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Abstract

This note discusses the idea of using a censored likelihood to develop an
improved capture-recapture estimator when heterogeneity can be validly
described by an exponential mixture. Capture–Recapture methods aim
to estimate the size of an elusive target population. Each member of
the target population carries a count of identifications – the number of
times it has been identified during the observational period. Only posi-
tive counts are observed and inference needs to be based on the observed
count distribution. A widely used assumption for the count distribution
is a Poisson mixture. If the mixing distribution can be described by an
exponential density, the geometric distribution arises as the marginal. We
use this result to show and exploit a number of beneficial properties. The
zero-truncated geometric is a geometric distribution itself with support on
the positive integers and the maximum likelihood estimator is available
in closed–form. Since the maximum likelihood estimator is sensitive to
model misspecification alternative estimators are considered including a
version of Chao’s estimator adapted and developed for the truncated ge-
ometric likelihood. Chao’s estimator developed here gives a lower bound
estimator which is valid under arbitrary mixing on the parameter of the
geometric. However, Chao’s estimator is also known for its relatively large
variance (if compared to the maximum likelihood estimator), due to the
fact that it only uses limited information stemming from counts of ones
and twos only. Another estimator based on a censored geometric likeli-
hood is suggested which uses the entire sample information but only for
counts larger than 1 in a censored manner. The motivation behind this
approach is the idea that violations of the geometric model assumption
can be expected to be less influential than for the uncensored geometric
likelihood. Simulation studies illustrate that the proposed censored es-
timator comprises a good compromise between the maximum likelihood
estimator and Chao’s estimator, e.g. between efficiency and bias.

Some key words: capture-recapture, Chao’s estimator, censored esti-
mator, censored likelihood, estimation under model misspecification, trun-
cated likelihood, Mantel-Haenszel estimator
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1 Introduction and Background

For integer N , we consider a sample of counts Y1, Y2, ..., YN ∈ {0, 1, 2, ..., }

arising with a mixture probability density function

gy =
∫ ∞

0

p(y|λ)q(λ)dλ (1)

where the mixing density q(λ) = 1
θ exp(−λ

θ ) is exponential with parameter θ and

the mixture kernel p(y|λ) comes from the Poisson family p(y|λ) = Po(y|λ) =

exp (−λ)λy/y!. Whenever Yi = 0 unit i remains unobserved, so that only a zero-

truncated sample of size n =
∑m

y=1 fy is observed, where fy is the frequency of

counts with value Y = y and m is the largest observed count. Hence, f0 and

consequently N =
∑m

y=0 fy are unknown. The purpose is to find an estimate

of the size N . Since frequently the count variable Y represents repeated identi-

fications of an individual in an observational period, the problem at hand is a

special form of the capture-recapture problem (see Bunge and Fitzpatrick [2],

Wilson and Collins [19] or Chao et al. [5] for a review on the topic).

The sample of counts Y1, Y2, ..., YN can occur in several ways. A target

population which might be difficult to count consists out of N units. This

population might be a wildlife population, a population of homeless people or

drug addicts, software errors or animals with a specific disease. Furthermore,

let an identification device (a trap, a register, a screening test) be available that

identifies unit i at occasion t where t = 1, .., T and T being potentially random

itself. Let the binary result be yit where yit = 1 means that unit i has been

identified at occasion t and yit = 0 means that unit i has not been identified at

occasion t. The indicators yit might be observed or not, but it is assumed that

yi =
∑T

t=1 yit is observed if at least one yit > 0 for t = 1, ..., T . Only if yi1 =

yi2 = ... = yiT = 0 and, consequently yi = 0, the unit i remains unobserved.

In this kind of situation the clustering occurs by repeated identifications of the

same unit, the latter being the cluster.
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Example. Before we go on, we illustrate the situation at hand with an

example. In the social sciences capture–recapture methods are often employed to

estimate the size of target populations which are difficult to enumerate because

of their elusive character (van der Heijden et al. [9], Roberts and Brewer [16]).

One example area is family violence which is largely a hidden activity (Palusci

et al. [14], Oosterlee et al. [13]). Another area of interest is determining the

size of a population with addiction problems. Hay and Smit [7] provide data

on drug user contacts to a Scottish needle exchange programme in 1997. The

system provided a record of the number of individuals accessing the service over

the period from January to December 1997. The number of visited drug users

over this 12 months was 647 and the frequency distribution of the number of

times contacting a treatment centre is provided in Table 1.

Table 1: Frequency of contacts per drug user of Scottish needle exchange in
1997 for n = 647 observed drug users

y 1 2 3 4 5 6 7 8 9 10 11+
fy 175 85 50 47 37 38 32 16 17 17 133

The assumption of exponential mixing in (1) is attractive since it is a more

general assumption than the conventional, homogeneous Poisson assumption.

In addition, under exponential mixing the integral can easily solved so that for

y = 0, 1, ...

gy =
∫ ∞

0

p(y|λ)q(λ)dλ = (1− p)yp (2)

the geometric as the associated marginal arises, with parameter p = 1/(1+ θ) ∈

(0, 1). The geometric distribution is a remarkably simple distribution and is

popular in life time data analysis as a discrete survival distribution, although,

despite its flexibility, has been widely ignored for modelling count distributions.

Example (continued). The geometric has the characteristic that gy+1/gy =
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(1 − p), in other words the ratio of neighboring geometric probabilities is con-

stant. An estimate of gy+1/gy is given by fy+1/fy which we see plotted in

dependence of y for the data of the Scottish needle exchange program in Figure

2. There appears to be evidence of a fairly constant pattern.
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Figure 1: Ratio fy+1/fy of neighboring frequencies for the data of the Scottish
needle exchange program

We also see in Figure 2 that the geometric distribution provides a much better

fit than the Poisson distribution although the fit of the geometric is not perfect.

It is exactly this situation for which the following estimators, in particular an

estimator we call the censored estimator, are intended. The paper is organized
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Figure 2: Observed frequencies with fitted frequencies under Poisson and geo-
metric for the data of the Scottish needle exchange program

as follows. In section 2 we consider classical maximum likelihood estimation for

the zero-truncated geometric including a form of Mantel-Haenszel estimation.

In section 3, we develop Chao-estimation based upon a specific form of truncated

likelihood. This estimator is appropriate for strong heterogeneity, but has the

disadvantage of a large variance. In section 4 we develop an estimator that uses

all available information but censors counts larger than 1. Finally, in section

5 we compare all estimators and demonstrate that the censored estimator is

appropriate for mild or moderate forms of heterogeneity.
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2 Maximum Likelihood Estimation

We first consider conventional maximum likelihood estimation. For y = 1, 2, ..,

let g+
y = gy/(1 − p) = (1 − p)y−1p be the associated zero-truncated geometric.

Then the log–likelihood is given as

log L(p) =
m∑

y=1

(y−1)fy log(1−p)+n log(p) = S log(1−p)+n(log p− log(1−p)),

(3)

where S =
∑

y=1 yfy. It is easy to verify that (3) leads to the score–equation

n

p
=

S − n

1− p
,

which is uniquely solved for p̂ML = n/S. Since e0 = E(f0|p) = Np = (e0 + n)p

we have that e0 = np/(1 − p), so that ê0 = np̂ML/(1 − p̂ML) and N̂ML =

n + e0 = n/(1− p̂ML). Note that N̂ML can be simply written as

N̂ML =
n

1− n/S
=

nS

S − n
.

Since gy+1/gy = 1 − p it is intuitively reasonable to consider a weighted

estimator of the form
∑m−1

y=1 wyfy+1/fy. With wy = fy we get the Mantel-

Haenszel estimator

1− p̂MH =

∑m−1
y=1 fy+1∑m−1

y=1 fy

=
n− f1

n− fm
, (4)

which, with N̂MH = n/(1 − p̂MH) = n(n − fm)/(n − f1), will not only be less

affected by zero frequencies, but also is expected to behave more robust towards

misspecification of the geometric than the maximum likelihood estimator.

3 Chao’s Estimator Revisited

Clearly, the geometric model might not hold for the entire target population.

Hence it seems more appropriate to consider additional heterogeneity∫ 1

0

gy(p)q(p)dp =
∫ 1

0

(1− p)yp q(p)dp (5)
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The importance of the mixture (5) can be seen in the fact that it is a natural

model for modeling population heterogeneity. There appears to be consensus

(see for example Pledger [15] for the discrete mixture model approach and Do-

razio and Royle [6] for the continuous mixture model approach) that a simple

model gy(p) is not flexible enough to capture the variation in the re-capture

probability for the different members of most real life populations. Every item

might be different, as might be every animal or human being. However, re-

cently there has been also a debate on the identifiability of the binomial mixture

model (see Link [11], [12] and Holzmann et al. [10]). Furthermore, using the

nonparametric maximum likelihood estimate (NPMLE) of the mixing density

in constructing an estimate of the population size leads to the boundary prob-

lem implying often unrealistically high values for the estimate of the population

site (Wang and Lindsay [17], Wang and Lindsay [18]). Hence, a renewed inter-

est has re-occurred in the lower bound approach for population size estimation

suggested by Chao [3]. In the lower bound approach there is neither need to

specify a mixing distribution, nor is there need to estimate it. In this sense it is

completely non-parametric. To give some details on the lower bound approach

recall that for two random variables U and V we have the Cauchy-Schwarz in-

equality E(UV )2 = E(U2)E(V 2). Now, choose U = (1 − p)
√

p and V =
√

p,

then

E(UV )2 =
(∫ 1

0

(1− p)pq(p)dp

)2

≤
∫ 1

0

(1−p)2pq(p)dp

∫ 1

0

pq(p)dp = E(U2)E(V 2).

Now, the LHS can be estimated by f2
1 /N2, whereas the RHS can be estimated

by (f0/N)(f2/N) from where Chao’s lower bound estimator f0 = f2
1 /f2 follows.

In total, we have that

N̂C = n + f2
1 /f2.

We note that this lower bound estimator is specific for the geometric mixture

kernel in (5) and differs from the original lower bound estimator n + f2
1 /(2f2)
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which was developed for the Poisson mixture kernel and is clearly too small for

the situation considered here.

It is interesting to see that a truncated likelihood approach yields Chao’s

estimator. Since the Chao estimator uses only frequencies with counts of 1 and

2, a truncated sample consisting only out of counts of ones and twos might

be considered. We call this the binomial truncated sample. The associated

truncated Poisson probabilities are

q1 =
(1− p)p

(1− p)p + (1− p)p2
= 1/(2− p) and q2 = (1− p)/(2− p).

This truncated sample leads to a binomial log-likelihood f1 log(q1) + f2 log(q2)

which is uniquely maximized for q̂2 = 1 − q̂1 = f2/(f1 + f2). Since q2 =

(1−p)/(2−p) the estimate p̂ = (f1−f2)/f1 for the geometric density parameter

p arises. We show in the appendix that under binomial truncated sampling

e0 = E(f0|p; f1, f2) = f1+f2
(1−p)(2−p) which leads to the estimated value

ê0 =
f1 + f2

(1− p̂)(2− p̂)
=

f1 + f2

(1− f1−f2
f1

)(2− f1−f2
f1

)
=

f1 + f2

f2
f1

2f1−f1+f2
f1

=
f2
1

f2
.

From here Chao’s estimator NC = n + f2
1 /f2 follows. Note that the likelihood

framework into which we have embedded the Chao estimator offers potential.

For example, we can derive easily asymptotic variance formula and also extend

the estimator with respect to covariates.

4 An Estimator under Censoring

One of the critical points in Chao’s estimator is that it disregards the information

contributed from counts larger than two. A compromise between retaining

robustness as well as efficiency appears to be an approach based upon censoring

which we try to develop here. Occasionally, we find the hint in the literature

that members of the target population which have been identified only once

behave quite differently from members of the target population which have been
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identified more frequently. Hence also from this, more substantial aspect the

approach appears justified. Consider the conventional zero-truncated geometric

g+
y =

p(1− p)y

1− p
= p(1− p)y−1,

for y = 1, 2, ... Then, if we consider all observations larger than 1 to be censored,

P (Y = 1) = g+
1 = p and P (Y > 1) =

∑∞
y=2 g+

y = 1− p, using the log-likelihood

f1 log p + (n− f1) log(1− p). The maximum likelihood estimate for p is simply

p̂Cen = f1/n. Here, it is easy to work out e0 = E(f0|p) = Ng0 = (e0 + n)p,

from where e0 = np/(1− p) follows. Hence we have ê0 = n f1/n
1−f1/n and

N̂Cen = n +
f1

1− f1/n
=

n

1− f1/n
=

n2

n− f1

follows. Note the close similarity to the Mantel-Haenszel estimator N̂MH =

n(n − fm)/(n − f1) with identity for fm = 0. Hence we expect that N̂Cen and

N̂MH to be close since typically fm will be small (often only equal to 1).

Example (continued). Before we continue comparing and evaluating these

estimators more systematically on empirical grounds we illustrate their numeri-

cal behavior for the data of the Scottish needle exchange program. We had seen

before that the geometric provides a reasonable, but not perfect fit to the data.

Hence we expect that there is residual heterogeneity so that the maximum likeli-

hood estimator can be expected to underestimate. Indeed, N̂ML = 750 whereas

N̂Cen = 887 and N̂C = 1007 showing again the compromising character of the

censored estimator between bias and efficiency. Note that the conventional es-

timator of Chao under Poisson heterogeneity is N̂ = 827 indicating that the

classical Chao estimator is not flexible enough to cope with this form of hetero-

geneity.
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5 Simulation Study

To illustrate the performance of the estimators a simulation study was under-

taken. Since we show in the appendix that, under geometric homogeneity, all

estimators are asymptotically unbiased, the focus of the simulation will be on

scenarios where the model is misspecified.

5.1 Design

A number of scenarios were investigated. Initially, the case was considered that

the geometric density is the true model. This is the situation under which all

estimators were derived. Secondly, a contamination model (1−α)gy(p)+αgy(q)

was considered with α = 0.1 (small amount of contamination) and with α = 0.5

(large amount of contamination). We also study as a continuous heterogeneity

distribution the beta-distribution with density

b(p|α, β) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1− p)β−1,

so that sampling arises from the marginal∫ 1

0

gy(p) b(p|α, β) dp.

The forms of the beta-density we have considered are provided in Figure 3.

5.2 Results

Table 2 and Table 3 presents the results in terms of mean, standard error of esti-

mate and root mean squared error for the maximum likelihood estimator, Chao’s

lower bound estimator adapted to to the geometric case, and the proposed cen-

sored estimator. We are not presenting any results for the Mantel-Haenszel

estimator since they are almost identical to the censored case. Table 2 provides
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Figure 3: Some beta-densities characterized by parameters α and β to model
heterogeneity in the parameter p of the geometric

results for N = 1000 whereas Table 3 shows results for N = 100. We summarize

a few major results:

• under geometric homogeneity all three estimators are asymptotically un-

biased (this is also proved in the appendix as Theorem 2, so that the

simulation part referring to this situation (populations 1-4) serves only as

illustration,

• the efficiency of the censored estimator ranges typically between 80%–90%

whereas Chao’s estimator varies between 40%–50% in its efficiency,

• for cases of mild heterogeneity, such as for populations 5–12, 15, 16, 21

and 22, the censored estimator behaves well. It has still a small bias and

its variance is close to the variance of the maximum likelihood estimator,
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• for cases of stronger heterogeneity, such as populations 13, 14 and 17–

20, the bias is reasonably small (except populations 17 and 19) and well

balanced by a small standard error,

• if focus is on achieving an estimator with small bias, then the choice

should be Chao’s estimator which has smallest bias for all populations

with heterogeneity.

In summary, the simulation study confirms and provides evidence for the hy-

pothesis that the censored estimator is a reasonable compromise between max-

imum likelihood estimation and Chao’s lower bound estimator.
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6 Discussion

We have tried in section 5 to compare the suggested estimators by means of a

simulation study. There is one problem which arises in any comparison involving

biased estimators. Recall that we are considering in the simulation study tow

types of misspecified models: in one model the geometric parameter is sampled

from a tow-component mixture and in the other model it sampled from a beta-

distribution. Under these two models all three estimators are asymptotically

biased. Whereas with increasing sample size the bias stabilizes and persists, the

standard error decreases. Hence, with increasing sample size, the mean squared

error will be dominated by the bias and the evaluation, if done solely on the

basis of the mean squared error, will ultimately favor the estimator with the

smallest bias. This point is best illustrated using the example in Table 4 where

we consider the ratio N̂/N . It is clear that from Table 4 that asymptotically

Chao’s estimator will perform best, since it has the smallest asymptotic bias

and the standard error (of N̂/N , not of N̂) converging to zero.

Table 4: Mean and standard error of N̂/N for increasing N for the geometric
parameter p coming from a 2-component mixture giving equal weight to p = 0.3
and q = 0.5

E(N̂/N) SE(N̂/N)
N MLE Chao Cen MLE Chao Cen
100 0.95 1.04 0.98 0.10 0.24 0.13

1,000 0.94 0.99 0.97 0.03 0.06 0.04
10,000 0.94 0.99 0.97 0.01 0.02 0.01

As a consequence, one should either limit oneself to realistic values of the pop-

ulation size if using the mean squared error (as we have done here) or, for

asymptotic considerations, choose a performance measure different from the

MSE.
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Simulation studies are an important tool to evaluate a series of estimators.

However, they also have their limitations since they can only mirror a reality

envisioned in the design of the study with natural restrictions in complexity.

Hence it is of interest to study the proposed estimators in data sets where the

population size is known in advance. Borchers et al. (2004) report the following

capture–recapture experiment in St. Andrews. N = 250 groups of golf tees

were placed in a survey region of 1, 680 m2. They were then surveyed by eight

different students of the University of St. Andrews and n = 162 were identified.

Typically, an unknown number of golf tees would be missed, but here we know

that exactly 88 golf tees remained missed. The data are provided in Table 5.

Table 5: Frequency of recovery counts in golf-tees experiment (true N = 250)
with associated estimators of N

y 1 2 3 4 5 6 7 8
fy 46 28 21 13 23 14 6 11

estimator of N
geometric Poisson

MLE Chao Cens Chao Turing
230 226 238 200 177

The estimators under geometric sampling are fairly similar and close to the true

number N = 250. Note that Chao’s estimator (adjusting for heterogeneity)

is close to the maximum likelihood estimator indicating that the exponential

mixing is coping well with any heterogeneity in the data. We have also computed

two estimators under Poisson sampling: the Chao estimator n + f2
1 /(2f2) and

the Turing estimator n/(1 − f1/S), both being too small and also different

from each other. This means that there is residual heterogeneity under Poisson

sampling which evidently the geometric estimators can pick up and adjust for.

The geometric (and mixtures of geometrics to adjust for heterogeneity) ap-

pears to be an interesting alternative to the Poisson (and mixtures thereof).
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We have presented two estimators, Chao’s estimator and the censored estima-

tor, which appear to work well under geometric heterogeneity. Frequently, the

geometric provides a better initial fit than then Poisson and hence can be ex-

pected to cope with some of the potentially available heterogeneity. It is also

technically easy to deal with. However, diagnostic devices such as the suggested

ratio plot y → fy+1/fy or goodness-of-fit measures should also be used to check

for the appropriateness of the approach.
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Appendix: Proof of Theorems

Theorem 1 a) Let log L(p) = f1 log(q1) + f2 log(q2) with q1 = 1/(2 − p) and

q2 = (1−p)/(2−p) being the geometric probabilities truncated to counts of ones

and twos. Then log L(p) is maximized for p̂ = (f1 − f2)/f1.

b) E(f0|f1, f2; p̂) = f2
1 /f2, for p̂ = (f1 − f2)/f1.

Proof. For the first part, it is clear that f1 log(q1) + f2 log(q2) is maximal

for q̂1 = f1/(f1 + f2) = 1/(2 − p̂), which is attained for p̂ = (f1 − f2)/f1. For

the second part, we see that with ey = E(fy|f1, f2; p) = gy(p)N we have the

following:

ey = gy(p)N = gy(p)(e0 + f1 + f2 +
∞∑

j=3

ej)

so that

e0 + e+
3 = [1− g1(p)− g2(p)](e0 + e+

3 ) + [1− g1(p)− g2(p)](f1 + f2)

with e+
3 =

∑∞
j=3 ej . Hence

e0 + e+
3 =

1− g1(p)− g2(p)
g1(p) + g2(p)

(f1 + f2)
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and

e0 = g0(p)(f1 + f2 + e0 + e+
3 ) = g0(p)(f1 + f2)[1 + 1−g1(p)−g2(p)

g1(p)+g2(p) ]

= g0(p)
g1(p)+g2(p) (f1 + f2) = f1+f2

(1−p)(2−p) .

Plugging in the maximum likelihood estimate p̂ = (f1 − f2)/f1 for p yields

f1 + f2

(1− p̂)(2− p̂)
=

f1 + f2

f2
f1

f1+f2
f1

= f2
1 /f2,

the desired result. 2

Theorem 2 Let gy(p) = (1− p)yp for y = 0, 1, .. and p ∈ (0, 1). Then,

lim
N→∞

E(N̂)
N

= 1

for N̂ = N̂ML, N̂C , or N̂Cen.

Proof. Let N̂ = N̂ML = n/(1− n/S). Note that E(n) = Np and E(S/N) =

(1− p)/p so that

E(n/(1− n/S))
N

−−−−→
N→∞

p

1− p
p/(1−p)

= 1.

Let N̂ = N̂C = n+f2
1 /f2. Note that E(f1) = Np(1−p) and E(f2) = Np(1−p)2

so that
E(n + f2

1 /f2)
N

−−−−→
N→∞

(1− p) +
p2(1− p)2

p(1− p)2
= 1.

Finally, let N̂ = N̂Cen = n
1−f1/n . Using the above we have

E
(

n
1−f1/n

)
N

−−−−→
N→∞

1− p

1− (1−p)p
(1−p)

= 1,

which ends the proof. 2
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