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Abstract

In this paper we present and assess a graphical device for choosing a method for

estimating population size in capture-recapture studies. The basic concept is de-

rived from a homogeneous Poisson distribution, where the ratios of neighboring

Poisson probabilities multiplied by the value of the larger neighbor count are con-

stant. This property extends to the zero-truncated Poisson distribution which is

of fundamental importance in capture–recapture studies. The ratio plot can be

used for assessing specific departures from a Poisson distributions. For example,

simple contaminations of an otherwise homogeneous Poisson model can be easily

detected and a robust estimator for the population size can be suggested. Several

robust estimators are developed and a simulation study is provided to give some

guidance on which should be used in practice. More systematic departures can

also easily be detected using the ratio plot. In this paper focus is on Gamma-

mixtures of the Poisson distribution which leads to a linear pattern in the ratio

plot. More generally, the paper shows that the ratio plot is monotone for arbitrary

mixtures of power series densities.

Keywords: Capture-recapture; Chao and robust and generalized Chao estimator;

Turing estimator; robust Turing estimator; generalized Turing estimator; Poisson-
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gamma model, ratio plot, structured heterogeneity.

1 Introduction

Capture-recapture studies, concerned with estimating the size of populations that

are hidden or difficult to enumerate, make use of some “capture” mechanism (e.g.

live trapping, register, surveillance system) capable of repeatedly identifying ob-

servational units in time, or in clusters (Bunge and Fitzpatrick 1993; Chao et al.

2001). Capture–recapture methods are now widely used in a variety of application

areas, including public health and epidemiology, clinical medicine, bioinformatics

(estimating biodiversity), criminology and terroristic research, systems engineer-

ing (estimating the number of unknown errors in a software) as well as investi-

gating forms of deviating behavior in social sciences, in addition to the traditional

field of wildlife biology/ecology. As a consequence, the statistical community has

developed a major interest in the use of capture–recapture methods.

For studies based on repeated sampling in time there is an observational period

in which each member (unit) of the target population can be potentially detected

on several occasions. An example of sampling in time taken from Chao and Hug-

gins (2005) is reproduced in Table 1. Here, the number of detections of female

grizzly bears with cubs-of-the-year for three different observational periods were
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recorded in a study of the bear population in Yellowstone from 1996 to 1998. For

instance, in 1996 a total of 15 female bears were observed exactly once, 10 exactly

twice and so on, leading to a total of 45 detections of 28 bears.

Table 1: Female Grizzly Bears in the Yellowstone ecosystem

Frequency of detection Number of Number of
observed bears detections

Year f1 f2 f3 f4 f5 f6 f7 n S
1996 15 10 2 1 0 0 0 28 45
1997 13 7 4 1 3 0 1 29 65
1998 11 13 5 1 1 0 2 33 75

For a study of a population of size N units, let Xi denote the number of times unit

i is detected in the observational period, i = 1, 2, . . . , N and let px = P (Xi = x).

Also, let fx denote the frequency of units detected exactly x times, x = 0, . . . ,m

and let n denote the number of observed units. As Xi = 0 is not observed, the

corresponding frequency f0 = N − n is unknown and, in order to obtain an

estimate for N , may be replaced by its expected value Np0. When p0 is known,

this leads to the familiar Horvitz-Thompson estimator of population size

N̂ = n/(1− p0) . (1)

In most problems, p0 is unknown and itself has to be estimated. Under the as-

sumption that each Xi follows a Poisson distribution with parameter λ, we obtain
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p0 = exp(−λ) and consequently N̂ = n/[1 − exp(−λ̂)] where λ̂ is an estimate

of λ. In the well-known Turing or Good-Turing estimator N̂ = n/(1 − f1/S)

(Good 1953), the estimate of p0 is p̂0 = f1/S where S = f1 + 2f2 + ... + mfm.

Another approach uses the maximum likelihood estimate of λ. It should be em-

phasized that both these estimates of population size are only appropriate under

the homogeneous Poisson model.

The above notation can also be used for studies based on multiple detections

within a cluster (e.g. herd, village, household). Here N is the total number of

clusters, Xi is the number of units detected in cluster i, i = 1, 2, . . . , N and fx is

the frequency of clusters with exactly x units detected, x = 0, . . . ,m. An exam-

ple of repeated identifications in clusters (herds) is provided by Böhning and Del

Rio Vilas (2008) who examined scrapie occurrence in Great Britain based upon

the Scrapie Notifications Database (SND). The frequency distribution of the case

count per herd is shown in Table 2.

Table 2: Scrapie surveillance in Great Britain based upon the Scrapie Notifica-
tions Database (SND)

Year f1 f2 f3 f4 f5 f6 f7 f8+ n
2002 74 23 15 6 8 3 3 12 144
2003 66 29 12 2 3 2 3 17 134
2004 83 29 14 6 5 6 0 8 151
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The probability of the inclusion of an individual or unit in a capture-recapture

study frequently depends on measured covariates such as age, gender and size,

as well as on unobserved factors. This heterogeneity often invalidates the as-

sumption that the Xi’s are identically distributed. If this heterogeneity is ignored

the estimators of population size can be severely negatively biased (Böhning and

Schön 2005, van der Heijden et al. 2003). Heterogeneity is closely connected to

the occurrence of over-dispersion. Recently (Baksh et al. 2011) a distribution-

free test procedure to detect over-dispersion has been suggested which modifies

a previously developed over-dispersion test for zero-truncated data. A method to

account for heterogeneity in the estimation of population size (Chao 1987) models

the Poisson parameter as a random variable with a latent heterogeneity distribution

λ(t). This gives

px(λ) =

∫ ∞

0

exp(−t)tx

x!
λ(t)dt . (2)

Here, we exploit the above model for px to develop a graphical method for identi-

fying heterogeneity in capture-recapture data. In particular, we provide a tool for

assessing if the homogeneous Poisson model, with and without contaminations,

is appropriate, or whether or not there is structured heterogeneity in the observed

data. The contaminated Poisson model and structured heterogeneity will be dis-

cussed in the next section. In addition, we develop further a number of common
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estimators, and evaluate their performance under different heterogeneity assump-

tions.

2 The Ratio Plot

Define rx = (x+1)px+1

px
where x = 0, 1, 2, . . . . For the Poisson random variable X

with mean λ, it is clear that rx = λ and hence the plot of rx against x is a horizontal

line. The concept of using a graphical device for deciding about the suitability of

the Poisson model has been proposed in the literature at various points in time.

Hoaglin (1980) suggested using that log px + log x! = −λ + x log λ is linear in

x under the Poisson assumption. The associated plot of log fx + log x! against

x has been called the Poissonness Plot. Gart (1970) mentions the possibility of

plotting an estimate of rx against x. In practice, plotting the ratio has not been

widely used. Occasionally, it occurs in textbooks as marginal notes, such as in

Pawitan (2001; p.110) in an exercise. In capture-recapture studies, zero-counts

are truncated. Hence, observed sample frequencies f1, f2, ... arise from the zero-

truncated distribution px/(1 − p0). However, the ratio plots are for both cases

identical since

rx =
(x + 1)px+1

px

=
(x + 1)px+1/(1− p0)

px/(1− p0)
.
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This is an important result, making the ratio plot applicable to the capture-recapture

scenario (with zero-truncated count distributions). In practice the ratio rx is esti-

mated by

r̂x =
(x + 1)fx+1

fx

while the graph of r̂x against x is called the ratio plot. A horizontal line is consis-

tent with homogeneous Poisson observations; conversely, departures from a hori-

zontal line provide evidence for violation of Poisson homogeneity. For example,

the plot in Figure 1 of the grizzly bears data for 1997 (Table 1) clearly shows that

the frequency of 5 sightings is larger than expected under a homogeneous Poisson

model, but there is no evidence to suggest that the other observed frequencies vio-

late the homogeneity assumption. In studies with such contaminated Poisson data

S = f1 + 2f2 + ... + mfm will be too large and consequently the Good-Turing

estimate will be biased downward.

The ratio plot of the Scrapie data in Table 2 is given in Figure 2. Again, for

all three years, there is a clear suggestion that a homogeneous Poisson model is

inappropriate. However, it is unclear whether the cause is due to contaminations

or whether there is some latent structure to the data causing the ratios to increase

with x.

The general importance of the concept of the ratio plot stems from the following
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Figure 1: Ratio plot of observed Grizzly bears in the Yellowstone ecosystem for
the period 1996-1998

result which, in essence, says that under arbitrary mixing on the Poisson parameter

the ratio plot should show a monotone increasing pattern.

Theorem 1 Let px be given according to (2). Then, the following monotonicity

result holds:

p1

p0

≤ 2p2

p1

≤ 3p3

p2

≤ ... (3)

A proof of this theorem is provided in the appendix. Note the special case of
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Figure 2: Ratio plot of observed scrapie infected herds in Great Britain based upon
the Scrapie Notifications Database (SND) for the period 2002-2004

Poisson homogeneity is included as all inequalities become equalities. In the

remainder of this paper we examine specific departures from Poisson homogeneity

as well as specific forms of monotonicity. For example:

• is there a contamination of an underlying, but otherwise, homogeneous

Poisson model?

• or, is there a form of monotonicity which can be described by a simple
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monotone structure such as a straight line with positive slope (structured

heterogeneity)?

• or, is there no recognizable form of monotone pattern (unstructured hetero-

geneity)?

The next two sections consider population size estimation for the first two of the

above departures from Poisson homogeneity.

3 The Robust Turing Estimator

For k = 1, 2, 3, . . . ,m− 1 define the robust estimator for λ by

λ̂k =

∑k
x=1(x + 1)fx+1∑k

x=1 fx

. (4)

The form of λ̂k is very similar to an estimator for λ suggested by Moore (1952)

in the case of a Poisson distribution with larger counts truncated. Estimating p0 in

equation (1) by (f1/N)/λ̂k (as under Poisson homogeneity p0 = p1/λ) we obtain

a modification of the Turing estimator of population size for contaminated Poisson

data as a solution of the equation N = n/[1− (f1/N)/λ̂k] for N as

N̂k = n +
f1

λ̂k

. (5)

We will call N̂k the robust Turing estimator since it will be less influenced by large,

contaminating observations than the original Turing estimator, in particular, if k is
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chosen small. In the case where k = 1 we have λ̂1 = 2f2/f1 which is identical to

the Zelterman (1988) estimator of the Poisson parameter. Zelterman showed that

this estimator was more robust against mis-specification of the Poisson model than

the estimator based on the maximum likelihood estimate of λ. This is intuitively

clear since the estimator remains unchanged for distributional changes associated

with counts larger than 2. The corresponding estimator for the population size N̂1

becomes n + f 2
1 /(2f2) which is the lower bound estimator of Chao (1987, 1989).

3.1 An optimality property of the Robust Turing Estimator

The beneficial behavior of N̂k can be seen in the following result for a simple con-

tamination model in which the Poisson distribution is contaminated by a second

Poisson component with weight α.

Theorem 2 Let X be a discrete random variable with probability mass function

px = (1−α)Po(x; λ)+αPo(x; µ), where Po(x; ν) = e−ννx/x! for x = 0, 1, 2, . . .

and 0 ≤ α ≤ 1; Also, let f1, · · · , fm be the observed frequencies in sample of size

n from px with largest observed count m. If N̂k = n + f1/λ̂k denotes the robust

Turing estimator for 1 ≤ k ≤ m− 1, then

limN→∞E(N̂k)/N = (1− p0) + p1
p1 + ... + pk

2p2 + ... + kpk+1

→ 1 as µ →∞.
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In addition, for the Turing estimator we have

limN→∞E(N̂)/N = limN→∞E(
n

1− f1/S
)/N =

(1− p0)

1− p1/E(X)

→ [1− (1− α) exp(−λ)] ≤ 1 as µ →∞.

Proof:

For sufficiently large N we can replace fx by its expected value Npx to get

E(Nk)

N
→ (1− p0) + p1

p1 + . . . + pk

2p2 + . . . + (k + 1)pk+1

as N →∞ .

The result follows from the fact that

px → (1− α)
e−λλx

x!
,

as µ →∞, since then

p1
p1 + . . . + pk

2p2 + . . . + (k + 1)pk+1

= (1− α)e−λλ
(1− α)e−λλ + . . . + (1− α)e−λλk/k!

(1− α)e−λλ2 + . . . + (1− α)e−λλk+1/k!
= (1− α)e−λ = p0

For the Turing estimator, note that E(X) = (1−α)λ+αµ goes to infinity if µ be-

comes large. So p1/E(X) goes to zero and a persistent bias of −(1−α)exp(−λ)

remains. �

The theorem shows that the Turing estimator is sensitive to large contaminating

counts whereas the robust Turing estimator is less affected. This is further ex-

plored using simulations, here with N = 100 and px = (1 − α)Po(x; λ) +
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αPo(x; µ) for x = 0, 1, 2, ..., α = 0.5 and λ = 0.5. The results with re-

spect to bias and mean squared error (MSE) are given in Figure 3 and Figure

4, respectively. Figure 3 shows the expected ordering of bias in the sense
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Figure 3: Mean population size estimator in contamination model px = (1 −
α)Po(x; λ) + αPo(x; µ) for N = 100; N(̂k) denotes the robust Turing estimator
N̂k and ’Chao’ corresponds to N̂1

bias2(N̂1) ≤ bias2(N̂2) ≤ bias2(N̂3). The figure also illustrates the undesir-

able behavior of the Turing estimator when contaminations increase. Hence it is

interesting to look at the mean squared error as a summary measure of bias and
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Figure 4: Mean squared error of population size estimator in contamination model
px = (1−α)Po(x; λ) + αPo(x; µ) for N = 100; N(̂k) denotes the robust Turing
estimator N̂k and ’Chao’ corresponds to N̂1

variance in Figure 4. Once again, the Turing estimator does not perform well.

There is evidence that Chao’s estimator can be improved upon by using the robust

Turing estimator N̂2 or N̂3.

3.2 Finding the upper truncation point k

In practice, evidently a value for k is required in order to calculate N̂k. Again

the ratio plot can be used. For example, from the plot in Figure 1 of the grizzly
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bears data for 1997 we deduced that the ratio r4 is larger than expected under a

homogeneous Poisson model. We suggest that this is formally tested using the

following χ2 test based upon the truncated distribution

χ2(k) =
k+1∑
x=1

[fx − nkPo+(x; λ̂k)]
2

nkPo+(x; λ̂k)
(6)

where λ̂k is given by equation (4), Po+(x; λ) = Po(x; λ)/[Po(1; λ)+...+Po(k+

1; λ)] and nk = f1 + ...+fk+1. Under the null hypothesis of a homogeneous Pois-

son model this statistic approximately follows a χ2
k−1 distribution. Note that for

k = 1 a perfect fit is achieved, resulting in no degrees of freedom. Table 3 shows

the significance tests for the grizzly bear data for 1997 along with the modified

Turing estimates of population size for different values of k. These results support

the findings from the ratio plot; for k = 4 we have borderline significance at the

5% level. Hence, we conclude that the robust estimate for the mean parameter is

λ̂3 = 1.25 (using k = 3) and N̂3 = 39.4. As expected, the Turing estimate (36.25)

is smaller.

Another illustration of applying the ratio plot uses data from a study of Cullen

at al. (1990) on dystrophin density in human muscle (see also Matthews and

Appleton 1993). Dystrophin, a gene product of possible importance in muscular

dystrophies, can be located within muscle fibers using an electron microscope

. Units (epitops) of dystrophin cannot be detected until they have been labelled
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Table 3: Robust Turing estimates of the number of Female Grizzly Bears in the
Yellowstone ecosystem for 1997

k χ2(k) p-value λ̂k N̂k

1 0.000 1.000 1.08 41.1
2 0.241 0.623 1.30 39.0
3 0.264 0.876 1.25 39.4
4 7.627 0.054 1.80 36.2
5 10.473 0.033 1.61 37.1

by a suitable electron-dense substance such as gold-conjugated antibodies which

adhere to the dystrophin. Not all units can be labelled and more than one anti-body

molecule may attach to a dystrophin unit. To achieve an unbiased estimate of the

dystrophin density, it is important to account for all labelled and unlabelled units.

Table 4 shows the observed count of the number of antibody molecules on each

dystrophin unit within the muscle fibres of biopsy specimens taken from normal

patients. Interest is in f0, the number of unobserved (unlabelled) dystrophin units.

Table 4: Distribution of antibody counts attached to dystrophin units

f0 f1 f2 f3 f4 f5 n
- 122 50 18 4 4 198

Figure 5 shows the ratio plot (on log-scale) for the dystrophin data. Also shown

are 95% confidence limits using log(r̂x)±1.96∗
√

Var[log(r̂x)] where Var[log(r̂x)] =

1/fx+1 + 1/fx (Böhning 2008). Although there is progressively less reliability in
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the estimated ratios, nonetheless there is evidence that frequency f5 is contami-

nated. This assertion is supported by the χ2-test (see Table 5). It is interesting to

note that the robust estimate (334; k = 3) is larger than the Plackett, MLE and

MVUE estimates of 321, 315 and 313, respectively (see also Matthews and Ap-

pleton 1993 where also the values for the estimators Plackett, MLE and MVUE

are taken from).

Table 5: Robust Turing estimates of the number of dystrophin units

k χ2(k) p-value λ̂k N̂k

1 0 1 0.82 347
2 0.53 0.47 0.90 334
3 0.58 0.75 0.89 334
4 12.00 0.01 0.98 323

4 The Ratio Plot under Structured Heterogeneity
and the Generalised Turing Estimator

4.1 Structured heterogeneity

To illustrate the situation of structured heterogeneity we begin with an exam-

ple from illicit drug user research. The data set comes from a study concerned

with estimating hidden intravenous drug users in Los Angeles (Hser 1993). Intra-

venous drug users in Los Angeles county were entered into the California Drug

Abuse Data System (CAL-DADS): Table 6 shows the frequency distribution of
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the episode (contact with treatment center) count per drug user in the year 1989,

and the ratio plot is in Figure 6. The most interesting feature of this plot is the

apparent linear trend with positive slope. As suggested earlier, this is evidence in

support of violation of Poisson homogeneity. Furthermore, as shown below, this

is indicative of structured heterogeneity due to a latent Gamma distribution of the

mean parameter.

Definition 1 The ratio plot exhibits structured heterogeneity if

rx = α + βx

with β > 0. The case β = 0 exhibits Poisson homogeneity.

Table 6: The frequency distribution of the episode count per drug user in Los
Angeles for 1989 as obtained from the California Drug Abuse Data System (n =
20, 198)

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

- 11,982 3,893 1,959 1,002 575 340 214 90 72 36 21 14

The question arises for which mixing distribution λ(t) does structured hetero-

geneity arise. This is now partly answered. Using equation (2), suppose that λ(t)

is the Γ density with parameters π and κ. Then px = Γ(κ+x)
Γ(x+1)Γ(κ)

πκ(1 − π)x is

the negative binomial density with event parameter π and shape parameter κ, and
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Figure 6: Ratio plot of episode count per drug user in Los Angeles in 1989

consequently rx = (x + κ)(1− π). It follows that the ratio plot is expected to be

a straight line with slope 1− π and intercept κ(1− π). Hence, structured hetero-

geneity in the ratio plot relates to a prominent class of mixing distributions, the

Gamma-distribution or in its marginal form, the negative-binomial. These forms

of structured heterogeneity arise frequently in capture-recapture data (Dorazio and

Royle 2005; Pledger 2005; Chao and Bunge 2002).
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4.2 The Generalised Turing Estimator

Furthermore, since p0 = πκ, p1 = κπκ(1−π), E(X) = κ(1−π)/π, we have that

π1/E(X) = πk+1 and p0 = [πκ+1]κ/(κ+1) = [p1/E(X)]κ/(κ+1). This leads to the

generalised Turing estimator

N̂GT =
n

1− (f1

S
)κ/(κ+1)

. (7)

Theorem 3 Let px = Γ(κ+x)
Γ(x+1)Γ(κ)

πκ(1−π)x. Then, we have the following property

for the generalised Turing estimator:

E(N̂GT )/N → (1− πk)/[1− (πκ+1)κ/(κ+1)] = 1,

for N →∞.

Proof: For sufficiently large N , E(f1/N)/E(S/N) → πκ+1 and E(n/N) →

(1− πκ) so that

E(N̂GT )/N → N(1− πκ)

N [1− (πκ+1)κ/(κ+1)]
= 1,

with N becoming large. �

The form of the generalised Turing estimator is interesting. It uses the frequency

f1 of units detected only once which is usually a large quantity. And it also uses

S which makes use of all the information in the sample. This is in contrast, for
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example, to Chao’s estimator n + f 2
1 /(2f2) which uses only the frequencies of

counts equal to one and two. Clearly, to make the generalised Turing estimator

work practically, we need to have an estimate for κ. This can be accomplished

by utilizing the ratio plot and constructing a weighted regression estimator for the

regression coefficients in rx = α + βx with a diagonal weight matrix containing

the inverse variances of r̂x = (x + 1)fx+1/fx as entries (Böhning 2008). An

estimate for κ can then be given as α̂/β̂.

We demonstrate the application of these methods with a further case study, again

from illicit drug user research. Hay and Smit (2003) collated data on individuals

who have visited a Scottish needle exchange during 1997. Hay and Smit (2003)

preferred not to explicitly state the needle exchange from which they obtained

these data. The authors stated however, that “the data were collated during a

programme of drug misuse prevalence research in Scotland and was the only one

operating in that area at that time. The needle exchange assigns a unique identi-

fier number to each individual accessing the service, thus enabling it to produce

statistics on the number of people who had contacted the service over a given pe-

riod.” We show these data in Table 7. For these data (as it is the case also with

many other data sets) it should be noted that the ratio plot shows strong indication

of exponential mixing. That is the ratio plot is consistent with a (truncated) geo-
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Table 7: The frequency distribution of the episode count per participant in a needle
exchange program in Scotland for 1997 (Hay and Smit 2003)

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11+ n
- 175 85 50 47 37 38 32 16 17 17 133 647

metric distribution, since the Poisson-exponential mixture is a geometric density.

The latter is a special case of the negative binomial distribution and occurs for

κ = 1. To identify this case most easily from the ratio plot we define a different

but essentially equivalent form:

r′x = xpx/px−1 = [x + (κ− 1)](1− π) for x = 1, ...,m,

so that the case of exponential mixing (κ = 1) results in a ratio plot which is a line

passing through the origin. Figure 7 shows the associated empirical ratio plot for

the participants of the Scottish needle exchange programme with fitted regression

line. Clearly, the line passes very near to the origin. Hence we take κ = 1 and

the generalised Turing estimator to be N̂GT = n

1−
√

f1/S
. In our case, we have

n = 647, f1 = 175 and S = 3596 leading to N̂GT = 830 which clearly adjusts for

a likely underestimation bias of the conventional Turing estimator N̂T = 680.
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5 Residual Heterogeneity

Let us now assume that a Poisson-Gamma mixture

px(π, κ) =

∫ ∞

0

exp(−t)tx

x!
λ(t)dt =

Γ(κ + x)

Γ(x + 1)Γ(κ)
πκ(1− π)x (8)

has been successfully identified. Clearly, (8) incorporates all available struc-

tured heterogeneity. The question arises whether there is any remaining resid-

ual, unstructured heterogeneity in the data. Note that, conditional upon κ, the

negative binomial density is part of the power series family px = axt
xµ(t) with
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ax = Γ(κ+x)
Γ(x+1)Γ(κ)

and µ(t) = (1− t)κ. Hence, we can consider mixing the negative

binomial Γ(κ+x)
Γ(x+1)Γ(κ)

πκ(1− π)x together with some arbitrary mixing density λ(t):

gx(λ|κ) =

∫ 1

0

Γ(κ + x)

Γ(x + 1)Γ(κ)
(1− t)κtx λ(t)dt =

∫ 1

0

axµ(t)tx λ(t)dt, (9)

and we can apply the general monotonicity result of the appendix, showing that

the generalised ratio plot rx = gx+1/ax+1

gx/ax
vs. x should show a monotone increas-

ing pattern if heterogeneity is still present. If there is residual homogeneity the

generalised ratio plot reduces to a horizontal line.

This property of the Poisson, namely mixing a Poisson with a Gamma resulting

in a negative binomial which, if again, mixed with an arbitrary mixing distribu-

tion resulting in a monotone ratio, allows the construction of a generalized Chao

estimator which might provide an additional correction for unstructured, residual

heterogeneity. Since

g1/a1

g0/a0

≤ g2/a2

g1/a1

,

we can write the generalized Chao estimator as

N̂GC = n +
(f1/a1)

2

f2/a2

= n +
κ + 1

κ

f 2
1

2f2

.

To illustrate these findings, we use the Scottish needle exchange data. In section

4, we have found evidence for a geometric density (κ = 1). However, the question

arises whether there is any residual heterogeneity in this data set. The ratio plot
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associated with a geometric is

rx =
gx+1/ax+1

gx/ax

= gx+1/gx,

which can be simply estimated as r̂x = fx+1/fx. Figure 8 shows the empirical

generalized ratio plot, from which there appears to be little evidence for residual

heterogeneity. The generalized Chao estimator is N̂GC = n + κ+1
κ

f 2
1 /(2f2) =

n + f 2
1 /f2 = 1007 (since κ = 1) supporting the impression of little evidence for

residual heterogeneity.
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Figure 8: Generalised ratio plot of episode count per participant in a needle ex-
change programme in Scotland in 1997 (Hay and Smit 2003)
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6 Concluding Remarks

The occurrence of Poisson homogeneity is rare in practice. This results in the need

for identifying and allowing for heterogeneity (Böhning and Kuhnert 2006). How-

ever, a general approach allowing for arbitrary mixing distributions is problematic

because of the identifiability problem (Link 2003; Holzmann et al. 2006; Link

2006) and the boundary problem (Wang & Lindsay 2005, 2008). The latter report

an overestimation bias for the nonparametric mixture model for zero-truncated

Poisson distributions. In practice this leads to the occurrence of spurious pop-

ulation size estimates as illustrated in Kuhnert et al. (2008). Consequently, to

achieve identifiability and avoid spurious solutions it is reasonable to constrain

the feasible class of mixing distributions to parametric mixing distributions with

a small number of parameters or to rely on lower bounds (Chao 1987; Mao 2006;

Mao 2007; Mao and Lindsay 2007).

To help avoid the aforementioned difficulties we have suggested utilizing a graph-

ical device, the ratio plot, to identify structured heterogeneity, characterized by

a parametric mixing distribution. An appropriately modified Chao-lower bound

may be used to correct for potential residual heterogeneity. We also note that

the methodology evolving from the ratio plot can also be used with kernels other

than the Poisson. In particular, the binomial distribution where the size parameter
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might correspond to the number of trapping occasions, if this is known, in the

capture–recapture study.

Appendix: Monotonicity of the Ratio Plot for Mix-
tures of Power Series Densities

Let us consider the mixed power series family

px(λ) =

∫ ∞

0

axt
xµ(t) λ(t)dt , (10)

where ax are known non-negative coefficients and µ(t) is the normalizing function

in the power series satisfying 1/µ(t) =
∑∞

x=0 axt
x. Note that the Power Series

includes the Poisson (ax = 1/x!, µ(t) = exp(−t)), the binomial, the geometric

or, more generally, the negative binomial with known shape parameter κ.

We will prove the monotonicity result (11) in Theorem 4 for which we use the

following version of the Cauchy-Schwarz inequality.

Lemma 1 For any random variable Z with density f(z) let g1(z) and g2(z) be

arbitrary functions with existing first and second moments. Then

[E(g1(Z)g2(Z)]2 ≤ E[g1(Z)]2E[g2(Z)]2.

Theorem 4 Let gx be given according to (9). Then, the following monotonicity
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result holds:

g1/a1

g0/a0

≤ g2/a2

g1/a1

≤ g3/a3

g2/a2

≤ ... (11)

Proof.

We show

[∫ ∞

0

txµ(t) λ(t)dt

]2

≤
∫ ∞

0

tx−1µ(t) λ(t)dt

∫ ∞

0

tx+1µ(t) λ(t)dt.

But this follows from Lemma 1 by choosing T = Z, g1(T ) =
√

T x−1µ(T ) and

g2(T ) =
√

T x+1µ(T ). �
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