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Abstract. Cycled Data Assimilation algorithms are a standard tool to adapt

dynamical systems to measurements, usually based on a diversity of different

observation systems. Usually, such systems use a first guess calculated from previous

analysis and then solve some type of inverse problem to integrate the measured data

into the current state estimate of the dynamical system under consideration. The

mapping of the system state ϕ in its state space X onto the measurements f in a

measurement space Y is carried out by a measurement operator H : X → Y . The

propagation of the analysis ϕ(a) at some time tk to the time tk+1 is carried out by the

model operator Mk.

Errors in the observations, the model and the observation operator will lead to

some analysis error in each time step. This analysis error can increase over time and

lead to severe instabilities in the assimilation process, in particular when the analysis

equation Hϕ = f is ill-conditioned or ill-posed. This is the case in particular when the

observation operator H includes remote sensing type observations, which often leads to

ill-posed analysis equations and a corresponding potential instability in each time-step.

Standard regularization provides a tool to stabilise each step, but not necessarily the

sequence of cycled inversions.

We will study the set-up in the linear case when the model operator M is amplifying

a finite number of modes and damping all sufficiently high modes. In particular, we

will derive conditions on the regularization under which the data assimilation system

will be stable over time. This includes full proofs for M of Hilbert-Schmidt type and

numerical examples to confirm and illustrate the results.

1. Introduction

Data assimilation algorithms are of growing importance for many areas of science,

ranging from numerical weather prediction and climate projection to cognitive

neuroscience. While the area of inverse problems traditionally is looking more into static

inversion[EHN00][KS04], data assimilation is investigating problems with time dynamics

and repeated measurements of a system which are changing over time [LLD06].

Usually, some phenomenon is described by a dynamical system with states ϕ in a

state space X. The dynamical system leads to a model operator M , such that Mk takes a
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state ϕk at time tk into a new state ϕk+1 at time tk+1, where we assume that we consider

time steps t0 < t1 < t2 < .... Let Y be our measurement space, which we assume to

be fixed within this work. For the data assimilation task we are given measurements

fk ∈ Y at time tk. Also, we assume that we know some initial guess ϕ0 ∈ X at time t0.

The task of data assimilation is to successively calculate some analysis ϕ
(a)
k at time tk

which is estimating the true system state ϕ
(true)
k at time tk[LLD06]. Usually, we are also

interested in an estimate for the uncertainty of the estimate ϕ(a), or an estimate for the

analysis error

e
(a)
k :=

∣∣∣∣∣∣ϕ(a)
k − ϕ

(true)
k

∣∣∣∣∣∣ , k ∈ N0. (1.1)

Here, we are interested in Hilbert-space type error estimates for the finite-dimensional as

well as the infinite-dimensional case, which provides a good model for high-dimensional

systems. We call a data assimilation system stable, if e
(a)
k remains bounded by some

constant C > 0 for k →∞. If e
(a)
k →∞ for k →∞, we call it unstable. When we have

an estimate ∣∣∣∣∣∣fk − f (true)
k

∣∣∣∣∣∣ ≤ δ, (1.2)

with f
(true)
k = H(true)ϕ(true) denoting the values in data space corresponding to the true

state ϕ(true) in state space when calculated by the true observation operator H(true),

we say that the measurement error is bounded by δ ≥ 0. The case δ = 0 corresponds

to perfect data. A standard approach to regularize the assimilation is to employ a

variant of the Tikhonov inverse Rα := (αI + H∗H)−1H∗ (with the adjoint H∗ of H)

approximating the inverse H−1 in equation

Hϕk = fk, k ∈ N, (1.3)

which needs to be solved in every assimilation step.

We will see that in general, when we have model dynamics which is amplifying

particular modes and when H is an ill-posed operator, we cannot expect the data

assimilation systems to be stable, even if we have arbitrarily small measurement error

δ > 0. However, for trace-class model dynamics Mk, k ∈ N0 we will show that for

sufficiently chosen regularization of the inverse equation (1.3) we will obtain stable data

assimilation systems.

Of course, filtering theory has studied the data assimilation task for a long time. In a

finite dimensional setting and in the case of the Kalman filter with well-posed observation

operators simple versions of our formulas are well-known in control/systems theory of

state estimation. Here, we are interested in the cycling of data assimilation schemes, such

that we are not obtaining an optimal state estimation, nor do we claim in this work that

we are achieving an optimal state estimation. Instead, we are considering a variant of a

state observer or a Luenberger observer, see [Lue64],[Lue66]. Since the 1960s/70s much

theory has been developed for a Luenberger observer with consideration to the analysis

error. However, the theory developed has mostly considered the finite dimensional case,

see [Kal60],[Jaz70],[BH75],[AM79],[O’R83],[Rug96],[CF03],[Sim06]. Furthermore, in the
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finite dimensional setting it is well known that if (M,H) are completely observable

then Rα can be chosen such that the analysis error is stable for all time, compare

[O’R83][BC85].

The infinite-dimensional state space approach has also been considered since

the 1970’s. Notably [CP78] developed many results from the finite-dimensional

setting into the infinite case. They considered the system dynamics in terms of a

strongly continuous semigroup on an appropriate Banach space. Their work, like

others, including [But69],[Lio71] focused on the continuous stochastical derivation,

with particular attention to optimal state estimation, i.e the Kalman filter. Work

has been done in terms of discrete-time systems in the infinite-dimensional setting,

which is known as sampled data systems in control theory. The work [Dul96][DP00]

develop a considerable number of results that relate to this work, however they do not

consider the consequence of an ill-posed observation operator. Here, we will focus on

the investigation of the practically relevant situation of cycled schemes in a large-scale

or infinite-dimensional environment with an ill-posed observation operator. Also, we

focus on Hilbert-space type error estimates usually investigated in deterministic applied

mathematics. More recently work has considered the state estimation problem as an

inverse problem. [Cul12] has looked at the impact of the regularization with cycled

data assimilation schemes in the scalar case. Furthermore, more closely related to

this work, [BLL+12] have considered the stability of cycled data assimilation schemes,

developing theoretical results within the context of strongly nonlinear setting with the

2D incompressible Navier-Stokes equations. [BLL+12] have developed theory for the

particular Navier-Stokes system, here we treat any linear model operator. Moreover,

[BLL+12] have considered a very particular observation operator, whereby here we study

general ill-posed observation operators.

The work will be split into different parts. First, we introduce our set-up and

provide a uniform view into three-dimensional variational assimilation (3dVar), four-

dimensional variational assimilation (4dVar) and a cycled Kalman filter for linear

systems by using a cycled Tikhonov regularization approach to data assimilation in

Section 2. Then, we work out error estimates and study the error evolution in Section

3. For Hilbert-Schmidt operators we carry out a study of stability depending on the

regularization parameter α in Section 4. Finally, numerical results will be provided in

Section 5.

2. Cycled Data Assimilation Algorithms

The goal of this section is to introduce our notation and provide a uniform view onto

cycled data assimilation by well-known methods like 3dVar, 4dVar and a cycled Kalman

filter. We will work out our proofs within this unified view, such that they apply to

several well-known schemes.

For simplicity, we assume that the model operator Mk is a linear mapping Mk :

X → X for k ∈ N0 and the observation operator H is linear as well and time-invariant.
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The nonlinear case is beyond the scope of this work. The state space X is assumed to

be a Hilbert space with scalar product 〈·, ·〉X and the measurement space Y is a Hilbert

space with scalar product 〈·, ·〉Y . Often, we will drop the indices X or Y , respectively,

since it is usually clear which scalar product is used.

At every time step tk, k ∈ N the task of data assimilation is to solve the equation

(1.3) given the background ϕ(b), which is a prior estimate calculated from earlier analysis

by

ϕ
(b)
k = Mk−1ϕ

(a)
k−1, k = 0, 1, 2, ... (2.1)

This task can be carried out by minimizing

JT ikhonov(ϕ) := α
∣∣∣∣∣∣ϕ− ϕ(b)

k

∣∣∣∣∣∣2 + ||fk −Hϕ||2 , ϕ ∈ X. (2.2)

This is known as the Tikhonov functional. For linear operators the minimum is given

by the normal equations, which can be reformulated into the update formula

ϕ
(a)
k = ϕ

(b)
k +Rα

(
fk −Hϕ(b)

k

)
(2.3)

with the regularized inverse

Rα := (αI +H∗H)−1H∗, α > 0, (2.4)

of the operator H. The inverse (2.4) is known as Tikhonov regularization with

regularization parameter α > 0. The operator Rα is also known as Kalman gain matrix

in filtering theory literature, compare [Kal60][Jaz70][AM79]. In terms of the analysis

fields ϕ
(a)
k (2.3) has the form

ϕ
(a)
k = Mk−1ϕ

(a)
k−1 +Rα

(
fk −HMk−1ϕ

(a)
k−1

)
(2.5)

for k = 0, 1, 2, ....

In the standard data assimilation literature, usually weighted norms are used in

the state space X and the observation space Y . If X = Rn and Y = Rm these

weights can be defined using invertible matrices B ∈ Rn×n and R ∈ Rm×m, given as the

covariance matrices of the states and the observations with respect to some probability

distributions. Here, our analysis will work independently of the particular background

on which the weight matrices are defined. We focus on the evolution of the states with

respect to the corresponding Hilbert-space norms. We define

〈ϕ, ψ〉B−1 :=
〈
ϕ,B−1ψ

〉
l2
, 〈f, g〉R−1 :=

〈
f,R−1g

〉
l2
, (2.6)

where the indices l2 indicate standard l2 scalar products on Rn or Rm, respectively.

With the weighted scalar products we can fully apply cycled Tikhonov regularization.

For the choice α = 1 it is identical to what is known as 3dVar. When H ′ denotes the

adjoint operator with respect to the l2 scalar product and H∗ is the adjoint with respect

to the weighted scalar product, with some lines of calculation we obtain

H∗ = BH ′R−1. (2.7)
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Then, using H∗(αI + HH∗)−1 = (αI + H∗H)−1H∗ it is straightforward to verify that

(2.3) can be written as

ϕ
(a)
k = ϕ

(b)
k + (αB−1 +H ′R−1H)−1H ′R−1

(
fk −Hϕ(b)

k

)
= ϕ

(b)
k +BH ′(αR +HBH ′)−1

(
fk −Hϕ(b)

k

)
. (2.8)

For the case α = 1, the formula (2.8) is the standard update formula of 3dVar, i.e. the

cycled Tikhonov regularization (2.3) is an equivalent way to write 3dVar, when weighted

norms (2.6) are used. We need to remark that though formally 3dVar and Tikonov are

the same by (2.7), when we explore the spectrum of H*H this contains B and R. So,

the covariance structure of B comes into the problem via the spectrum of the operator

H∗H.

Four-dimensional data assimilation (4dVar) in its strong-constrained form

calculates a state by minimizing the functional

J4dV ar,k(ϕ) := α
∣∣∣∣∣∣ϕ− ϕ(b)

k

∣∣∣∣∣∣2 +
L∑
`=1

||fk+` −HMk,k+`ϕ||2 , (2.9)

where Mk,k+` := Mk+`−1 ◦ . . . ◦Mk+1 ◦Mk mapping states at tk into states at tk+`. For

linear systems, we collect the states fk+1, ..., fk+L into a vector
→
f k+1 and the operators

HMk,k+1, ..., HMk,k+L into an operator
→
H. Then, the minimization of (2.9) is equivalent

to minimizing

J̃4dV ar,k(ϕ) := α
∣∣∣∣∣∣ϕ− ϕ(b)

k

∣∣∣∣∣∣2 +
∣∣∣∣∣∣→f − →

H ϕ
∣∣∣∣∣∣2 . (2.10)

When we define

ϕ
(b)
k+L := Mk,Lϕ

(a)
k (2.11)

the 4dVar algorithm is identical to a 3dVar scheme on the time-grid t0, tL, t2L, ... and

the cycled Tikhonov regularization (2.3). This means that any analysis on the cycled

Tikhonov regularization directly applies to cycled 4dVar data assimilation.

Finally, let us consider the Kalman filter. The basic difference between 3dVar and

the Kalman filter is an update of the weight matrix B in every analysis step. It is

well-known that for linear systems the Kalman filter is equivalent to 4dVar, when the

same cycling strategy is used. Usually, the update formula of the Kalman Filter is

B
(a)
k = (I −RαH)B

(b)
k , B

(b)
k = Mk−1B

(a)
k−1M

∗
k−1. (2.12)

which is correct for a perfect linear model. Another form of the update formula is given

by (
B

(a)
k

)−1
=
(
B

(b)
k

)−1
+H ′R−1H, k ∈ N. (2.13)

This means that the norm of the inverse (B
(a)
k )−1 of the matrix B

(a)
k becomes larger and

larger over time, i.e. for k → ∞. Usually, resetting B to some initial matrix B0 after

a finite number of steps is used or covariance inflation, i.e. the multiplication of B by

some number to limit the norm of (B
(a)
k )−1. The reset is equivalent to the cycling of
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4dVar as described in (2.11). Covariance inflation will have a similar effect, but it is

more difficult to treat theoretically and we postpone details to future work.

3. Error Evolution of Data Assimilation Systems

The goal of this part is to study the error evolution of the cycled data assimilation

systems which we introduced in Section 2. Since for linear dynamics and linear

observation operators all of them can be reduced to the case of cycled Tikhonov

regularization, we can restrict our attention to this generic case. Our main goal here is

to study the cumulative influence of errors in the case of ill-posed observation operators.

We first need some further preparations. Assume that the true fields at time tk are

given by ϕ
(true)
k and that the true measurement values are f

(true)
k = H(true)ϕ

(true)
k with

the true observation operator H(true). Then, we have

ϕ
(true)
k = M

(true)
k−1 ϕ

(true)
k−1 , k = 1, 2, ... (3.1)

with the true dynamical system M
(true)
k at time tk. We denote the error in the data by

f
(δ)
k := fk − f (true)

k , k ∈ N. (3.2)

We usually assume that some bound on the measurement error is given in the form

(1.2), i.e. we have ||f (δ)
k || ≤ δ for all k ∈ N.

We are interested in the evolution of the assimilation error over time. The potential

errors can be classified into

A. error in the measurement data fk,

B. error in the observation operator H,

C. error in the model dynamics Mk,

D. error by the reconstruction operator Rα which is not identical to H−1,

E. cumulated errors from previous iterations/cycling.

Clearly, stochastics measures error as the variance of the corresponding distributions.

Here, we work out classical Hilbert space error estimates. First, we subtract the true

solution and split the terms to identify the role of different types of errors. We employ

formula (2.3) to calculate

e
(a)
k+1 = ϕ

(a)
k+1 − ϕ

(true)
k+1

= ϕ
(b)
k+1 − ϕ

(true)
k+1 +Rα

(
fk+1 − f (true)

k+1

)
+Rα

(
f
(true)
k+1 −Hϕ

(b)
k+1

)
(3.3)

= Mkϕ
(a)
k −M

(true)
k ϕ

(true)
k +Rα

(
f
(δ)
k+1

)
+Rα

(
H(true)ϕ

(true)
k+1 −Hϕ

(b)
k+1

)
= Mk

(
ϕ
(a)
k − ϕ

(true)
k

)
+
(
Mk −M (true)

k

)
ϕ
(true)
k +Rα

(
f
(δ)
k+1

)
+Rα

(
(H(true) −H)ϕ

(true)
k+1 +H

(
ϕ
(true)
k+1 − ϕ

(b)
k+1

))
,
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where the difference in the last round bracket can be decomposed as the first difference

in (3.3), i.e.

ϕ
(true)
k+1 − ϕ

(b)
k+1 = Mk

(
ϕ
(true)
k − ϕ(a)

k

)
−
(
Mk −M (true)

k

)
ϕ
(true)
k . (3.4)

This leads to

e
(a)
k+1 =

reconstruction error︷ ︸︸ ︷
(I −RαH)

propagation of previous error + model error︷ ︸︸ ︷{
Mke

(a)
k +

(
Mk −M (true)

k

)
ϕ
(true)
k

}

+

data error influence︷ ︸︸ ︷
Rα

(
f
(δ)
k+1

)

+

observation operator error︷ ︸︸ ︷
Rα

(
(H(true) −H)ϕ

(true)
k+1

)
(3.5)

We first study the simplified situation where we assume that our computational

model is correct, i.e. M (true) = M , and that we do not have errors in the observation

operator, i.e. H(true) = H. Further, we assume that Mk does not depend on k. This

leads to

ϕ
(a)
k+1 − ϕ

(true)
k+1 = M(ϕ

(a)
k − ϕ

(true)
k ) +RαHM

(
ϕ
(true)
k − ϕ(a)

k

)
+Rαf

(δ)
k+1

= (I −RαH)M
(
ϕ
(a)
k − ϕ

(true)
k

)
+Rαf

(δ)
k+1. (3.6)

We define

Λ := (I −RαH)M. (3.7)

Then, we obtain the iteration formula

e
(a)
k+1 = Λe

(a)
k +Rαf

(δ)
k+1, k = 0, 1, 2, ... (3.8)

Theorem 3.1 Assume that the error f
(δ)
k does not depend on k, i.e. that we have some

time-independent data error for our data assimilation scheme. Then, the error terms

e
(a)
k with initial error e

(a)
0 and e(δ) := Rαf

(δ) described by the update formula (3.8) evolve

according to

e
(a)
k = Λke

(a)
0 +

(
k−1∑
`=0

Λ`

)
e(δ). (3.9)

If (I − Λ)−1 exists, this can be written as

e
(a)
k = Λke

(a)
0 + (I − Λ)−1(I − Λk)e(δ) (3.10)

Proof. The first formula is obtained by induction. For k = 1 we clearly have

e
(a)
1 = Λe

(a)
0 + e(δ). Assume the formula is true for k − 1. Then, we calculate

e
(a)
k+1 = Λe

(a)
k + e(δ)

= Λ

(
Λke

(a)
0 +

(
k−1∑
`=0

Λ`

)
e(δ)

)
+ e(δ)
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= Λk+1e
(a)
0 +

(
k∑
`=1

Λ`

)
e(δ) + e(δ)

= Λk+1e
(a)
0 +

(
k∑
`=0

Λ`

)
e(δ), (3.11)

which is the formula for k replaced by k + 1 and the induction is shown. Then, in the

case where I − Λ is invertible, the second formula is obtained using the telescopic sum

(I − Λ)
k−1∑
`=0

Λ` = I − Λk (3.12)

for any k ∈ N, and the proof is complete. �

We now obtain an analysis of the evolution of the assimilation error for k →∞ in

the case where ||Λ|| < 1.

Corollary 3.2 If ||Λ|| < 1, then the error of the data assimilation scheme with

constant observation error f (δ) tends to

e(∞) := lim
k→∞

e
(a)
k = (I − Λ)−1e(δ) =

(
I −M +RαHM

)−1
Rαf

(δ). (3.13)

The limit e(∞) depends continuously on the observation error f (δ). It tends to zero if the

constant f (δ) tends to 0.

Of course, we are not only interested in the special situation of a constant

observation error, but for practical applications we need estimates for an observation

error which satisfies some bound∣∣∣∣∣∣f (δ)
k

∣∣∣∣∣∣ ≤ δ, k ∈ N. (3.14)

In this case we cannot explicitly derive an evolution equation for the analysis error. But

we can still obtain an evolution equation for a bound of the analysis error as follows.

We estimate ∣∣∣∣∣∣e(a)k+1

∣∣∣∣∣∣ ≤ ||Λ|| · ∣∣∣∣∣∣e(a)k ∣∣∣∣∣∣+
∣∣∣∣e(δ)∣∣∣∣ , k ∈ N. (3.15)

If we define

bk+1 := λbk + τ, k ∈ N (3.16)

with initial value b0 := ||e0|| and τ := ||e(δ)||, we obtain ||ek|| ≤ bk for k ∈ N, such

that the sequence (bk)k∈N provides a bound for the analysis error. We can calculate the

evolution of bk analogously to Theorem 3.1.

Theorem 3.3 We study the situation where we have a perfect model M = M (true) and

a perfect observation operator H = H(true). If the observation error f
(δ)
k , k ∈ N, is
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bounded by δ > 0, λ := ||Λ|| and τ := ||Rα||δ, then the analysis error e
(a)
k is estimated

by ∣∣∣∣∣∣e(a)k ∣∣∣∣∣∣ ≤ λk
∣∣∣∣∣∣e(a)0

∣∣∣∣∣∣+

(
k−1∑
`=0

λ`

)
τ. (3.17)

If λ < 1, we have∣∣∣∣∣∣e(a)k ∣∣∣∣∣∣ ≤ λk
∣∣∣∣∣∣e(a)0

∣∣∣∣∣∣+
1− λk

1− λ
τ (3.18)

such that

lim sup
k→∞

∣∣∣∣∣∣e(a)k ∣∣∣∣∣∣ ≤ ||Rα||δ
1− λ

. (3.19)

We now come to the general situation, where M is some approximation to the true

model and H is an approximation to the true measurement operator. In this case we

will need to take care of additional terms in the error estimate in (3.5). We calculate

σk := (I −RαH)
(
M −M (true)

)
ϕ
(true)
k +Rα

(
H(true) −H

)
ϕ
(true)
k+1 (3.20)

=
(
(I −RαH)

(
M −M (true)

)
+Rα

(
H(true) −H

)
M (true)

)
ϕ
(true)
k (3.21)

=
(
M −M (true) −RαHM +RαH

(true)M (true)
)
ϕ
(true)
k (3.22)

=
(
(I −RαH)M −

(
I −RαH

(true)
)
M (true)

)
ϕ
(true)
k (3.23)

=
(
Λ− Λ(true)

)
ϕ
(true)
k (3.24)

= Λ(error)ϕ
(true)
k , (3.25)

where Λ(true) := (I − RαH
(true))M (true) and Λ(error) := Λ − Λ(true). This leads to the

estimate ∣∣∣∣∣∣e(a)k+1

∣∣∣∣∣∣ =
∣∣∣∣∣∣Λe(a)k + Λ(error)ϕ

(true)
k +Rαf

(δ)
k+1

∣∣∣∣∣∣ (3.26)

≤ ||Λ|| ·
∣∣∣∣∣∣e(a)k ∣∣∣∣∣∣+

∣∣∣∣∣∣Λ(error)ϕ
(true)
k

∣∣∣∣∣∣+
∣∣∣∣∣∣Rαf

(δ)
k+1

∣∣∣∣∣∣ (3.27)

If we define

bk+1 := λbk + τ + σ, k ∈ N (3.28)

with initial value b0 := ||e0||, τ := ||e(δ)|| and σ as an upper bound of ||σk||, we obtain

||e(a)k || ≤ bk for k ∈ N, such that the sequence (bk)k∈N provides a bound for the analysis

error. We have shown the following result.

Theorem 3.4 In the case of some general model M approximating M (true) and an

observation operator H approximating H(true) we assume that the observation error f
(δ)
k ,

k ∈ N, is bounded by δ > 0. We use the abbreviations λ := ||Λ||, τ := ||Rα||δ and assume

that σ > 0 is some constant bounding the influence of the error of the dynamical model

as well as the error of modelling the observation operator via ||σk|| ≤ σ with σk given

by (3.20). Then, the analysis error e
(a)
k is estimated by∣∣∣∣∣∣e(a)k ∣∣∣∣∣∣ ≤ λk

∣∣∣∣∣∣e(a)0

∣∣∣∣∣∣+
1− λk

1− λ
(τ + σ) (3.29)
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such that

lim sup
k→∞

∣∣∣∣∣∣e(a)k ∣∣∣∣∣∣ ≤ ||Rα||δ + σ

1− λ
. (3.30)

4. Stabilizing Cycled Data Assimilation

We have described error estimates for the analysis error of cycled data assimilation in

Theorems 3.3 and 3.4. One key assumption to keep the error bounded is the estimate

λ = ||Λ|| < 1. This condition means that ||(I −RαH)M || < 1, i.e. the model dynamics

is not increasing the error stronger than the regularized reconstruction can reduce it.

Here, we investigate trace-class model operators M to show that we can obtain this

condition for appropriately chosen regularization parameter α.

Lemma 4.1 For a finite dimensional state space X = Rn and injective operators H, we

can always make N := I −RαH arbitrarily small in norm.

Proof. This is due to the fact that H∗H is self-adjoint and thus it has a complete

basis ϕ(1), ..., ϕ(n) of eigenvectors with eigenvalues λj > 0 for j = 1, ..., n. We set

c := min
j=1,...,n

|λj| > 0. (4.1)

We can transform N into

N = I −RαH = I − (αI +H∗H)−1H∗H = α(αI +H∗H)−1 (4.2)

and estimate

||N || ≤ max
j=1,...,n

∣∣∣∣ α

α + λj

∣∣∣∣ ≤ α

α + c
. (4.3)

Given c we can always choose α > 0 sufficiently small such that the norm ||N || of N is

arbitrarily small. �

Remark. As a consequence of the previous lemma, given M we can choose α > 0

such that ||Λ|| ≤ ||N ||||M || < 1.

For the case of infinite dimensions, which is much closer to realistic situations, we

need to take more care, since in general the constant c in the above arguments is zero.

Here, we will work out the case where M is a trace-class operator. We first collect

notations and set-up our scene for further arguments.

Let {ψ` : ` ∈ N} be a complete orthonormal system in X. Then, any vector ϕ ∈ X
can be decomposed into its Fourier sum

ϕ =
∞∑
`=1

α`ψ` (4.4)

with α` := 〈ϕ, ψ`〉 for ` ∈ N. We apply this to Mϕ to derive

Mϕ =
∞∑
`=1

〈Mϕ,ψ`〉ψ` =
∞∑
`=1

∞∑
j=1

αj 〈Mψj, ψ`〉ψ` =
∞∑
`=1

∞∑
j=1

ψ`Mj,`αj
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with the infinite matrix Mj,` = 〈Mψj, ψ`〉. The Hilbert-Schmidt or Frobenius norm of

M with respect to the orthonormal system {ψ` : ` ∈ N} is defined as

||M ||Fro :=
∞∑
`=1

∞∑
j=1

|Mj,`|2. (4.5)

Our results will be based on estimates with respect to particular orthonormal systems

linked to the observation operator. However, to work for general systems we need to

rely on the following basic fact, compare [Kna05].

Lemma 4.2 For an operator M its Hilbert-Schmidt or Frobenius norm (4.5) is

independent of the orthonormal system {ψ` : ` ∈ N}.

Let the orthonormal system {ψ` : ` ∈ N} in X be given by the singular system of the

observation operator H : X → Y . In this case we define an orthogonal decomposition

of the space X by

X
(n)
1 := span{ψ1, ..., ψn}, X

(n)
2 := span{ψn+1, ψn+2, ...}. (4.6)

Often, for simplicity we will suppress the index n. Using the orthogonal projection

operators P1 of X onto X1 and P2 of X onto X2, we decompose M into

M1 := P1M, M2 := P2M. (4.7)

Using N = (I −RαH) we obtain

Λ = N |X1M1 +N |X2M2. (4.8)

The operator N maps Xj, j = 1, 2, into itself. This leads to the norm estimate

||Λϕ||2 = ||(N |X1M1 +N |X2M2)ϕ||2

= ||N |X1M1ϕ||2 + ||N |X2M2ϕ||2, (4.9)

where equality comes from the orthogonality of the spaces X1 and X2. This yields

||Λ||2 ≤ ||N |X1 ||2||M1||2 + ||N |X2||2||M2||2. (4.10)

Lemma 4.3 On X1 for N = I −RαH we have the norm estimate

||N |X1|| = sup
`=1,..,n

∣∣∣∣ α

α + µ2
n

∣∣∣∣ (4.11)

where µn are the singular values of the operator H ordered according to their size and

multiplicity. In particular, given ε > 0 and n ∈ N we can choose α > 0 sufficiently small

such that

||N |X1|| < ε. (4.12)

Proof. We refer to [MP12] for details about the spectral version of the operator

N = I −RαH. In the singular system of H the operator is diagonal with multiplication

factors given by

N(n) =
α

α + µ2
n

, n = 1, 2, 3, ..., (4.13)
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which yields (4.11). The second statement is a result of the order of the singular values

µ1 ≥ µ2 ≥ µ3 ≥ ... > 0, such that we can choose α sufficiently small to make each term

in (4.11) arbitrary small. Since there are only a finite number of such terms, we obtain

the estimate (4.12). �

Lemma 4.4 The norm of the operator N |X2 is given by

||N |X2|| = 1 (4.14)

for all n ∈ N and α > 0.

Proof. Since H is compact, we know that µn → 0 for n→∞. This means that

sup
`=n+1,...,∞

∣∣∣∣ α

α + µ2
n

∣∣∣∣ = 1 (4.15)

for all n ∈ N and all α > 0, which implies the norm estimate (4.14). �

We now need to study the norm of M1 and M2. In general, we do not want any

limitations on the norm of M1, since we are interested in a wide range of systems. We

will see that this does not generate problems for the stabilization of cycled assimilation

schemes.

To estimate the norm of M2 we derive with the help of the Cauchy-Schwarz

inequality

||M2ϕ||2 =
∞∑

`=n+1

|〈Mϕ,ψ`〉|2

=
∞∑

`=n+1

∣∣∣∣∣
∞∑
j=1

〈ϕ, ψj〉 〈Mψj, ψ`〉

∣∣∣∣∣
2

=
∞∑

`=n+1

∣∣∣∣∣
∞∑
j=1

〈ϕ, ψj〉Mj,`

∣∣∣∣∣
2

≤
∞∑

`=n+1

(
∞∑
j=1

|Mj,`|2
)(

∞∑
j=1

| 〈ϕ, ψj〉 |2
)

=

(
∞∑

`=n+1

∞∑
j=1

|Mj,`|2
)
||ϕ||2. (4.16)

Now, recall that the Hilbert-Schmidt norm of M is finite. This means that

|a`|2 :=
∞∑
j=1

|Mj,`|2, ` ∈ N, (4.17)

is a sequence for which
∞∑
`=1

|a`|2 <∞. (4.18)
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This means that given ρ > 0 there is an n ∈ N such that
∞∑

`=n+1

∞∑
j=1

|Mj,`|2 =
∞∑

`=n+1

|a`|2 < ρ2. (4.19)

This provides an estimate for ||M2|| for sufficiently large n ∈ N. We summarize this

result in the following Lemma.

Lemma 4.5 If M is a trace-class operator, then given ρ > 0 there is n ∈ N such that

for M2 = M
(n)
2 we have ||M2|| < ρ.

Proof. The estimate is given by (4.16) with the help of (4.19). �

We are now able to collect all parts of our analysis to construct cycled data

assimilation schemes for ill-posed observation operators which remain stable over time.

Theorem 4.6 Assume the system M is trace-class and let α denote the regularization

parameter for a cycled data assimilation scheme. Then, for α > 0 sufficiently small, i.e.

there is α0 such that for α < α0, we have ||Λ|| < 1. Under the conditions of Theorem

3.4 the analysis error is bounded over time by

lim sup
k→∞

||ek|| ≤
||Rα||δ + σ

1− ||Λ||
. (4.20)

Proof. First, we show that we can achieve ||Λ|| < 1. In (4.10) we have ||M1|| given

as an arbitrary constant c and ||N |X2|| = 1 according to Lemma 4.4. First, we use

Lemma 4.5 to choose n such that ||M2||2 < 1/2. Now, with fixed n according to Lemma

4.3 the norm ||N |X1|| can be made arbitrarily small by choosing α small enough. We

choose α such that

c2 · ||N |X1||2 ≤
1

2
. (4.21)

Then we obtain ||Λ|| < 1 from (4.10). Now, the bound for the analysis error is given by

Theorem 3.4, which also provides the estimate (4.20). �

We have shown that for α sufficiently small we are in a stable range for the data

assimilation scheme, i.e. the analysis error remains bounded over time. If the observation

error tends to zero, this bound will also tend to zero.

We remark that we obtained a linear estimate for the dependence of the long-

term analysis error depending on the observation error for the stable range of the data

assimilation scheme.

The above results have been worked out for the infinite dimensional case. For the

finite dimensional case Lemma 4.3 still remains true, but the norm of N |X2 estimated

in (4.14) of Lemma 4.4 is not equal to one, but strictly smaller than one. Lemma 4.5 is

not really applicable in this case, but we can use Lemma 4.1 such that the result (4.20)

applies to this simpler situation with arbitrary linear operator M as well.

Finally, we need to remark that the role of α is to regularize the problem. So it is

important to choose α sufficiently large to stay within a stable regime for the inversion of
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(1.3). Here, we have shown that we need α sufficiently small to keep the error bounded

over time. But the error bound will also depend on α by the norm

||Rα|| ≤
1

2
√
α

of Rα, compare equation (4.20). The bound might in fact be rather large. Given δ there

will be some optimal α which leads to the best possible error bounds for a given set-up.

However, the maximal α for which ||Λ|| < 1 is achieved might still cause severe numerical

instabilities, such that there is the possibility that practically it is impossible to stabilise

the scheme, depending on the particular set-up and operators under consideration.

5. Numerical Examples

Here, we present two numerical examples to demonstrate the theory presented in this

work. Firstly we present a simple low-dimensional setup which confirms the theoretical

results. Then, we investigate a more realistic system, the 2D Eady model [Ead49], which

confirms the practical validity of the above results.

The numerics demonstrate that with a small regularization parameter α we can

achieve a stable cycled data assimilation scheme. For the simple low-dimensional system

we use construct M to be a random n × n-matrix, using Matlab rand function, giving

us a singular system by its SVD. To mimic a kind of trace-class operator, we then

manipulated the singular values to decay sufficiently strongly.

The interesting case is where some singular values are larger than one, leading to

a system with growing modes. Further, we want the rest of the singular values to be

smaller than one and tending to zero for larger indices, as a model for a trace-class

operator. For example, we pick M randomly and find the singular values

µ(M) = (3.7568, 2.8065, 1.2662, 0.6557, 0.5563).

We then construct an observation operator, H in the same way with

µ(H) = (3.1055, 2.5303, 1.7530, 0.0542, 10−12).

Here we have growing and damping spectral modes in the model operator and we

have simulated the consequence of a compact observation operator. The operator H

is severely ill-conditioned with a condition number, κ = 3.1049 × 1012 with respect to

the l2 norm. We set up background and observation standard deviations as follows

σ(b) = 0.09 and σ(o) = 0.1 respectively. Random normally distributed noise is added

to the observations with mean, 0 and standard deviation, σ(o). Initially we choose

α =
σ2
(o)

σ2
(b)

≈ 1.2. In Figure 1 we observe that over time tk the analysis error, ||e(a)k ||l2
blows up with respect to the l2 norm. Now in Figure 2 we choose a smaller regularization

parameter, α = 0.12

0.112
≈ 0.8, inflating the background error variance, σ2

(b) from 0.092 to

0.112. Subsequently repeating with the same data, we observe a stable analysis error,
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||e(a)k ||l2 over time tk with respect to the l2 norm. In Figure 3 we plot ||e(a)10000||l2 as α

is varied. Here we observe for a fixed time t10000 that the analysis error is sensitively

dependent on the regularization parameter we choose.

Figure 1. The l2 norm of the analysis error as the scheme is cycled for the time index

k, for a regularization parameter, α =
σ2
(o)

σ2
(b)

≈ 1.2.

Figure 2. The l2 norm of the analysis error as the scheme is cycled for the time index

k, for a regularization parameter, α ≈ 0.8.

As a second example, we now consider a more realistic system where the model

operator M arises from the discretization of a system of partial differential equations.
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Figure 3. The l2 norm of the analysis error as the scheme is cycled for a constant

time index k = 10000, varying the regularization parameter, α.

The system we consider is the two-dimensional Eady model, a simple model of

atmospheric instability, see [Ead49] for a detailed introduction. The model is defined in

the x− z plane, with periodic boundary conditions in x and z ∈ [−1/2, 1/2]. The state

vector consists of the nondimensional buoyancy b on the upper and lower boundaries and

the nondimensional potential vorticity in the interior of the domain. For the current

study we assume that the interior potential vorticity is zero and thus we only need

to consider the dynamics on the boundaries. The buoyancy is advected along the

boundaries forced by the nondimensional streamfunction ψ according to the equation

∂b

∂t
+ z

∂b

∂x
=
∂ψ

∂x
on z = ±1/2 (5.1)

where the streamfunction satisfies

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0 in z ∈ [−1/2, 1/2], (5.2)

with boundary conditions

∂ψ

∂z
= b on z = ±1/2. (5.3)

The equations are discretized as described in [Joh03] and [JHN05] using 40 grid points

in the horizontal, giving 80 degrees of freedom. The resulting discrete operator M has

a maximum eigenvalue of 1.3066.

We simulate the consequence of compact observation operator H with a random

80 × 80 matrix with the last 5 singular values µ76:80 = (10−6, 10−8, 10−10, 10−12, 10−14)

respectively. Therefore, H is severely ill-conditioned with a condition number, κ =

4.1367 × 1015 with respect to the l2 norm. We set up background and observation

standard deviations as follows σ(b) = 0.25 and σ(o) = 1 respectively. Random normally
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distributed noise is added to the observations with mean, 0 and standard deviation, σ(o).

Initially we choose α =
σ2
(o)

σ2
(b)

≈ 16. In Figure 4 we observe that over time tk the analysis

error, ||e(a)k ||l2 blows up with respect to the l2 norm. Now in Figure 5 we choose a smaller

regularization parameter, α = 1
0.09
≈ 11.1, inflating the background error variance, σ2

(b)

from 0.252 to 0.32. Subsequently repeating with the same data, we observe a stable

analysis error, ||e(a)k ||l2 over time tk with respect to the l2 norm. In Figure 6 we plot

||e(a)10000||l2 as α is varied. Here we observe for a fixed time t10000 that the analysis error

is largely dependent on the regularization parameter we choose.

Figure 4. The l2 norm of the analysis error as the scheme is cycled for the time index

k, for a regularization parameter, α =
σ2
(o)

σ2
(b)

≈ 16.

6. Conclusions

The purpose of this work was to study the instability of cycled data assmilation

algorithms, in particular when compact measurement operators are employed in

large-dimensional (infinite dimensional) systems. We have investigated the long-term

behaviour of the analysis error for the general setting of dynamical systems of trace-

class, covering a wide range of such systems. The term stability is used when the error

remains bounded over time. Here, we investigate several standard data assimilation

schemes (3dVar, 4dVar and a cycled Kalman Filter), which for linear dynamical systems

can be rewritten into a joint framework known as cycled Tikhonov regularization.

A key phenomen described and analysed is the dependence of the stability of the

cycled data assimilation system on a scaling parameter α of the background covariance

matrix. We show that when the scaling parameter is sufficiently small, we have

boundedness of the analysis error in the long-term limit. If the scaling parameter is
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Figure 5. The l2 norm of the analysis error as the scheme is cycled for the time index

k, for a regularization parameter, α ≈ 11.1.

Figure 6. Left: The l2 norm of the analysis error as the scheme is cycled for a constant

time index k = 10000, varying the regularization parameter, α. Right: Zoomed version.

too large, error which enters the system via the data in general will be amplified, such

that the analysis error growth without limits in its long-term behaviour. This growth

happens even for an arbitrarily small data error.

In a numerical part we studied simple examples and also applied the theory to a

two-dimensional Eady model, a simple model of atmospheric instability. The numerical

results confirm and demonstrate the general theory very well.
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