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Summary
We describe a novel method for determining the pressure and velocity fields for a
weakly compressible fluid flowing in a thin three-dimensional layer composed of an
inhomogeneous, anisotropic porous medium, with vertical side walls and variable
upper and lower boundaries, in the presence of vertical wells injecting and/or
extracting fluid. Our approach uses the method of matched asymptotic expansions to
derive expressions for all significant process quantities, the computation of which
requires only the solution of linear, elliptic, two-dimensional boundary-value and
eigenvalue problems. In this paper we provide full implementation details and present
numerical results demonstrating the efficiency and accuracy of our scheme.

1. Introduction
A problem with significant applications in the oil and gas industry, and also to water
resource management, is that of computing the pressure and velocity fields for a weakly
compressible fluid flowing in a porous medium, with wells injecting or extracting fluid
considered as line sources and sinks respectively. The (in general) heterogeneity of the
porous medium, compressibility of the fluid, singularities induced by the source and sink
terms, large size of the computational domain and long time interval over which simulations
are often required make accurate and efficient modelling of such a scenario an extremely
challenging task. Problems such as this have been very widely considered in the literature;
we refer to e.g. (1, 2) and the many references therein for a detailed summary of the
modelling and computational issues that must be resolved.

Here, we consider the case of fluid flowing in a porous three-dimensional (3-d) layer of
inhomogeneous and anisotropic permeability, with variable upper and lower boundaries and
vertical side walls and wells. Numerical solution of the full equations of motion throughout
the layer can be prohibitively expensive. The approach we present in this paper is based on
the key observation that in geophysical applications the depth scale h of the layer is often
small compared to the length scale l. For example, in (3) numerical results for single-phase
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flow in 3-d compressible porous media in the presence of multiple line sources and sinks are
presented for examples with h/l ≈ 1/40; results in (4), for single-phase fluid flow in two-
dimensional (2-d) axisymmetric and anisotropic porous media, are presented for examples
with h/l ≈ 1/500.

Whereas for standard numerical schemes this small aspect ratio can be problematical,
here we present an approach based on matched asymptotic expansions in ε ∼ h/l � 1
(defined explicitly in (2.10) below) for which the accuracy improves as ε→ 0. These ideas
were first proposed in (5), for the 2-d problem, and subsequently extended to the full 3-d
problem that we consider here in (6). The work in (6) consists of a rigorous derivation
of the matched asymptotic expansions, leading to expressions for the pressure and velocity
fields throughout the layer accurate to O(ε2). Determining the actual values of the leading
order terms in these asymptotic expansions requires the solution of linear, elliptic boundary-
value and eigenvalue problems on the 2-d projection of the layer cross-section. Here, we
consider the implementation of the scheme proposed in (6). We begin in §2 by describing
the initial-boundary value problem that we wish to solve and presenting the ideas of (6)
in an algorithmic fashion. In §3 we give full computational details for the solution of the
resulting 2-d problems and explain how to combine the different components of the solution
in order to achieve numerical values for the pressure and velocity fields throughout the layer.
We present numerical results demonstrating the exceptional efficiency of our approach in §4,
and finally in §5 we draw some conclusions.

Unlike fully numerical schemes, the accuracy of our approach is limited by the value
of ε. Provided ε is small however, our approach is shown to replicate anticipated qualitative
features of the solution in a fraction of the time that would be required by fully numerical
solvers. Our approach requires no temporal disretisation, and the pressure and velocity fields
can be obtained over any interval of time with constant production rates with virtually the
same cost as computing them at a single time. The only spatial discretisation required is
on the 2-d projection of the layer cross-section and on the one-dimensional (1-d) vertical
line sources and sinks. Moreover, changes to production rates and well locations can be
easily accounted for, as can changes to porosity and permeability of the layer. The latter
feature might make this approach particularly well suited to history matching applications
(see, e.g., the discussions in (7, 8)).

2. The initial-boundary value problem, and its solution via matched
asymptotic expansions

As in (6) we consider the flow of a weakly compressible fluid in the presence of vertical
line sources and sinks, in a 3-d reservoir of porous medium with variable upper and lower
boundary. The reservoir has permeability which is both inhomogeneous and anisotropic. We
adopt the same notation as in (6), and refer to (6, §2) for the derivation of the dimensionless
equations of motion,

φ̄(x, y, z)
∂p̄

∂t
+
∂u

∂x
+
∂v

∂y
+
∂w

∂z
=

N∑
i=1

si(z)δ(x− xi)δ(y − yi), (2.1)

u = −Dx(x, y, z)
∂p̄

∂x
, (2.2)
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v = −Dy(x, y, z)
∂p̄

∂y
, (2.3)

ε2w = −Dz(x, y, z)
∂p̄

∂z
, (2.4)

for (x, y, z) ∈ M ′, t ∈ (0,∞), whose solution we will study in this paper. Here (x, y, z) are
rectangular cartesian coordinates with z pointing vertically upwards, and the dimensionless
domain is

M ′ = {(x, y, z) ∈ R3 : (x, y) ∈ Ω, z ∈ (z−(x, y), z+(x, y))}, (2.5)

with closureM
′
and boundary ∂M ′, where Ω ⊂ R2 is bounded by the simple closed piecewise

smooth curve ∂Ω ⊂ R2, with Ω = Ω∪∂Ω, and z+, z− : Ω 7→ R are such that z+, z− ∈ C1(Ω),
and z+(x, y) > z−(x, y) for all (x, y) ∈ Ω. In (2.1)–(2.4), p̄ is the dynamic fluid pressure,
with the pressure field given by

p(x, y, z, t) = −σ̂z + p̄(x, y, z, t), (2.6)

where σ̂ is a dimensionless parameter, u, v and w are the components of the fluid velocity
field in the x, y and z directions respectively, and φ̄ ∈ C1(M

′
) denotes the porosity of the

layer, bounded above zero on M
′

and scaled so that∫ ∫ ∫
M ′

φ̄(x, y, z) dxdy dz = meas(M), (2.7)

with meas(M
′
) =

∫∫
Ω
z+(x, y) − z−(x, y) dxdy, being the measure (volume) of M

′ ⊂
R3. The line source/sink locations are at (xi, yi) ∈ Ω, i = 1, . . . , N . The functions
si : [z− (xi, yi) , z+ (xi, yi)] 7→ R, i = 1, . . . , N , represent the line source/sink volumetric
strengths, with si ∈ C ([z− (xi, yi) , z+ (xi, yi)]), i = 1, . . . , N . The dimensionless total
volume flux from the ith line source/sink is then,

αi =
1
Q

∫ z+(xi,yi)

z−(xi,yi)

si(µ) dµ, i = 1, . . . , N, (2.8)

where

Q =
N∑
i=1

∣∣∣∣∣
∫ z+(xi,yi)

z−(xi,yi)

si(λ) dλ

∣∣∣∣∣ , (2.9)

and the scaling of αi by 1/Q ensures that |αi| 6 1, for i = 1, . . . , N , and
∑N
i=1 |αi| = 1.

In (2.1) δ : R 7→ R is the usual Dirac delta function. The functions Dx, Dy, Dz : M
′ 7→ R+

in (2.2)–(2.4) represent the variable permeabilities in the x, y and z directions respectively,
and are such that Dx, Dy, Dz ∈ C1(M

′
) and are bounded above zero on M

′
. Finally, the

dimensionless parameter ε� 1 is given by

ε =

√
DH

0

DL
0

h

l
, (2.10)

where l > 0 is the horizontal length scale of the dimensional reservoir, h > 0 is the
vertical length scale associated with the dimensional reservoir, and DH

0 , D
L
0 > 0 are
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permeability scales (divided by constant fluid velocity) in the horizontal and vertical
directions respectively. Our matched asymptotic approach will rely on the assumption
that ε� 1. This is often the case in practice, with oil and gas reservoirs typically extending
many orders of magnitude further horizontally compared to their depth.

The boundary conditions are, in dimensionless form,

(u(r, t), v(r, t), w(r, t)) · n̂ = 0, for all (r, t) ∈ ∂M ′H × (0,∞), (2.11)

w(r, t)−
{
∂z+

∂x
(x, y)u(r, t)+

∂z+

∂y
(x, y)v(r, t)

}
=0, for all (r, t) ∈ ∂M ′+ × (0,∞),

(2.12)

w(r, t)−
{
∂z−
∂x

(x, y)u(r, t)+
∂z−
∂y

(x, y)v(r, t)
}

=0, for all (r, t) ∈ ∂M ′− × (0,∞),

(2.13)

where n̂(x, y) for (x, y) ∈ ∂Ω represents the outward unit normal field to ∂Ω, ∂M ′H ⊂ ∂M ′ is
that part of ∂M ′ representing the side walls of the boundary, ∂M ′+, ∂M

′
− ⊂ ∂M ′ represent

the upper and lower surfaces of ∂M ′ respectively, with ∂M ′+ ∪ ∂M ′− ∪ ∂M ′H = ∂M ′, and
r := (x, y, z). Finally we have the initial condition,

p̄(r, 0) = p̄0f(r), for all r ∈M ′, (2.14)

with p̄0 the reference pressure for the weakly compressible fluid, and f : M
′ 7→ R the

prescribed initial pressure variation, with

f ∈ PC1(M
′
) ∩ C(M

′
), (2.15)

where PC1(M
′
) represents the class of piecewise continuously differentiable functions on

M
′
. The full problem for consideration is then given by (2.1)–(2.4), (2.11)–(2.14), which

we refer to henceforth as [IBVP].
Direct solution of the linear inhomogeneous parabolic problem [IBVP] is problematical,

not least due to the inhomogeneous right hand side and the singularities in the solutions
at the source/sink locations. To simplify the problem, we decompose it into two easier
problems: a pseudo-steady state problem (denoted by [PSSP]), which is an elliptic weighted
Neumann problem with an inhomogeneous right hand side and identical similarities
to [IBVP] but with the time dependence removed, and a transient problem, a linear
homogeneous parabolic problem with the singularities removed, whose solution reduces
to the solution of a regular self adjoint eigenvalue problem (denoted by [EVP]). Specifically,
it follows from (6, Theorem 2.2) that for each ε > 0, [IBVP] has a unique solution
u, v, w, p̄ : M

′ × [0,∞) 7→ R that we can write as

p̄(r, t) = α̂T t+ p̂(r) + p̃(r, t), (2.16)

u(r, t) = û(r)−Dx(r)
∂p̃

∂x
(r, t), (2.17)

v(r, t) = v̂(r)−Dy(r)
∂p̃

∂y
(r, t), (2.18)

w(r, t) = ŵ(r)− ε−2Dz(r)
∂p̃

∂z
(r, t), (2.19)
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for all (r, t) ∈M ′× [0,∞), where the constant α̂T , representing the weighted dimensionless
net flux of fluid into or out of the porous layer, is given by

α̂T =
1

meas(M
′
)

N∑
i=1

αi. (2.20)

Here û, v̂, ŵ, p̂ : M
′ 7→ R is the unique solution to the pseudo-steady state problem [PSSP]:

∂û

∂x
+
∂v̂

∂y
+
∂ŵ

∂z
=

N∑
i=1

si(z)δ(x− xi)δ(y − yi)− α̂T φ̄(x, y, z), (x, y, z) ∈M ′, (2.21)

û = −Dx(x, y, z)
∂p̂

∂x
, v̂ = −Dy(x, y, z)

∂p̂

∂y
, ε2ŵ = −Dz(x, y, z)

∂p̂

∂z
, (x, y, z) ∈M ′,

(2.22)
(û(r), v̂(r), ŵ(r)) · n̂ = 0, for all r ∈ ∂M ′H , (2.23)

ŵ(r)−
{
∂z+

∂x
(x, y)û(r) +

∂z+

∂y
(x, y)v̂(r)

}
= 0, for all r ∈ ∂M ′+, (2.24)

ŵ(r)−
{
∂z−
∂x

(x, y)û(r) +
∂z−
∂y

(x, y)v̂(r)
}

= 0, for all r ∈ ∂M ′−, (2.25)

accompanied by the constraint (to enforce uniqueness)∫ ∫ ∫
M ′

p̂(x, y, z)φ̄(x, y, z) dxdy dz =
∫ ∫ ∫

M ′
p̄0f(x, y, z)φ̄(x, y, z) dxdy dz =: I0. (2.26)

The transient pressure field p̃ : M
′ × [0,∞) 7→ R satisfies the following linear, strongly

parabolic, regular, initial-boundary value problem:

φ̄(x, y, z)
∂p̃

∂t
−
{
∂

∂x

(
Dx(x, y, z)

∂p̃

∂x

)
+
∂

∂y

(
Dy(x, y, z)

∂p̃

∂y

)
+
∂

∂z

(
ε−2Dz(x, y, z)

∂p̃

∂z

)}
=0,

for (x, y, z, t) ∈M ′ × (0,∞), (2.27)
[D̃(r)∇p̃(r, t)] · n̂ = 0, for all (r, t) ∈ ∂M ′H × (0,∞), (2.28)

[D̃(r)∇p̃(r, t)] ·
(
−ε2 ∂z+

∂x
(x, y),−ε2 ∂z+

∂y
(x, y), 1

)
= 0, (2.29)

for all (r, t) ∈ ∂M ′+ × (0,∞),

[D̃(r)∇p̃(r, t)] ·
(
−ε2 ∂z−

∂x
(x, y),−ε2 ∂z−

∂y
(x, y), 1

)
= 0, (2.30)

for all (r, t) ∈ ∂M ′− × (0,∞),

p̃(r, 0) = p̄0f(r)− p̂(r) = p̃0(r), for all r ∈M ′. (2.31)

Here

D̃(r) =

 −Dx(x, y, z) 0 0
0 −Dy(x, y, z) 0
0 0 −Dz(x, y, z)

 ,
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for all r ∈M ′. It follows from (2.26) that p̃0(r) satisfies∫ ∫ ∫
M ′

p̃0(x, y, z)φ̄(x, y, z) dxdy dz = 0. (2.32)

The transient velocity fields ũ = u− û, ṽ = v − v̂, w̃ = w − ŵ are then given by

ũ = −Dx(x, y, z)
∂p̃

∂x
, ṽ = −Dy(x, y, z)

∂p̃

∂y
, ε2w̃ = −Dz(x, y, z)

∂p̃

∂z
, (r, t) ∈M ′×(0,∞).

(2.33)
It is shown in (6) that the solution to (2.27)–(2.31) (together with an appropriate

regularity condition, see (6) for details) is given by

p̃(r, t) =
∞∑
n=1

an(ε)e−λn(ε)tφn(r; ε), for all (r, t) ∈M ′ × [0,∞), (2.34)

with a0(ε) = 0, via (2.32), and

aj(ε) =
∫ ∫ ∫

M ′
p̃0(x, y, z)φ̄(x, y, z)φj(x, y, z; ε) dx dy dz (2.35)

for j = 1, 2, . . ., where λ = λj(ε) ∈ C and φ = φj : M
′ 7→ R, j = 0, 1, 2, . . ., are the

eigenvalues and corresponding eigenfunctions of the self-adjoint eigenvalue problem in M
′
,

∂

∂x

(
Dx(x, y, z)

∂φ

∂x

)
+
∂

∂y

(
Dy(x, y, z)

∂φ

∂y

)
+
∂

∂z

(
ε−2Dz(x, y, z)

∂φ

∂z

)
+λφ̄(x, y, z)φ = 0,

for (x, y, z) ∈M ′,
[D̃(r)∇φ(r)] · n̂ = 0, for all r ∈ ∂M ′H ,

[D̃(r)∇φ(r)] ·
(
−ε2 ∂z+

∂x
(x, y),−ε2 ∂z+

∂y
(x, y), 1

)
= 0, for all r ∈ ∂M ′+,

[D̃(r)∇φ(r)] ·
(
−ε2 ∂z−

∂x
(x, y),−ε2 ∂z−

∂y
(x, y), 1

)
= 0, for all r ∈ ∂M ′−,

which we denote by [EVP]. The eigenvalues and eigenfunctions satisfy (see (6))

0 = λ0(ε) < λ1(ε) 6 λ2(ε) 6 . . . , (2.36)

〈φi, φj〉 =
∫ ∫ ∫

M ′
φ̄(x, y, z)φi(x, y, z; ε)φj(x, y, z; ε) dx dy dz = δij , for i, j = 0, 1, 2, . . . ,

with δij the Kronecker delta symbol and φ0(x, y, z; ε) = (meas(M
′
))−1/2, for (x, y, z) ∈M ′.

To complete the solution to [IBVP], we thus need to find p̂, û, v̂, ŵ : M
′ 7→ R solving

the pseudo-steady state problem [PSSP] (given by (2.21)–(2.26)), and λn(ε) (> 0) and
its corresponding eigenfunction φn : M

′ 7→ R, for each n = 1, 2, . . ., solving the eigenvalue
problem [EVP]. Under the assumption that 0 < ε� 1, we construct solutions to [PSSP] and
[EVP] in the asymptotic limit ε→ 0, via matched asymptotic expansions for the solutions
of the equations of motion of the fluid both in the vicinity of each well (the inner region),
and away from the wells (the outer region).
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2.1 Solution to [PSSP]
It is shown in (6, §3) that the outer region asymptotic expansions (away from the
sources/sinks) are given by

p̂(r; ε) = A(x, y) +O(ε2), (2.37)

û(r; ε) = −Dx(x, y, z)
∂A

∂x
(x, y) +O(ε2), (2.38)

v̂(r; ε) = −Dy(x, y, z)
∂A

∂y
(x, y) +O(ε2), (2.39)

ŵ(r; ε) =
∫ z

z−(x,y)

{
∂

∂x

(
Dx(x, y, ξ)

∂A

∂x
(x, y)

)
+

∂

∂y

(
Dy(x, y, ξ)

∂A

∂y
(x, y)

)}
dξ

−α̂T
∫ z

z−(x,y)

φ̄(x, y, ξ) dξ +O(ε2), (2.40)

as ε→ 0, uniformly for r ∈M ′\
⋃N
i=1 δ

ε
i , where δεi is an O(ε) neighbourhood of di, with

di = {(x, y, z) ∈M ′ : (x, y) = (xi, yi), z ∈ (z−(xi, yi), z+(xi, yi))},

for each i = 1, . . . , N , and A : Ω 7→ R is the solution to the linear, inhomogeneous, strongly
elliptic boundary value problem (which we will refer to henceforth as [BVP]),

∂

∂x

(
D̄x(x, y)

∂A

∂x
(x, y)

)
+

∂

∂y

(
D̄y(x, y)

∂A

∂y
(x, y)

)
= F (x, y), (x, y) ∈ Ω, (2.41)

D̄x(x, y)
∂A

∂x
(x, y)nx(x, y) + D̄y(x, y)

∂A

∂y
(x, y)ny(x, y) = 0, (x, y) ∈ ∂Ω, (2.42)∫ ∫

Ω

φ̂(x, y)A(x, y) dxdy = I0. (2.43)

Here the right hand side of (2.41) is

F (x, y) := −
N∑
i=1

αiδ(x− xi)δ(y − yi) + α̂T φ̂(x, y), (x, y) ∈ Ω,

the depth integrated permeability of the porous layer φ̂ : Ω 7→ R is given by

φ̂(x, y) =
∫ z+(x,y)

z−(x,y)

φ̄(x, y, ξ) dξ, for (x, y) ∈ Ω,

and the depth integrated permeabilities of the porous layer in the x and y directions
respectively, D̄x, D̄y : Ω 7→ R, are defined by

D̄x(x, y) =
∫ z+(x,y)

z−(x,y)

Dx(x, y, ξ) dξ, D̄y(x, y) =
∫ z+(x,y)

z−(x,y)

Dy(x, y, ξ) dξ,

for (x, y) ∈ Ω, with D̄x, D̄y ∈ C1(Ω) and bounded above zero on Ω. Finally n̂(x, y) =
(nx(x, y), ny(x, y)) is the unit outward normal to the bounded 2-d domain Ω, and I0, αi
and α̂T are given by (2.26), (2.8) and (2.20), respectively.
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It follows from (2.7) and (2.20) that∫ ∫
Ω

F (x, y) dx dy = 0, (2.44)

and hence by classical theory for strongly elliptic boundary value problems (see for
example (9)) that [BVP] has a unique solution. In particular, with A : Ω 7→ R being
the solution to [BVP], it is shown in (6, equation (3.18)) that

A(x, y) =
−αi

4π(D̄i
xD̄

i
y)

1
2

log

[
(x− xi)2

D̄i
x

+
(y − yi)2

D̄i
y

]
+Ai0 +O

(
([x− xi]2 + [y − yi]2)

1
2

)
,

(2.45)
as (x, y)→ (xi, yi), with Ai0 ∈ R being a globally determined constant and D̄i

x = D̄x(xi, yi),
D̄i
y = D̄y(xi, yi), for i = 1, . . . , N .
In general, except for particularly simple boundaries ∂Ω, permeabilities D̄x, D̄y, and line

source/sink locations (xi, yi) ∈ ∂Ω, i = 1, . . . , N , [BVP] will need to be solved numerically.
However, [BVP] is a 2-d, regular, strongly elliptic problem, and numerical solution via finite
element methods can be achieved rapidly and accurately. We defer detailed consideration
of the numerical solution of [BVP] until §3.1.

It is shown in (6) that the outer region asymptotic expansions (2.37)–(2.40) become non-
uniform when r ∈ δεi as ε→ 0 (i = 1, . . . , N). To obtain a uniform asymptotic representation
of the solution to [PSSP] when r ∈ δεi as ε→ 0, we must therefore introduce an inner region
at each line source/sink location (x, y) = (xi, yi), i = 1, . . . , N . In the inner region we write
(x, y) = (xi, yi) + ε(X,Y ), with (X,Y ) ∈ R2 such that X,Y = O(1) as ε → 0, and we
define (R̃i, θ, z) to be local cylindrical polar coordinates based at (X,Y, z) = (0, 0, 0), with
X = R̃i cos θ, Y = R̃i sin θ and R̃i = (X2 + Y 2)1/2. For notational convenience we also
define zi± = z±(xi, yi) and D̃α(z) = Dα(xi, yi, z), for z ∈ [zi−, z

i
+] and α = x, y or z. Under

the assumption
D̃x(z) = D̃y(z) =: D̃h(z), z ∈ [zi−, z

i
+],

so that permeability in the horizontal directions is equal at the well, but still dependent
upon z ∈ [zi−, z

i
+] (a consequence of which is that D̄i

x = D̄i
y =: D̄i

h), it follows that the
asymptotic expansion for p̂ in the inner region is

p̂(R̃i, z; ε) =
−αi

2πD̄i
h

log ε+ Fi(R̃i, z) +O(ε) (2.46)

as ε→ 0, with (R̃i, z) ∈ (0,∞)× [zi−, z
i
+], and Fi : (0,∞)× [zi−, z

i
+] 7→ R given by

Fi(R̃i, z) =
(
Ai0 +

αi
4πD̄i

h

log D̄i
h −

αi
2πD̄i

h

log R̃i

)
+
∞∑
j=1

BjK0(λ̄1/2
j R̃i)ψj(z),

(R̃i, z) ∈ (0,∞)× [zi−, z
i
+]. (2.47)

Here Kν(·) is the usual modified Bessel function of order ν (see (10, chapter 9)), while
λ̄r ∈ R and ψr : [zi−, z

i
+] 7→ R for r = 0, 1, 2, . . . are the eigenvalues and corresponding
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eigenfunctions of the regular Sturm-Liouville eigenvalue problem,(
D̃z(z)ψ′(z)

)′
+ λ̄D̃h(z)ψ(z) = 0, z ∈ (zi−, z

i
+), (2.48)

ψ′(zi−) = ψ′(zi+) = 0, (2.49)

which we refer to as [SL]. The eigenvalues of [SL] have 0 = λ̄0 < λ̄1 < λ̄2 < . . ., (see
e.g. (11, chapters 7,8)) with λ̄r →∞ as r →∞, and the corresponding eigenfunctions are
normalised so that

〈ψj , ψk〉 =
∫ zi

+

zi
−

D̃h(s)ψj(s)ψk(s) ds = δjk, (2.50)

for j, k = 0, 1, 2, . . .. The constants Br, r = 1, 2, . . . are given by

Br =
1

2π

∫ zi
+

zi
−

si(µ)ψr(µ) dµ, r = 1, 2, . . . . (2.51)

The asymptotic expansions for the flow fields û, v̂, ŵ in the inner region are then given by

û(X,Y, z; ε)=ε−1

−D̃x(z)
X

R̃i

 −αi
2πD̄i

hR̃i
−
∞∑
j=1

Bj λ̄
1/2
j K1(λ̄1/2

j R̃i)ψj(z)

+O(ε)

 ,(2.52)

v̂(X,Y, z; ε)=ε−1

−D̃y(z)
Y

R̃i

 −αi
2πD̄i

hR̃i
−
∞∑
j=1

Bj λ̄
1/2
j K1(λ̄1/2

j R̃i)ψj(z)

+O(ε)

 ,(2.53)

ŵ(X,Y, z; ε) = ε−2

−D̃z(z)
∞∑
j=1

BjK0(λ̄1/2
j R̃i)ψ′j(z) +O(ε)

 . (2.54)

The only remaining question is how to compute the eigenvalues and corresponding
eigenfunctions of [SL]. This is straightforward and is addressed in §3.4. The asymptotic
solution to [PSSP] as ε→ 0 uniformly for (x, y, z) ∈M ′ is now complete; details of how the
solution is actually computed are presented in §§3.1–3.5.

2.2 Solution to [EVP]
We next turn our attention to the asymptotic solution to the eigenvalue problem [EVP]
as ε → 0. It is shown in (6) that the eigenvalues λj and corresponding normalised
eigenfunctions φj have the asymptotic expansions

λj(ε) = λ̃j [1 +O(ε2)], φj(x, y, z; ε) = Ãj(x, y) +O(ε2), as ε→ 0,

for j = 0, 1, 2, . . ., uniformly for (x, y, z) ∈ M ′, where Ãj : Ω 7→ R and λ̃j ∈ R satisfy the
regular self-adjoint eigenvalue problem,

∂

∂x

(
D̄x(x, y)

∂Ã

∂x
(x, y)

)
+
∂

∂y

(
D̄y(x, y)

∂Ã

∂y
(x, y)

)
+λ̃φ̂(x, y)Ã(x, y)=0, (x, y) ∈ Ω, (2.55)

D̄x(x, y)
∂Ã

∂x
(x, y)nx(x, y) + D̄y(x, y)

∂Ã

∂y
(x, y)ny(x, y) = 0, (x, y) ∈ ∂Ω. (2.56)
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We refer to this eigenvalue problem as [EVP]′.
Classical theory (see for example (12)) determines that the set of eigenvalues of [EVP]′

is given by λ̃ = λ̃r ∈ R, r = 0, 1, 2, . . ., with,

0 = λ̃0 < λ̃1 6 λ̃2 6 . . . (2.57)

and λ̃r = O(r2) as r → ∞. Corresponding to each eigenvalue λ̃r in the ordering (2.57)
there is a unique normalised eigenfunction Ãr : Ω 7→ R such that∫ ∫

Ω

φ̂(x, y)Ãi(x, y)Ãj(x, y) dxdy = δij , (2.58)

for i, j = 0, 1, 2, . . .. Recalling (2.34) and (2.35), we then have

p̃(x, y, z, t) =
∞∑
r=1

cre−λ̃rtÃr(x, y) +O(ε2e−λ̃1t, e−t/ε
2
) (2.59)

as ε → 0, uniformly for (x, y, z, t) ∈ M ′ × [δ,∞), for any δ > 0, where cr, r = 1, 2, . . ., are
given by

cr =
∫ ∫

Ω

〈p̃0〉(η, ξ)Ãr(η, ξ) dη dξ, (2.60)

with 〈p̃0〉 : Ω 7→ R given by

〈p̃0〉(x, y) =
∫ z+(x,y)

z−(x,y)

p̃0(x, y, s)φ̄(x, y, s) ds, (x, y) ∈ Ω, (2.61)

with p̃0 : M
′ 7→ R given by (2.31). Thus p̃(x, y, z, t) ∼ (c1Ã1(x, y) + O(ε2))e−λ̃1t as t →

∞, uniformly for (x, y, z) ∈ M
′
. Therefore, the transient part of the solution to [IBVP]

decays exponentially with rate λ̃1 as t→∞, with the dimensionless time scale for transient
relaxation being ts ∼ (λ̃1)−1.

3. Computation of the pressure and velocity fields throughout the layer

We now describe the full algorithm for computing p, u, v, and w, via the asymptotic
solution for 0 < ε� 1 to [IBVP], given by (2.1)–(2.4), (2.11)–(2.14). The most demanding
computational steps are the numerical solution of [BVP] and [EVP]′; however, there are
also a number of difficulties concerning the transfer of information from one part of the
solution to another. The key steps of the algorithm are as follows:

(i) Compute A solving [BVP], given by (2.41)–(2.43);
(ii) Construct the outer region asymptotic expansions, given by (2.37)–(2.40);
(iii) Compute the globally determined constant Ai0 from (2.45), for each i = 1, . . . , N ;
(iv) Compute the smallest strictly positive eigenvalues and their corresponding normalised

eigenfunctions for the Sturm-Liouville eigenvalue problem [SL], given by (2.48)–(2.49);
(v) Construct the inner region asymptotic expansions, given by (2.46), (2.47), (2.51)–(2.54);
(vi) Compute the smallest strictly positive eigenvalues and their corresponding normalised

eigenfunctions for the eigenvalue problem [EVP]′, given by (2.55), (2.56);
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(vii) Compute the transient pressure p̃, given by (2.59), via computation of the coefficients
cr, r = 1, 2, . . ., given by (2.60)–(2.61);

(viii)Compute the approximations to the dimensionless fluid pressure and velocity fields,
given by (2.16)–(2.19) and (2.6).

We outline the implementation (used to generate the numerical results of §4) for each of
these steps in §§3.1–3.8.

3.1 Numerical solution of [BVP]

To solve [BVP], given by (2.41)–(2.43), we use a standard finite element method, with a
piecewise linear approximation space on a quasi-uniform triangulation of the 2-d domain Ω.
There is a very wide literature on the efficient implementation of finite element methods for
the solution of elliptic problems such as this (see e.g. (13, 14)), but we provide some brief
details here both for completeness and also to ease the explanation of the implementation
details provided in §§3.2–3.8.

A weak formulation of (2.41)–(2.42) is: Find A ∈ H1(Ω) such that∫
Ω

D̄x
∂A

∂x

∂v

∂x
+ D̄y

∂A

∂y

∂v

∂y
dΩ = −

∫
Ω

Fv dΩ, for all v ∈ H1(Ω). (3.1)

We then seek an approximation to A in the finite dimensional space of piecewise linear
functions on a triangulation of Ω, and we require (3.1) to hold for each v in the same
finite dimensional space. More specifically, we triangulate the domain using Nt triangles
Ωi, i = 1, . . . , Nt, with corners (x̃i, ỹi), i = 1, . . . , Ne (for the numerical results in §4 we
used the mesh generation routine described in (15)), so that Ω = ∪Nt

i=1Ωi\Γ, and we choose
basis functions χi, i = 1, . . . , Ne, such that χi(x̃j , ỹj) = δij , with χi(x, y) linear on each
triangle. We then substitute

A(x, y) ≈
Ne∑
j=1

ujχj(x, y) (3.2)

into (3.1) and require the resulting equation to hold for all v ∈ Sh, where Sh is the space of
functions that are linear on each triangle Ωi, i = 1, . . . , Nt, so that Sh = spani=1,...,Ne

{χi}.
This leads to the linear algebraic system

Ne∑
j=1

uj

[∫
Ω

D̄x
∂χj
∂x

∂χm
∂x

+ D̄y
∂χj
∂y

∂χm
∂y

]
dΩ

=
N∑
i=1

αiχm(xi, yi)− α̂T
∫ ∫

Ω

φ̂(x, y)χm(x, y) dxdy, m = 1, . . . , Ne. (3.3)

The system (3.3) cannot be solved directly, as we have not yet taken account of (2.43),
and hence the coefficients ui, i = 1, . . . , Ne are not uniquely determined. However, the
condition (2.43) corresponds to an additional constraint often applied to pure Neumann
problems to deal with the nonuniqueness (see e.g. (16, chapter II §3)), and appending it
to (3.3) to form a uniquely solvable system is straightforward. Substituting (3.2) into (2.43)
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gives us
Ne∑
j=1

uj

∫ ∫
Ω

φ̂(x, y)χj(x, y) dx dy = I0.

Applying this immediately to (3.3) would lead to an overdetermined system, so to avoid this
we add λ

∫∫
Ω
φ̂(x, y)χm(x, y) dxdy to the left hand side of (3.3) for each m = 1, . . . , Ne, to

give a uniquely solvable (Ne+1)×(Ne+1) linear system for the unknowns uj , j = 1, . . . , Ne
and λ, with λ = 0 returning (3.3) exactly. More specifically, we define the matrixK = [Km,j ]
j,m = 1, . . . , Ne by

Km,j =
∫

Ω

[
D̄x

∂χj
∂x

∂χm
∂x

+ D̄y
∂χj
∂y

∂χm
∂y

]
dΩ, j,m = 1, . . . , Ne, (3.4)

the vector f = [f1 . . . fNe
]T by

fm =
N∑
i=1

αiχm(xi, yi)− α̂T
∫ ∫

Ω

φ̂(x, y)χm(x, y) dxdy, m = 1, . . . , Ne, (3.5)

the vector b = [b1 . . . bNe
]T by

bm =
∫ ∫

Ω

φ̂(x, y)χm(x, y) dxdy, m = 1, . . . , Ne, (3.6)

and we take u = [u1 . . . uNe
]T . The linear system that we solve for the unknown coefficients

uj , j = 1, . . . , Ne, of (3.2) is then[
K b
bT 0

] [
u
λ

]
=
[

f
I0

]
. (3.7)

To evaluate meas(M
′
) (and hence α̂T , recall (2.20)) and the integrals in (3.4), (3.5) and

(3.6) it is often sufficient (see e.g. (13, p.182)) to use a simple rule such as the centroid
rule on each triangle. If ∂Ω is curved and φ̄ is complicated then care is needed to ensure
that the discrete version of (2.44) holds (see e.g. (17) for details). Noting that the matrix
K in (3.7) is sparse and symmetric, we use the conjugate gradient scheme to solve (3.7)
in §4, but we remark that a preconditioner could be used to speed up the solve further, see
e.g. (18) and the references therein.

To compute the constant I0, given by (2.26), we decompose the integral over the 3-d
domain M ′ into a sum of integrals over each triangle,

I0 = p̄0

Nt∑
j=1

∫ ∫
Ωj

[∫ z+(x,y)

z−(x,y)

f(x, y, z)φ̄(x, y, z) dz

]
dxdy, (3.8)

and then we compute the outer integrals in (3.8) using the centroid rule, and the inner
integrals using Gaussian quadrature. This approach is appropriate under the assumption
that the initial pressure variation f(x, y, z) is smooth throughout the layer (recall (2.15)).
If instead f(x, y, z) is highly peaked near the wells, for example, as will be the case if the
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initial pressure variation is given by the final solution from a previous run (if one wishes to
consider the effect of varying production rates, for example, see §4), then the integration
scheme outlined above may not be sufficiently accurate. In this case, a better approach
would be to use a partition of unity to split the integral, so that the inner and outer
regions can be considered separately, with the approach described above being appropriate
for the outer region, and a more suitable graded mesh being used on each inner region in
order to deal with the singular behaviour of the solution near the line sources/sinks. This
is the approach used to compute the constants cr, defined by (2.60), arising in the series
representation for the transient pressure field p̃, given by (2.59), and full details are provided
in §3.7 below.

3.2 Computation of outer region asymptotic expansions
Having solved [BVP], we are now in a position to construct the outer region asymptotic
expansions, accurate to O(ε2), given by (2.37)–(2.40), that is,

p̂(x, y, z; ε) ≈ A(x, y), (3.9)

û(x, y, z; ε) ≈ −Dx(x, y, z)
∂A

∂x
(x, y),

v̂(x, y, z; ε) ≈ −Dy(x, y, z)
∂A

∂y
(x, y),

ŵ(x, y, z; ε) ≈
∫ z

z−(x,y)

{
∂

∂x

(
Dx(x, y, ξ)

∂A

∂x
(x, y)

)
+

∂

∂y

(
Dy(x, y, ξ)

∂A

∂y
(x, y)

)}
dξ

−α̂T
∫ z

z−(x,y)

φ̄(x, y, ξ) dξ.

The approximation to the pseudo-steady state pressure field on the outer region, p̂, follows
immediately from our approximation to A(x, y), but to find û, v̂ and ŵ we need to do a bit
more work.

To approximate û, rather than differentiating the function A(x, y) explicitly (which would
lead to a piecewise constant approximation, discontinuous across element boundaries),
we instead write û(x, y, z; ε) ≈

∑Ne

i=1 ûi(z; ε)χi(x, y), and determine the functions ûi(z; ε)
(which will provide an approximation to û(x̃i, ỹi, z; ε)) by solving a weak form of

Ne∑
i=1

ûi(z; ε)χi(x, y) = −Dx(x, y, z)
∂A

∂x
(x, y),

specifically (recalling (3.2))

Ne∑
i=1

ûi(z; ε)
∫ ∫

Ω

χi(x, y)χm(x, y) dxdy =−
Ne∑
j=1

uj

∫ ∫
Ω

Dx(x, y, z)
∂χj(x, y)

∂x
χm(x, y) dxdy,

(3.10)
for m = 1, . . . , Ne. To determine ûi(z; ε), i = 1, . . . , Ne, from (3.10), we use a form of
mass lumping. We define Πh : C(Ω) 7→ Sh to be the linear interpolation operator from the
space of continuous functions on Ω to the space of functions that are linear on each triangle
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Ωi, so that for v ∈ C(Ω), Πhv(x̃j , ỹj) = v(x̃j , ỹj), j = 1, . . . , Ne, and then Πhv(x, y) =∑Ne

i=1 χi(x, y)v(x̃i, ỹi). Thus

Πh{χj(x, y)χm(x, y)} =
Ne∑
i=1

χi(x, y)χj(x̃i, ỹi)χm(x̃i, ỹi) = δjmχj(x, y),

and hence if we approximate the integrals on the left hand side of (3.10) using∫ ∫
Ω

χi(x, y)χm(x, y) dxdy ≈
∫ ∫

Ω

Πh{χi(x, y)χm(x, y)} dx dy,

we end up with a diagonal system, allowing us to read off the functions ûm(z; ε), m =
1, . . . , Ne, line by line. In the numerical results of §4 we evaluate the integrals on the right
hand side of (3.10) using the centroid rule on each triangle.

The procedure for approximating v̂ is identical. To approximate ŵ we define

Ďx(x, y, z) =
∫ z

z−(x,y)

Dx(x, y, ξ) dξ, Ďy(x, y, z) =
∫ z

z−(x,y)

Dy(x, y, ξ) dξ,

φ̌(x, y, z) =
∫ z

z−(x,y)

φ̄(x, y, ξ) dξ,

so that the formula for ŵ becomes

ŵ(x, y, z; ε) ≈ ∂

∂x

(
Ďx(x, y, z)

∂A

∂x
(x, y)

)
+

∂

∂y

(
Ďy(x, y, z)

∂A

∂y
(x, y)

)
− α̂T φ̌(x, y, z).

Writing ŵ(x, y, z; ε) ≈
∑Ne

i=1 ŵi(z; ε)χi(x, y) and following similar steps to those described
for the computation of û above, we obtain

Ne∑
i=1

ŵi(z; ε)
∫ ∫

Ω

χi(x, y)χm(x, y) dxdy

= −
Ne∑
j=1

uj

(∫
Ω

Ďx
∂χj
∂x

∂χm
∂x

+ Ďy
∂χj
∂y

∂χm
∂y

)
dΩ− α̂T

∫ ∫
Ω

φ̌(x, y, z)χm(x, y) dx dy,

(3.11)

for m = 1, . . . , Ne, where we have used the boundary condition

Dx(x, y, z)
∂A

∂x
(x, y)nx(x, y) +Dy(x, y, z)

∂A

∂y
(x, y)ny(x, y) = 0, r ∈ ∂M ′H ,

which follows from (2.23) (see (6, §3) for details). We determine the functions ŵi(z; ε)
from (3.11) in an identical fashion to the computation of ûi(z; ε) from (3.10) above.

3.3 Computation of Ai0
Having computed the solution to [BVP], and hence the leading order terms in the outer
region asymptotic expansions for the pressure and flow fields, it now remains to compute the



unsteady fluid flow in a thin porous layer iii 15

solutions in the inner regions, around each line source/sink. For each i = 1, . . . , N , where
N is the number of line sources and sinks, we first need to compute the globally determined
constant Ai0 from (2.45). Writing Ri = ((x − xi)2 + (y − yi)2)1/2, for each i = 1, . . . , N ,
(2.45) can be written as

A(x, y) +
αi

4π(D̄i
xD̄

i
y)

1
2

log

[
(x− xi)2

D̄i
x

+
(y − yi)2

D̄i
y

]
= Ai0 +O (Ri) , as Ri → 0. (3.12)

To determine an approximation to Ai0, we evaluate the left hand side of (3.12) for certain
values of x and y corresponding to a decreasing sequence of values of Ri, and then we
compute the best fitting (in a least squares sense) linear approximation to the left hand
side (as a function of Ri). Our approximation to Ai0 is then given by the constant term in this
approximation. Equation (3.12) suggests that, in a neighbourhood of the line source/sink at
(xi, yi), the left hand side depends only on Ri, the distance from (xi, yi), but in practice the
value will depend to some extent on the direction in which we take our coordinates x and
y. Our algorithm is thus as follows. We begin by determining a range of values of Ri over
which (3.12) is to be evaluated. Defining ĥ to be the maximum side length of the triangles
in our mesh, we evaluate (3.12) for Ri = jĥ, j = 1, . . . ,M , with M an experimentally
chosen constant (M = 5 seems to strike a good balance between speed and accuracy, for
the examples tested), in each of the four coordinate directions (moving in positive and
negative directions parallel to the x and y axes). More specifically, we compute the left
hand side of (3.12) in each of the four cases:

(x, y) = (xi ± jĥ, yi), (x, y) = (xi, yi ± jĥ), j = 1, . . . ,M,

and then we determine the best fitting linear approximation to the left hand side of (3.12)
as a function of Ri, in each of these four cases. This gives four approximations to Ai0.
Provided they are all reasonably close to one another (using a prescribed tolerance value),
our approximation to Ai0 is taken to be the mean of the four values. If the four values differ
significantly, then this would suggest that (3.12) is not sufficiently well resolved in terms of
the numerical approximation to A, suggesting that A should be recomputed on a finer grid.

3.4 Numerical solution of [SL]

Next, for each i = 1, . . . , N , we need to find the smallest strictly positive eigenvalues and
their corresponding eigenfunctions for the Sturm-Liouville eigenvalue problem [SL], given
by (2.48)–(2.49). To solve this problem we employ a standard finite element scheme, with
a piecewise linear approximation space on a uniform decomposition of the interval [zi−, z

i
+].

First we multiply (2.48) by a test function χ̃ ∈ H1(zi−, z
i
+) and integrate by parts, noting

the boundary conditions (2.49), to get∫ zi
+

zi
−

D̃z(z)ψ′(z)χ̃′(z) dz = λ̄

∫ zi
+

zi
−

D̃h(z)ψ(z)χ̃(z) dz. (3.13)

For MSL > 1 we then define a uniform mesh on [zi−, z
i
+] by z̃j = zi− + j(zi+ − zi−)/MSL,

j = 0, . . . ,MSL, and we define χ̃j , j = 0, . . . ,MSL, to be linear on each interval (z̃j−1, z̃j),
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j = 1, . . . ,MSL, with χ̃j(z̃m) = δjm. We then replace ψ in (3.13) with ψM defined by

ψM (z) =
MSL∑
j=0

χ̃j(z)ψM (z̃j), (3.14)

and require this equation to hold for each χ̃ = χ̃m, m = 0, . . . ,MSL, leading to the linear
system

K̃v = λ̄M̃v, (3.15)

where v = [ψM (z̃0) . . . ψM (z̃MSL
)]T , K̃ = [K̃m,j ] and M̃ = [M̃m,j ], j,m = 0, . . . ,MSL, with

K̃m,j =
∫ zi

+

zi
−

D̃z(z)χ̃′j(z)χ̃
′
m(z) dz, j,m = 0, . . . ,MSL, (3.16)

M̃m,j =
∫ zi

+

zi
−

D̃h(z)χ̃j(z)χ̃m(z) dz, j,m = 0, . . . ,MSL. (3.17)

The matrix K̃ is tridiagonal, and for the results of §4 we evaluate the integrals (3.16) using
the trapezoidal rule with z̃j , j = 0, . . . ,MSL as the nodes. To evaluate M̃ we use an
analogous procedure to that described in §3.2 of replacing the integrand in (3.17) by its
piecewise linear interpolant, which leads to a diagonal matrix. The first few eigenvalues of
[SL] are then approximated by the first few eigenvalues of M̃−1K̃, and the eigenfunctions
of [SL] are approximated using (3.14) with v the corresponding eigenvectors of M̃−1K̃. It
then just remains to normalise the eigenfunctions, using (2.50). Given an eigenfunction
ψM , the normalised eigenfunction is given by

ψ̃M =
ψM√∫ zi

+

zi
−
D̃h(s)[ψM (s)]2 ds

. (3.18)

Since our solution of (3.15) gives an approximation to v = [ψM (z̃0) . . . ψM (z̃MSL
)]T , it is

appropriate to approximate the integral in the denominator on the right hand side of (3.18)
using the trapezoidal rule with z̃j , j = 0, . . . ,MSL as the nodes.

3.5 Computation of p̂ in inner region
We can now compute an approximation to p̂ in the inner region, using (2.46), that is

p̂(R̃i, z; ε) ≈
−αi

2πD̄i
h

log ε+ Fi(R̃i, z), (3.19)

where Fi(R̃i, z) is given by (2.47) with the constants Bj , j = 1, 2, . . ., given by (2.51),
approximated again using the trapezoidal rule with z̃m, m = 0, . . . ,MSL as the nodes, and
our approximations to Ai0 and λ̄j , ψj , j = 1, 2, . . ., are computed as in §3.3 and §3.4. The
choice of how many terms one should take in the summation on the right hand side of (2.47)
depends to a large extent on how quickly λ̄j increases with respect to j. However we note
that the convergence rate is exponential in λ̄j as j →∞. We can then compute the leading
order terms in the asymptotic expansions for the flow field û, v̂, ŵ, in the inner region,
using the formulae (2.52)–(2.54), with Bj , λ̄j , ψj , j = 1, 2, . . ., as described above, and our
approximation to ψ′j(z) computed directly from (3.14).
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3.6 Solution of [EVP]′

Having computed the inner region solutions, the next step is to solve [EVP]′, to find the
eigenvalues λ̃ and the corresponding eigenfunctions Ã required for the evaluation of the
transient pressure field. We remark that the solution of [EVP]′ does not depend on the
location or number of sources/sinks, but only on the geometry, permeability and porosity
of the layer. Hence, if one wishes to consider the solution of [IBVP] for various configurations
of sources/sinks, but for a fixed geometry then there is no need to repeat any of the
computations associated with [EVP]′.

As for [BVP] (recall §3.1) we also solve [EVP]′ using a standard finite element method,
with a piecewise linear approximation space on the same triangulation of the domain Ω.
Again we begin by multiplying (2.55) by a test function v ∈ H1(Ω), and integrating over
Ω, to obtain the weak formulation∫

Ω

D̄x
∂Ã

∂x

∂v

∂x
+ D̄y

∂Ã

∂y

∂v

∂y
dΩ = λ̃

∫
Ω

φ̂Ãv dΩ, for all v ∈ H1(Ω), (3.20)

i.e. we have the same left hand side as (3.1), but a different right hand side. Setting

Ã(x, y) =
Ne∑
j=1

ãjχj(x, y), (3.21)

and requiring (3.20) to hold for v = χm, m = 1, . . . , Ne, as in §3.1, we arrive at the linear
system

Kã = λ̃M ã,

where ã = [ã1 . . . ãNe
]T , K is given by (3.4), and M = [Mm,j ], j,m = 1, . . . , Ne, with

Mm,j =
∫ ∫

Ω

φ̂(x, y)χj(x, y)χm(x, y) dx dy, j,m = 1, . . . , Ne.

To evaluate the mass matrix M , we use a similar form of mass lumping to that described
in §3.2. With Πh : C(Ω) 7→ Sh again denoting the linear interpolation operator from the
space of continuous functions on Ω to the space of functions that are linear on each triangle
Ωi, we approximate the mass matrix M using the formula∫ ∫

Ω

φ̂(x, y)χj(x, y)χm(x, y) dxdy ≈
∫ ∫

Ω

Πh{φ̂(x, y)χj(x, y)χm(x, y)} dxdy,

=
{
φ̂(x̃j , ỹj)

∫∫
Ω
χj(x, y) dxdy, if j = m,

0, if j 6= m.
(3.22)

The first few eigenvalues of [EVP]′ are then approximated by the first few eigenvalues of
M−1K, with the eigenvectors ã providing the coefficients for the eigenfunctions Ã of [EVP]′.

It remains to normalise these eigenfunctions, via (2.58). Given an eigenfunction Ã(x, y),
the normalised eigenfunction is given by

Ā(x, y) =
Ã(x, y)√∫∫

Ω
φ̂(x, y)[Ã(x, y)]2 dx dy

. (3.23)
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To approximate the integral in the denominator on the right hand side of (3.23) we use
the same procedure applied in (3.22), i.e. we replace the integrand by its piecewise linear
interpolant on the triangulation of Ω. This allows us to reuse some of the computations
required in the setting up of the mass matrix for [EVP]′. Specifically, recalling (3.21), we
have

∫ ∫
Ω

φ̂(x, y)[Ã(x, y)]2 dxdy ≈
∫ ∫

Ω

Πh

φ̂(x, y)

 Ne∑
j=1

ãjχj(x, y)

2
 dxdy,

=
Ne∑
j=1

ã2
j

(
φ̂(x̃j , ỹj)

∫ ∫
Ω

χj(x, y) dx dy
)
.

Comparing with (3.22) it is clear that the integral in the denominator on the right hand
side of (3.23) can be computed with only a very small number of additional calculations.

3.7 Computation of transient pressure p̃
Having solved [EVP]′ and normalised the eigenfunctions, the remaining step in the
computation of the transient pressure field p̃ is the computation of the coefficients cr,
r = 1, 2, . . ., given by (2.60)–(2.61). Recalling (2.31) we write cr as a sum of two integrals,
cr = I1 + I2, where

I1 =
∫ ∫

Ω

[∫ z+(x,y)

z−(x,y)

p̄0f(x, y, z)φ̄(x, y, z) dz

]
Ãr(x, y) dx dy,

I2 =
∫ ∫

Ω

[∫ z+(x,y)

z−(x,y)

p̂(x, y, z)φ̄(x, y, z) dz

]
Ãr(x, y) dx dy.

For the case that the initial pressure variation f(x, y, z) is smooth throughout the layer
(recall (2.15)), computation of I1 follows analogously to the computation of I0, described
in §3.1 (see (3.8)). The only difference here is the presence of the term Ãr(x, y) in the
integrand, but this poses no additional difficulties to the application of the centroid rule
on each triangle. Moreover, there is considerable scope here to store and reuse some of the
computations required in the evaluation of I0. If f(x, y, z) is highly peaked near the line
sources/sinks, the approach described below for the evaluation of I2 can be equally well
applied to the evaluation of I1.

To evaluate I2 we need to use a different approach, due to the singular behaviour of
p̂(x, y, z) at the line sources/sinks. We begin by defining, for x ∈ [0,∞) and 0 < x0 < x1,
the infinitely smooth “neutralising” function

S(x, x0, x1) =


1 for x 6 x0,

exp
(

2 exp(−1/u)
u−1

)
for x0 < x < x1, u = x−x0

x1−x0
,

0 for x > x1.

We will use this function to split the domain of integration for I2, so that the inner and outer
regions can be considered separately, with the approach described above for the evaluation
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of I1 being appropriate for the outer region, and a more suitable graded mesh being used to
evaluate the integrals on the inner region in order to deal with the singular behaviour there.
Specifically, we choose constants 0 < a < b, where a, b = O(ε), and we write I2 =

∑N+1
j=1 Ij2 ,

where for j = 1, . . . , N ,

Ij2 =
∫ ∫

Ω

[∫ z+(x,y)

z−(x,y)

p̂(x, y, z)φ̄(x, y, z) dz

]
S(Rj(x, y), a, b)Ãr(x, y) dxdy

and

IN+1
2 =

∫∫
Ω

[∫ z+(x,y)

z−(x,y)

p̂(x, y, z)φ̄(x, y, z) dz

]1− N∑
j=1

S(Rj(x, y), a, b)

Ãr(x, y)dxdy,

where Rj(x, y) =
√

(x− xj)2 + (y − yj)2 for each j = 1, . . . , N . The point of this splitting
is that S(Rj(x, y), a, b) = 0 for Rj(x, y) > b, and hence the integrand for each Ij2 , for
j = 1, . . . , N , is only supported for (x, y) inside a circle of radius b around the jth line
source/sink. These are the “inner” integrals. The integrand for IN+1

2 is equal to zero when
(x, y) is a distance less than a from a line source/sink. This is the “outer” integral, and as
it is only supported away from the line source/sinks it has no singularities and hence can
be evaluated using a similar procedure to that for the evaluation of I1 described above.

To evaluate Ij2 , for j = 1, . . . , N , we use the leading terms in the asymptotic expansion
for p̂ in the inner region, given by (3.19), to get

Ij2 ≈ Ãr(xj , yj)
∫ ∫

Ω

S(Rj(x, y), a, b)

[(
Aj0 +

αj
4πD̄h

log

(
D̄j
h

Rj(x, y)2

))
φ̂(xj , yj)

+
∞∑
m=1

BmK0

(
λ̄1/2
m

Rj(x, y)
ε

)∫ z+(xj ,yj)

z−(xj ,yj)

ψm(z)φ̄(xj , yj , z) dz

]
dxdy.

Noting the radial symmetry of the integrand, we then have

Ij2 ≈ 2πÃr(xj , yj)

[
φ̂(xj , yj)

(
Aj0 +

αj
2πD̄h

(
1
2

log(D̄j
h)
∫ b

0

S(R, a, b)R dR

−
∫ b

0

log(R)S(R, a, b)R dR

))

+
∞∑
m=1

Bm

∫ b

0

K0

(
λ̄1/2
m

R

ε

)
S(R, a, b)R dR

∫ z+(xj ,yj)

z−(xj ,yj)

ψm(z)φ̄(xj , yj , z) dz

]
.

(3.24)

We now consider the evaluation of each of the four remaining integrals on the right hand
side of (3.24) in turn. For the first two integrals, we integrate exactly over (0, a), and use
the trapezoidal rule on (a, b), noting that b− a = O(ε), to get∫ b

0

S(R, a, b)R dR =
∫ a

0

R dR+
∫ b

a

S(R, a, b)R dR ≈ ab

2
,
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and∫ b

0

log(R)S(R, a, b)R dR =
∫ a

0

R log(R) dR+
∫ b

a

log(R)S(R, a, b)R dR ≈ a

2

(
b log a− a

2

)
.

To evaluate
∫ z+(xj ,yj)

z−(xj ,yj)
ψm(z)φ̄(xj , yj , z) dz we use the composite trapezoidal rule exactly as

for the evaluation of the constants Br (see §3.5), recalling that ψm(z) is already stored on
an evenly spaced grid. Finally it just remains to compute the integrals∫ b

0

K0

(
λ̄1/2
m

R

ε

)
S(R, a, b)R dR. (3.25)

Noting the limiting form of K0(·) for a small argument (10, equation (9.6.8)), we have that
K0(R) ∼ − logR as R→ 0, and thus the integrand in (3.25) has a weak singularity. Many
approaches are available for evaluating singular integrals of this form (see e.g. (19) and the
references therein). Here we use a composite quadrature rule on a graded mesh. Specifically,
we divide the interval (0, b) into L+ 1 intervals, the first being (0, b(0.15)L), and the others
being (b(0.15)L+1−j , b(0.15)L−j), j = 1, . . . , L, and then we evaluate the integral on each
of these intervals using standard Gaussian quadrature, with L quadrature points on each
interval. The convergence rate of this approach matches that of the underlying Gaussian
quadrature scheme (20).

Having computed the eigenvalues λ̃r and corresponding normalised eigenfunctions Ãr for
[EVP]′, for r = 1, . . . ,Me, and also the coefficients cr, again for r = 1, . . . ,Me, we can then
compute an approximation to the transient pressure field p̃ via (2.59), specifically

p̃(x, y, z, t) ≈
Me∑
r=1

cre−λ̃rtÃr(x, y).

3.8 Solution to [IBVP]
Having solved the pseudo-steady state problem [PSSP] and the evolutionary problem as
described above, it just remains to put these solutions together via (2.16)–(2.19) to obtain
our approximations to p̄, u, v, and w solving [IBVP]. The formulae for p̄(r, t) and w(r, t)
follow immediately from our results above, noting from (2.59) that ∂p̃

∂z (r, t) = 0 to leading
order. To compute our approximations to u(r, t) and v(r, t), we need to determine

∂p̃

∂x
(r, t) ≈

Me∑
r=1

cre−λ̃rt
∂Ãr
∂x

(x, y) and
∂p̃

∂y
(r, t) ≈

Me∑
r=1

cre−λ̃rt
∂Ãr
∂y

(x, y).

To do this, we could just compute ∂Ãr(x, y)/∂x and ∂Ãr(x, y)/∂y directly from the
formula (3.21), for each r = 1, . . . ,Me, but this would lead to a piecewise constant
approximation to ∂p̃/∂x and ∂p̃/∂y, discontinuous across element boundaries. Instead,
recalling (2.33) we write

ũr = −Dx(x, y, z)
∂Ãr
∂x

(x, y), and ṽr = −Dy(x, y, z)
∂Ãr
∂y

(x, y),

and then we compute approximations to ũr and ṽr using a procedure identical to that used
for the determination of û(r) and v̂(r), as described in §3.2. We do not repeat the details
here. The final formula for p(x, y, z, t), the dimensionless pressure field, is given by (2.6).
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4. Numerical examples

For all of the examples in this section M
′

is given by (2.5), with Ω the ellipse Ω = {(x, y) :
x2 + 4y2 < 1}, and the variable upper and lower boundaries given by

z+(x, y) =
1
2

(x2 + 4y2) +
1
2
, and z−(x, y) = −1

2
(x2 + 4y2)− 1

2
,

for x, y ∈ Ω. The permeability of the layer is nonuniform, with

Dx(x, y, z) = Dy(x, y, z) =
1
2

(x2 + 4y2 + 1)(2 + z), Dz(x, y, z) =
1
2

(2 + z),

for (x, y, z) ∈M ′. Finally, we take the dimensionless parameter ε = 0.01. Recalling (2.10),
this corresponds to e.g. horizontal and vertical length scales of l = 100 and h = 1
respectively, and permeability scales in the horizontal and vertical directions DH

0 = DL
0 = 1

respectively, all associated with the dimensional reservoir.

Example 4.1 (Single line sink, constant porosity and initial pressure). For our first example,
we take the porosity and initial pressure variation to be uniform throughout the layer, with
φ̄(x, y, z) = 1 and f(x, y, z) = 1, for (x, y, z) ∈M ′, and we consider the case of a single line
sink at (x1, y1) = (0, 0) ∈ Ω with volumetric strength

s1(z) = −6(z+ − z)(z − z−), (4.1)

and hence α1 = −1, p̄0 = 1.
The computation of the remaining important quantities (meas(M

′
) (and hence I0, in

this case), A1
0, Bj , λ̄j , cj and λ̃j , for j = 1, 2, . . .) then depends on the values of the

various discretisation parameters discussed in §3. In particular: our approximations to λ̄j
and Bj , for j = 1, 2, . . ., depend on the number of degrees of freedom MSL used in the
solution of [SL]; our approximations to meas(M

′
), A1

0 and λ̃j , for j = 1, 2, . . ., depend on
the maximum side length, ĥ, of the triangles used to discretise Ω; our approximations to cj ,
for j = 1, 2, . . ., depend on both ĥ and on the parameter L used to define the graded mesh
for the approximation of the singular integrals arising in the formula for cj , as described
in §3.7. We thus begin by investigating what might be good choices for the values of these
parameters.

First, we choose ĥ = 0.01, so that our mesh has Ne = 18134 nodes and Nt = 35779
triangles, and we investigate how the values of the first five constants cj , j = 1, . . . , 5, depend
on the choice of the parameter L, as described above. The values of cj for j = 1, . . . , 5, and
for L = 1, 2, 3, 4 are shown in Table 1. These results suggest that a small value of L such as
L = 3 should be sufficient to evaluate the integrals (3.25) to a reasonable level of accuracy.
Note that the total number of quadrature points used in this scheme for a fixed value of L
is L(L+ 1), and that the integrand is only supported on an interval of length O(ε).

In Table 2 we consider the approximations to λ̄j and Bj , for j = 1, 2, . . ., for various
values of the parameter MSL, the number of degrees of freedom required for the solution
of [SL]. The results in Table 2 suggest that choosing MSL > 80 should be sufficient to
determine the eigenvalues, eigenfunctions, and coefficients Bj , j = 1, 2, . . ., to a reasonable
level of accuracy.
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L = 1 L = 2 L = 3 L = 4
c1 1.7764×10−7 1.7764×10−7 1.7764×10−7 1.7764×10−7

c2 -1.8218×10−6 -2.4005×10−6 -2.1100×10−6 -2.1141×10−6

c3 -5.5934×10−2 -5.5863×10−2 -5.5845×10−2 -5.5855×10−2

c4 1.1862×10−7 1.1863×10−7 1.1863×10−7 1.1863×10−7

c5 -7.2958×10−8 -7.2959×10−8 -7.2959×10−8 -7.2959×10−8

Table 1 Dependence of cj , j = 1, . . . , 5, on the value of the mesh grading parameter L,
for fixed ĥ.

MSL = 10 MSL = 20 MSL = 40 MSL = 80 MSL = 160
λ̄1 9.9660×10+0 1.0040×10+1 1.0057×10+1 1.0061×10+1 1.0062×10+1

λ̄2 3.8114×10+1 3.9321×10+1 3.9592×10+1 3.9656×10+1 3.9671×10+1

λ̄3 8.1232×10+1 8.7227×10+1 8.8596×10+1 8.8921×10+1 8.9000×10+1

λ̄4 1.3412×10+2 1.5245×10+2 1.5676×10+2 1.5778×10+2 1.5803×10+2

λ̄5 1.9041×10+2 2.3322×10+2 2.4363×10+2 2.4613×10+2 2.4674×10+2

B1 2.1495×10−2 2.1536×10−2 2.1545×10−2 2.1548×10−2 2.1548×10−2

B2 6.9688×10−2 6.7489×10−2 6.7015×10−2 6.6904×10−2 6.6877×10−2

B3 3.3585×10−3 3.0976×10−3 3.0423×10−3 3.0293×10−3 3.0262×10−3

B4 2.0421×10−2 1.7950×10−2 1.7454×10−2 1.7339×10−2 1.7311×10−2

B5 1.6990×10−3 1.3798×10−3 1.3181×10−3 1.3041×10−3 1.3007×10−3

Table 2 Dependence of λ̄j and Bj , j = 1, . . . , 5, on the value of MSL.

We now proceed by solving the full problem [IBVP] for a range of values of ĥ, and seeing
how the values of meas(M

′
), A1

0, λ̃j and cj , for j = 1, 2, . . . are affected by the choice of ĥ,
with all other parameters fixed (choosing in particular L = 3 and MSL = 100). Computing
times (cpt), number of nodes Ne and triangles Nt in the triangulation of the domain Ω,
and our approximations to meas(M

′
) and A1

0 are shown in Table 3. All computations
were carried out using Matlab on a desktop PC with an Intel(R) Core(TM2) Duo 2.66GHZ
processor, with 1.96GB of RAM. We expect that faster computation times could be achieved
with some optimization of the code. Our approximations to both meas(M

′
) and A1

0 appear
to be converging as ĥ decreases.

In Table 4, we show our approximations to λ̃j and cj , for j = 1, . . . , 5. Our approximations
to λ̃j are converging as ĥ decreases, for each j = 1, . . . , 5. Our approximation to c3 is also
clearly converging as ĥ decreases, with all other values of cj being very close to zero.

For the remainder of this section, we take the maximum triangle side length ĥ to be 0.01,
and based on the results above we choose L = 3, MSL = 100, and we consider the first
five values of λ̄j in the series expansion for the solution in the “inner” region, and the first
fifteen values of λ̃j for the solution of the “transient” problem. These choices are motivated
by the results in Tables 2 and 4, which show that the eigenvalues λ̄j are growing very
quickly as j increases, whereas the eigenvalues λ̃j are growing only slowly as j increases.
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ĥ = 0.16 ĥ = 0.08 ĥ = 0.04 ĥ = 0.02 ĥ = 0.01
cpt(s) 3.9×100 5.4×100 1.5×101 5.5×101 2.6×102

Ne 69 281 1125 4527 18134
Nt 109 503 2128 8811 35779

meas(M
′
) 2.3148 2.3469 2.3540 2.3556 2.3561

A1
0 1.2398 1.2143 1.2037 1.1895 1.2036

Table 3 Computing times (in seconds), number of elements, and the dependence of
meas(M

′
) and A1

0 on ĥ.

ĥ = 0.16 ĥ = 0.08 ĥ = 0.04 ĥ = 0.02 ĥ = 0.01
λ̃1 4.2460×10+0 4.3161×10+0 4.3299×10+0 4.3335×10+0 4.3341×10+0

λ̃2 1.2714×10+1 1.3199×10+1 1.3303×10+1 1.3327×10+1 1.3332×10+1

λ̃3 1.6001×10+1 1.6560×10+1 1.6674×10+1 1.6701×10+1 1.6707×10+1

λ̃4 2.6131×10+1 2.7720×10+1 2.8050×10+1 2.8131×10+1 2.8151×10+1

λ̃5 3.3527×10+1 3.5453×10+1 3.5840×10+1 3.5931×10+1 3.5951×10+1

c1 5.1942×10−4 4.6234×10−11 4.6381×10−10 3.1984×10−8 1.7764×10−7

c2 -2.0810×10−3 -1.3308×10−4 -1.3720×10−7 -5.5753×10−7 -2.1100×10−6

c3 -4.3931×10−2 -5.2523×10−2 -5.5294×10−2 -5.5673×10−2 -5.5845×10−2

c4 7.3635×10−4 9.3427×10−11 4.0908×10−9 6.1409×10−9 1.1863×10−7

c5 -1.2053×10−3 -2.4342×10−11 -5.4567×10−9 -2.7396×10−9 -7.2959×10−8

Table 4 Dependence of λ̃j and cj on ĥ, for j = 1, 2, . . ..

We remark that further tests were carried out above and beyond those reported here, in
order to convince ourselves that these parameter choices were sensible.

A plot of A(x, y) ≈ p̂(x, y, z; ε) (recall (3.9)) solving [BVP] is shown in Figure 1(a). The
radial symmetry of A(x, y) around the source at (0, 0) can be clearly seen, as predicted
by (2.45). In Figure 2(a) we plot A(x, 0) and also

−α1

4π(D̄xD̄y)
1
2

log
[

(x− x1)2

D̄x
+

(y − y1)2

D̄y

]
=

1
4π

log(x2),

for x ∈ (0, 1). Equation (2.45) suggests that we should expect to see

A(x, 0) =
1

4π
log(x2) +A1

0 +O(x), as x→ 0. (4.2)

From Figure 2(a) this seems plausible, with both plots exhibiting similar behaviour,
separated by a roughly constant value. To test (4.2) more carefully, in Figure 2(b) we plot
A(x, 0)− log(x2)/(4π). If (4.2) is correct, we would expect to see a linear plot; this certainly
appears to be the case, suggesting that the behaviour predicted by (2.45) is being attained
numerically. For comparative purposes, in Figure 2(b) we also plot −0.1633x+ 1.2089, the
best fitting least squares linear approximation to A(x, 0)− log(x2)/(4π). The line is clearly
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(a) A(x, y) ≈ p̂(x, y, z; ε) (b) û(x, y, 0; ε)

(c) v̂(x, y, 0; ε) (d) ŵ(x, y, 0; ε)

Fig. 1 Outer region pseudo-steady state pressure and flow fields, Example 4.1.

(a) Comparing A(x, 0) with log(x2)/(4π) (b) Comparing A(x, 0) − log(x2)/(4π) with
−0.1633x+ 1.2089

Fig. 2 Verifying equation (2.45).

a very good fit to the data, suggesting a value of the constant A1
0 ≈ 1.2089 in (4.2). This

compares well with the value of A1
0 = 1.2036 given in Table 3, which was computed using a

similar approach in all four coordinate directions, but only sampling at five points in each
of those directions, as described in §3.3.

Having plotted A(x, y), the leading order approximation to the pseudo-steady state
pressure field p̂ in the “outer” region, in Figure 1(a), we also plot in Figures 1(b)–(d)
the leading order approximations to the pseudo-steady state flow fields in the x-direction,
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û, the y-direction, v̂, and the z-direction, ŵ, each on a slice through M
′

on the plane z = 0.
The plots of û(x, y, 0; ε) and v̂(x, y, 0; ε), in Figures 1(b) and 1(c) respectively, demonstrate
how the flow fields in the x and y directions are highly peaked near the line sink, and the
dependence on the derivatives of A(x, y) as plotted in Figure 1(a) is clear. The plot of
ŵ(x, y, 0; ε) in Figure 1(d) shows that the flow is almost entirely horizontal away from the
wells, with the flow field in the vertical direction being very highly peaked at the line sink.

In Figure 3 we plot the pseudo-steady state pressure and flow fields in the inner regions.
Each of these is computed at a distance ε/100 from the line sink, at the point x = y =
ε/(100

√
2), and then plotted as a function of z, the vertical coordinate. At this very small

(a) p̂(0.01, z; ε) (b) û(0.01/
√

2, 0.01/
√

2, z; ε)

(c) v̂(0.01/
√

2, 0.01/
√

2, z; ε) (d) ŵ(0.01/
√

2, 0.01/
√

2, z; ε)

Fig. 3 Inner region pseudo-steady state pressure and flow fields.

distance from the line sink, the pseudo-steady state pressure field and the pseudo-steady
state flow fields in the x and y directions each take their largest absolute values near the
centre of the layer. The pseudo-steady state flow field in the z-direction is close to zero at the
upper and lower boundaries, as we would expect from the Neumann boundary conditions,
but the vertical flow field is also close to zero near the centre of the layer, positive in the
lower part of the layer, and negative in the upper part of the layer, indicating that the fluid
is flowing towards the centre of the layer at all points near the line sink. We remark that
the approximation to ŵ is piecewise constant, and at the level of graphical magnification
this is evident in Figure 3(d).

We plot our approximation to the transient pressure field p̃(r, t) for t = 1/400 and t = 0.1
in Figure 4. Recalling (2.59), we note that our approximation to p̃ is only valid when
t� ε2 = 1/10000. Examining the scales on the right of each of these figures, the decay of the
transient pressure field with respect to time is clear (recall (2.34) and (2.36)). Further plots
for larger values of t look identical to Figure 4(b), but with |p̃(r, t)| decreasing (apparently
uniformly) as t increases. Although the early time solution is peaked near the line sink, it
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(a) t = 1/400 (b) t = 0.1

Fig. 4 Transient pressure field, p̃(r, t), computed at t = 1/400 and t = 0.1, Example 4.1.

is smooth at this point, with the singularity being captured entirely by the pseudo-steady
state solution, and the evolutionary problem providing a smooth solution.

The transient flow fields in the x and y directions, ũ(r, t) and ṽ(r, t) respectively, defined
by (2.33) and computed at t = 1/400, are plotted on a slice through z = 0 in Figure 5. The

(a) ũ(r, t) (b) ṽ(r, t)

Fig. 5 Transient flow fields in x- and y-directions, computed at t = 1/400, z = 0, Example 4.1.

relationship between these flow fields and the corresponding transient pressure field plotted
in Figure 4(a) can be clearly seen.

Example 4.2 (Change in strength of line sources/sinks). For our second example, we
consider the effect of changing the strength of the single line source/sink located at
(x1, y1) = (0, 0), keeping everything else the same. In order to model a change in the
line source/sink volumetric strengths, there is no need to repeat all of the calculations,
particularly if the line source/sink locations are not changed. In this case we just redefine
si, for i = 1, . . . , N , and then solve [IBVP] for these new line source/sink strengths, taking
the final solution from the previous run as our initial data. Here, we take our initial data
to be the solution from Example 4.1 at t = 0.2, and we halve the strength of the sink at
(x1, y1) = (0, 0) (given by (4.1) for Example 4.1), so that now

s1(z) = −3(z1
+ − z)(z − z1

−).

This corresponds to halving the production rate at the well. In Figure 6 we plot the
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dimensional dynamic fluid pressure,

p(x, y, 0, t′) = Qp̄(x, y, 0, t) (4.3)

(see (6, §2) for details, recalling that Q is given by (2.9)), computed at a dimensionless
distance ε/100 from the line sink, as for the computations of Figure 3 above, against
dimensional time (t′ = 5000t, again see (6, §2) for details) with the line sink strength
having been halved at t = 0.2, corresponding to t′ = 1000. Looking first at the solution for

Fig. 6 Dimensional dynamic fluid pressure (computed at a dimensionless distance ε/100 from the
line sink) plotted against dimensional time, with the production rate being halved at t′ = 1000.

t′ ∈ (0, 1000), the initial effect of the transient field is clear. By about t′ = 300 this has
been overtaken by the linear decay in the pressure, due to the fact that α̂T , corresponding
to the sum of the volume fluxes from the line sources/sinks (recall (2.20)), is negative. At
t′ = 1000, we see the effect of the change in production rate. The computing time required
to approximate the dynamic fluid pressure for t′ ∈ (1000, 2000) is only 64 seconds, compared
to a computing time of 260 seconds for Example 4.1 (both values correct to two significant
figures). This reduced computing time is due to the fact that many of the calculations from
the original run do not need to be repeated; once an initial overhead cost is taken into
account, changes to production rates can be computed very quickly. We repeat our earlier
comment that we expect that these computation times could be reduced further with some
optimization of the code.

Example 4.3 (Change in number, locations and strengths of line sources/sinks). In addition
to changing the volumetric strengths of the line sources/sinks, it is also straightforward to
compute the solution to [IBVP] for a completely new configuration of line sources/sinks,
with strengths that may or may not be the same as those of the previous ones. In this case,
the computational time will again be significantly less than for the original run, as there
is no need to regenerate the mesh on Ω, nor to recompute those parts of the solution that
are independent of the location and strengths of the line sources/sinks. For example, the
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stiffness matrix for the solution of both [BVP] and [EVP]′ is unaffected by changes to the
strengths/locations of the sources/sinks. As a third example, we consider the case of three
line sources/sinks, located at (x1, y1) = (−0.5, 0), (x2, y2) = (0.5, 0) and (x3, y3) = (0, 0.1),
with volumetric strengths

s1(z) = 3.5(z1
+ − z)(z − z1

−),
s2(z) = 2.5(z2

+ − z)(z − z2
−),

s3(z) = −3(z3
+ − z)(z − z3

−),

respectively. Everything else in this example is identical to Examples 4.1 and 4.2. The
total computing time for solving [IBVP] for this new configuration of line sources/sinks
(reusing some calculations from Example 4.1) is only 150 seconds, again compared with a
computing time of 260 seconds for the (simpler) Example 4.1. For this new example with
three line sources/sinks, we plot figures comparable to those for Example 4.1, in order to
demonstrate how our approach can cope very easily with more complicated line source/sink
configurations.

Plots of A(x, y) ≈ p̂(x, y, z; ε), û(x, y, z; ε), v̂(x, y, z; ε) and ŵ(x, y, z; ε) are shown in
Figure 7. The radial symmetry of A(x, y) around each of the three line source/sinks can be

(a) A(x, y) ≈ p̂(x, y, z; ε) (b) û(x, y, z; ε)

(c) v̂(x, y, z; ε) (d) ŵ(x, y, z; ε)

Fig. 7 Outer region pseudo-steady state pressure and flow fields, Example 4.3.

clearly seen, as predicted by (2.45). The plots of û(x, y, 0, ε) and v̂(x, y, 0, ε), in Figures 7(b)
and 7(c) respectively, again demonstrate how the flow fields in the x and y directions are
highly peaked near the line sources/sinks, and the dependence on the derivatives of A(x, y)
as plotted in Figure 7(a) is again clear. The plot of ŵ(x, y, 0, ε) in Figure 7(d) shows how the
flow is almost entirely horizontal away from the wells, even with several line sources/sinks,
with the flow field in the vertical direction being very highly peaked at the line sources/sinks.
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In Figure 8 we plot the pseudo-steady state pressure and flow fields in the inner regions
around each line source/sink. Each of these is computed at a distance ε/100 from each line
sink, at the point (x− xi) = (y − yi) = ε/(100

√
2), for i = 1, 2, 3, and plotted as a function

of z, the vertical coordinate. The behaviour near each line source/sink is comparable to

(a) p̂(x, y, z, ; ε) (b) û(x, y, z, ; ε)

(c) v̂(x, y, z, ; ε) (d) ŵ(x, y, z, ; ε)

Fig. 8 Inner region pseudo-steady state pressure and flow fields, each computed at a distance
ε/100 from each source/sink. The legend is the same for each plot.

that seen in Figure 3 for Example 4.1. For the sink at (x3, y3) = (0, 0.1), the vertical flow
field is positive in the lower part of the layer, and negative in the upper part of the layer,
indicating that the fluid is flowing towards the centre of the layer at all points near the line
sink. For each of the sources, the vertical flow field is negative in the lower part of the layer,
and positive in the upper part of the layer, indicating that the fluid is flowing away from
the centre of the layer at all points near the line sources.

We plot our approximation to the transient pressure field p̃(r, t) for t = 1/400, t = 0.05,
t = 0.1 and t = 0.2 in Figure 9. Examining the scales on the right of each of these plots, the
decay of the transient pressure field with respect to time is again clear. This decay is much
slower than for Example 4.1 (compare with Figure 4). The transient flow fields in the x and
y directions, ũ(r, t) and ṽ(r, t) respectively, defined by (2.33) and computed at t = 1/400,
are plotted on a slice through z = 0 in Figure 10. The relationship between these flow fields
and the corresponding transient pressure field plotted in Figure 9(a) is clear.

We conclude this example with a plot (Figure 11) showing how the dimensional pressure,
again given in this case by (4.3) and computed at a dimensionless distance ε/100 from
the line sources/sinks (as for the computations of Figure 8 above), varies with respect to
dimensional time. The initial effect of the transient field can clearly be seen near each
line source/sink. By about t′ = 200 this has been overtaken by the linear increase in the
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(a) t = 1/400 (b) t = 0.05

(c) t = 0.1 (d) t = 0.2

Fig. 9 Transient pressure field, p̃(r, t), computed for various t, Example 4.3.

(a) ũ(r, t) (b) ṽ(r, t)

Fig. 10 Transient flow fields in x- and y-directions, computed at t = 1/400, z = 0, Example 4.3.

(a) source at (x1, y1) = (−0.5, 0) (b) source at (x2, y2) = (0.5, 0) (c) source at (x3, y3) = (0, 0.1)

Fig. 11 Dimensional pressure plotted against dimensional time, computed at a dimensionless
distance ε/100 from each line source, Example 4.3.
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pressure, due to the fact that α̂T , corresponding to the sum of the volume fluxes from the
line sources/sinks, is positive.

Example 4.4 (Nonuniform porosity). Finally we remark that having solved [IBVP] once,
one can change certain properties of the porous layer, such as its porosity or permeability,
and then recompute the solution to [IBVP] with a greatly reduced computing time, with
no need to repeat calculations that are not explicitly dependent on the changed feature. To
illustrate this, for our final example, we change the porosity function so that it is no longer
constant, but instead is defined by φ̄ = Φ(x, y, z)/Φ0, where

Φ(x, y, z) = 0.5 + 0.4 sin
(

2π
(

z − z−(x, y)
z+(x, y)− z−(x, y)

))
,

and
Φ0 =

1

meas(M
′
)

∫ ∫ ∫
M
′
Φ(x, y, z) dxdy dz,

so that (2.7) holds. This models a porosity function that varies with depth, as one might
find in a smoothly varying layered media. Having solved [IBVP] for Example 4.3, we then
recompute the solution for the new porosity function. The computing time for this final
run is 130 seconds, half of the computing time of 260 seconds required to solve Example 4.1
from scratch.

For this final example with nonuniform porosity, we plot in Figure 12 the dimensional
pressure (again given by (4.3)) at a dimensionless distance ε/100 from the line sources/sinks
(as for the other examples above) against dimensional time. Again, the initial effect of the

(a) source at (x1, y1) = (−0.5, 0) (b) source at (x2, y2) = (0.5, 0) (c) source at (x3, y3) = (0, 0.1)

Fig. 12 Dimensional pressure plotted against dimensional time, computed at a dimensionless
distance ε/100 from each source, Example 4.4.

transient field can clearly be seen near each line source/sink. By about t′ = 200 this has
been overtaken by the linear increase in the pressure, due to the fact that α̂T , corresponding
to the sum of the volume fluxes from the line sources/sinks, is positive. Note that the
dimensional time scale here is different from before, even though each of our examples is
considered over the same dimensionless time interval. This is due to the variation in Φ0

here, which has an effect on the scaling; for details, we refer to (6, §2). We finally remark
that plots of the pseudo-steady state pressure and flow fields and of the transient pressure
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and flow fields, comparable to Figures 7–10, look qualitatively the same as for Example 4.3,
and so we do not plot any further figures here.

5. Conclusions

In this paper we have considered the unsteady flow of a weakly compressible fluid in a
horizontal layer of an inhomogeneous and anisotropic porous medium with variable upper
and lower boundaries, in the presence of vertical line sources and sinks. We have described,
algorithmically, how to construct the solution to a strongly parabolic linear initial-boundary
value problem for the dynamic fluid pressure, when the layer aspect ratio 0 < ε� 1, via the
method of matched asymptotic expansions. This approach leads to several problems that
must be solved numerically: a linear, inhomogeneous, strongly elliptic 2-d boundary value
problem, a 2-d regular self-adjoint eigenvalue problem, and a 1-d regular Sturm-Liouville
eigenvalue problem. We have described explicitly how to solve these problems individually,
and how to put all of the numerical solutions together in order to describe the solution to the
full 3-d initial-boundary value problem throughout the reservoir, providing a full description
of the entire computational procedure required to obtain numerical approximations to the
pressure and flow fields.

Examples demonstrating the application of the theory to some simple situations are
provided. In particular, we note that on a desktop PC one can solve the full 3-d initial-
boundary value problem in computing times that are measured in seconds rather than hours.
Moreover, once an initial computational overhead has been accounted for, altered versions
of the initial-boundary value problem with different porosity or permeability functions,
or different well locations, can be solved in a fraction of the time required for the initial
solve. The ease with which one can change source/sink strengths and locations within
the framework of our method makes this approach well suited to determining optimal well
locations, for example, and the ease with which the porosity and permeability functions can
be changed may make the ideas developed here attractive in applications such as history
matching, for example using measurements of the pressure and/or flow fields near the wells
in order to determine the porosity throughout the layer. Finally, we remark that many of the
formulations arising in this approach that involve geological features such as permeability
and porosity of the inhomogeneous media require only the depth integrated values of these
quantities, thereby potentially reducing the impact of uncertain data.
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