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Resolution of sharp fronts in the presence of model error in
variational data assimilation
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Abstract: We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov
regularisation, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-
norm penalty regularisation recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularisation.
We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm
penalty approach and a mixed Total Variation (TV) L1-L2-norm penalty approach. For problems with model error where sharp
fronts are present and the background and observation error covariances are known, the mixed TV L1-L2-norm penalty performs
better than either the L1-norm method or the strong-constraint 4DVar (L2-norm) method. A strength of the mixed TV L1-L2-norm
regularisation is that in the case where a simplified form of the background error covariance matrix is used, it produces a much more
accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems
with poorly tuned background error covariance matrices.
Copyright c⃝ 2010 Royal Meteorological Society
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1 Introduction

Data assimilation is a method for combining model fore-
cast data with observational data in order to forecast more
accurately the state of a system. One of the most popu-
lar data assimilation methods used in modern numerical
weather prediction is four-dimensional variational data
assimilation (4DVar) (Sasaki (1970); Talagrand (1981);
Lewis et al. (2006)), which seeks initial conditions such
that the forecast best fits both the observations and the
background state (which is usually obtained from the pre-
vious forecast) within an interval called the assimilation
window. Currently, in most operational weather centers,
systems and states of dimension O(107) or higher are
considered, whereas there are considerably fewer obser-
vations, usually O(106) (see Daley (1991); Nichols (2010)
for reviews on data assimilation methods).

Linearised 4DVar can be shown to be equivalent
to Tikhonov, or L2-norm regularisation, a well-known
method for solving ill-posed problems (Johnson et al.
(2005)). Such problems appear in a wide range of applica-
tions (Engl et al. (1996)) such as geosciences and image
restoration, the process of estimating an original image
from a given blurred image. From the latter work it is
known that by replacing the L2-norm penalty term with
an L1-norm penalty function, image restoration becomes
edge-preserving as the process does not penalise the
edges of the image. The L1-norm penalty regularisation

∗Correspondence to: Department of Mathematical Sciences, Uni-
versity of Bath, Claverton Down BA2 7AY, UK. E-mail:
m.freitag@maths.bath.ac.uk

then recovers sharp edges in the image more precisely
than the L2-norm penalty regularisation (Hansen (1998);
Hansen et al. (2006)). Edges in images lead to outliers in
the regularisation term and hence, L1-norms for the reg-
ularisation terms give a better result in image restoration.
This is the motivation behind our approach for variational
data assimilation.

The edge-preserving property of L1-norm regularisa-
tion can be used for models that develop shocks, which is
the case for moving weather fronts. In numerical weather
prediction and ocean forecasting, it is recognized that the
4DVar assimilation method may not give a good analy-
sis where there is a sharp gradient in the flow, such as
a front (Bennett (2002); Lorenc (1981)). If the front is
displaced in the background estimate, then the assimila-
tion algorithm may smear the front and also underesti-
mate the true amplitude of the shock (Johnson (2003)).
In these cases the error covariances propagated implic-
itly by 4DVar are not representative of the correct error
structures near the front. If model error is present, then
there are systematic errors between the incorrect model
trajectories and the observed data and therefore the strong
constraint 4DVar, which assumes a perfect model, is not
able to represent these errors correctly. Here we apply an
L1-norm penalty approach to several numerical examples
containing sharp fronts for cases with model error. We
show that the L1-norm penalty approach applied to the
gradient of the analysis vector (we call this mixed Total
Variation (TV) L1-L2-norm penalty regularisation) per-
forms better than the standard L2-norm regularisation in
4DVar. With the use of the gradient operator and the L1
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norm, localisation of the gradient is enforced, which is
important in tracking fronts. As an example we use the
linear advection equation where sharp fronts and shocks
are present. We use a numerical scheme that introduces
some form of model error into the systems and find that,
using an L1-norm regularisation term, applied to the gra-
dient of the solution, fronts are resolved more accurately
than with the standard L2-norm regularisation of 4DVar.
Further investigation remains to be done in order to eval-
uate the technique in an operational setting.

Section 2 gives an introduction to 4DVar and shows
its relation to Tikhonov regularisation. In Section 3 we
introduce the new algorithms and in Section 4 we explain
how we solve the L1-norm regularisation problem and the
mixed TV L1-L2-norm regularisation problem. Sections 5
and 6 describe experiments using a linear advection model
where the new regularisation approaches are compared
with standard 4DVar for cases with model error. Under
these conditions it is seen that mixed TV L1–L2-norm
regularisation outperforms 4DVar where sharp fronts are
present. In the final section we present conclusions and
discuss future work.

2 4DVar and its relation to Tikhonov regularisation

In nonlinear 4DVar we aim to minimise the objective
function

J (x0) =
1

2
(x0 − xb

0)
TB−1(x0 − xb

0)

+
1

2

N∑
i=1

(yi −Hi(xi))
TR−1

i (yi −Hi(xi))
(1)

subject to the system equations

xi+1 = Mi+1,i(xi), i = 0, . . . , N − 1. (2)

This is a nonlinear constraint minimisation problem where
the first term in (1) is called the background term, xb

0 is the
background state at time t = 0 and xi ∈ Rm, i = 0, . . . , N
are the state vectors at time ti. The function Mi+1,i :
Rm → Rm denotes the nonlinear model that evolves the
state vector xi at time ti to the state vector xi+1 at time
ti+1. In weather forecasting the state vector xb

0 ∈ Rm is
the best estimate of the state of the system at the start of
the window from the previous assimilation/forecast cycle.
The vectors yi ∈ Rp, i = 1, . . . , N contain the observa-
tions at times ti and Hi : Rm → Rp is the observation
operator that maps the model state space to the observa-
tion space.

Minimising (1) is a weighted nonlinear least-squares
problem. By minimising J (x0) we find an initial state
x0 ∈ Rm, known as the analysis, such that the model tra-
jectory is close to the background trajectory and to the
observations in a suitable norm. The symmetric matrix
B ∈ Rm,m and the symmetric matrices Ri ∈ Rp,p, i =
1 , . . . , N are assumed to represent the covariance matri-
ces of the errors in the background and the observa-
tions respectively. The matrices Ri describe the combined

effects of measurement errors, representativity errors
(arising from the need to interpolate state vectors to the
times and locations of the observations) and errors in the
observation operator. Provided the background and obser-
vation errors have Gaussian distributions with mean zero,
then minimising J (x0) is equivalent to finding the max-
imum a posteriori Bayesian estimate of the true initial
condition (Lorenc (1986)).

We apply a Gauß-Newton method
(Dennis and Schnabel (1983)) in order to solve the
minimisation problem (1). From a starting guess x0

0,
Newton’s method for solving the gradient equation is

∇∇J (xk
0)∆xk

0 = −∇J (xk
0), xk+1

0 = xk
0 +∆xk

0 , (3)

for k ≥ 0. In the Gauß-Newton method, the Hessian
is replaced by an approximate Hessian ∇̃∇J (xk

0) that
neglects all the terms involving second derivatives of
Mi+1,i and Hi. We let Mi+1,i be the Jacobian of Mi+1,i.
Here we only consider problems where the observation
operator is linear, that is Hi(xi) = Hixi. Furthermore,
both Ri = R and Hi = H , are assumed to be unchanged
over time.

The gradient of (1) is then given by

∇J (x0) =B−1(x0 − xb
0)

−
N∑
i=1

Mi,0(x0)
THTR−1(yi −Hxi),

(4)

where Mi,0(x0) is the Jacobian of Mi,0(x0). The chain
rule gives

Mi,0(x0) = Mi,i−1(xi−1)Mi−1,i−2(xi−2) · · ·M1,0(x0).
(5)

Taking the gradient of (4) and neglecting terms involving
the gradient of Mi,0(x0) gives

∇̃∇J (x0) = B−1 +

N∑
i=1

Mi,0(x0)
THTR−1HMi,0(x0).

(6)
Both the summation terms in (4) and (6) can be obtained
recursively using the adjoint equations

λN = 0,

λi−1 = Mi,i−1(xi−1)
T (λi +HTR−1(yi −Hxi)),

for i = N, . . . , 1, in order to find the gradient

∇J (x0) = B−1(x0 − xb
0)− λ0, (7)

and similarly

∇λN = 0

∇λi−1 = Mi,i−1(xi−1)
T (∇λi −HTR−1HMi,0(x0)),

for i = N, . . . , 1, leads to

∇̃∇J (x0) = B−1 −∇λ0. (8)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 3

Using these adjoint equations we avoid having to compute
Mi,i−1(xi−1) several times. We note that λi, i = 0, . . . , N
are vectors whereas ∇λi, i = 0, . . . , N are square matrices
of the dimension of the system state.

The approximate Hessian ∇̃∇J (x0) and ∇J (x0) are
then used in (3), which is equivalent to a linearised least
square problem. Here we solve this system directly. This
approach is mathematically equivalent to the incremental
4DVar method as described in (Lawless et al. (2005a,b));
in the incremental method, however, the inner equations
(3) are solved iteratively.

We may rewrite the objective function (1) in 4DVar
as

J (x0) =
1

2
(x0 − xb

0)
TB−1(x0 − xb

0)

+
1

2
(ŷ − Ĥ(x0))

T R̂−1(ŷ − Ĥ(x0)),

(9)

where

Ĥ(x0) =


HM1,0(x0)
HM2,0(x0)

...
HMN,0(x0)

 , and ŷ =


y1
y2
...
yN

 .

In general Ĥ(x0) is a nonlinear operator, ŷ ∈ RpN is a
vector and R̂ ∈ RpN,pN is a block diagonal matrix with
diagonal blocks equal to R. If we linearise Mi,0 about xb

0,
then the Jacobian of the augmented matrix Ĥ is given by

Ĥ := Ĥ(xb
0) =


HM1,0(x

b
0)

HM2,0(x
b
0)

...
HMN,0(x

b
0)

 , (10)

which is essentially the observability matrix. Now writ-
ing B = σ2

bCB and R̂ = σ2
oCR, where CB and CR denote

correlation matrices, and performing a variable transform
z := C

−1/2
B (x0 − xb

0) we may write the linearised objec-
tive function that we aim to minimise as

Ĵ(z) =∥C−1/2
R (ŷ − Ĥ(xb

0))− C
−1/2
R ĤC

1/2
B z∥22

+ µ2∥z∥22, µ2 =
σ2
o

σ2
b

.
(11)

This is equivalent to a linear least-squares problem with
Tikhonov regularisation (Engl et al. (1996)), where µ2

acts as the regularisation parameter. If we set

G := C
−1/2
R ĤC

1/2
B and f := C

−1/2
R (ŷ − Ĥ(xb

0)),
(12)

where G ∈ RpN,m and f ∈ RpN , then equation (11) may
be written as

min
z

Ĵ2(z) = min
z

{∥f −Gz∥22 + µ2∥z∥22}, µ2 =
σ2
o

σ2
b

.

(13)

If G is an ill-posed operator, or in the discrete setting an
ill-conditioned matrix, then the minimisation problem

min
z

{∥f −Gz∥22} (14)

is hard to solve exactly, that is, the solution z does not
continuously depend on the data. In data assimilation
the matrix G is generally ill-conditioned, which means
it has singular values that decay rapidly and many are
very small or even zero. This problem occurs if there are
not enough observations in the system, which is typical
for numerical weather prediction. Furthermore, the given
observations are subject to errors, leading to errors in the
vector f . Hence, we can see that the minimisation problem
(14) with an ill-conditioned system matrix G and an
unreliable data vector f will lead to an unstable solution
and some form of regularisation is required (for example
preconditioning, Tikhonov regularisation, singular value
filtering, etc.). We consider Tikhonov regularisation where
a regularisation term µ2∥z∥22 is introduced, which leads to
the objective function Ĵ2(z) in (13). The minimisation of
the Tikhonov function (13) gives the regularised solution

z = (GTG+ µ2I)−1GT f =

min(pN,m)∑
j=1

σ2
j

σ2
j + µ2

uT
j f

σj
vj ,

(15)
where I ∈ Rm,m is the identity matrix (see, for example,
(Hansen et al., 2006, Chapter 5) for details). The vectors
uj and vj are the singular vectors of G belonging to
the singular values σj , where G has the singular value
decomposition G = UΣV T , with U ∈ RpN,pN and V ∈
Rm,m being orthonormal matrices and Σ being a pN ×m
matrix with entries σj ≥ 0, j = 1, . . . ,min(pN,m), on the
leading diagonal and zeros elsewhere. Hence the factor
σ2
j /(σ

2
j + µ2) acts as a filter factor for small singular

values σj .
It is known from image processing (Hansen et al.

(2006)) that instead of taking the L2-norm for the regu-
larisation term µ2∥z∥22 (that is the background term) the
L1-norm gives a better performance when sharp edges
need to be recovered. The reason for the edge-preserving
property of the L1-norm is that the L1-norm enforces a
sparse solution (Donoho (2006a)). 4DVar performs poorly
for the recovery of fronts. For shocks and fronts in the
form of square waves or step functions, as in Figure 1
and all the following figures, the gradient of the solution
is sparse and hence we introduce a mixed Total Varia-
tion L1-L2-norm approach which aims to recover fronts
and sparse solutions, see Wright et al. (2009). In general,
the gradient would be small (but nonzero) away from the
front, but L1 methods, which recover solutions with sparse
gradients, should work well.

Hence we introduce and test two new approaches
which are motivated by the L1-norm regularisation and
compare them to standard 4DVar: These are L1-norm
regularisation and a mixed Total Variation L1-L2-norm
regularisation. Both are described in the next section.
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4 M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

3 L1-norm and mixed L1-L2-norm regularisation

With the notation in (12), the minimisation problem in
(11) can be written as (13) - known as standard Tikhonov
regularisation - where the second term is a regularisa-
tion term and µ2 is the regularisation parameter. In the
literature, there has been a growing interest in using L1-
norm regularisation for image restoration, see, for exam-
ple, Fu et al. (2006); Agarwal et al. (2007); Schmidt et al.
(2007).

Firstly, in this paper we consider the effects of L1-
norm regularisation for variational data assimilation by
replacing the squared L2-norm in the regularisation term
µ2∥z∥22 of (13) by the L1-norm to obtain

min
z

Ĵ1(z) = min
z

{∥f −Gz∥22 + µ2∥z∥1}, µ2 =
σ2
o

σ2
b

.

(16)
Equation (13) can be written as

min
z

Ĵ2(z) = min
z

{∥∥∥∥[ f
0

]
−
[

G
µI

]
z

∥∥∥∥2

2

}
, µ2 =

σ2
o

σ2
b

.

(17)
The minimisation problems (16) and (17) aim to produce a
solution z and hence, with z := C

−1/2
B (x0 − xb

0), an initial
state x0 = C

1/2
B z + xb

0 such that the solution trajectory is
both close to the background (the previous forecast) and
the observations in some weighted norm. The solution to
problem (16) promotes sparsity in the solution, hence it
promotes a sparse vector z. It has been shown that with
very high probability the vector z if minimised in the
L1 norm has very few entries (for further mathematical
details of sparsity promoting minimisation we refer to
Donoho (2006b)). We will see that this is generally not
so useful for our computations.

Both the L2-norm and the L1-norm minimisation
can be interpreted from a Bayesian point of view. For
the L2-norm approach - which is equivalent to standard
4DVar - a Gaussian distribution is assumed for the error
in the prior, that is, for the background error. For the L1-
norm, the background error is assumed to have a Laplace
(double-sided exponential) distribution. (For details, see
the Appendix.)

The advantage of using the L1-norm is that the
solution is more robust to outliers. It has been observed
that a small number of outliers have less influence on
the solution (Fu et al. (2006)). Edges in images lead to
outliers in the regularisation term and, hence, L1-norms
for the regularisation terms give a better result in image
restoration. This is the motivation behind our approach for
variational data assimilation.

However, if it is known that fronts are present in the
solution then the gradient of the solution will be sparse -
hence the gradient of the initial state x0 will be sparse. If

we approximate the gradient by a matrix D given by

D =


1 0 . . .
−1 1 0 . . .
0 −1 1 0 . . .

. . . . . . . . .
. . . 0 −1 1

 , (18)

then the minimisation problem for a sparse initial state and
hence a sharp front becomes

min
z

ĴTV (z) =min
z

{∥∥∥∥[ f
0

]
−
[

G
µI

]
z

∥∥∥∥2

2

+δ∥Dx0∥1} , µ2 =
σ2
o

σ2
b

,

(19)

where x0 = C
1/2
B z + xb

0, D is given by (18) and δ is
another so-called regularisation parameter which needs to
be chosen. The size of δ determines how much sparsity
is enforced on the gradient of the solution (see Table I
for examples with different choices of δ). We will see in
Section 5 that minimising ĴTV (z) in (19) gives a much
better resolution of the fronts than minimising Ĵ2(z) or
Ĵ1(z) in (17) or (16). (We remark that other choices for
the derivative approximation D can be taken, but (18) is
commonly used.)

We find that, for fronts and shocks, regularisation
with an added L1-norm on the derivative of the initial
condition in 4DVar gives much better results than the
standard L2-norm approach in the presence of model
error. When an L1-norm penalty term with a gradient
as in (19) is added one often speaks of total variation
(TV) regularisation (Strong and Chan (2003)). We call the
problem in (19) a mixed TV L1-L2-norm regularisation
problem.

In the following section we explain how we solve the
L1-norm minimisation problem in (16) and the mixed TV
L1-L2-norm minimisation problem in (19).

4 Least mixed norm solutions

We consider the minimisation problems (16) and (19). In
order to solve these least mixed norm solutions we use an
approach introduced by (Fu et al. (2006)). Both problems
(16) and (19) are solved in a similar way. We explain
the algorithm using the minimisation problem (19), the
application of the algorithm to problem (16) is similar.

First, with x0 = C
1/2
B z + xb

0, problem (19) can be
formulated as

min
z

{∥∥∥∥[ f
0

]
−
[

G
µI

]
z

∥∥∥∥2

2

+ δ∥D(C
1/2
B z + xb

0)∥1

}
.

(20)
We let

v = δD(C
1/2
B z + xb

0),

and split v into its non-negative and non-positive parts v+

and v−, that is
v = v+ − v−
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and

v+ = max(v, 0), v− = max(−v, 0).

Problem (20) can then be written as

min
z,v+,v−

{∥∥∥∥[ f
0

]
−
[

G
µI

]
z

∥∥∥∥2

2

+ 1T v+ + 1T v−

}
.

(21)
subject to the constraints

δD(C
1/2
B z + xb

0) = v+ − v−, (22)
v+, v− ≥ 0. (23)

Here 1 denotes the vector of all ones of appropriate size.
This problem can then be written as

min
w

{
1

2
wTHw + cTw

}
(24)

subject to
Ew = g and Fw ≥ 0, (25)

where

w =

 z
v+

v−

 , H =

 2(GTG+ µ2I) 0 0
0 0 0
0 0 0

 ,

c =

 −2GT f
1
1

 , E =
[
δDC

1/2
B −I I

]
,

F =

 0 0 0
0 I 0
0 0 I

 , g = −δDxb
0,

and the block matrices I and 0 as well as the vectors 1
of all ones in the matrices H , E, F and c are of appro-
priate size. The objective function in (24) is convex as
H is symmetric positive semi-definite. In order to solve
the quadratic programming problem (24) with constraints
(25) we use the MATLAB in-built function quadprog.m,
which readily solves problems of the form (24),(25). For
our problem we use an active-set quadratic programming
strategy (also known as a projection method), which is
described in Gill et al. (1981). For details on the imple-
mentation of the MATLAB quadratic programming tool
we refer to the MATLAB Product Documentation Matlab
(R2012a).

In the following sections we consider a square wave
propagated by the linear advection equation as an exam-
ple. We use a ‘true’ model (from which we take the obser-
vations) and another model, which is different from the
truth and hence introduces a model error. For the differ-
ent regularisation approaches we keep the regularisation
parameter µ fixed, as we are only investigating the influ-
ence of the norm in the regularisation term, but not the
size of the regularisation parameter µ. In all the exam-
ples we observe that the new edge-preserving mixed TV
L1-L2-norm regularisation indeed gives better results than
the standard L2-norm approach and the simple L1-norm
regularisation.

5 Numerical experiments

We consider the linear advection equation

ut + ux = 0, (26)

on the interval x ∈ [0, 1], with periodic boundary condi-
tions. We discretise the equation using the upwind scheme

Un+1
j = Un

j − ∆t

∆x

(
Un
j − Un

j−1

)
, (27)

where j = 1, . . . , N , and the CFL condition ∆t < ∆x
needs to be satisfied for stability (see Morton and Mayers
(2005); LeVeque (1992) for details). Note that the lower
index in (27) is spatial and the upper index is temporal.

The initial solution is a square wave defined by

u(x, 0) =

{
0.5, 0.25 < x < 0.5

−0.5, x < 0.25 or x > 0.5.
(28)

This wave moves through the time interval; the true
solution is obtained by the method of characteristics
(by advecting the inital condition at speed 1, that is
u(x, t) = u(x− t, 0)). The model equations are defined
by the upwind scheme (27) with boundary conditions
Un
0 = Un

N , where n = 1, . . . , 80, N = 100, ∆x = 1
100 and

n is the number of time steps. The same example is used
in Griffith and Nichols (2000). For this example we take
∆t = 0.005.

5.1 A standard experiment

We consider an assimilation window of length 40 time
steps. After the assimilation period we compute the fore-
cast for another 40 time steps, and hence, 80 time steps
are considered in total. For the background and observa-
tion error covariance matrices we take B = 0.01I and R =
0.01I; hence the background is given the same weight as
a single observation in this case. Moreover, we choose the
background to be equal to the truth given by (28) per-
turbed by Gaussian noise with mean zero and covariance
B. The background thus contains errors with variance of
order 0.01. We test several cases.

1. Perfect observations are taken everywhere in time
and space.

2. Perfect observations are taken every 20 points in
space and every 2 time steps.

3. Imperfect observations are taken every 20 points in
space and every 2 time steps; for the observations
we introduce Gaussian noise with mean zero and
variance 0.01.

For all cases we test

• standard 4DVar (minimisation problem (17)),
• L1-norm regularisation (minimisation problem

(16)), and
• mixed TV L1-L2-norm regularisation (minimisa-

tion problem (19)).
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Figure 1. Results for 4DVar applied to the linear advection equation where the initial condition is a square wave. We take imperfect
observations every 20 points in space and every 2 time steps. 4DVar leads to bad oscillations in the initial condition and also to a phase

error in the forecast.
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Figure 2. Results for L1 regularisation for the same data as in Figure 1.
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Figure 3. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 1. Mixed TV L1-L2-norm regularisation gives
the best possible result for the initial condition.
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Figures 1 - 3 show the results for this example. We only
present the case for imperfect noisy observations, as it is
the most realistic one. In the next subsection we consider
a non-diagonal background error covariance matrix - for
which we present the results for cases (1)-(3). We also note
that a summary of results is presented in Table I.

In the plots the true solution is represented by a thick
dot-dashed line (called ’Truth’ in the legend). This true
solution is unknown in practice. We take (noisy) obser-
vations by perturbing the true trajectory using zero-mean
Gaussian noise. The model solution (which is derived
from the upwind method) is shown as a dashed line (called
’Imperfect model’ in the legend). This solution represents
the model solution, that is the solution that is obtained if
we use the correct initial conditions and the (imperfect)
model. It represents the best solution that we are able
to achieve (if data assimilation gives us the perfect ini-
tial condition), as the model error is always present. The
solution obtained from the assimilation process by incor-
porating the (perfect/partial/noisy) observations is given
by the solid line (called ’Final solution’ in the legend).

The result for 4DVar is shown in Figure 1 (minimi-
sation problem (17)), that for L1-regularisation in Fig-
ure 2 (minimisation problem (16)) and that for mixed
TV L1-L2-norm regularisation in Figure 3 (minimisation
problem (24)). The analysis obtained by 4DVar and L1-
regularisation is very inaccurate, with many oscillations
and large over/undershoots near the discontinuities (first
plots in Figures 1 and 2). When L1-norm regularisation
with the gradient (mixed TV L1-L2-norm regularisation)
is used, the initial condition is more accurate (first plot in
Figure 3). The same results hold for full and partial perfect
observations. The second row B = 0.01I of Table I quan-
tifies the errors in the analysis for this situation for 4DVar,
L1-norm regularisation and the L1-norm total variation
approach. We see that for all types of observations we
investigated (partial, full, perfect and noisy observations),
mixed TV L1-L2-norm regularisation gives the smallest
initial condition error.

Traditional strong constraint 4DVar does not take
model error into account. Hence 4DVar’s attempts to
compensate for the initial condition error are obstructed
by the use of an imperfect forecast model and it therefore
does not produce an accurate estimate of the truth at
the initial time. The errors in the initial state estimated
by 4DVar act to force the trajectory propagated by the
incorrect model to match the observed data from the true
model and hence act to compensate, on average, for the
model error. From the final plot in Figure 1 for 4DVar we
also see that the forecast is inaccurate, due to the incorrect
estimate produced at the end of the assimilation window.
We also observe that the forecast in 4DVar leads to a slight
phase shift and the wrong amplitude in the forecast, as
well as overshooting and undershooting. This behaviour
is improved for mixed TV L1-L2-norm regularisation
(see Figure 3). We see from the first plot of Figure 3
that the initial condition obtained from mixed TV L1-
L2-norm regularisation is the most accurate and hence
the best possible forecast (see final plot of Figure 3) is

obtained (subject to model error). This behaviour is due
to the property of mixed TV L1-L2-norm regularisation
enforcing sparsity on the gradient of the solution.

The results shown in Figure 1 demonstrate a worst-
case scenario for 4DVar, where there is no smoothing of
the noisy analysis due to the use of the simple diago-
nal covariance matrix B. It is interesting to note, how-
ever, that, despite the lack of smoothing, the mixed TV
L1 − L2-norm regularisation method (Figure 3) success-
fully eliminates oscillations in the analysis. From our
experiments, it emerges that this is characteristic of this
regularisation technique.

In the following subsections we change the exper-
imental design in order to check the robustness of the
regularisations. A more realistic matrix B is introduced
in Subsection 5.2 and used in the following experiments.
In Subsection 5.3 we investigate a change in the size of
the assimilation window and in Subsection 5.4 we sum-
marise the results from the different experimental designs.
In Section 6 we assess the influence of 4DVar and mixed
TV L1-L2-norm regularisation on systems with different
a priori background information.

5.2 Changing the background error covariance matrix

We take precisely the same experiments as in the previous
Subsection 5.1; however, we change the background error
covariance matrix from the identity matrix to an exponen-
tial covariance matrix B with entries

Bij = σ2
be

− |i−j|
2L2 , where L = 5, (29)

and σ2
b = 0.01. Hence B is a symmetric matrix with

diagonal entries equal to 0.01 and off-diagonal entries that
decay exponentially. This background error covariance
matrix spreads the information from the observations
more adequately and the error variance is still 0.01. Note
that for this matrix the inverse is a tridiagonal matrix. For
the background we choose Gaussian noise with covariance
B and a mean value which is given by the truth. These
errors are consistent with the choice of B.

We present the results for perfect, partial and imper-
fect partial observations (cases (1)-(3) in the description of
the standard experiment in the previous subsection). Fur-
ther cases are summarised in Table I in Subsection 5.4. We
also do not present the results for L1 norm regularisation
here as we have seen in Subsection 5.1 that this approach
is not better than standard 4DVar. The more interesting
case is the mixed TV L1-L2-norm regularisation.

Figures 4 and 5 show the results for perfect obser-
vations where the background error covariance matrix B
is given by (29). Mixed TV L1-L2-norm regularisation
(Figure 5) behaves consistently better than standard L2-
norm regularisation (Figure 4). In particular, the shape of
the wave is distorted and there are small undershoots and
overshoots in the 4DVar analysis (first plot in Figure 4),
which lead to small errors and the wrong amplitude in
the forecast (final plot in Figure 4). For the analysis using
mixed TV L1-L2-norm regularisation, the inital condition
(first plot in Figure 5) shows a smaller error than the initial
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Figure 4. Results for 4DVar. We take perfect observations at each point in time and space over the assimilation interval which is
40 time steps. The four plots show the initial conditions at t = 0 and the result after 20, 40 and 80 time steps. We choose B with

Bij = 0.01 e
− |i−j|

2L2 , where L = 5.
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Figure 5. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 4.
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Figure 6. Results for 4DVar for the same data as in Figure 4 but with perfect observations every 20 points in space and every 2 time

steps for B with Bij = 0.01 e
− |i−j|

2L2 , where L = 5.
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Figure 7. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 6.
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Figure 8. Results for 4DVar for the same data as in Figure 1, but for B with Bij = 0.01 e
− |i−j|

2L2 , where L = 5.
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Figure 9. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 8, but for B with Bij = 0.01 e
− |i−j|

2L2 , where
L = 5
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condition in standard 4DVar (first plot in Figure 4) and the
forecast is slightly better than the forecast in 4DVar. For
the case of partial perfect observations we obtain similar
results. Mixed TV L1-L2-norm regularisation (Figure 7)
gives better intitial conditions than standard 4DVar (Fig-
ure 6).

Finally, Figures 8 and 9 show the results for partial
noisy observations. Note that with this choice of B, the
results for 4DVar (Figure 8) are better than the results for
the diagonal matrix B (Figure 1) because information is
spread via the covariance matrix B, and we see that the
oscillations in the analysis are significantly reduced. It is
notable, however, that the mixed TV L1-L2-norm regu-
larisation (Figure 3) eliminates oscillations in the analysis
even when the matrix B provides no smoothing. More-
over, where correlations are taken into account via the
matrix B, then mixed L1-L2-norm regularisation (Figure
9) gives still better results than 4DVar (Figure 8). The
quantities of the errors in the initial conditions for this
particular case are summarised in the fifth row of Table I
where we see that the errors using mixed TV L1-L2-norm
regularisation are the smallest.

5.3 Changing the length of the assimilation window

Again, we take the same experimental data as in Subsec-
tion 5.1; this time, however, we reduce the size of the
assimilation window from 40 time steps to 5 time steps
and carry out the following test: we take imperfect obser-
vations every 5 points in space and every 2 time steps with
Gaussian noise of mean zero and variance 0.01. For the
background we again take the truth perturbed by Gaussian
noise with covariance B taken from (29) with σ2

b = 0.01.
Figures 10 and 11 show the results for a reduced size of
the assimilation window. The first observation that we can
make is that again the regularisation using the mixed TV
L1-L2-norm (Figure 11) is consistently better than that
using the L2-norm (Figure 10). Standard 4DVar produces
oscillations, in particular in the initial conditions, whereas
the mixed TV L1-L2-norm regularisation does not show
any oscillations. The oscillations in the initial conditions
in standard 4DVar then lead to errors in the forecast (see
plots for t = 5, t = 20 and t = 45 in Figure 10). Again,
for 4DVar, the forecast of the analysis does not keep the
amplitude correctly (final plot in Figure 10), whereas the
mixed TV L1-L2-norm regularisation provides a more
accurate amplitude in the forecast (final plot in Figure 11).

5.4 Summary of initial condition errors

In Table I we summarise the analysis errors (the errors
between the analysis and the truth at t = 0, that is, the
initial condition errors) measured in the L2 vector norm
for the different regularisation techniques. The results are
shown for all three test cases described in Section 5.1
where either perfect observations are taken at all spatial
and time points, partial perfect observations are taken
less frequently in time and space, or partial imperfect
(noisy) observations are taken, also with less frequency.

We choose observation errors with covariance R = 0.01I
and assimilation windows of length 40 and length 5. We
consider the two background covariance matrices B =
σ2
b I , and the double-sided exponential covariance matrix

B given by (29), with three different variances: σ2
b = 1,

σ2
b = 0.01 and σ2

b = 0.005.
For the mixed TV L1-L2-norm regularisation

method, we also give results for different values of δ in
(19). The emphasis on the sparsity of the gradient of the
initial condition depends on this regularisation parameter.
We have looked at three different values for δ and the best
of all three results (that is the smallest error in the initial
condition) is underlined in the table. The regularisation
depends on the regularisation parameter, but investigat-
ing the influence of this parameter and finding the optimal
choice of δ is beyond the scope of this paper. We remark
that for the plots in the previous subsections we have used
the value of δ from the table that gives the smallest initial
condition error.

We see from the entries in the table that the errors
in the analysis at time t = 0 are consistently smaller for
mixed TV L1-L2-norm regularisation than for standard
4DVar or L1-norm regularisation. Mixed TV L1-L2-norm
regularisation gives an error of about one magnitude
smaller than standard 4DVar. We also observe from the
table that, for standard 4DVar, L1-norm regularisation
and mixed TV L1-L2-norm regularisation, the errors in
the initial condition (analysis) decrease as the variance
in the background error is reduced, that is, as the ratio
of the background to observation variance decreases.
This is consistent with the results of Haben et al. (2010),
which show that the standard 4DVar assimilation problem
becomes more well-conditioned (well-posed) as this ratio
decreases. These examples demonstrate that, even where
the noise in the background and observations is Gaussian
with known covariances, the standard 4DVar approach
does not produce as accurate an analysis as mixed TV L1-
L2-norm regularisation in the presence of sharp fronts and
model error.

6 Further experiments

We now investigate how the 4DVar and mixed TV L1 −
L2-norm regularisation methods perform in cases where
the position of the shock in the background is displaced
from the truth and where the frontal gradient of an
advected wave in the background is incorrect. As dis-
cussed in the introduction, it is recognized that if a shock
in the background field is displaced, then the 4DVar
method may not give a good analysis. Similarly, the assim-
ilation method may be unable to capture a sharp shock if
there is a weak gradient in the background front.

6.1 A shifted background

We consider the same problem as in Subsection 5.1 - with
the same experimental data and error covariance matrices.
However, here we shift the square wave in the background
by 0.02 to the right, so that the shock is displaced. The
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Figure 10. Results for 4DVar applied to the linear advection equation where the initial condition is a square wave. We take imperfect
observations every 5 points in space and every 2 time steps over the assimilation interval which is 5 time steps. The four plots show the
initial conditions at t = 0 and the result after 5, 20 and 45 time steps. 4DVar leads to oscillations in the initial condition and a misplaced

discontinuity in the forecast.
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Figure 11. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 10. Mixed TV L1-L2-norm regularisation
gives the best possible result for the initial condition.
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Figure 12. Results for 4DVar for a shifted (and noisy) background and for background error covariance matrix B = 0.01I
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Table I. Comparison between errors in the analysis in standard 4DVar, L1-norm regularisation and mixed TV L1-L2-norm regularisation
measured in the L2-norm. Here the length-scale L = 5.

Standard L1-norm mixed TV L1-L2-norm
4DVar regularisation regularisation

δ = 10 δ = 100 δ = 1000

full perfect observations 2.3674 2.4392 1.1585 0.7674 0.2998
B = I partial perfect observations 12.8039 13.6598 9.3621 0.4643 2.7286

partial imperfect observations 13.6182 14.4389 7.7128 0.4790 2.9110
full perfect observations 1.0609 1.4780 0.8963 0.6998 0.2531

B = 0.01I partial perfect observations 1.3791 10.0589 1.0935 0.2866 1.2440
partial imperfect observations 1.4614 9.9083 1.0060 0.1719 1.3910
full perfect observations 0.9012 1.4567 07987 0.6417 0.2272

B = 0.005I partial perfect observations 0.8651 9.3547 0.6887 0.2260 0.8014
partial imperfect observations 0.8979 8.5296 0.6566 0.1500 0.9141

B with entries full perfect observations 1.1892 1.3703 0.9801 0.7391 0.2807

Bij = e
− |i−j|

2L2 partial perfect observations 2.7845 11.6647 2.2421 0.3832 2.7031
partial imperfect observations 3.1041 11.1133 2.2780 0.5552 2.8524

B with entries full perfect observations 0.4921 1.0184 0.4857 0.4346 0.1696

Bij = 0.01e
− |i−j|

2L2 partial perfect observations 0.3150 2.0667 0.2938 0.1633 0.9128
partial imperfect observations 0.4161 1.5400 0.3997 0.3057 0.8456

B with entries full perfect observations 0.4023 0.9396 0.3981 0.3636 0.1567

Bij = 0.005e
− |i−j|

2L2 partial perfect observations 0.2304 0.6327 0.2171 0.1455 0.6922
partial imperfect observations 0.3225 0.5489 0.3139 0.2680 0.5686

B = I and full perfect observations 2.1595 2.1858 0.5812 0.3406 0.6591
smaller length of partial perfect observations 8.0773 8.2133 1.3201 0.5327 3.7108

assimilation window partial imperfect observations 11.2487 11.4258 1.6075 0.6121 3.6611
B = 0.01I and full perfect observations 0.6881 0.9963 0.4130 0.1996 0.4832
smaller length of partial perfect observations 0.9441 1.7047 0.6182 0.2129 1.6974

assimilation window partial imperfect observations 1.2017 2.5580 0.7971 0.1795 2.7750
B = 0.005I and full perfect observations 0.5463 0.8378 0.3677 0.1553 0.3939
smaller length of partial perfect observations 0.6809 1.4938 0.4903 0.1795 1.0246

assimilation window partial imperfect observations 0.8293 2.0489 0.6132 0.1510 1.1469

Bij = e
− |i−j|

2L2 full perfect observations 0.8842 1.0369 0.5210 0.2725 0.6112
and smaller length of partial perfect observations 1.2200 1.5908 0.7974 0.3784 3.6971
assimilation window partial imperfect observations 1.7078 2.6882 1.0445 0.4655 3.6392

Bij = 0.01e
− |i−j|

2L2 full perfect observations 0.2256 0.2878 0.2166 0.1558 0.3266
and smaller length of partial perfect observations 0.4688 0.5948 0.4533 0.3000 0.4088
assimilation window partial imperfect observations 0.3366 0.4790 0.3189 0.2864 1.1626

Bij = 0.005e
− |i−j|

2L2 full perfect observations 0.1959 0.2204 0.1913 0.1511 0.2443
and smaller length of partial perfect observations 0.3944 0.4887 0.3811 0.2782 0.9113
assimilation window partial imperfect observations 0.2770 0.3799 0.2686 0.2691 0.8676

reason for this shift is a practical one; fronts are often
resolved correctly in numerical weather forecasting, but
the front is often predicted to be in the wrong position.
We simulate this situation in our simplified model by
assuming a slightly shifted background. We add noise to
this background, taken from a normal distribution with (1)
a background error covariance matrix B = 0.01I and (2)
a background error covariance matrix B taken from (29)
with σ2

b = 0.01 which is consistent with the error in the
shifted background. We only consider the case with partial
noisy observations, since this is the most interesting and
realistic one.

The results for background error covariance matrix
B = 0.01I are shown in Figures 12 (4DVar) and 13
(mixed TV L1-L2-norm regularisation). We note that in
the case of 4DVar the recovered analysis (first plot in

Figure 12) is very oscillatory and at the end of the
window the solution contains undershoots (third plot in
Figure 12), whereas in the analysis for the mixed TV
L1-L2-norm regularisation (first plot in Figure 13) the
oscillations are removed and the front sharpened, although
not recovered exactly. Furthermore, mixed TV L1-L2-
norm regularisation contains no undershoots at the end
of the window and retains the amplitude of the front
more accurately than 4DVar (see second and third plots in
Figures 12 and 13). The errors in the analysis, measured
in the L2-norm, for the standard 4DVar method and for
the mixed TV L1-L2-norm regularisation (with δ = 100)
are given respectively by 1.75 and 1.17, demonstrating the
increased accuracy achieved by the new method.

The results for an exponential covariance matrix B
with σ2

b = 0.01 are shown in the plots in Figures 14
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Figure 13. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 12.
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Figure 14. Results for 4DVar for a shifted (and noisy) background and for background error covariance matrix B taken from (29) with
σ2
b = 0.01
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Figure 15. Results for mixed TV L1-L2-norm regularisation for the same data as in Figure 14.

and 15. The initial condition in 4DVar is clearly recovered

poorly, with many oscillations (see first plot in Figure 14).

Furthermore, at the end of the assimilation window the

solution gives undershoots (see third plot in Figure 14)
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and the amplitude of the front is reduced (see second and
third plot in Figure 14). The solution at the initial time
provided by the mixed TV L1-L2-norm regularisation has
less oscillation present in the shock wave (see first plot
in Figure 15) and produces somewhat less distortion of
the wave front over the window (see second and third
plot in Figure 15). The errors in the analysis in this
case for the standard 4DVar and the mixed TV L1-L2-
norm regularisation (with δ = 10) are similar, with a value
of 1.80. Both methods smear the shock front and both
produce an initial phase error which is reproduced in the
forecast.

The plots in Figures 14 and 15 show that choosing
an exponential (non-diagonal) covariance matrix B is not
necessarily advantageous when there is a sharp front with
a phase error. In this case both 4DVar and mixed TV L1-
L2-norm regularisation with a diagonal covariance matrix
B capture the shock front more accurately, but the mixed
TV L1-L2-norm technique also eliminates the oscillations
in the analysis arising from the effects of the model error
(see Figures 12 and 13).

In general, the mixed norm approach removes oscil-
lations and sharpens fronts - but the position of the shock
is not recovered precisely where there is a phase error in
the background.

6.2 A slanted front for the background

Finally, with the same experimental data as in Subsection
5.1 we consider a slanted background given by the slanted
square wave

ub
1(x, 0) =


−0.5 + 50

7 (x− 0.18), 0.18 < x < 0.32

0.5, 0.32 ≤ x ≤ 0.43

0.5− 50
7 (x− 0.43), 0.43 < x < 0.57

−0.5, x ≤ 0.18, x ≥ 0.57.
(30)

This slanted background is plotted in Figure 16. We add
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Figure 16. Slanted background (without noise) for Example in
Section 6.2.

noise to this background, taken from a normal distribution
with covariance matrix B taken from (29) with σ2

b = 0.1,
which is consistent with the error between ub

1 and the true
initial condition given by (28).

Figures 17 (4DVar) and 18 (mixed TV L1-L2-norm
regularisation) show the results where the background is
given by (30). 4DVar produces oscillations in the ini-
tial condition (first plot in Figure 17) and is not able

to recover the correct initial condition from the (wrong)
slanted background. The mixed TV L1-L2-norm regular-
isation approach, however, does not generate oscillations
in the initial condition (first plot in Figure 18) and more-
over produces a well-recovered front, given that the back-
ground was given by a (wrong) slanted front (compare
the results in the first plot of Figure 18 with the back-
ground in Figure 16). The error in the analysis, measured
in the L2-norm, for the standard 4DVar method is 1.10,
whilst the error in the mixed TV L1-L2-norm method with
δ = 100 is only 0.86, a clear improvement. Hence, we
conclude that the mixed TV L1-L2-norm regularisation
removes oscillations and sharpens fronts and steep gra-
dients, whereas standard 4DVar, even where smoothing
is provided via the background covariance matrix, intro-
duces oscillations where the background frontal gradient
is incorrect.

7 Conclusions and future work

In this paper we have presented mixed TV L1-L2-norm
regularisation, a new approach for variational data assim-
ilation. We have given numerical examples containing
shock fronts in order to demonstrate that mixed TV L1-
L2-norm regularisation gives better results than either the
standard 4DVar (L2-norm regularisation) technique or a
simple L1-norm regularisation technique in the presence
of model error. The errors in the analysis at time t = 0
are found to be consistently smaller for mixed TV L1-
L2-norm regularisation than for standard 4DVar or L1-
norm regularisation for a range of ratios of observation
to background variance and for both perfect and noisy
observations with various temporal and spatial frequen-
cies. These examples demonstrate that, even where the
noise in the background and observations is Gaussian with
known covariances, the standard 4DVar approach does not
produce as accurate an analysis as mixed TV L1-L2-norm
regularisation in the presence of sharp fronts and model
error.

One of the strengths of the mixed TV L1-L2-norm
regularisation is that in the case where the background
covariance matrix B is poorly tuned, it gives a much better
performance than 4DVar in the presence of model error.
This is relevant to operational NWP where the matrix B
is difficult to determine and must, in any case, be sim-
plified to make the assimilation problem computationally
tractable.

Future work will be to apply this technique to higher
dimensional and possibly multi-scale problems. Because
the minimisation process for the mixed TV L1-L2-norm
regularisation approach in (19) is more involved than that
for the standard approach in (13), practical implementa-
tions will also have to be investigated together with the
efficiency of this new approach.

Appendix

The solution to the the data assimilation problem can be
interpreted in statistical terms, where certain assumptions
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Figure 17. Results for 4DVar for a slanted (and noisy) background taken from (30).
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Figure 18. Results for mixed TV L1-L2-norm regularisation for a slanted (and noisy) background taken from (30).

about the errors hold (Nichols (2010)). For the standard
4DVar problem, Gaussian errors are assumed for both the
background and the observations, so the minimisation of
the objective function (1) is equivalent to maximising the
a posteriori likelihood estimate of the state, given the
observations and the prior. A similar derivation can be
made for L1-norm regularisation (16) (which we are going
to do here for the single variate case).

The addition of the penalty term µ2∥z∥1 in (16) to
the least squares term is sometimes also referred to as
Lasso regression in statistics (Tibshirani (1996)). Now,
|zi|, where zi is the ith entry of z, is proportional to
the negative log-density of the Laplace (or double-sided
exponential) distribution. Hence, the L1-norm regulari-
sation can be derived as a Bayesian posterior estimate,
where the priors are independently distributed variables
with Laplace probability density function

f(zi) =
1

2γ
e
−
|zi|
γ , (31)

where γ = 2/µ2. The in-depth mathematical investigation
of L1-norm regularisation is the subject of future research
and beyond the scope of this paper.

In order to solve equation (3) at each step we use a
direct matrix decomposition method (Gaussian elimina-
tion).

We remark that the solution of the minimisation prob-
lem using the least mixed norm solution described in sec-
tion 4, (see also(Fu et al. (2006))) is more expensive than
standard 4DVar as the problem size is increased. More
efficient methods need to be found for the minimisation;
the details are beyond the scope of this paper.

We note that traditional 4DVar is not designed to deal
with model error. Hence, for future work, a fairer compar-
ison would be weak-constraint 4DVar (see, for example
Trémolet (2006)) with mixed TV L1 − L2-regularisation.
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