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R. L. Machete1
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Abstract

It has been argued that Lyapunov exponents as a measure of predictability are
of limited value because they only provide a global average. Characterising an
attractor by a distribution of times for initial uncertainties to increase by a factor of
q has been suggested as a more useful alternative. These have found favour in some
applications, despite assumptions of the fictitious perfect model scenario. Here,
an electronic circuit, which offers a good test-bed for addressing predictability in
the imperfect model scenario, is presented. Implications of model imperfection on
characterising the dynamics of chaotic systems are discussed.

Keywords: bifurcation; chaotic circuits; forecasting; radial basis functions; uncertainty

1 Introduction

It has been argued in [1] that Lyapunov exponents as a measure of predictability are
of limited value because they only provide a global average. They would be of value
if predictability was uniform over an entire attractor. For chaotic systems, it is known
that this is not the case. Characterising an attractor by a distribution of times for
initial uncertainties to increase by a factor of q has been suggested as a more useful
alternative [1]. In the perfect model scenario, these provide information about regional
losses in predictability of the underlying flow. Contrary to [2], when the model is
imperfect regional losses in predictability are not an indication of the instability of the
underlying flow. A model could be imperfect in either of two ways. In the first case, one
may have the correct model class but uncertain about the correct parameter values. In
the second case, one does not have the correct model class. This case has been termed
model inadequacy [3, 4]. It limits our ability to know the current state and forecast
the future. In this paper, the limitations of trying to characterise the predictability of
chaotic systems when the underlying model is imperfect are elucidated. The models
considered are of good forecasting quality, able to track the dynamics for at least half
an oscillation.

An electronic circuit is used as a test-bed. This electronic circuit is presented here.
Familiarity with basic electronics and symbols shall be assumed. A straight forward ap-
plication of Kirchhoff’s current laws suggests that the circuit corresponds to the Moore-
Spiegel (M-S) system [5] at non-classical parameter values, which as far as we are aware,
have never been considered before. With one parameter fixed, perturbing the other

1Corresponding author: email: r.l.machete@reading.ac.uk, tel: +44(0)118 378 5016
Abbreviations: Moore-Spiegel (M-S); European Centre for Medium-Range Weather Fore-

casts (ECMWF); Radial Basis Functions (RBFs)
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parameter yields a bifurcation transition sequence that has a chaotic window. The tran-
sition sequence differs from the classical one that is given in [6], assuming a rescaling of
the classical parameters by 10. Moreover, data obtained from the circuit indicates some
disparity with the M-S system at relevant parameter values.

Eliciting the M-S system parameter values that yield the best forecasting perfor-
mance according to the Euclidean norm results in a system that always settles on a
periodic orbit. Although this approach may be considered to be straight forward, the
results highlight that the problem could be due to model inadequacy. Even though the
model appears to forecast the circuit well for some initial conditions, it goes astray very
quickly for certain initial conditions.

A natural alternative to using the M-S system to forecast the circuit evolution is
to turn to radial basis functions (RBFs) models. These are especially useful when the
underlying dynamics are low dimensional. Acknowledging that all these are imperfect,
we compute estimates of predictability variations for the battery of models. The findings
have positive implications for the forecasting of chaotic systems, highlighting the hurdles
that need to be overcome when the model is imperfect.

Previous work that considered predictability in the imperfect model scenario was
done by Khade & Hansen [3]. In their case, however, they used simulations of the Ikeda
map rather than data from a real system. They also used singular values of linear
propagators, each computed over some uniform optimisation time. An obvious point of
departure is that this paper considers data from a real system. We also use times for
initial uncertainties to increase by some integer factor to estimate the predictability of
the underlying system. If the factor is four, we have quadrupling times. An advantage
of quadrupling times over singular values is that they provide information of how ini-
tial uncertainties actually evolve over time. The limitations of performing parametric
perturbations to explore model uncertainty are highlighted.

This paper is organised as follows: The next section presents the circuit that is
central to the computations in this paper. A model of the circuit that is based on
Kirchhoff’s current laws and ideal component assumptions is presented. The model is
then linked to the non-dimensional M-S system of equations. Numerical simulations
of the M-S system and its perturbed version are then compared to the circuit. The
framework for characterising the predictability of chaotic systems is discussed in § 3.
The RBF models considered in this paper are presented in § 4. We present the results
in § 5. A discussion of the results in the context of the wider literature is given in § 6.
Concluding remarks are given in § 7.

2 The Circuit

In this section we present the circuit that is used as a test-bed in this paper. The
circuit is shown in figure 1, where R, Ri, i = 1, .., 7 are resistors, C’s are capacitors, and
Vi, i = 1, . . . , 3 are voltages. By applying Kirchhoff’s current laws and assuming ideal
components, we obtain the following system of equations:

R1C
dV1
dt′

= V2,

R2C
dV2
dt′

= −V2 + R2
R3
V1 −

R7R2
R4R

(V1 + V3) −
R2

10R5
V1V

2
3 ,

R6C
dV3
dt′

= V1.

(1)
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For some scalar, σ, and time scale τ , we let σR1C = R2C = R6C = τ . These correspond
to the perturbed Moore-Spiegel equations [5]:

ẋ = δy,
ẏ = −y + Γx− γ(x+ z) − Γxz2.
ż = x,

(2)

For the classical M-S system, δ = 1, which imposes the condition that

Γ

σ
=
R2

R3
=

R2

10R5
. (3)

The parameter δ account for uncertainty about component values. For the case 0kΩ ≤
R7 ≤ 5kΩ and R2 = R4, we get γ ∈ [0, σ/2] provided δ = 1. The classical M-S parameter
values, Γ = 100 and 0 < γ < 50, correspond to R1 = 1kΩ (or σ = 100) and the rest of
the component values as shown in table 1. On the other hand, if instead R1 = 10kΩ
(or σ = 10) the non-dimensional model of the circuit is given by the M-S system with
parameter values Γ = 10 and 0 < γ < 5. When δ 6= 1, we have the perturbed M-S
system of equations.
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Figure 1: Circuit diagram whose ideal component model is the M-S system.

R = 10kΩ 0 ≤ R1 ≤ 10kΩ R2 = 100kΩ

R3 = 100kΩ R4 = 100kΩ R5 = 10kΩ

R6 = 100kΩ 0 ≤ R7 ≤ 5kΩ C = 10nF

Table 1: Table of component values used in the circuit shown in figure 1.
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Figure 2: Voltage divider network used to monitor circuit ambient temperature changes.

2.1 Circuit Experiment

An experiment of the aforementioned circuit was performed with R1 = 10kΩ and the
rest of the component values as shown in table 1. This was preferred because at R1 =
1kΩ, which corresponds to classical M-S parameter values, there was saturation in the
OpAmps and Multipliers. The circuit was constructed on a bread board with off the
shelf components. In particular, we used AD712J OpAmps and AD534 multipliers.
These had internal trimming to counter potential offset problems due to temperature
drift. In order to minimise ambient temperature effects, the circuit was encased in a
metallic box which was then placed in a bigger insulated box prior to data collection.

The resistance R7 was varied and the circuit behaviour monitored using an oscillo-
scope. As R7 was varied between 2.55kΩ and 5kΩ, a rich array of bifurcations between
periodic orbits and chaotic attractors was observed. In particular, periodic behaviour
was observed in the intervals 2.55kΩ ≤ R7 ≤ 2.60kΩ, 2.65kΩ ≤ 2.70kΩ. The main
chaotic window for the circuit was found to be 3.05kΩ ≤ R7 ≤ 3.85kΩ. For R7 > 3.85kΩ,
an interplay of periodic and chaotic behaviour was observed.

For the purposes of studying predictability when the dynamics were chaotic, we
concentrated on the parameter R7 = 3.85kΩ (equivalently γ = 3.85). The data was
sampled at a frequency of 10kH, each run lasting about 14 hrs. The circuit ambient
temperature was monitored using a voltage divider network whose simplified version
is shown in figure 2. RT is a thermistor, a temperature dependent resistor which we
attached to the body of the metal encasing (making sure that a good thermal contact
was made), R is a fixed colour coded resistor, Vs is the supply DC voltage, and VT is the
voltage potential (relative to ground) at a point between R and RT . Changes in ambient
temperature were estimated by monitoring changes in VT (Please refer to Appendix A
for details).

The signals for VT during the collection of two data sets are shown in figure 3.

Ti = V
(i)
T is the temperature proxy corresponding to the ith collection. Notice that the

maximum swing for T7 is −1V . Therefore, we can use (12) to get ∆RT = 20kΩ, taking
R = 100kΩ and Vs = 10V. Substituting these values into (14) yields the maximum
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Figure 3: Smoothed temperature proxies for the long circuit data sets. T7 (for Set7) and T8

(for Set8) are the temperature proxies, with Ti = V
(i)
T . A rise in the each graph reflects increase

in ambient temperature.

temperature change
∆T ≈ 3.54oC,

where we used T = 296K, the temperature at which the air-conditioner was set.
Whether this temperature change affected circuit dynamics is a question we shall ad-
dress later.

2.2 Numerical Simulations versus Circuit

The MS-system was integrated using the Matlab ordinary differential equations solver,
ode45. To obtain a bifurcation transition sequence, the system was integrated with
γ as the bifurcation parameter. For each value of γ ∈ [0, 5], the initial conditions
were selected randomly from a multivariate Gaussian distribution with zero mean and
an identity covariance matrix. The system was then integrated over the time interval
t ∈ [0, 4096]. Half of the signal was then ignored to eliminate transients. Extrema of
the remaining signal of z were then plotted against γ to produce bifurcation transition
sequences shown in figure 4.

According to the left graph, there is a small window within which chaos are manifest.
The parameter region for this is γ ∈ (2.7, 3.9). Outside this window, the M-S system
yields a bifurcating sequence of periodic orbits. At γ = 3.85, the M-S attractor is pre-
dominantly periodic for any randomly selected initial condition. With a small chance,
we can get the attractor shown on the left hand of figure 5, which is slightly reminis-
cent to the circuit attractor at the same parameter values. In accordance with model
uncertainty, we can perturb one parameter to δ = 1.3 and keep Γ = 10. In this case, we
obtain the bifurcation transition sequence shown on the right hand in figure 4. There are
now chaotic windows, one at γ ∼ 2.71 and a wider one in the interval γ ∈ (3.05, 3.84).
A typical attractor corresponding to these parameters when γ = 3.81 is shown on the
right hand of figure 5. It shows greater likeness to the circuit attractor, which is shown
on the bottom of the same figure.
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Figure 4: Bifurcation transition sequences for the M-S system corresponding to δ = 1
(left) and δ = 1.3 (right), both with Γ = 10.

There are clear differences between the M-S system and the circuit at the parameter
values considered. Parameter values that yield the closest behaviour of the M-S system
to the circuit could be elicited by a systematic inverse problem approach. Fixing δ = 1,
parameters that minimise forecasting error (see appendix B for details of the forecasting
error statistic) at a lead time of τ = 12.8 ms over 512 initial conditions were found to
be γ = 3.524 and Γ = 7.888. At this set of parameter values, the dynamics always
settle on a limit cycle. The overall differences in the attractors need not forbid us from
forecasting the circuit with the M-S system. It has indeed been highlighted in [7] that
agreement in behaviour between a model and corresponding system is not necessary,
although sufficient, for good forecasting performance. In fact, forecasting the circuit
from eight initial conditions using the M-S system indicates that the forecasts track the
M-S system well for about half an oscillation (see figure 6). This is with the exception
of just a few initial conditions where the forecast trajectory goes astray very quickly.

3 Predictability

This section briefly outlines the framework for discussing the predictability of the circuit.
It goes further to draw the implications of Takens theorem when the underlying model
is imperfect. It is argued that regional predictability variations are a function of the
model coordinate space in the perfect model scenario.

3.1 Initial Uncertainty Growth Times

Consider a model of a physical system given by:

ẋ = F (x(t)), (4)

where x,F ∈ R
m. Then the dynamics of an infinitesimally small uncertainty are gov-

erned by
ǫ̇ = J(x)ǫ,
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Figure 6: Forecasts of the circuit from 8 initial conditions using the M-S system at
parameter values δ = 1.3, γ = 3.81 and Γ = 10. The black dots correspond to the initial
conditions.

where J(x) is the Jacobian of F at x. If ǫ0 is the initial uncertainty at x0 and ϕ(x) is
the solution to (4), then the q-pling time is defined as [1]

τq(ǫ,x0) = inf
{

t
∣

∣||ϕt(x + ǫ0) − ϕt(x)|| ≥ q||ǫ0||
}

.

When q = 2, we have the doubling time and when q = 4 we have the quadrupling time.
We can also think of the dynamics of an initial uncertainty as being governed by the

linear propagator [8],

M(x0,∆t) = exp

(
∫ t0+∆t

t0

DxFdt

)

.

It maps ǫ0 to ǫ(t) via
ǫ0(t0 + ∆t) = M(x0,∆t)ǫ0.

The singular value decomposition of M is M = UΣV T with orthogonal matrices V (U)
containing the right (left) singular vectors as columns and Σ the diagonal matrix of the
singular values, σi with σi ≥ σj for i < j.

At a fixed location, x0, the Lyapunov vector is determined from the singular value
decomposition of lim∆t→−∞M(x0,∆t) [1, 9]. Then the Lyapunov direction (Lyapunov
vector), u1, is the first column of U [1].

3.2 Implications of Takens

Essentially, Takens’ theorem [10] states conditions under which a measurement function
h yields, with probability one, a coordinate function H which is a differentiable embed-
ding [8]. This affords us the benefit of moving into another coordinate space and yet
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preserve ergodic measures [8, 10, 11]. To see this, let ϕt denote the dynamical flow on
some manifold. Then the flow on the reconstructed manifold is given by

φt = HϕtH
−1. (5)

Applying the chain rule to equation (5) yields [8]

Dφt = DHDϕtDH−1,

which implies that the matrices Dφt and Dϕt are similar [8, 12] with the similarity
transformation being DH . It then follows that the eigenvalues of Dϕt, denoted by
λ(Dϕt), are contained in those of Dφt, denoted by λ(Dφt) [12]. In capsule form,

λ(Dϕt) ⊆ λ(Dφt). (6)

Although (6) guarantees the preservation of global quantities like Lyapunov exponents,
it places no restriction on local measures of predictability. This, in turn, means in-
stantaneous time measures in the embedding space may be different from those in the
system state space. This will inevitably be true when our models are imperfect. The
third contributing factor is the presence of ”spurious” exponents (eigenvalues/singular
values) that creep in when we move into embedding space.

Consider the vector Xn used to compute the q-pling times. This may be related to
the delay vector xn by the mapping:

G : Xn → xn.

This mapping is clearly one to one. If the dynamics of Xn are governed by Φt, the flow
on the delay space is governed by GΦt and this leads to the relation

GΦt = HϕtH
−1. (7)

whence the chain rule yields

DGDΦt = DHDϕtDH−1. (8)

From equation (7), we cannot conclude that Φt and ϕt are isomorphic and (8) does not
guarantee similarity between DΦt and Dϕt. This means that if one has two models,
one in delay space and another in system state space, the variations in predictability
will inevitably be different.

4 RBF Models

In section 2, it was evident that the M-S system fails badly to forecast the circuit
from some initial conditions. A natural alternative to address the forecasting problem
when the dynamics are low dimensional is to appeal to RBFs. When constructed for
forecasting, RBF models may fail to faithfully capture the attractor of the underlying
system. Nevertheless, they offer significant improvement where the M-S system fails
and can even do better at other initial conditions where the M-S system forecasts the
circuit fairly well.

In order to construct RBF models for the circuit, we followed [13] without concerning
ourselves with the minimum description length criterion therein. The variable of interest
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Model No. of RBFs Dimension (m) Coordinate space

M1 40 3 Delay

M2 40 4 Delay

M3 25 per var 3 state space

M4 40 3 Delay

Table 2: The table of models of the circuit that were built using cubic radial basis functions
(RBF). In the second column, per var stands for per measurement variable. Models with the
same coordinate space are different because they have different centres and RBF coefficients.

was V3 (resp. z) because of its correspondence to the height of an ionised gas in the
atmosphere of a star as discussed in [5]. Some of the models were based on the single
variable, in which case delay embedding reconstructions were used. The other approach
was to use all the three variables to construct the models, which effectively meant
multiple models were built to forecast each variable separately. At every iteration step,
there would then be three models to run forward. In both cases, finding an RBF model
was treated as an interpolation [13, 14].

For models constructed from the V3 signal alone, suppose that x is some correspond-
ing delay vector and construct the model φ(x) : R

m → R, which takes the form

φ(x) =

nc
∑

j=1

λjψ(||x − cj ||) + L(x), (9)

where ψ(r) are radial basis functions, λj are constants determined by observations in
the learning set so that

φ(xi) = si+1, (10)

and L(x) are linear terms. The vectors cj are the associated centres. Cubic RBFs
used were of the form ψ(r) = r3. An appropriate time delay was chosen via the mutual
information criterion [15].

On the other hand a state space model takes the form

xn+1 = φ(xn), (11)

where φ is a vector whose components are linear combinations of RBFs. That is φ =
(φ1, φ2, . . . , φm)T with

φi(x) =

n
∑

j=1

λijψ(x − cij) + Li(x)

where cij are the centres and Li are linear terms.
A table of RBF models of the circuit is given in table 2. These were used to make

predictions of predictability of the circuit as discussed in the next section.

5 Results

This section presents the results of computations of uncertainty quadrupling times from
different initial conditions of the circuit. Only Lyapunov directions are considered. We
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Figure 7: Distributions of quadrupling times for models (a) M1, (b) M2, (c) M3 and (d) M4 of

the circuit. Models M1 and M4 were built in 3D delay space, model M2 in 4D delay space and

model M3 in measurement space (or state space). From measurement space, the distribution of

quadrupling times for model M3 were then mapped into delay space. Red indicates F (τ4) < 0.2,

yellow indicates 0.2 < F (τ4) < 0.4, green indicates 0.4 < F (τ4) < 0.6, cyan indicates 0.6 <

F (τ4) < 0.8 and blue indicates F (τ4) > 0.8. F (·) is the cumulative distribution function of the

quadrupling times.

consider growth of initial uncertainties under the dynamics of the RBF models of table 2.
The models were constructed in different coordinate spaces.

Distributions of quadrupling times of initial uncertainties under each model are
shown in figure 7. To aid comparison, all model spaces have been projected onto 3D
delay space. It turns out that 3D delay space models, M1 and M4, exhibit the most
similar estimates of predictability distributions. Note that these two models are different
because their centres and RBF coefficients differ. The model in 3D state space exhibits
the least similarity to the other models in delay space.

A table of values of the similarity measure for uncertainty quadrupling time distri-
butions for these models is shown in table 3. Details of the similarity measure can be

found in appendix C. Notice that l(Γ
(M1,M4)
s ) = 0.9103, and is the highest value. Next

in magnitude is l(Γ
(M2,M4)
s ) = 0.3435. These results support the conclusion that the

greatest similarity is exhibited by models M1 and M4, which were built in 3D delay
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Model M1 M2 M3 M4

M1 1 0.332 0.1458 0.9103

M2 0.332 1 0.1583 0.3435

M3 0.1458 0.1583 1 0.1323

M4 0.9103 0.3435 0.1323 1

Table 3: Table of values of l(Γ
(i,j)
s ), the similarity measure, for the models indicated on the first

column and first row of the table whose quadrupling time distributions. Γ
(i,j)
s is the similarity

set for model i versus model j and l is some measure (see appendix C). According to this table,
all the models in delay space exhibit the least similarity to model M3 (model in state space).

space, followed by similarity between these two with model M2, another delay space
model. Model M3 manifests the least similarity to the rest of the models.

It seems that these similarities and differences are largely due to differences in mod-
elling spaces rather than model error. Comparing predictions of predictability for the
RBF model in state space with those for the M-S system yields a very low value of the
similarity measure for the quadrupling times. In fact, quadrupling time distributions for
the M-S system (not shown) manifest no greater similarity to the RBF model in state
space than they do to the delay space models. Thus we conclude that the observed inter-
model predictability differences are a property of the RBF models constructed according
to [13]. A discussion of these results continues in § 6.

Since we present this circuit as a possible test-bed for different aspects of signal
processing and complexity studies, the reader might have questions about the stability
of the dynamics under drifting temperature. To settle this concern, we computed pre-
dictability estimates of the circuit under different temperature regimes. Distributions
of quadrupling times under model M3 for Set1 are shown in figure 8. The left and right
graphs correspond to the dynamics at the beginning and end of collection, respectively.
The striking similarity is evidence that the dynamics were stable over the observation
period.

6 Discussion

Circuit realisations and the M-S system showed some agreement in the general be-
haviour, which appeared to be in a topological sense. Techniques similar to those em-
ployed in [16] could be used to make a rigorous topological comparison. Since our
interest is forecasting, such an approach would not be of much value in the present con-
text. We note, however, that a lot of the literature that compares digital and analogue
signals tend to rely solely on a visual inspection (e.g. see [17, 18, 19]). A comparison of
analogue and digital realisations via a forecasting approach seems to be a novel feature
in this paper.

Notwithstanding the similarities between the circuit and the M-S system by visual
inspection of the attractors, there are apparent disparities. The parameter values at
which the M-S system yields an attractor that is similar to the circuit attractor differ
from those inferred from the circuit component values. Such a phenomenon is reminis-
cent to that observed in [17], who argued that it could be due to parametric uncertainty.
Moreover, just like the case reported here, the analogue and digital attractors reported
in [17] do not exhibit perfect similarity. The point is that the problems identified with
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Figure 8: Views of the MS circuit showing distributions of quadrupling times for model M3 of

the circuit on data at the beginning and end of Set1. Red indicates F (τ4) < 0.2, yellow indicates

0.2 < F (τ4) < 0.4, green indicates 0.4 < F (τ4) < 0.6, cyan indicates 0.6 < F (τ4) < 0.8 and blue

indicates F (τ4) > 0.8. F (·) is the cumulative distribution function of the quadrupling times.

The similarity between these two pictures suggests that the circuit dynamics are not altered by

the ambient temperature fluctuations.

the modelling of the circuit by the M-S system are not a singularity. It might be that
the M-S system cannot adequately describe the circuit. As a model of the circuit, the
M-S system is obtained by making ideal component assumptions. In reality, non of the
components is ideal. The cumulative effect of many non-ideal components can invali-
date this assumption. It is not surprising, therefore, that Luchisky et al. [20] recommend
using the minimum possible number of active components in the design of an analogue
circuit. This “minimum” may be too much for a Kirchhoff based model to adequately
describe the underlying circuit. Although often less appreciated, model inadequacy is a
ubiquitous feature in the applied sciences.

Various perturbations of the M-S system’s parameters yielded a system that either
settled on a periodic orbit or simply did not exactly resemble the circuit attractor. In
fact, the M-S system tended to fail in the same way to forecast the circuit from some
of the initial conditions. For this reason, we conclude that the disparity between the
M-S system is mainly due to model inadequacy rather than parametric uncertainty.
Therefore, an RBF approach was used to characterise the circuit dynamics. Just like
neural networks, it has been argued that RBFs can be used to describe a nonlinear
dynamical system [13]. We found it interesting that RBF models constructed in the
same coordinate space yielded very similar distributions of predictability estimates. Such
models could be viewed as an attempt to capture parametric uncertainty. The foregoing
discussion suggests that parametric perturbations could give one a false confidence on
their predictability estimates. It is helpful to use different model classes.

The results of this work may be useful in Meteorology, where the growth of initial
uncertainty has received particular attention. A major inhibiting factor in studying
uncertainty growth directly on the climate system is computational complexity and
operational challenges. As reported in [21], toy examples are often resorted to in order to
unravel the distribution of uncertainty over a chaotic system. The examples tend to focus
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on the perfect model scenario. Nonetheless, the ECMWF appreciates the problems posed
by model imperfection. At ECMWF, forecasts from a sample of initial conditions are
made by an ensemble of models. The models are apparently parametric perturbations of
a single model [21, 22], which may not adequately explore uncertainty. It is advisable to
adopt a multiple model class approach. Indeed we have demonstrated that fairly good
forecasting model classes can yield conflicting predictability distributions. This is a step
further than previous toy examples (e.g. see [1, 21]) that ended only in the perfect model
scenario. The results undermine the notion, set forth by Kalnay et al. [2], that regional
losses in predictability are an indication of the instability of the underlying flow.

The results also motivate further the need to use multiple model classes in forecast-
ing. Since the pioneering work of Granger and Ramanathan [23], the use of multiple
models found favour in the economics community. Current discussion is now focusing
on combining density forecasts (e.g. see [24, 25]). Within the past decade, climate sci-
entists have started to consider the use of multiple models with particular emphasis on
seasonal weather forecasts [26, 27, 28]. This is very much welcome because unlike in
linear models of economics, the predictability of the climate system varies with regions
in state space.

This work also highlights an important aspect of RBF models. It is evident that
we can increase inter-model variation by constructing the models in various coordinate
spaces. The effect of this is to provide an ensemble of model classes to account for
model uncertainty. It is obvious that it makes no sense to combine models that agree in
behaviour across an attractor. Therefore, if one wants to combine RBF models, it is a
good idea to construct them in different coordinate spaces.

7 Conclusions

This paper presented an electronic circuit which can be used as a test-bed for time series
analysis techniques for different real world applications. The circuit may also be seen
as a contribution to the literature on chaotic circuits. Unlike most chaotic circuits that
appear in the literature, the circuit has a non-linearity of degree three. Even though the
observation period spanned over fourteen hours, appealing to uncertainty growth times,
it was established that the dynamics remain stable. Despite the similarities between the
circuit and the corresponding M-S model, we are clearly in the imperfect model scenario.
This situation should not raise an alarm because imperfect models are ubiquitous in the
real world.

The ultimate limit to predicting predictability is model inadequacy. It impacts both
our ability to capture the initial uncertainty and how that uncertainty evolves over time.
Whereas good forecasting performance by a particular model could tempt one to use it
to make estimates of predictability across the underlying system, it was demonstrated
with multiple models that model inadequacy makes that illusive. On a positive note, the
variations in predictability estimates by the different model classes are a case for multiple
model approach to forecasting. In the case of RBF models, inter-model variation could
be maximised by constructing them in different coordinate spaces and/or basis functions.
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A Ambient Temperature Monitoring

It follows from Kirchhoff’s laws that

VT =
(R−RT )

R+RT

Vs.
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Changes in the ambient temperature were then monitored by monitoring changes in VT

because Vs and R are fairly stable. In fact, to first order approximation,

∆RT = −2R
Vs∆VT

(VT + Vs)2
. (12)

Over a small range of temperatures, the thermistor may be assumed to vary linearly
with temperature according to

∆RT = k∆T,

where k is a constant, called temperature coefficient. If k is positive, then the thermistor
is said to have a positive temperature coefficient. If k is negative, it is said to have
a negative temperature coefficient. Over a wide range of temperatures, the Stein-hart
equation [29] is more appropriate and a special form of it is given by

RT = RT0 exp

[

β(T0 − T )

T0T

]

, (13)

where T0 is some standard temperature, RT0 is the resistance of the thermistor at T0.
The temperature is in Kelvin and T0 is usually 298.15K. The thermistor used was an
NTC with RT0 = 100kΩ, T0 = 298.15K and β = 4450.

To get an idea of the underlying temperature fluctuations, we need to transform a
given voltage change. Equation (13) may be rearranged into

T =

[

1

β
ln

[

RT

RT0

]

+
1

T0

]−1

,

from which we get

∆T ≈
∂T

∂RT

∆RT

= −

[

1

β
ln

[

RT

RT0

]

+
1

T0

]−2 ∆RT

βRT

. (14)

B Parameter Estimation

Given some data and a model of the system, a common problem is to estimate the
best parameters according to some criterion. In particular, we can seek parameters that
minimise forecast errors in the Euclidean norm. For a given time series of initial states,
{st}t≥1, the error to minimise is:

ET (τ) =
1

τ(T − τ)

∫ T−τ

0

∫ t+τ

t

||ss − φ(st, w − t)||dwdt, (15)

where τ is the forecast lead time, T is the duration of the observation period and φ is
the underlying model flow with the property that φ(st, 0) = st. The flow φ may be
obtained via numerical integrations.
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C Similarity Measure

It is crucial that we find a measure to compare distributions of q-pling times across an
attractor. In order to define such a measure, consider two models, M1 and M2 with
q-pling times τM1

q and τM2
q respectively. Let τMi

q = τMi
q (t) be the q-pling time of model

Mi at a point realised on the attractor at time t. Suppose the cumulative distribution
function for the q-pling times of model Mi is Fi(τ

Mi
q ). If we partition each Fi with points

{pj}
n
j=0 with p0 = 0 and pn = 1, we can then define the jth q-pling time similarity set

of the two sets of q-pling times by

Γj
s =

{(

τM1
q (t), τM2

q (t)
)

: F1(τ
M1
q (t)), F2(τ

M2
q (t)) ∈ [pj−1, pj ]

}

.

Whence the global similarity set, which depends on the partition {pj}
n
j=0, is defined as

Γ(M1,M2)
s =

n
⋃

j=1

Γj
s.

If l is a probability measure defined on the universal set containing Γ
(M1,M2)
s , the sim-

ilarity between the q-pling time distributions for the two models will be l(Γ
(M1,M2)
s ),

where

l(Γ(M1,M2)
s ) = lim

T→∞

1

T

∫ T

0
1

Γ
(M1,M2)
s

(x(t))dt

and x(t) is the system trajectory in state space. The corresponding finite approximation
over a discrete set of observations {si}

N
i=1 is

l(Γ(M1,M2)
s ) ≈

1

N

N
∑

i=1

1
Γ

(M1,M2)
s

(si),

where si = h(xi), xi = x(iτs), h is some observation function and τs is the sampling
time.

A few observations are worth mentioning. To this end, let M3 be a third model with
q-pling times

⋃

t≥0{τ
M3
q (t)}.

• If for some predefined ǫ > 0,

1 − ǫ < l(Γ(M1,M2)
s ) ≤ 1, (16)

we say that model M1 is similar to model M2 up to ǫ and the partition in question.
For a given partition, greater similarity between q-pling time distributions of two
models across the attractor is reflected by smaller ǫ.

• Inequality (16) effectively defines an equivalence relation between models. Indeed,
if we alternatively write (16) as M1 ∼ M2, the reflexivity, symmetry and transi-
tivity properties follow in a pretty straight forward way 2.

• If for a given partition
l(Γ(M1,M2)

s ) > l(Γ(M1,M3)
s ),

we say that model M1 has q-pling times distribution more similar to that of
model M2 than to model M3 on the attractor in question.

2An equivalence relation satisfies reflexivity, M1 ∼ M1, symmetry, which is M1 ∼ M2 ⇒ M2 ∼ M1

and transitivity which is, M1 ∼ M2 and M2 ∼ M3 implies M1 ∼ M3.
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