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Abstract

Many natural and technological applications generate time ordered
sequences of networks, defined over a fixed set of nodes; for example
time-stamped information about ‘who phoned who’ or ‘who came into
contact with who’ arise naturally in studies of communication and
the spread of disease. Concepts and algorithms for static networks
do not immediately carry through to this dynamic setting. For ex-
ample, suppose A and B interact in the morning, and then B and C
interact in the afternoon. Information, or disease, may then pass from
A to C, but not vice versa. This subtlety is lost if we simply sum-
marize using the daily aggregate network given by the chain A-B-C.
However, using a natural definition of a walk on an evolving network,
we show that classic centrality measures from the static setting can
be extended in a computationally convenient manner. In particular,
communicability indices can be computed to summarize the ability of
each node to broadcast and receive information. The computations
involve basic operations in linear algebra, and the asymmetry caused
by time’s arrow is captured naturally through the non-commutativity
of matrix-matrix multiplication. Illustrative examples are given for
both synthetic and real-world communication data sets. We also dis-
cuss the use of the new centrality measures for real-time monitoring
and prediction.
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PACS: 89.75.Fb, 89.75.Hc, 84.40.Ua

1 Motivation

At the heart of network science are the well established mathematical fields
of deterministic and random graph theory, with concepts such as connect-
edness, pathlength, diameter, degree and clique playing key roles [8, 21].
The motivation for this work is that a new type of time-dependent network-
based object is emerging from a range of digital technologies that requires a
fundamentally different way of thinking.

In Figure 1 we show a simple example of an evolving network, where undi-
rected connections between a fixed set of seven nodes is recorded over three
days. If we regard the links as representing communication, for example, by
telephone or email, then we see that A may pass a message to C through the
links A ↔ B and B ↔ G on day 1 and then through the links G ↔ E and
E ↔ C on day 2. However, there is no way for C to pass a message to A.
Analogously, if the links represent physical proximity, then A may pass an
infection to C but C cannot cause A to be infected. This asymmetry, which
arises even though each individual network is symmetric, is caused by the
arrow of time. It is clear that simply aggregating the individual networks
would present a very misleading summary. This highlights a fundamental
gap between the static and dynamic cases, and points out the need for a
theory of evolving networks that

1. deals with the time ordering inherent in the edge lists when considering
communication around the network,

2. respects the inherent asymmetry imposed by the arrow of time, even
when each individual snapshot consists of an undirected network.

Many application areas give rise to connectivity patterns that change
over time in this manner. As well as the traditional context of individual-to-
individual contacts in epidemiology [16], the digital revolution is generating
novel large scale examples, including

• networks of mobile users with a link denoting current “interaction”, i.e.,
either copresence in a location or logged contact through their mobile
devices [25],
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Figure 1: Simple example of an evolving network.

• networks of online social users (e.g., Facebook) interacting through
messaging [25] or online chatting systems (e.g. MSN) [19],

• networks of travellers, vehicles or available routes defined over a dy-
namic transportation infrastructure [14, 18],

• networks describing transient social interactions over cyberspace [23],

• networks describing individuals’ attendance at regularly scheduled events
over time [1],

• correlated neural activity in response to a functional task [15].

In this work, we show how centrality concepts that have proved useful
for determining important nodes in static networks can be extended to this
dynamic setting. Our approach is related to that of [22, 23, 24], in the sense
that static graph concepts are directly generalized in a manner that respects
the time dependency, but we take a walk counting viewpoint and focus on
the type of centrality measures that are popular for social networks [17].
We also note that dynamic networks are treated in [20], but the emphasis
in that work is to discover communities, and the algorithm does not fully
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respect the time ordering of the data—for example, backward and forward
running clocks would be treated similarly.

Let us emphasize at this stage that unlike in the well-studied ‘network
growth’ context, where new nodes and accompanying edges are accumulated
and only the final, aggregate network is of interest [2, 21], we are concerned
here with a different time-dependent scenario where the population of nodes
remains fixed from the outset, and the graph evolves through the appearance
(birth) or the deletion (death) of edges.

2 Dynamic Centralities

To formalize our ideas, given a set of N nodes we consider an ordered sequence
{G[k]} for k = 0, 1, 2, . . . ,M , where each G[k] is an unweighted graph defined
over those nodes. We think of a corresponding ordered sequence of time
points t0 ≤ t1 ≤ · · · ≤ tM , so that G[k] records the state of the network at
time tk. Each graph may be represented by an N -by-N binary adjacency
matrix, A[k], where a nonzero i, j entry records the presence of a link from
node i to node j. We allow for A

[k]
ij 6= A

[k]
ji , so that the adjacency matrix may

be unsymmetric.
To address the question of how well information can be passed between

pairs of nodes, we generalize the static graph concept of a walk as follows.

Definition 1 A dynamic walk of length w from node i1 to node iw+1 consists
of a sequence of edges i1 → i2, i2 → i3, . . . , iw → iw+1 and a non-decreasing

sequence of times tr1 ≤ tr2 ≤ . . . ≤ trw such that A
[rm]
im,im+1

6= 0. We also
define the lifetime of this walk to be trw − tr1.

We note that an analogous definition of a dynamic path can be made by
insisting that no node is visited more than once—that concept was devel-
oped recently in [25]. In this work we focus on walks, rather than paths, on
the grounds that (a) information does not necessarily flow along geodesics
[3, 4, 13] and (b) walk counting is more tolerant of errors (missing and spu-
rious edges) than path counting. The walk viewpoint is also in line with the
influential work of Katz [17] for the study of static, undirected social net-
works. The explicit use of a walk based measure of centrality was proposed
for the static case in [9], and the idea has been shown to lead to very powerful
measures that are useful across a range of application areas [6, 10, 11]. A
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further benefit of the walk counting approach is that the combinatorics can
be conveniently described and implemented in terms of operations in linear
algebra, and we will show that this feature can be carried through to the
dynamic case.

We emphasize that the sequence of times tr1 , tr2 , . . . , trw in Definition 1
must be nondecreasing, in order to respect the arrow of time, but

• repeated times are allowed: for example, if r1 < r2 = r3 < r4 then
precisely two edges are followed at time tr2 ,

• times are not required to be consecutive: for example, if r2 > r1 + 1
then the networks corresponding to times in between tr1 and tr2 have
not been used during the walk.

Of course, depending on the application area, it may be reasonable to al-
ter these features; forcing at most one edge per time level and/or forcing
time levels to be consecutive. The ideas presented here could be adjusted
accordingly.

Our key observation, which generalizes a simple result from graph theory
(see, for example, [10, Lemma 1.1]) is that the matrix product A[r1]A[r2] · · ·A[rw]

has i, j element that counts the number of dynamic walks of length w from
node i to node j on which the mth step of the walk takes place at time trm .

Now, suppose that we wish to quantify the propensity for node i to com-
municate, or interact, with node j. For each length w = 1, 2, . . ., we may
count the number of dynamic walks from i to j, and this information may
then be combined into a single, cumulative total over all w. Allowing for
the fact that shorter walks are generally more important (since, for example,
the noise or cost of a transmission may increase with length), it makes sense
to scale the counts according to the walk length. A particularly attractive
choice is to downweight walks of length w by a factor aw, where 0 < a < 1.
Using our matrix multiplication setting, this leads to the task of summing
all products of the form

awA[r1]A[r2] · · ·A[rw], where r1 ≤ r2 ≤ · · · ≤ rw. (1)

Letting I ∈ RN×N denote the identity matrix, and noting that the resolvent
(I − aA)−1 has the expansion I +aA+a2A2 + · · ·, these arguments motivate
the matrix product

Q :=
(
I − aA[0]

)−1 (
I − aA[1]

)−1 · · ·
(
I − aA[M ]

)−1
. (2)
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The use of the identity matrices in (2) is crucial in our target case of large,
sparse networks—it allows a message to ‘wait’ at a node until a suitable
connection appears at a later time.

Overall, as required, the matrix Q records the sum of all terms of the
form (1). We may therefore use Qij as our summary of how well information
can be passed from node i to node j. The nth row and column sums

Cbroadcast
n :=

N∑
k=1

Qnk and Creceive
n :=

N∑
k=1

Qkn (3)

are centrality measures that quantify how effectively node n can broadcast
and receive messages, respectively1.

Because we are interested in the relative values of the centrality measures
across all nodes, rather than their absolute sizes, it makes sense to avoid
under or overflow in the computation of Q using an iteration such as

Qk+1 =
Qk
(
I − aA[k+1]

)−1

‖Qk (I − aA[k+1])
−1 ‖

,

where ‖ · ‖ denotes any convenient matrix norm. In our computations we
use the Euclidean norm.

These new centralities are a natural generalization of the type of mea-
sure developed in [17], which has widely influenced the study of static social
networks, [3, 4]—Cbroadcast

n and Creceive
n reduce to Katz’s centrality measure

when there is a single time point with undirected edges.
Two features of this new approach are immediately apparent.

• The basic computational tasks are linear system solves, which are con-
venient and efficient for large, sparse networks.

• The inherent asymmetry caused by the dynamics is captured directly
through the non-commutativity of matrix multiplication.

To help understand the role of the downweighting parameter, a, we first
note that for a fixed collection of network data, in the limit a → 0 the

1An alternative is to specify k 6= n in the summations, so that closed walks are not
included. However, such closed walks can play an important role as indicators of centrality
[12].
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centrality measures reduce to multiples of the aggregate out and in degrees,
shifted by unity;

lim
a→0+

Cbroadcast
n − 1

a
=

N∑
k=1

(
M∑

p=0

A[p]

)
nk

,

lim
a→0+

Creceive
n − 1

a
=

N∑
k=1

(
M∑

p=0

A[p]

)
kn

.

At the other extreme, to guarantee that each resolvent
(
I − aA[s]

)−1
in (2)

exists, we require that

a <
1

ρ(A[s])
, for all s,

where ρ(·) denotes the spectral radius; that is, the largest eigenvalue in mod-
ulus. Furthermore, choosing a close to maxs ρ(A[s]) will cause the correspond-
ing time ts to dominate the overall communicability matrix Q. In practice,
a suitable choice of a would be sufficiently below 1/ maxs ρ(A[s]) that the re-
sults are not sensitive to small changes in a and sufficiently above zero that
they do not collapse to the shifted aggregate out and in degrees.

Let us consider how the asymmetry of Q arises, and hence that between
the centrality measures, in the case of an evolving undirected graph. Here,
all the adjacency matrices are symmetric. For any N -by−N matrix, B, we
define S(B) := 1

2
(B + BT ) and AS(B) := 1

2
(B − BT ) to be the projections

of B onto the space of symmetric matrices and the orthogonal space of anti-
symmetric matrices, respectively. The anti-symmetric part of Q governs the
differences between the column and row sums of Q, since

2AS(Q).1 = Cbroadcast −Creceive,

where 1 = (1, 1, ..., 1)T , and Cbroadcast = (Cbroadcast
1 , ..., Cbroadcast

N )T are N -
vectors, with Creceive defined analogously.

Working with the non-normalized version of Q in (2), we have

Q = I + a

M∑
p=0

A[p] + a2

M∑
p=0

M∑
p′=p

A[p]A[p′] + O(a3).
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It follows that

S(Q) = I + a

M∑
p=0

A[p] + O(a2), (4)

and

2AS(Q) = a2

M∑
p=0

M∑
p′=p+1

[A[p], A[p′]] + O(a3), (5)

where [A, B] := AB − BA denotes the commutator of matrices A and B.
Since each separate graph is undirected, this shows that the leading anti-
symmetric terms arise only from interactions over distinct pair of time steps.

We also mention that this work focuses on the case of a fixed set of data.
In some applications, A[k] will itself be an aggregate of activity over a time
window; for example, in sections 3.2 and 3.3 we consider daily telephone
and email communication. If we reduce the time window down to hours,
minutes, seconds, . . . , then, eventually, the communicability matrix Q would
not change—when there is at most one link per time period then, intuitively,
no further walks can be created through refinement and in the linear algebra
setting of (2) no new non-indentity factors will arise. In this ultra-high-
frequency regime, if the edges are undirected then it would be natural to
replace (2) with the “at most one link per time window” version

Q :=
(
I + aA[0]

) (
I + aA[1]

)
· · ·
(
I + aA[M ]

)
,

so that simple, inter-window closed walks such as i 7→ j 7→ i are avoided.
However, the idea that the finest time level gives the most accurate picture
must be treated with caution—in the email context the order in which mes-
sages are read or acted upon does not necessarily reflect the order of arrival.

3 Computational Tests

3.1 Synthetic Data

Figure 2 shows a proof-of-principle test of the ideas behind (2). Here we
used N = 1001 nodes and simulated networks at 31 time points; that is, a
month of daily data. At each time point, for nodes 1 to 1000 we constructed,
independently, a classical, undirected, Erdos/Renyi random graph—each was
chosen uniformly from the collection of all graphs with 1000 nodes and 1000
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Figure 2: Scatter plot of broadcast and receive centralities (3) for a syntheti-
cally generated network of 1000 nodes, where node 1001 (circled) is designed
to have average activity, as measured by the aggregate degree, but enjoys
high quality connections.

edges. Then at each time the final node 1001 was connected to the two nodes
with largest degree. In this way, node number 1001 is distinguished only by
the time-sensitive ‘quality’ of its links—at each time tk it has a degree that
matches that of the average node, and it will never be among the highest
degree nodes at any time; so any static or aggregative measure is likely to fail
to indentify this node as being special. In the figure we have scattered the
(normalized) broadcast and receive centralities (3) for each node, with node
1001 identifed by a circle. We see that the new measures correctly identify
the fact that this node can communicate well, despite never enjoying a high
degree.
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3.2 Telecommunication Data

We now consider telecommunication data from [7]. We have daily “who
phoned who” information between 106 individuals based at M.I.T. over 365
days, with starting date 20th July 2004. Because phone conversations are
bi-directional, we have symmetrized the data, so A

[k]
ij = 1 if individuals i

and j had at least one interaction on day k. Figure 3 shows a summary of
the adjacency matrices aggregated into 28 day intervals (day 365 omitted).
We notice a decrease in activity outside the traditional academic teaching
periods.

The upper left picture in Figure 4 shows the daily edge count. For this
data the maximum spectral radius is maxs ρ(A[s]) = 8.23, giving an upper
limit of 0.12 for a, and the figure shows centrality results for a = 0.1. In
the upper right picture we scatter plot on a log-log scale the broadcast and
receive centralities (3). Here, and in all other scatter plots, the correlation
coefficient for a pair of raw (not log transformed) centralities is quoted to two
decimal places in the figure caption. We see that even though the individual
adjacency matrices are symmetric, there is no strong correlation between the
two centralities. The lower pictures scatter plot the broadcast and receive
centralities for each node against the total degree; that is, the sum of the
node’s degrees over all days. This makes it clear that the new centralities
are not simply repeating the degree information. The figure captions also
quantify the overlap between the sets of nodes ranked among the top twenty.
In Figure 4, the top twenty nodes ordered from twentieth place to first place
in terms of the three measures are

broadcast : 27, 32, 38, 44, 47, 7, 45, 6, 2, 4, 10, 3, 30, 49, 26, 1, 46, 8, 5, 102

receive : 94, 58, 76, 95, 15, 20, 12, 89, 93, 30, 19, 49, 6, 35, 39, 52, 42, 8, 13, 53,

totaldegree : 21, 9, 93, 100, 32, 10, 57, 22, 49, 25, 53, 23, 6, 40, 20, 3, 2, 4, 8, 5.

In this case the overlaps between broadcast & receive, broadcast & total
degree and receive & total degree contain 4, 9 and 6 nodes, respectively.
Only one node appears in all three top twenty lists.

Figure 5 examines the sensitivity of the results to the parameter a. The
upper pictures show how the centralities change from a = 0.1 to a = 0.05.
The top twenty broadcast lists have 14 nodes in common and for the receiver
lists the overlap is 16. The lower pictures show the change from a = 0.05
to a = 0.01, and in this case the top twenty overlap counts are 16 and 11.
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Figure 4: Daily M.I.T. telecommunication data. Upper right: total activity
per day. Upper left: Broadcast versus receive centrality; correlation 0.14, top
twenty overlap size 4. Lower left: broadcast centrality versus total degree;
correlation 0.50, top twenty overlap size 9. Lower right: Receive centrality
versus total degree; correlation 0.28, top twenty overlap size 6.
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Overall, the experiments indicate that the two new measures deliver distinct
information that is different from a raw degree count, and remains consistent
over a range of a values.

3.3 Email Data

We now consider a public domain data set concerning email activities of
Enron employees. In [5] the static, aggregate network was analysed, but
here we treat it as an evolving network. We constructed daily information
representing emails between 151 Enron employees, including to, cc or bcc.
So A

[k]
ij = 1 if employee i sent at least one message to employee j on day k, but

because this type of communication is unidirectional, we do not automatically
add the j 7→ i link. We have data over 1138 days, starting on 11th May 1999.
Many of the adjacency matrices are empty, stressing the importance of the
identity matrices in (2) for analysing sparse data. The upper left plot in
Figure 6 shows the daily edge count.

Using a = 0.2, in the upper right of Figure 6 we scatter plot broadcast
versus receive centralities, and in the lower plots we show broadcast versus
total out degree and receive versus total in degree. In this case the maximum
spectral radius is maxs ρ(A[s]) = 4.17, giving an upper limit of a = 0.24. As in
the previous test, we see that the two new centrality measures are distinct; in
particular, only two nodes appear in the overlap of top twenty broadcast and
receive and it is clear that some top receivers are very poor broadcasters.
The top twenty overlap between broadcast and total out degree is 11 and
between receive and total in degree in 6, showing that the new measures do
not simply reflect aggregate connectivity.

The upper plots of Figure 7 show how the new centralities change when
a is reduced from 0.2 to 0.1, indicating robustness in this parameter regime.
The lower plots show the effect of symmetrizing the data, so that j 7→ i
whenever i 7→ j, in the case a = 0.1. We then have maxs ρ(A[s]) = 8.57,
giving a an upper limit of 0.12. We see that the new dynamic centralities
are relatively insensitive to this transformation of the data, suggesting that
the dominant asymmetry is caused by time.
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Figure 6: Results for Enron email data. Upper left: total number of edges
per day. Upper right: Scatter plot of broadcast and receive centralities; cor-
relation 0.00, top twenty overlap size 2. Lower left: Scatter plot of broadcast
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Lower right: Scatter plot of receive centrality and total in degree; correlation
0.28, top twenty overlap size 6.

15



10
−50

10
0

10
−30

10
−20

10
−10

10
0

Broadcast

a = 0.2

a 
=

 0
.1

10
−50

10
0

10
−30

10
−20

10
−10

10
0

Receive

a = 0.2

a 
=

 0
.1

10
−50

10
0

10
−50

10
0

Broadcast Directed 

B
ro

ad
ca

st
 U

nd
ire

ct
ed

10
−50

10
0

10
−200

10
−100

10
0

10
100

Reciever Directed

R
ec

ei
ve

r 
U

nd
ire

ct
ed

Figure 7: Results for Enron email data. Upper left: Scatter plot of broadcast
centralities for a = 0.2 and a = 0.1; correlation 1.00, top twenty overlap size
18. Upper right: Scatter plot of receive centralities for a = 0.2 and a = 0.1;
correlation 0.97, top twenty overlap size 14. Lower left: Scatter plot of broad-
cast centralities for directed and undirected networks for a = 0.1; correlation
0.82, top twenty overlap size 12. Lower right: Scatter plot of receive central-
ities for directed and undirected networks for a = 0.1; correlation 0.76, top
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4 Discussion

The new centrality measures introduced here can be computed at any point
in time, and hence they may be used to monitor network behaviour dynami-
cally. A practical problem with evolving networks is that of an observer who
may be able make some kind of intervention; for example by injecting some
information (marketing content, rumours, propaganda, misinformation) at
key nodes at some instant, or by isolating or even removing a node. This
raises the issue of predicting future network behavior. We will briefly discuss
an approach based on the observer’s expectation of the future communica-
bility: an estimate of Q going forwards.

Suppose we have a stochastic model for the evolution of the network based
on historical data and some specific knowledge. More precisely, suppose
we have P (A[p+1]|Hp), the conditional distribution for the adjacency matrix
at the next time step given its entire history up to and including step p,
so Hp = {A[p], A[p−1], A[p−2], . . .}. Then applying this model iteratively we
obtain the conditional distribution for A[p′] for any p′ > p; that is, P (A[p′]|Hp).

Let us write E(A[p′]|Hp) to denote the corresponding expected value of
the future adjacency matrix, given Hp.

Now suppose we have observed the network up to and including some
time step, say p = 0 for convenience. Then from (4) and (5) we can calculate
estimates for the expectation of the communicability over the current and
future time steps. We have the small a approximations

E(S(Q)|H0) = I + a
M∑

p=0

E(A[p]|H0) + O(a2),

and

2E(AS(Q)|H0) = a2

M∑
p=0

M∑
p′=p+1

E([A[p], A[p′]])|H0) + O(a3).

These estimates may be accessible in practice, depending on the complex-
ity and memory dependence of the model. For example, suppose we make
the dramatically simplifying assumption that our model is a symmetric, edge
independent Markov process. Letting αij and ωij denote the stepwise birth
and death rates for the evolution of the (i, j)th edge, we have A[p] → A[∞]

as p →∞, where A
[∞]
ij = αij/(αij + ωij). In this Markovian case we can also

replace the history, Hp, by the single previous step A[p]. Then considering
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time steps 0 up to M we have

E(Q|A[0]) = I + a
(
RM ◦ (A[0] − A[∞]) + (M + 1)A[∞]

)
+ O(a2),

where RM is the symmetric matrix given by (Rp)ij = (1 − (1 − αij +
ωij)

M+1)/(αij+ωij), and ◦ denotes componentwise multiplication. This quan-
tifies the relative contributions to Q made by the initial condition and the
long term expected equilibrium value for each edge. So if the observer wishes
to intervene based on the dominance of some large row or column sums of
Q, we can see that this may require such action sooner or later depending
on the current state of the network and the longer term expectation.

So, overall, we believe that the new class of walk-based centrality mea-
sures introduced here offers great potential as a computationally and ana-
lytically attractive means to treat time-stamped network sequences, both for
summarizing existing data sets and real-time actioning.
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