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Abstract

As low carbon technologies become more pervasive, distribution network operators are
looking to support the expected changes in the demands on the low voltage networks through
the smarter control of storage devices. Accurate forecasts of demand at the single household
level, or of small aggregations of households, can improve the peak demand reduction brought
about through such devices by helping to plan the appropriate charging and discharging
cycles. However, before such methods can be developed, validation measures are required
which can assess the accuracy and usefulness of forecasts of volatile and noisy household level
demand. In this paper we introduce a new forecast verification error measure that reduces
the so called “double penalty” effect, incurred by forecasts whose features are displaced in
space or time, compared to traditional point-wise metrics, such as Mean Absolute Error
and p-norms in general. The measure that we propose is based on finding a restricted
permutation of the original forecast that minimises the point wise error, according to a
given metric. We illustrate the advantages of our error measure using half-hourly domestic
household electrical energy usage data recorded by smart meters and discuss the effect of
the permutation restriction.

1 Introduction

As many countries progress towards a low carbon economy, the increased penetration of low-
carbon technologies (LCTs) may produce new risks to the security and robustness of the elec-
tricity networks. The decarbonisation of transport and heating (for instance through the uptake
of electric vehicles and heat pumps) is likely to increase the demand on the network, whilst
household microgeneration increases the prospect of a two-way flow of electricity on the net-
work as consumers become suppliers and feed back into the grid. In short, electricity demand is
likely to increase and become more unstable, particularly at the low voltage (LV) level [6]. In
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response to these new challenges, the UK government is aiming to help network operators and
suppliers prepare for a low carbon economy through initiatives such as the £500m low carbon
network fund (LCNF) [19] and the roll-out of smart meters to every home in the UK by 2020 [18].
Smart meters are advanced energy meters with 2-way communication capability which record
high resolution (typically half hourly) energy consumption. These detailed patterns of energy de-
mand provide an opportunity to improve understanding of energy consumption habits, to design
smarter interventions for energy reduction, and to produce accurate forecasts of energy demand
at the LV level. Such accurate household, or small aggregations of households, level forecasts
can help distribution network operators to better understand and anticipate network demand
and therefore improve LV network management and planning. Forecasts can also be combined
with network storage devices to improve peak demand reduction. As part of the New Thames
Valley Vision1 LCNF project, storage devices are being considered to help alleviate high demand
on the LV network at peak times. Simple set point control is the most common and simplest
way of controlling battery storage but often fails to reduce peak demand [23]. However, accurate
household level forecasts can optimise the use of the battery by helping to plan the appropriate
charging and discharging of the storage device [25, 13]. Up until recently, the majority of load
forecasting has been at the medium voltage (MV) to high voltage (HV) substation level, where
demand is more smooth and regular [12, 1, 22]. However, at the low voltage network to household
level, demand is volatile, noisy and typically consists of many different types of behaviour, such
as frequent but irregular peaks [2]. Hence, forecast methods developed for the MV and HV level
may not be appropriate for the household level. To produce and test the accuracy of household
level forecast demands, appropriate forecast verification methods are required.

Forecast verification hinges on the ability of quantitative measures to assess the similarity be-
tween forecasts and observations, what [16] refers to as forecast quality. Hence measure-orientated
approaches based on point-wise comparisons, such as mean absolute error (MAE) and root mean
square error (RMSE), can often lead to spurious conclusions, see [3], [4] and [9]. In particular,
an observed feature that is forecasted accurately in terms of size and amplitude but displaced in
time, incurs a “double penalty” [10]. Thus, as we illustrate in this paper, it can be difficult for
skilled, plausible forecasts to out-perform even a flat forecast that provides almost no informative
value, particularly when the data is volatile and noisy. This problem has long been understood in
the meteorology community. Consequently, a large number of alternative verification strategies
have been proposed; see [4] for a review. The class of distribution-orientated approaches [17, 3]
offer many insights but require large quantities of data and increased computational effort [3].

One approach for calculating displacement errors, also pioneered in meteorology, has been to
formulate errors using an optimal distortion of the original field, i.e. smooth changes in position
and amplitude that minimise the misfit between data and forecast [9]. Although such verification
methods have been widely developed, they have limited appeal in the setting that we are primarily
interested — volatile, noisy and irregular data. In this case, it may be more appropriate to use
verification measures that deform the forecast discontinuously. To some extent such techniques
are employed in ‘fuzzy’ verification techniques for high-resolution weather forecasting [7]. These
typically compare the average state of ‘events’ occurring within a neighbourhood of interest. For
real-valued variables, such as the amount of rainfall or wind intensity, events are defined relative
to some threshold. In essence, these methods produce new fields for both the observed and
forecasted data, which are then compared using a traditional point-wise metric. Such measures

1http://www.thamesvalleyvision.co.uk/
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are both scale and threshold dependent, thus one must consider a matrix of errors that captures
both of these variations.

Many algorithms and metrics have been developed to measure the similarity of time series, e.g.
Dynamic Time Warping (DTW), longest common subsequence, edit distance on real sequences
and edit distance with real penalty [5]. Often these algorithms are applied in information re-
trieval and data mining techniques to measure the cost of morphing one time series into another.
Dynamic time warping is one of the most popular techniques for measuring time series simi-
larity and has been successfully applied in automatic speech recognition algorithms [14]. DTW
measures the difference between sequences which may vary in time or speed by stretching the
time series through duplication of local points. The difference in the deformed time series is
then calculated using a standard Lp metric. A more recent method called the Move-Split Merge
(MSM) metric is similar to DTW except that duplicated and deleted values incur a fixed cost
[21]. For time series matching methods, although suitable for comparing series with the same
(but perhaps stretched) shape in time, they are biased toward preserving ordering and therefore
in the context of energy demand are not flexible enough to cope with the natural irregularities
in household behaviour. Additionally, DTW and MSM will tend to underestimate the cost for
repeated peaks by simply merging/duplicating the local peaks with little or no penalty incurred
for the inaccurate repetition. The additional complications and restrictions introduced by such
techniques make them unsuitable for measuring the errors of household level forecasts. This
motivates the development of a new forecast error measures, the topic of this paper.

Before sophisticated forecasting techniques for household electrical energy usage can be de-
veloped, we need to be able to quantitatively assess their veracity against data. However, we
illustrate in this paper that the capricious nature of energy usage means that traditional point-
wise measure-orientated approaches perform poorly at this task. Our main contribution is to
suggest a new approach that allows for some flexibility in the timing of the forecast when com-
puting the error while retaining some simplicity. Specifically, for each forecast we define the error
to be the minimum error (with respect to an appropriate norm) over the set of all restricted spa-
tial/temporal permutations of the forecast. We begin in Section 2 with a formal description of
point-wise error measures, particularly the p-norm, we then introduce the “adjusted error” and
illustrate its advantages using a simple, synthetic example. In Section 3, we apply our new mea-
sure to assess the accuracy of a hierarchy of daily forecasts of half-hourly electrical usage taken
from individual household smart meter data. In Section 4, we present a detailed discussion of the
effect of the ‘adjustment limit’, i.e. the maximum allowed permutation displacement. Finally,
we draw conclusions and discuss the advantages and disadvantages of our method in Section 5.

2 Measuring Errors

2.1 Standard Error Estimates: The p-Norm error

Let x = (x1, x2, . . . , xn)
T and f = (f1, f2, . . . , fn)

T be the actual and forecasted data vectors
respectively, such that each fi is a prediction of the actual data xi for i = 1, . . . , n. We focus on
one-dimensional data (i.e. time-series), however the methods that we describe can be generalised
to higher dimensions. Error measures can be described in terms of a vector function

E = F (f ,x), (2.1)
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where F : Rn × R
n → R is some metric. In this paper we focus on the absolute p-norm,

Ep = ‖f − x‖p =

(

n
∑

i=1

|fi − xi|
p

)1/p

, (2.2)

for some p ≥ 1 see [8, p. 52]. For example, this type of error includes the Mean Absolute
Error (MAE) and the root mean square (RMS) error, which are simply constant multiples of the
1-norm and 2-norm errors respectively.

2.2 The Adjusted Error

For the purpose of developing forecasts to plan the discharging and charging patterns of storage
devices on the LV network, it is more important to predict peaks at approximately the correct
times rather than not at all. As stated in Section 1, such forecasts incur a double penalty from
point-wise error measures and may be judged incorrectly as poor forecasts. This motivates the
idea that the error measure should allow for small, possibly discontinuous, displacements in time
of the forecast values. We note that there exist many perfect matchings between the forecast
values and actuals. Each match can be described by a permutation matrix P . To restrict the
magnitude of the displacements of the forecast values, we impose an ‘adjustment limit’, denoted
w ≥ 0, on the permutations such that Pij = 0 for |i − j| > w. We define the adjusted error to
be the solution to the minimisation

Ew = min
P∈P

F (P f ,x), (2.3)

for the given metric F , where P is the complete set of restricted permutations. The adjusted

p-norm error is then
Ew

p = min
P∈P

‖P f − x‖p. (2.4)

The adjusted error can be considered as a semimetric but not as a metric since in general it does
not obey the triangle inequality. The error minimisation is a variant of the assignment problem, a
well-known combinatorial optimisation problem that can be solved in polynomial time [15] using
the ‘Hungarian method’, details of which can be found in [20]. To incorporate the adjustment
limit into the algorithm, if |i − j| > w then we set |fi − xj |

p = Ω, where Ω is a large constant
that effectively prevents such permutations. The method’s time complexity is O(n(m+n logn))
[24] where m is the number of potential error matches, |fi − xj |

p for i, j = 1, . . . , n. We note
that this method is related to but distinct from the use of the Hungarian algorithm in Monge
Type problems, (such as the Earth Mover’s distance) which redistributes the cumulative mass
[11]. The adjusted error (2.4) does not subdivide or combine seperate predictions but merely
reorders them.

The adjustment limit w is a time-scale parameter that is problem dependent and has an
important effect on the efficacy of our verification method. If w = 0 then we recover the original
p-norm error (2.2). Increasing w reduces the adjusted error, but a small error resulting from
large displacements is not necessarily indicative of a good forecast. Thus the mean displacement,
which can be obtained from the permutation matrix P , is an additional measure of accuracy
that can be used to compare different forecasts. We discuss these points in detail in Section 4.
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Figure 1: Four ‘Forecasts’ F1, F2, F3, F4 (Dashed line) together with the actual data (Solid
Line) for a simplified example.

2.3 Simple Example

In this subsection we compare four qualitatively different forecasts of a simple energy load profile
using the absolute and adjusted p-norm errors. The synthetic data, illustrated with solid black
lines in each panel of Figure 1, consists of a single peak centred around t = 5 with a constant
background usage over a 20 time point domain.

The forecasts, illustrated with dashed lines, consist of a flat forecast (F1) (corresponding to the
average usage) and a single peak centred around three different times (F2–F4) with the correct
background usage. In the context of using the forecasts to reduce peak demand via a storage
device, F2 is a very good forecast, F3 is reasonable and both F1 and F4 are poor. Planning the
control of a storage device using the F2 forecast will enable a large reduction in peak demand
and F3 should still facilitate moderate peak load shedding due to the expectation of a peak at
approximately the correct time. F1 and F4 however would provide no peak load shedding due to
the inaccuracy in forecasting the peak demand. The absolute and adjusted p-norm errors, with
p = 4, for each of the forecasts illustrated in Figure 1 are presented in Table 1.

We have used the 4-norm, rather than the more common 2-norm, because we want to pe-
nalise large errors (i.e. missed peaks) much more than small errors. Different values of p yield
qualitatively similar results. Table 1 illustrates the following:

• Absolute 4-norm error. The good forecast, F2, has the smallest error while the flat
forecast, F1, has smaller error than both the poor forecast, F4, and the reasonable forecast,
F3. This illustrates the double penalty effect present in point-wise error measures.

• Adjusted 4-norm error, w = 1 and w = 2. The reasonable forecast, F3, error is reduced
to about 95 % and 58% of the, F1, flat forecast error for adjustment limit w = 1 and w = 2
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Forecast

Error F1 F2 F3 F4

Absolute Error 0.82 0.20 0.99 1.00
Adjusted Error (w = 1) 0.82 0.20 0.79 1.00
Adjusted Error (w = 2) 0.82 0.20 0.48 1.00
Adjusted Error (w = 3) 0.82 0.20 0.20 1.00

Table 1: Comparison of the error measurements given by the different norms for the 4 different
forecasts F1–F2 described in the main text.

respectively. The F1, F2 and F4 forecast errors are the same for both the adjusted and the
absolute measures—displacing the forecast values does not change the errors.

• Adjusted 4-norm error, w = 3. The good F2 forecast and the reasonable forecast,
F3, errors are equal. However, we can still distinguish F2 as the better forecast with this
method by considering the mean displacement. F2 has zero mean displacement of the
forecast values (implying the minimum permutation is achieved by the forecast) whereas
F3 has a mean displacement of 0.6 grid points over the 20 forecasted values.

In summary, the synthetic example illustrates how the adjusted p-norm error can give a more
accurate representation of the forecast usefulness than the standard p-norm error.

3 Application to Household Energy Load Forecasting

As shown in the previous section, for volatile, noisy and irregular data, standard point-wise
measures may not be adequate for assessing the accuracy of a forecast. Although many fore-
cast methods have been developed and calibrated for smoother higher voltage demands (see for
instance [1]), their accuracy when applied to household or LV level demand cannot be assessed
until an appropriate error measure has been established. Once suitable benchmarks are devel-
oped both old and new forecasting methods can be tested, compared and other techniques, such
as clustering, can be applied to improve the forecasts. In this section we consider the standard
and the adjusted 4-norm error in order to compare the performance of three simple forecasting
methods applied to half-hourly domestic household electrical energy usage data. The data was
collected by household smart meters as part of the Ofgem managed Energy Demand Research
Project (EDRP) trial run by Scottish and Southern Energy (SSE)2. A wide variety of energy
usage behaviours are observed between households and individual household demand is both
volatile and noisy. However there are daily, weekly and seasonal patterns that could potentially
be exploited by forecasting methods. Such forecasts can have a positive impact on network op-
erations and planning. Figures 2(a)–(c) illustrate a week’s worth of half hourly electrical energy
usage profiles in kilowatt-hours (kWh) for three representative UK households. Household (a)
consumes most of their energy during one or two peak periods at regular daily intervals. Thus
we would hope to be able to forecast their usage fairly accurately. Household (b) has irregular
peak demands that are smaller than the other households, but they maintain a fairly constant

2See http://www.ofgem.gov.uk/sustainability/edrp/Pages/EDRP.aspx for further details
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Figure 2: Example of half hourly smart meter electrical energy usage (in kWh) for household (a),
household (b) and household (c) as described in the main text.

background usage. Household (c) is the most volatile, having large irregular peak demands and
periods of low usage. We would expect this household’s energy usage to be difficult to forecast.
The average daily energy usage for households (a), (b) and (c) is 5.51 kWh, 9.89 kWh and 18.12
kWh respectively.

Our household energy usage data-set consists of 10 weeks of half-hourly kWh records (3360
in total) for each of the three households. Each forecast generates an unsupervised rolling daily
prediction from midnight over the course of the 10th week with access to the full data-history
of each household separately. Our aim is to assess validation techniques and consequently the
forecast methods that we implement are chosen to form a clear hierarchy. The three methods by
which each of the daily forecasts are generated are as follows:

1. Flat forecast: The average usage over the previous 7 days, used as the forecast for all time
periods.

2. Last Week (LW) forecast: The usage on the same day of the previous week.

3. Averaged Adjustment (AA) forecast: A combination of a historic average and baseline
usage. A detailed description can be found in A.

A snap shot of a single day’s data from each household and the corresponding forecasts are
illustrated in Figure 3.

Clearly the flat forecast provides little informative value, while the LW forecast is innately
realistic but performs poorly for irregularities in week to week behaviour. The AA forecast is
subjectively better than the other forecasts but volatility still reduces its performance.

As in the simple example described in Section 2.3, we compare the absolute and adjusted
p-norm errors with p = 4 in order to penalise larger peaks to a greater extent than smaller
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Figure 3: Forecasted usage on Wednesday of the final week of the data set of each household described in text. Plot shows actual
usage (shaded area) together with forecasts for household (a), (b) and (c) using the AA (black line), LW (dashed line) and Flat
(gray line) forecast methods.
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Figure 4: Panels (a)–(c) correspond to households (a)–(c) respectively. Each panel depicts the
daily averages of the 4-norm (Black) and adjusted 4-norm (Gray) errors for the three forecasts.
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peaks. We use w = 3 as the adjustment limit, hence forecasts can be displaced up to one and
a half hours either side of their original forecast time. The effects of w are considered in more
detail in Section 4. Because the forecasts produce rolling daily predictions, we calculate the ith

day’s errors for each measure, ei, and then use the mean absolute error,

〈E〉 =
1

7

7
∑

i=1

ei, (3.5)

to compare forecasts.
The daily mean errors of each forecast method are shown in Figures 4(a)–(c) for each household

respectively. The black bars show the daily-mean 4-norm error and the gray bars show the daily-
mean adjusted 4-norm error. Focusing first on the 4-norm errors, we note that the flat forecast
out-performs the other forecasts for both households (b) and (c). Additionally, the AA forecast
is beaten by the LW forecast for household (a). Clearly these results do not agree with the
proposed forecasting hierarchy. In particular, we know that the flat forecast reproduces none of
the daily household usage patterns. By ignoring peaks altogether, the flat forecast avoids the
double penalty and can appear better than more sophisticated forecasts, but is clearly of no use
for control or scheduling purposes.

We now consider the 4-norm adjusted errors, illustrated with gray bars in panels (a)–(c) of
Figure 4. We note that the adjusted norm does not change the flat forecast errors, but reduces
all of the LW and AA errors. The AA forecast is now the most successful forecast for all
households with a marked improvement for household (a) in particular. This can be attributed
to the regular peak demands observed in the data being forecasted close to when they actually
occur and the absence of the double penalty in the adjusted error measure. Relative to the flat
forecast errors, the improvement in the errors for the AA forecast decreases from households (a)
through to (c), owing to the relative increase in volatility respectively. The magnitude of the
errors for household (c) are by far the largest and the relative difference between methods is the
smallest, indicating that forecast sophistication only introduces marginal relative improvements
as volatility increases.

To illustrate that our results hold more generally, we consider the 4-norm and adjusted 4-
norm errors of the three forecast methods applied to the usage data of 600 individual domestic
households. As in the example above the data set for each household consists of half hourly
electrical energy usage over a 10 week period, collected by smart meters during the EDRP trial.
Using the Flat, LW and AA methods, a rolling daily forecast of each household’s energy usage was
produced for the final week of each data set. Figure 5 shows the mean daily difference between
the flat forecast errors and the 4-norm and 4-norm adjusted errors (with w = 3) for both the LW
and AA forecasts. The horizontal-axis represents the mean daily difference between the 4-norm
errors of the Flat forecast and the LW (or AA) forecast and the vertical-axis represents the mean
daily difference between the adjusted 4-norm errors of the Flat forecast and the adjusted 4-norm
errors of the LW (or AA) forecast. The diagonal line indicates where the mean 4-norm and mean
adjusted 4-norm errors are equal. Since the adjusted 4-norm error is always smaller than the
4-norm error, no forecasts can occupy the area below the line.

The three occupied quadrants of the graph establish a 3 cluster segmentation of the forecasts
in terms of their accuracy:

1. Points in the lower-left quadrant represent forecasts whose mean 4-norm and mean adjusted
4-norm errors are larger than or equal to the mean flat forecast errors. We refer to these
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forecasts as Poor.

2. Points in the upper-left quadrant represent forecasts whose mean flat forecast error is
smaller than the mean 4-norm error forecast but larger than the mean adjusted 4-norm
error. Since the small temporal re-alignment has reduced the error compared to the 4-norm
error we refer to these forecasts as Good after adjustment.

3. Points in the top right quadrant represent forecasts whose mean 4-norm and mean adjusted
4-norm errors are both smaller than the mean flat forecast errors. We refer to these as
Good forecasts.

The plot shows that the AA forecasts (filled circles) are in general superior to the LW forecasts
(unfilled circles). The majority of the AA forecast are either good (360) or good after adjustment
(208). Only 32 of the AA forecast are poor whereas 225 of the LW forecasts are poor. For the LW
method, only 105 are good forecasts and just less than half (270) are good after adjustments. Of
the 600 households, the LW forecast only out-performs the AA forecasts for 30 households in the
4-norm but for 46 households in the adjusted 4-norm. In Figure 5 we also include the data for
the LW and AA forecasts of households (a), (b) and (c). In terms of our accuracy classification
both the LW and AA are good forecasts for household (a) whereas the AA forecast is good after
adjustment for households (b) and (c) while the LW forecast is poor for households (b) and (c).
The large proportion of forecasts that are good after adjustment are particularly important. If
only the 4-norm is used as an accuracy measure then these forecast methods could potentially
be mistakenly rejected, despite their improved performance with respect to the adjusted norm.

4 The adjustment limit

In this section we analyse the adjusted error in more detail. The choice of the adjustment
window, w, is largely subjective and application specific. In section 3 we chose w = 3 based
on the assumption that a reasonable forecast of household electrical energy usage should only
misplace a peak by a maximum of an hour and a half. Other criteria, such as requiring the
forecast to out-perform the flat forecast, can also be used to inform on a suitable adjustment
limit. For a given application it may be necessary to consider the error as a function of w, as
described in this section, in order to make a more informed decision on the size of the adjustment
window. For smart control algorithms utilised in storage devices it is preferable to forecast a
peak earlier rather than later, this guarantees that the battery is fully charged and thus able to
more efficiently reduce the actual peak. Ideally then there should be a bias in the adjustment
window toward forecasting earlier peaks. This is not considered in this paper but is entirely
feasible. One simply is required to penalise adjustments which shift relatively larger forecasted
peaks to earlier times.

Figure 6 displays the mean adjusted 4-norm error for each of the households introduced in
Section 3 for the AA and LW forecast for different values of w, illustrated in panels (a) and (b)
respectively. Each curve is a monotonically decreasing function of the adjustment limit. The
black markers on the graph of each line shows where the forecast error equals the error of the
flat forecast (The forecasts for household (a) have smaller errors than the flat forecast in these
examples hence the absence of a marker). For all households, in order to outperform the flat
forecast the AA forecast must use w ≥ 1, whereas the LW forecast must use w ≥ 4. As we
increase w, large reductions in the adjusted error indicate that large peaks in the forecast are
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Figure 6: The mean adjusted errors for (a) the AA forecast and (b) the LW forecast for the
usage of three different households (a) (solid line), (b) (dotted) and (c) (dashed) as a function
of w. The black marker on each line shows where the forecast errors equal the errors of the flat
forecast.

being matched to the actuals. We focus on the AA forecast for our analysis, similar results hold
for the LW forecast. As we increase w from 0 to 2 there are large decreases in the adjusted
error of the forecast for household (a) due to the closeness (within 3 half hours ) of the peaks
in the forecast and actual usage. Moderate decreases in the forecast errors are also observed for
household (c), although even with w = 20 (shifts of ±10 half hours) the errors are relatively
large compared with the errors in the forecasts for households (a) and (b). Household (b) has a
slow rate of reduction as w increases. As shown in Section 3, the general behaviour of household
(b) can be forecasted accurately and so the slow reduction is likely to be due to the matching of
the small daily irregularities.

The adjusted error decreases with increasing w but this is likely to simultaneously increase
the mean displacement of the forecast positions. Smaller displacements are more desirable as
they indicate a closer proximity of the features of the forecast with the actuals. To fully describe
the accuracy of a forecast we must consider both the mean displacement and the adjusted error
of the forecast. As shown for the synthetic example in Section 2.3, the mean displacement
can be used to distinguish between the accuracy of two forecasts with the same adjusted error.
Since we are primarily interested in the displacement of the peak loads, we consider a weighted
mean displacement. Suppose that the forecast at point i, fi, is matched to the actual at j, and
di = |i− j| is the forecast displacement then we define the average displacement for each day as

D̂ =

∑48
i=1 f

4
i di

∑

f4
i

. (4.6)

The power of 4 ensures that our measure is representative of larger peaks.
Figure 7 shows the mean displacement of the AA and LW forecasts over the final week as

a function of w for each household, together with a plot of the expected average displacement
if the forecast was assigned randomly. (The random displacement is found by calculating the
expected displacement for each of the 48 daily points within the adjustment limit, assuming any
displacement is equally likely. The mean over the 48 daily points is then calculated.). We present
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Figure 7: Average weighted displacement of forecasted points for different adjustment limits for
(a) the AA forecast and (b) the LW forecast for the three different households (a) (solid line),
(b) (dotted) and (c) (dashed). Also included is the expected displacement if forecast points were
assigned randomly.

the results for the AA forecast, the LW forecast results are similar. The mean displacements
of the forecasts for households (b) and (c) closely match the random displacement curve when
w < 10. It is likely that the features of the forecasts are being matched to the irregular week to
week behaviours of the households. As we showed in Section 3, the regular behaviour of household
(b) is accurately forecasted but the small irregular demands are poorly forecasted. Household
(c) has no regular week to week behaviour and is largely unpredictable. In contrast, household
(a) has regular weekly behaviour and the peaks are accurately forecasted and therefore the mean
displacement remains small for all w values. As the adjustment limit is increased beyond w = 15
some of the afternoon and morning peaks are matched resulting in the small increase in the size
of the average displacement.

Figures 6 and 7 together reveal extra information about the usage patterns and forecast
accuracy for each of the different households. In particular, for household (a), sharp drops in
the forecast error as w is increased from 0 to 2 indicate the forecast closely approximates the
large features in the data. The small average displacements confirm that regular peaks are being
matched. In contrast, for household (c) the large reduction in forecast error is likely to be
the result of matching random, irregular behaviour as shown by the mean displacement being
similar to a random assignment in Figure 7. Similarly we find that the small reduction in the
adjusted error for household (b) as we increase w are mainly the consequence of matching the
small irregular behaviour which are missed by the forecast.

5 Conclusions

As low carbon technologies become ubiquitous there are increased risks to the robustness and
security of the low voltage (LV) electriciy networks. The electrification of heating and transport
is expected to increase network peak demand, while the increased uptake of more intermittent
forms of generation such as photovoltaics is likely to increase network volatility. To effectively
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manage the local networks it is vital that network operators understand how demand is changing
and what practical solutions are available. Household smart meters are becoming an integral part
of many government’s low carbon agenda and many countries aim to have a meter in every home
within the next decade. Smart meters provide a valuable opportunity for detailed data analytics
and in particular for forecasts at the individual and low voltage substation level. Accurate
household level forecasts can also be utilised for planning the smart control of storage devices
to reduce peak demands. However, before useful household level forecasts can be developed an
appropriate verification measure must be established to assess the accuracy of such forecasts.

In this paper we suggest such a measure for assessing the success of forecasts of volatile and
noisy data. A standard treatment of the accuracy is to consider the p-norm of the error, but due
to the “double penalty” effect such measures have been shown to be inadequate, especially when
attempting to forecast peaks and troughs in the data. Any successful forecast method requires
a degree of flexibility in the spatial/temporal positioning of the peaks. Our proposed solution,
the adjusted p-norm error, allows for limited permutations of the forecasted data, which reduces
the penalty imposed on shifted peaks. This was illustrated with a simple synthetic example and
then demonstrated on forecasts of real, high resolution household electrical energy usage.

To test the forecast measure, three forecast methods were applied to three seperate households
energy demand data with varying degrees of week to week regularity and hence forecastability.
The forecasts ranged in skill with a clear hierarchy: an innately poor flat forecast, a poor, yet
realistic ‘last week as this week’ forecast and an adjusted-average of previous week’s behaviour.
We found that, with respect to a point-wise metric, the flat forecast could outperform many of
the more realistic, informative forecasts. This was not the case with our new error measure.
We also applied the measure to forecasts of 600 independent households which confirmed the
ability of the new measure to successfully distinguish between the accuracy of the 3 forecasts
methods. In addition, we also considered what the effect of changing w has on the adjusted
error and the average displacement of the matched forecasts. This offered further insights into
the accuracies of the forecasts. In summary, in this paper we have presented a new method
for verifying forecast accuracy which has shown to be effective and efficient for assessing the
accuracy of shifted features of volatile and noisy data sets.

The new measure presented in this paper deforms the forecast in a discontinuous way, which
may not be appropriate for all applications. For instance at for high voltage level demand which
is more smooth and regular the standard point-wise measures will be adequate. However, when
the data is volatile and irregular, the smoothness of the deformation may be less significant.
Additionally, for any particular application the method can be applied to any suitable error
measure and is very simple to implement with only a single control parameter, w.

In the context of utilising forecasts to control storage devices on the low voltage network,
it is arguably more appropriate for the forecast measure to impose heavier penalties for peaks
forecasted too early rather than too late. In future work we will investigate modifications to
the adjustment window and consider their impact on peak reduction through implementation of
smart control of storage devices. Additionally we will consider the accuracy of the more standard
forecast methodologies used in higher voltage load forecasting with respect to our new measure
to test their suitability for forecasting electricity demand at the household level.
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A The Averaged Adjustment Forecast

In this appendix we briefly describe the Averaged Adjustment (AA) forecast as implemented in
this report. For clarity, we show how we forecast for one particular day, the other days of the week
are forecasted in an analogous way. We assume that we have N daily usage profiles of half hourly

resolution of the dth day of the week (d = 1, . . . , 7) which we notate G
(k) = (g

(k)
1 , g

(k)
2 , . . . , g

(k)
48 )T

for k = 1, 2, . . . , N , where G
(1) is the previous week usage of the dth day and G

(2) is the usage

over the dth day from 2 weeks before etc. We create a base profile F
(1) = (f

(1)
1 , f

(1)
2 , . . . , f

(1)
48 )T

where each half hour is defined to be the median value over all N half hours. We iteratively
update the baseline profile using matching with each successive previous weeks data. This is
performed as follows. Suppose F

(k) is the current baseline for the kth iteration (1 ≤ k ≤ N − 1).
We define Ĝ

(k) = P̂G
(k), where P̂ ∈ P is a permutation matrix such that

||P̂G
(k) − F

(k)||4 = min
P∈P

||PG
(k) − F

(k)||4. (A.7)

where P represents the set of restricted permutations of the half hour loads (i.e. each half hour
i moved to some half hour j where |i − j| ≤ w and w is the deformation limit as described
in Section 2.2). In other words, Ĝ(k) is the usage from the previous week that minimises the
deformed norm error between the baseline load usage and the usage of the current week G

(k).
The new baseline is defined to be

F
(k+1) =

1

k + 1
(Ĝ(k) + kF(k)). (A.8)

The process is repeated for each of the remaining weeks to give the final forecast F
(N). Hence,

the forecast is defined to be an average of the initial baseline and permutations of the previous
weeks

F
(N) =

1

N + 1

(

N
∑

k=1

Ĝ
(k) + F

(1)

)

. (A.9)
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