algorithm and slightly higher computational cost. The justification of this claim is left
to future work.

A Reflection/refraction at a planar interface

In this appendix we present a full derivation of the laws of reflection and refraction at a planar interface between
two propagation media of arbitrary absorption.

A.1 Plane wave propagation in an absorbing medium

We consider time-harmonic scalar waves modelled by the Helmholtz equation

∆u+k2u= 0, (A.1)

with a complex wavenumberk. We shall write

k= k0(µ + iξ ),

wherek0 > 0 is a reference real wavenumber, andµ + iξ is the refractive index of the medium. We shall assume
throughout thatµ > 0 andξ > 0; the caseξ = 0 corresponds to a non-absorbing medium, and the caseξ > 0
corresponds to an absorbing medium. We consider solutions of (A.1) of the form

u(x) = Aeik0V·x, x ∈ R
2, (A.2)

which represents a plane wave with complex amplitudeA and complex propagation vectorV. It is convenient
to splitV into real and imaginary components, writing

V = Dd+ iEe,

whered andeare real unit vectors andD,E are real scalars, after which (A.2) becomes

u(x) = Aexp{ik0(Dd+ iEe) ·x}. (A.3)

Note that the vectorsd andeare normal to the planes of constant phase and constant amplitude ofu, respectively.
Without loss of generality we may assume thatd ·e> 0. If d= e, then the wave is calledhomogeneous, otherwise
it is inhomogeneous. In order to find the relationship betweend,e,D,E and the componentsµ ,ξ of the refractive
index, we substitute (A.3) into the Helmholtz equation (A.1), which, after equating the real and imaginary parts,
gives

D2−E2 = µ2−ξ 2, (A.4)

(Dd) · (Ee) = µξ . (A.5)

We note from (A.4)–(A.5) that we cannot haveD = 0; otherwise (A.5) would imply thatξ = 0 (sinceµ > 0
by assumption), and (A.4) would then give the contradiction−E2 = µ2. Without loss of generality we may
assume thatD > 0 (we can multiply bothd ande by minus one if necessary). Now, ifξ > 0 thenµξ > 0 and
(A.5) implies thatd · e> 0 andDE > 0, so thatE > 0 too. On the other hand, ifξ = 0, then (A.5) reduces
to (Dd) · (Ee) = 0. Since the real componentDd is non-zero, this implies that eitherEe= 0 (i.e. E = 0 and
D = µ) or d ande are perpendicular. In the latter case there are an infinite family of pairs(D,E) which satisfy
(A.4). Without loss of generality we can, in this case, assume thatE > 0 (we can multiplye by minus one if
necessary).

To summarise, we have shown that if (A.3) is a solution of (A.1) thend,e,D andE must satisfy (A.4)–(A.5)
and without loss of generality we may assume thatD > 0, E > 0, andd ·e> 0. Under these assumptions, the
wave (A.2) propagates in the direction ofd, while decaying in the directione; in fact, we note thatD andE are
interpreted by some authors as the real and imaginary parts of an “apparent refractive index” (cf. Chang et al.
(2005); Yang & Liou (1995)).
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A.2 An interface between two media with arbitrary absorption

We now consider the canonical problem of the reflection/refraction of an incident plane wave of the general
form (A.3) propagating in a medium with refractive indexµ1+ iξ1 at a planar interface with a second medium
with refractive indexµ2+ iξ2. We assume that in the first medium the field takes the formu= ui +ur , where
ui is the incident plane wave andur is a reflected plane wave, and that in the second medium the field takes the
form u = ut , whereut is a transmitted plane wave. We also assume that both the total field u and its normal
derivative are continuous across the interface, which implies that, on the interface,

ui +ur = ut and
∂ui

∂n
+

∂ur

∂n
=

∂ut

∂n
, (A.6)

wheren is a vector normal to the interface. We write the wavesui , ur andut in the general form (A.3) as:

ui = Ai exp{ik0(Didi + iEiei) ·x},
ur = Ar exp{ik0(Didr + iEier) ·x},
ut = At exp{ik0(Dtdt + iEtet) ·x},

(A.7)

where we have assumed a priori the same “apparent refractiveindex” for the reflected wave as for the incident
wave. Given the parametersAi , di , ei , Di and Ei describing the incident wave, we wish to determine the
parametersAr , At , dr , er , dt , et , Dt andEt determining the reflected and transmitted waves.

The geometry of the problem is illustrated in Figure 10. The real and imaginary components of the direction
vectors have been drawn on separate diagrams for clarity, but it should be kept in mind that the complex incident
direction vector isdi + iei and that the reflected and transmitted direction vectors aredr + ier and dt + iet ,
respectively.

t

n

di

θ i

dt

θ t

dr

θ r

µ1+ iξ1

µ2+ iξ2

Γ∞

(a) Real components of direction vectors.

t

n

ei

φ i

et

φ t

er

φ r

µ1+ iξ1

µ2+ iξ2

Γ∞

(b) Imaginary components of direction vectors.

FIG. 10: Refraction and reflection of light at the interfaceΓ∞

A.2.1 The reflection law

We shall assume that the real and imaginary components of theincident and reflected direction vectors satisfy
the specular reflection law(“angle of reflection equals angle of incidence”), which canbe stated in vector
notation as

dr = di −2(di ·n)n,
er = ei −2(ei ·n)n,

(A.8)
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or, in the notation of Figure 10, simply as

θ i = θ r , φ i = φ r .

A.2.2 Snell’s law and the Fresnel formulae

Snell’s law relates the tangential components of the incident and transmitted direction vectors. The Fresnel
formulae relate the amplitudes of the reflected and transmitted waves to that of the incident wave. To derive
these relationships we first substitute the representations (A.7) into the boundary conditions (A.6). Eliminating
dr ander using the law of reflection (A.8) gives, for anyx ∈ Γ∞,
(

Ai +Ar exp{−2ik0(Didi ·n+Eiei ·n)n ·x}
)

exp{ik0(Didi + iEiei) ·x}= At exp{ik0(Dtdt + iEtet) ·x}, (A.9)

and

vi (Ai −Ar exp{−2ik0(Didi ·n+Eiei ·n)n ·x}
)

exp{ik0(Didi + iEiei) ·x}= vtAt exp{ik0(Dtdt + iEtet) ·x},

(A.10)

wherevi = Didi ·n+ iEiei ·n andvt = Dtdt ·n+ iEtet ·n.
To derive Snell’s law we writex ∈ Γ∞ as

x = X+st, (A.11)

whereX is an arbitrary reference point onΓ∞, s∈R andt is the unit tangent vector toΓ∞ defined ast = (n2,−n1),
wheren = (n1,n2). Substituting (A.11) into (A.9) and rearranging gives

At = exp{ik0s(Didi + iEiei −Dtdt − iEtet) · t}exp{ik0(Didi + iEiei −Dtdt − iEtet) ·X}
×
(

Ai +Ar exp{−2ik0(Didi ·n+ iEiei ·n)n ·X}
)

. (A.12)

Since this must hold for allx∈Γ∞, i.e. for alls∈R, the argument of the first exponential factor on the right-hand
side must be equal to zero, i.e.

Didi · t + iEiei · t −Dtdt · t − iEtet · t = 0. (A.13)

Comparing real and imaginary components of (A.13) then yields the vector form ofSnell’s Law:

Didi · t = Dtdt · t,
Eiei · t = Etet · t,

(A.14)

which can also be written in more classical form in terms of the notation of Figure 10 as

Di sinθ i = Dt sinθ t , Ei sinφ i = Et sinφ t .

To derive the Fresnel formulae, we note that, given the incident amplitudeAi , equations (A.9) and (A.10)
are simultaneous equations inAr andAt which can be solved to give the reflection and transmission coefficients

R :=
Ar

Ai =
vi −vt

vi +vt
exp{2ik0(Didi ·n+ iEiei ·n)n ·X}, (A.15)

T :=
At

Ai =
2vi

vi +vt
exp{ik0(Didi + iEiei −Dtdt − iEtet) ·X}, (A.16)
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respectively, where, as above,X is an arbitrary reference point onΓ∞. If the origin of our coordinate system lies
onΓ∞ then we may takeX = 0, giving

R=
vi −vt

vi +vt
, T =

2vi

vi +vt
,

along with the classical relationship 1+R= T.

A.2.3 CalculatingDt andEt

We recall from§A.1 thatDt andEt must satisfy the equations

D2
t −E2

t = µ2
2 −ξ 2

2 , (A.17)

DtEtdt ·et = µ2ξ2. (A.18)

Equation (A.18) can be written in terms of tangential and normal components as

DtEt [(dt · t)(et · t)+(dt ·n)(et ·n)] = µ2ξ2. (A.19)

After rearranging (A.19), squaring, and writing the normalcomponents in terms of the tangential components
(using the fact that(dt · t)2+(dt ·n)2 = (et · t)2+(et ·n)2 = 1), Snell’s law implies that

(D2
t − D̃2

i )(E
2
t − Ẽ2

i ) = (µ2ξ2− D̃iẼi)
2,

whereD̃i := Didi · t andẼi := Eiei · t. Finally, using (A.17) to eliminateEt , we arrive at a quadratic equation
satisfied byD2

t ,

D4
t +D2

t [ξ 2
2 −µ2

2 − Ẽ2
i − D̃2

i ]+ D̃2
i (µ2

2 −ξ 2
2 )− (µ2ξ2)

2+2µ2ξ2D̃iẼi = 0, (A.20)

and the quadratic formula yields the solutions of (A.20) as

D2
t =

1
2

(

µ2
2 −ξ 2

2 + D̃2
i + Ẽ2

i ±
√

(µ2
2 −ξ 2

2 − D̃2
i + Ẽ2

i )
2+4(D̃iẼi −µ2ξ2)2

)

. (A.21)

Similar equations have been derived in Chang et al. (2005) and Yang & Liou (1995); however, the correct sign
to choose in (A.21) is not discussed in these references. We claim that the positive square root should be taken
in (A.21) for consistency with Snell’s law. To justify this statement, we note that Snell’s law trivially implies
the inequalities

D2
t > D̃2

i , (A.22)

E2
t > Ẽ2

i . (A.23)

We can rearrange (A.21) to give

D2
t − D̃2

i =
1
2
(a±

√

a2+b2), (A.24)

E2
t − Ẽ2

i =
1
2
(−a±

√

a2+b2), (A.25)

wherea := µ2
2 −ξ 2

2 − D̃2
i + Ẽ2

i andb := 2(D̃iẼi −µ2ξ2). Then ifa< 0, it is clear from (A.24) that we must take
the positive square root in order to satisfy (A.22). Ifa> 0, it is clear from (A.25) that we must take the positive
square root in order to satisfy (A.23). Ifa = 0, then we must take the positive square root in order to satisfy
both (A.22) and (A.23), unless of courseb= 0 too, in which case the sign choice is immaterial.
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Having justitifed the choice of the positive square root in (A.21), we can state the formulae forDt andEt :

Dt =

√

1
2

(

µ2
2 −ξ 2

2 + D̃2
i + Ẽ2

i +
√

(µ2
2 −ξ 2

2 − D̃2
i + Ẽ2

i )
2+4(D̃iẼi −µ2ξ2)2

)

,

Et =
√

D2
t +ξ 2

2 −µ2
2 ,

(A.26)

where the non-negative square root is taken in both equations.

A.2.4 Normal components of transmitted direction vectors

Snell’s law provides a formula for the tangential components of the transmitted direction vectorsdt andet . The
fact thatdt andet are unit vectors allows us to write

dt = (dt · t)t +(dt ·n)n = (dt · t)t ±
√

1− (dt · t)2n, (A.27)

et = (et · t)t +(et ·n)n = (et · t)t ±
√

1− (et · t)2n, (A.28)

so that the normal components are specified up to sign. The need to make a sign choice in (A.27) and (A.28)
is alluded to in Dupertuis et al. (1994, p. 1163), but a clear prescription of which sign to take is not provided
there. We now provide such a presciption based on physical considerations. We note that a similar justification
has been given in Pincherle (1947), but that this work does not appear to be widely known.

We consider firstdt . The physically correct sign choice in (A.27) is made by considering the energy flow
across the interface. The time-averaged intensity of a time-harmonic wave associated with a solutionu of
the Helmholtz equation (A.1) is given by〈I〉 = CIm [u∇u], whereC is a positive constant depending on the
frequency (cf. e.g. (Hewett, 2010,§3.4.2)). Whenu is a plane wave of the form (A.3) this gives〈I〉=C|A|2k0Dd,
so that the energy flow is purely in the real propagation direction d. In the context of the interface problem there
are three cases to consider:

• When both|di · t|< 1 and|dt · t|< 1 (so thatdi ·n 6= 0 anddt ·n 6= 0) we stipulate that the time-averaged
intensities〈I i〉 and〈I t〉 associated with the incident and transmitted waves should satisfy

sgn(〈I i〉 ·n) = sgn(〈I t〉 ·n),

to ensure that the transmission process preserves the direction of energy flow relative to the boundary. By
the above discussion this means that we require

sgn(dt ·n) = sgn(di ·n),

so that (A.27) becomes, after applying Snell’s law,

dt =
Di

Dt
(di · t)t +sgn(di ·n)

√

1−
(

Di

Dt

)2

(di · t)2n. (A.29)

This formula implies that the transmitted wave is always propagating into the second medium, except for
the case of total internal reflection which is discussed below.

• When|dt · t|= 1, we have thatdt ·n = 0 and there is no sign choice to be made. This case correspondsto
the phenomenon oftotal internal reflection(TIR). The energy flow in the second medium in this case is
parallel to the interface.



24 of 26 REFERENCES

• When|di · t|= 1 (i.e.di ·n = 0), we takedt to point into the second medium. We note that ifEi = 0 then
vi = 0, and soR=−1 andT = 0 (i.e. the solution is identically zero).

We now turn toet . It turns out that, having specified the sign choice in (A.27), the sign choice in (A.28)
follows immediately. Indeed, provided thatEtdt ·n 6= 0, et ·n is now completely determined by (A.19), with

et ·n =
1

DtEtdt ·n
(

µ2ξ2−DiEi(di · t)(ei · t)
)

, Etdt ·n 6= 0.

Thus

et =
Ei

Et
(ei · t)t + 1

DtEtdt ·n
(

µ2ξ2−DiEi(di · t)(ei · t)
)

n, Etdt ·n 6= 0. (A.30)

This equation predicts that the vectoret sometimes points back into the first (incident) medium. Thissome-
what counterintuitive behaviour was noted in Pincherle (1947); however, some subsequent authors (in partic-
ular, Chang et al. (2005)), seemingly unaware of Pincherle’s work, artifically forceet to point into the second
medium, despite the fact that this may lead to a violation of the Helmholtz equation. We remark that a similar,
artificial modification to the laws of reflection/refractionis made in Bi et al. (2011) and Yang & Liou (2009),
where the transmitted wave is spuriously forced to be homogeneous, when in practice it could be inhomoge-
neous as outlined above.

WhenEt = 0 or dt ·n = 0 the formula (A.30) cannot be applied. The former case is easily dealt with: since
Et andet appear in a product in the formula (A.3), the choice ofet is irrelevant whenEt = 0, and we may
arbitrarily assignet = dt , for example. The latter casedt ·n = 0 corresponds to TIR, and in this case we argue
that the transmitted wave should decay (not grow) with increasing distance from the interface, so that we require
sgn(et ·n) = sgn(di ·n), giving

et =
Ei

Et
(ei · t)t +sgn(di ·n)

√

1−
(

Ei

Et

)2

(ei · t)2n, dt ·n = 0. (A.31)
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