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Abstract

Twitter is both a micro-blogging service and a platform for public
conversation. Direct conversation is facilitated in Twitter through the
use of @’s (mentions) and replies. While the conversational element
of Twitter is of particular interest to the marketing sector, relatively
few data-mining studies have focused on this area. We analyse con-
versations associated with reciprocated mentions that take place in a
data-set consisting of approximately 4 million tweets collected over a
period of 28 days that contain at least one mention. We ignore tweet
content and instead use the mention network structure and its dy-
namical properties to identify and characterise Twitter conversations
between pairs of users and within larger groups. We consider conver-
sational balance, meaning the fraction of content contributed by each
party. The goal of this work is to draw out some of the mechanisms
driving conversation in Twitter, with the potential aim of developing
conversational models.

1 Introduction

The rapid uptake of online social media, combined with consumer behavioural
changes around television and news broadcasting, has instigated a sea change
in attitudes within the advertising and marketing sectors. A frequently en-
countered adage is that “everything is about conversation and not about
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broadcasting” [9, 5]. By facilitating public addressability through the @ sign
(so called ‘mentions’) and enabling private messages, Twitter has confirmed
their intention to function as a communication channel as well as a broad-
casting tool. Access to large quantities of data produced by Twitter users
has resulted in a surge of interest from the academic community, who have
largely focused on Twitter’s information flow and retweet behaviour, and
hence implicitly the underlying network of ‘followers’ (e.g. [18, 17]). While
broadcasting short messages, or micro-blogging, remains an important com-
ponent of Twitter use, to our knowledge comparatively little work has ad-
dressed the mining of (public) conversations on a large scale. Consequently,
we focus in this paper on analysing the network of communication patterns
resulting from mentions in Twitter.

Inspired by the importance of pauses between exchanges in face-to-face
conversations, drama and music, our main aim has been to explore the struc-
ture and rhythm of typical Twitter conversations. Although it may not al-
ways be clear, even from message content, what intention a user had in mind
when posting—information seeking or information sharing, broadcasting or
conversation—we have tried to specifically extract conversations by focusing
our data-analysis on reciprocated tweets. Moreover, we completely ignore the
content of conversations and concentrate on structural and dynamic proper-
ties of the underlying mentions network. Our main objective was to mine
actionable insights that could inform our knowledge of conversational mech-
anisms and the frequency/timings of tweets. Our hope is that quantifiable
insights from this analysis could inform a simple, data driven model of the
timing and structure of Twitter conversations.

A large number of registered Twitter accounts are operated by automated
software scripts, known as bots [16]. While such accounts are encouraged for
the purpose of developing applications and services, bots whose functions
violate Twitter policy (e.g. spammers) are common. The analysis of conver-
sational patterns and the development of associated models have potential
application for those trying to develop algorithms that can identify nuisance
bots. Furthermore, the identification of groups of Twitter users who, through
conversational behaviour, are particularly influential on a specific topic would
be particularly attractive in the marketing sector. Thus, understanding con-
versational structure could impact the design and implementation of social
media campaigns and potentially provide a quantitative comparison between
Twitter discourse and other channels of communication, such as face-to-face,
telephone, SMS, forums or email. We hope that studying Twitter conversa-
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tion can ultimately improve user experience.
In Section 2, we give an account of previous work in this space. The

Twitter data-set and its general features are described in Section 3. Our
results of pairwise and multiple conversations are presented in Section 4.
Finally, in Section 5 we summarise and describe possible directions of future
work.

2 Previous work

The phenomenal uptake of Twitter over the last few years has resulted in a
rapidly growing interest in mining Twitter data and particularly sentiment
analysis of tweets. A recent study analyzing a large amount of Twitter and
Facebook data [11] found correlations between friendship/follower relations
and positive/negative moods of Twitter users. Diurnal and seasonal mood
rhythms that are common across different cultures have also been identified
in cross-cultural Twitter data [4], shedding light on the dynamics of positive
and negative affect. Connections between emotions inferred from tweets and
the Dow Jones index made headlines [1], as an interesting and potentially
useful observation of society.

A study of conversations within a sample of 8.5k tweets collected over
an hour long period [8] found that the @ sign appeared in about 30% of the
collected sample, its function was mostly for addressing (as intended) and
it was relatively well reciprocated—around 30% of messages containing an
@ were reciprocated within an hour. The majority of these conversations
were short, coherent exchanges between two people, but longer exchanges
did occur, sometimes consisting of up to 10 people. They found that

“...Tweets with @ signs are more focused on an addressee,
more likely to provide information for others, and more likely to
exhort others to do something—in short, their content is more
interactive. In contrast, tweets without @ signs are more self-
focused, although they also report other’s experiences, and they
make more general announcements.”

Although our collecting method was completely different (we focused on
tweets containing an @ sign exclusively over a much longer interval), it is
instructive to compare our results with the findings described above.
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In other work concerning Twitter conversation [12], a relatively large cor-
pus and content (topic) analysis of 1.3million tweets was used to develop
an unsupervised model of dialogue from open-topic data. In our work we
completely ignore content, enabling us to focus on timing, the structure and
balance of conversation (in particular the order of tweets between pairs of
individuals) and multi-users conversations which could help to improve sta-
tistical models of dialogue.

3 Analysis

3.1 Data

The Twitter data-set investigated in this paper was collected on our behalf
by Datasift, a certified Twitter partner, allowing us to access the full Twit-
ter firehose rather than being rate-limited by the API. The data-set consists
of all UK based1 Twitter users that sent tweets with at least one mention
between 8 Dec 2011 and 4 Jan 2012 (28 days in total). In the remainder of
the paper, use of the word ‘tweet’ will specifically mean tweets containing at
least one mention. Mentions are messages that include an @ followed by a
username. Thus if person a puts “@b”, it designates that a is addressing the
tweet to b specifically. Mentions are not private messages and can be read
by anyone who searches for them. A tweet can be addressed to several users
simultaneously using @ repetitively. We preprocessed the data, removing
empty mentions and self-addressing2 and created a directed multigraph, or
mentions network, containing 3, 614, 705 timestamped arcs (individual men-
tions) from a total of 819, 081 distinct usernames, or nodes. Of these distinct
usernames, 732, 043 were “receivers”, i.e. to whom a message was addressed,
and 137, 184 were “tweeters”, i.e. people who tweeted a message with a men-
tion. There were approximately 50k nodes that appeared both as tweeters
and receivers. Note that our graph is a multigraph, meaning that multiple
arcs are allowed between pairs of nodes, each having a direction and times-
tamp.

1All Twitter users appearing in our data-set had selected the UK as their location.
2Self-mentioning was surprisingly common in the data-set: 12,680 different users cre-

ated a total of 44,319 self-mentions, with the maximum being 5,586 from an automated
service that advertises itself at the end of each tweet.
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Figure 1: Time series of total daily tweet counts.

3.2 Aggregate daily tweet behaviour

We start by giving an overview of the daily tweet behaviour captured in our
data-set. We focus here on tweets, which may contain one or more mention.
The average total number of tweets sent by all users per day was 129, 096
with a standard deviation of 11, 945. A time series of the total number of
tweets sent each day is plotted in Fig. 1. The 26 Dec 2011 (Boxing Day) has
the lowest total tweet count at 104,808 and the last day, 4 Jan 2012, has the
largest total tweet count at 158,319.

The largest number of tweets sent by a single user on a given day was
590; the largest number of tweets sent by a single user over the 28 days was
5,604; the mean daily tweet rate (from usernames that tweeted) was 0.9410.
In Fig. 2 we plot the distribution of mean daily tweet counts per user and
compare with a fitted exponential distribution (grey line). This indicates
that the distribution has a ‘heavy tail’ (but not power-law), meaning that
while most people tweet less than once a day, some people have extremely
high average daily tweet counts. We observe that a high tweet rate is not
necessarily indicative that an account is being operated by a bot, making the
task of identifying such automated users non-trivial.

3.3 Time intervals between tweets

We plot the distribution of time intervals between users’ tweets dt in Fig. 3(a)
and (b). The largest time intervals are much less than the total number
of hours covered by the 28 days (40,320) in which the data was recorded,
meaning that people who tweet do so regularly. Note also the consistent
peaks around time periods that are multiples of 24hrs. This indicates that
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Figure 2: Distribution of mean daily tweet counts per user.
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Figure 3: Distribution of time intervals between consecutive tweets from
individual users
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Figure 4: Panel (a): In- and Out-degree distributions in the directed adja-
cency matrix. Panel (b): Degree distribution in the symmetric part of the
directed adjacency matrix.

people have regular times of day that they typically spend using Twitter. In
Fig. 3(b) we plot the distribution of time intervals that are less than 24hrs.
The mode is at about 3 minutes, which is in accord with [8], where the
average and median time between exchanges were found to be 6 minutes 43
seconds and 4 minutes 24 seconds respectively. There is also a secondary
peak at about 10hrs, which may reflect tweet behaviour either side of daily
sleep patterns.

3.4 Mentions network

We now consider the multigraph mention network. In the first instance, we
aggregate the data over the entire data collection period in order to identify
structural features in what we infer as the static underlying friendship net-
work. This is a directed weighted graph, where edge weights correspond to
the total number of mentions between pairs of nodes. The maximum num-
ber of mentions sent by a single user (i.e the maximum out degree weight)
is 1,171 and the maximum total number of exchanges between two users is
1,415. These are not automated accounts. The pattern of user acquain-
tances can be represented by a binary directed adjacency matrix A, in which
an element Aij is equal to 1 if i mentions j at least once in the data-set,
and zero otherwise. In Fig. 4(a), we plot the in- (black) and out- (grey)
degree distributions of A. These distributions are qualitatively different, the
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Figure 5: Clustering coefficients for daily graphs

in-degree appearing to be scale-free, but the out-degree being sub-power law.
This can be attributed to the fact that individuals choose how many people
to mention, but not how many people mention them. In Fig. 4(b) we plot
the degree distribution of reciprocated mentions (i.e. the symmetric part of
the adjacency matrix). This illustrates that users are not typically follow-
ing a large number of people while simultaneously being followed by a large
number of people.

To examine temporal effects in the data, we now consider daily aggrega-
tions of the full multigraph mention network, giving a series of 28 directed
network snapshots. On each of these daily sub-networks, we calculated the
average clustering coefficient (Fig. 5) in order to compare them over different
days.

Interestingly, there are regular peaks in the clustering coefficient on Fri-
days. It is not clear why the mention network may be more clustered on
Fridays, but one hypothesis is that people may be more inclined to broadcast
jokes or interesting facts at the end of the working week to their colleagues
and friends, which then triggers higher retweet rates and conversations be-
tween friends’ of friends.

8



4 Results

We now present the main results of our analysis of pairwise and group con-
versations.

4.1 Conversations

An important feature of both face-to-face conversation [14, 13] and computer-
mediated communication [7], is the process of turn-taking. Thus in sequences
of mentions between pairs of users, say a and b, we might expect that se-
quences like ABABAB would be more common than say AAABBB, where
we use A to denote that party a mentions party b and likewise B to denote
that party b mentions party a.

To establish if this is the case, we assume the null hypotheses that contri-
butions are independent events with probability PA that party a contributes
to a conversation and thus probability PB = 1−PA that party b contributes.
For a given interaction sequence of length N between parties a and b, we
are interested in the number of occurrences of B following A and vice-versa.
We call these transitions, thus the sequence ABAABBA of length N = 7,
has 4 transitions. Note that we focus on reciprocated interactions, mean-
ing that each party makes at least one contribution and consequently that
there is by default at least one transition in all interactions that we consider.
We call the remaining transitions the excess transitions. For any sequence
of length N , the maximum possible number of excess transitions is clearly
N − 2. Under the null hypotheses, excess transitions occur with probabil-
ity PT = 2PA(1 − PA). Since we assume that transitions are independent,
the probability distribution of a given number of excess transitions is bi-
nomial, and thus the expected number is ET = (N − 2)PT with variance
VT = (N − 2)PT (1− PT ).

To test the null hypothesis, we consider all reciprocated pairwise inter-
action sequences in our Twitter data-set. For each sequence having nX con-
tributions from party X ∈ {A,B}, we assume that the probability of party
a contributing is simply nA/(nA + nB). This does not yield any problem-
atic probabilities (i.e. 0 or 1) since both parties always make at least one
contribution.

Each sequence may have a different number of interactions and a different
transition probability, but assuming that the pairwise interactions are inde-
pendent, the expectation and variance of the ensemble is simply equal to the
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Figure 6: Panel (a): Mean number of subsequences for a range of threshold
values. Panel(b): Mean number of distinct conversations for a range of
threshold values

sum of the interaction expectations and variances respectively. Doing this,
we find that the expected number of transitions is 85,390 with a standard
deviation of 226.3, but we observe 88,758 transitions in practice, more than
15 standard deviations above the expected value. We take this as strong
evidence that we can reject the null hypothesis and thus infer that the data
contains a significant level of turn-taking and hence conversation.

Each sequence of pairwise interactions may constitute a number of differ-
ent conversations, but ascertaining when one conversation ends and another
begins may be an extremely difficult task, especially when the goal is to apply
an automated processes to a large data-set. Instead of using a time-intensive
lexical analysis, we investigate whether we can detect conversations by ap-
plying a simple threshold rule to the time gap between responses, where we
assume that a time gap that is larger than the threshold indicates the start
of a new conversation.

This method requires that we can identify a suitable threshold. To achieve
this, we divide each sequence of pairwise interactions up according to a
given threshold, then define distinct conversations to be reciprocated sub-
sequences, i.e. sequences containing a contribution from both parties. Thus
the number of sub-sequences nI is always larger than the number of distinct
conversations nC. In Fig. 6(a) and (b) we plot the mean number of sub-
sequences and the mean number of distinct conversations respectively over
a range of threshold values. The number of distinct conversations nC has
a peak value at approximately 9hrs. This peak is expected, since we only
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Figure 7: Panel (a): Distribution of conversation balance. Panel (b): Mean
maximum conversation contribution as a function of minimum contribution.

count reciprocated interactions as distinct conversations. Thus small thresh-
old values, which split an interaction sequence up into a large number of short
sub-sequences (see Fig. 6(a)), result in relatively few distinct conversations
because many of the sub-sequences feature contributions from only one party.
High threshold values also result in a small number of conversations, but this
is simply because they do not split the sequence up into many sub-sequences.
Thus the maximum at 9hrs is a natural choice of threshold and corresponds
to one’s intuition that conversations may reflect diurnal patterns.

We now consider whether the number of contributions from each party
are similar, or ‘balanced’ within pairwise interactions and conversations. For
a given interaction sequence, there are two ways to compute balance, we
can either consider the ratio of means bI = 〈max(nA, nB)〉/〈min(nA, nB)〉 or
the mean of ratios βI = 〈max(nA, nB)/min(nA, nB)〉. Since we only consider
reciprocated interactions, both quantities are well-defined and we would gen-
erally expect β > b. For the total number of interactions between pairs,
we find that bI = 2.424 and βI = 3.457. Thus on average, one party con-
tributes around 3 times as much as the other. For conversations, we find that
bC = 1.148 and βC = 1.425. These are much closer to 1, and hence more what
we would expect from typical, balanced conversations. The distribution of
conversation contribution ratios is plotted in Fig. 7(a), which illustrates that
conversations are most likely to be balanced, but some extremely unbalanced
conversations do occur. In Fig. 7(b), for each minimum conversation contri-
bution nmin = 1, 2, 3, . . ., we compute the mean of the maximum contribution
nmax. This illustrates that there is a roughly linear trend and the grey line
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is nmax = 1.148nmin + 1.
The mean and median number of tweets in a conversation are 13.09 and

4 respectively, but the distribution is heavy tailed (see Fig. 8).

4.2 Multi-user conversations

By allowing multiple @ signs in one message, a Twitter user could send a
tweet to several recipients simultaneously, facilitating multi-user conversa-
tions or multicasting. Note that because of the 140 character limit there is a
physical limit on how many users each message can be multicast to.

In this part of analysis, our aim is to

• Identify multi-users exchanges;

• Find out how often they occur in our sample;

• Determine how many users typically engage in them;

• Identify their time-frame and pace;

• Calculate how balanced they are.

In order to identify multi-user exchanges using the representation of the whole
data-set as a directed multi-graph G, we firstly ran non-recursive version of
the Tarjan’s algorithm [15, 10] as implemented in NetworkX [6] that gave us
a list of the strongly-connected components of G. A directed graph is called
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strongly-connected if there is a path from each vertex in the graph to every
other vertex. This means that for two vertices a and b there is a path in
both directions, i.e. from a to b and also from b to a. Strongly-connected
components of a graph are maximal subgraphs that are strongly-connected.

Pairwise conversations were discussed in sub-section 4.1, so we excluded
all strongly-connected components of size 2 from the present analysis. Each
strongly-connected component was then transformed into an undirected multi-
graph and we ran the NetworkX implementation of the modified Bron’s al-
gorithm [2] for finding all maximal cliques in an undirected graph. Maximal
cliques are the largest complete subgraphs containing a given node. We then
disregarded all cliques of size two. We found in total 5,569 cliques of size
3, 4, 5, 6 and 7. The number of instances of each clique-size found within
G are illustrated in Fig. 9. Clearly clique sizes larger than 4 are extremely
rare. The total number of users in these cliques was 6,963 which is around
5.1% of users that tweeted. Most users were involved in just one clique but
some were involved in multiple cliques. The users’ involvement in cliques is
illustrated in Fig 10.

When examining the time-frame of multi-user exchanges, we found that
the total number of exchanges between clique members was inversely propor-
tional to the average difference between consecutive exchanges (see Fig 11).
This was not surprising, since we would expect lively conversations (with lots
of exchanged messages) to have a relatively fast pace, in contrast to casual
exchanges in which the differences between messages would be longer. We
also found that multi-user exchanges happened over the whole 28 days pe-
riod. Very few exchanges were separated by periods longer than a day, most
exchanges being relatively fast paced. In Fig. 12 we plot the sorted medians
between two consecutive messages within cliques. The median and mean of
the medians were respectively 2,301 and 32,178 seconds. Keeping in mind
that we are looking at exchanges over the whole period of 28 days (thus, the-
oretically an exchange could contain only six messages, have one messages
on the day 1 and then one message each five days) the fact that the median
is less than 1hr and the mean less than 9hrs both being much less than we
might have expected, confirms that replies happen relatively quickly.

We also investigated how balanced multi-user exchanges were, although
this situation is more complicated than in the pairwise case.

Firstly, we looked at the difference between the number of tweets received
and sent by individual clique members. For each node, we computed the dif-
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Figure 13: The percentage of ‘unreciprocated’ messages in cliques

ference of their in-degree and out-degree. We summed up the positive values3

and to normalise, we divided by the total number of exchanged messages. In
this way, we obtained a percentage of ‘unreciprocated’ messages, where reci-
procity is not toward a sender but toward a whole group. We show the
numbers over all cliques in Fig. 13. We see that all values are represented,
i.e. that some cliques are almost completely dominated by certain members,
but also that in some of the cliques every individual receives and sends a
similar number of tweets.

Finally, we looked at so-called ‘floor-gaining’ [3], i.e. how much input each
user had over the course of a group exchange4. We compared the out-degree of
each user within a clique, (remember that each ‘clique’ is directed multigraph)
with the mean number of edges r = |nE|/|nV|, where nE is the total number
of edges within the clique and nV is the total number of vertices within the
clique. In a ‘round robin’ group conversation, with balanced turn taking, each

3Clearly the number of sent and received messages within a group are equal, thus
summing the differences between in- and out-degree over individual members in the group
is by definition equal to zero.

4We argue that the action of tweeting in multiuser exchanges can be regarded as floor-
gaining, since tweets with mentions can in principal be read by a wider audience than the
group conversing.
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Clique’s size No. of cliques 1 usr 2 usr 3 usr 4 usr 5 usr
3 4593 2045 2321 227 0 0
4 816 244 461 107 4 0
5 131 14 76 38 3 0
6 23 1 9 10 3 0
7 6 0 1 3 0 2

Table 1: A number of dominant users in clique

user would send out r messages, i.e. be responsible for an equal percentage
p = r ∗ 100/e of the total number e of exchanged messages. For each clique
size, we looked at how many users’ representation were greater than or equal
to p, i.e. those users who ‘dominant’ the conversation. In Table 1 below,
we present the number of instances for each clique size and each number
of dominant users. This shows that in most of the cliques, 2 users were
responsible for the majority of communication, but a large proportion of
exchanges were also dominated by a single user. However in about 6% of all
cliques, 3, 4 or 5 users were dominating, confirming that Twitter is used for
multi-user conversations and not just pairwise conversations.

5 Conclusions

We looked at conversations in Twitter, based on the underlying structure
and timings in approximately 4 million UK tweets with mentions over a pe-
riod of 28 days. To make use of graph algorithms, we structured the data
as a multigraph. We proposed a simple method of identifying conversations
between pairs of users, based on a time-threshold on the time-to-next tweet,
and found evidence that a threshold of 9hrs gives a good indication of dis-
tinct conversations. We observed that the conversations detected using this
method appeared to be balanced, meaning that each party involved con-
tributed approximately equally to the conversation. This was not the case
within more general interactions, in which one agent typically contributed a
significant amount more than the other.

Although finding cliques in graphs is a computationally difficult problem,
because of the sparsity of interactions patterns within the data-set, extract-
ing multi-user exchanges (defined by the cliques) was feasible and relatively
fast. We were able to find all cliques within the graph, up to a maximum of
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7 users. While most of those exchanges were fast-paced i.e. had relatively
small time gaps between messages, some were more relaxed. We also found
that the number of messages in multi-user exchanges was inverse to the aver-
age time difference between them. When looking into balance of multi-user
conversations, we found that most exchanges are dominated by just one or
two users, with evidence of only a small percentage of well-balanced group
exchanges. Regarding the number of received and sent messages by each
individual in a group, we found that all kind of exchanges take place, i.e.
groups with all different percentages of unreciprocated messages from 0 to
100% could be found.

Further work needs to be done using content information to explore how
topics flow through multi-user exchange and if there is any relationship be-
tween time-differences between messages and topic. We hope that the in-
sights gained from our analysis could help to develop an understanding of
the mechanisms and dynamics of Twitter conversations, with potential scope
for generating models of micro-blogging behaviour.
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