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Abstract

A moving mesh approach to the numerical modelling of problems governed by

nonlinear time-dependent partial differential equations (PDEs) is applied to

the numerical modelling of glaciers driven by ice diffusion and accumulation/ablation.

The primary focus of the paper is to demonstrate the numerics of the moving

mesh approach applied to a simple standard PDE model in reproducing

the main features of glacier flow, including tracking the moving boundary

(snout). A secondary aim is to investigate waiting time conditions under

which the snout moves.
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1. Introduction

Computational studies of glaciers are particularly challenging to the modeller.

Although ice sheet models are well-established, prediction of profiles and

grounding movement are infeasible analytically and difficult to achieve numerically

Payne and Vieli [5]. Ice moves in a similar manner to a viscous fluid,

though with a very high viscosity approximately 1015 times that of water

[2]. However, viscous theory cannot solely be used to describe flow, since

glaciers are unique in experiencing basal sliding. This can be caused in two

ways, via friction where the ice makes contact with the ground as it is flowing,
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or geothermal heat below the surface.

In order for glaciers to form they first need enough snow over the winter

period to be able to survive through the summer, i.e. more accumulation of

snow than is lost through melting and evaporation. This needs to be repeated

over a number of succesive years, and as more snow builds up, the weight

increases and pressure compresses the firn (old snow) into ice. Once this ice

is thick enough, gravity, amongst other forces, causes the ice to flow. This is

a long, complex process which takes less time in regions where temperature

changes quicker, such as the Alps and North America. [2]

On a global scale, ice quantities vary considerably. At present glaciers make

up around 2% of the Earths water, but during an ice age this vastly increases.

Either way they have a large impact on the climate system, and are becoming

increasingly affected by climate change. If all this ice melted into the oceans,

there would be a sea level rise of around 70m. We are interested in glaciers

for more than just the climate change reasons, as they can have a large effect

on the local terrain, causing events such as landslides and flash floods.

We consider a simple PDE model of glacier movement in a moving frame

of reference, discretise it and use a local mass balance principle to define

a velocity in order to move the mesh. We note that, as in other nonlinear

diffusion problems, glaciers experience a waiting time before they begin to

move. We suggest a mechanism whereby waiting ends and the snout moves.

Finally, consideration is given to ways the model may be extended, and the

impacts that these extensions may have on the results we have obtained,

leading the way to potential further work to be undertaken on the problem.

One of the main concepts to take into consideration when modelling glaciers
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is the idea of mass balance, and where on the glacier mass is gained or lost.

Generally, near the source of the glacier, the accumulation of snow is greater

than the ablation (melting/evaporation), so the mass increases. Further away

the ablation becomes greater than the accumulation, and the mass decreases.

However ice can build up in the lower zone due to ice flow coming from the

glacier’s upper zone. The front-most end of the glacier is known as the snout,

which rarely moves straight away; it waits until the velocity behind it is great

enough to push it down the mountain. It is this feature which is of special

interest.

2. Model Description

Consider a glacier on a flat bed occupying the region x ∈ [0, b(t)] as shown

in Fig.1. Let H(x, t) represent the thickness of the ice. At the ends of this

domain we have two boundary conditions, H = 0 at the moving bounary

x = b(t), and ∂H
∂x

= 0 at the fixed point x = 0.

We consider a simple PDE model for glaciers proposed by Oerlemans [3] in

1984.

2.1. Model Derivation

In one dimension the continuity equation for ice can be written as

∂H

∂t
= −

∂(Hu)

∂x
+ s(x), (1)

where H is the ice thickness, s(x) = sa(x)− sb(x), with sa the accumulation

rate of snow and sb the basal melting rate. Also u is defined as the mean
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Figure 1: One-Dimensional Domain

depth integrated horizontal velocity given by [7]

u =
2AH

n + 2
τn
dx, (2)

with τdx the stress term, and parameters A and n taken from Glen’s flow

law, an established general law for steady state ice deformation [6]. From

Van Der Veen[8] the driving stress is given by

τdx = −ρgH
∂h

∂x
, (3)

with ρ the ice density, g representing gravity, and h equal to ice thickness plus

the surface elevation. On a flat bed there is no surface elevation so we may

put h = H. From (2) and (3) we get an equation for the depth integrated

horizontal velocity

u = −
2AH

n + 2
ρngnHn

(
∂H

∂x

)n

. (4)

The parameters A, n, ρ and g are set as constant to simplify the model,

giving

u = −cHn+1

(
∂H

∂x

)n

, (5)
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where c is a single positive constant parameter.

Expressing the velocity in this form may present problems when dealing with

the boundary condition H = 0 at x = b(t), apparently giving a zero velocity

at the right hand boundary and resulting in a glacier that will never move,

which we know physically is not the case. However it is perfectly possible for

u to be non-zero as long as H4H3
x is finite, which requires Hx to be infinite.

From Roberts [7] we set c = 0.000022765 in standard SI units, and n = 3.

For the most part though we are not concerned with physical values for

the variables, but more with the methodology and the theory behind why we

might see a certain behaviour, hence all the variables are non-dimensionalised.

Substituting the velocity into equation (1) we get the model equation

∂H

∂t
= c

∂

∂x

[
Hn+2Hn

x

]
+ s(x), (6)

which incorporates non-linear diffusion and a source term. In this paper we

set sb(x) ≡ 0, making s(x) = sa(x), although the non-zero basal sliding case

is considered in [4].

2.2. Mass Balance

An important physical property concerns the integral of the ice thickness

over the whole domain (the volume), i.e.

∫ b(t)

0

H(x, t)dx = θ(t), say. (7)
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From (1), using Leibniz’s integral rule, and applying the boundary conditions

d

dt

∫ b(t)

0

H(x, t)dx =

∫ b(t)

0

∂H

∂t
dx + H(b(t), t)

db(t)

dt

= −

∫ b(t)

0

∂

∂x
[Hu]dx +

∫ b(t)

0

s(x)dx

= − [Hu]b(t)0 +

∫ b(t)

0

s(x)dx

=

∫ b(t)

0

s(x)dx, (8)

the physical equivalent of which states that any change in the integral of ice

thickness over the whole glacier, or equivalently any change in the ice volume,

is due only to the snow term, which represents the net accumulation/ablation

of snow over the whole glacier.

3. Snout Behaviour

From (5), with n = 3 we derive the useful form

u = −c(H4/3Hx)
3 = −

27

343
c
[
(H7/3)x

]3
, (9)

with n = 3.

When expressing the velocity in this manner it is interesting to substitute an

expression for H that has the right general shape and satisfies the boundary

conditions, i.e.

H = (1 − x2)α (10)

where α > 0, for which

H
7

3 = (1 − x2)
7α
3

(H7/3)x = −2x.
7α

3
(1 − x2)

7α
3
−1. (11)
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Figure 2: Initial values for α = 1 (solid) and α = 3/7 (dashed). (a) shows the ice thickness

with evidence of the infinite gradient in the 3/7ths case while (b) shows initial velocity,

with an obvious difference at the right hand boundary

The velocity (9) then has some interesting properties as x → 1, depending

on the value of α.

Case 1:
7α

3
> 1, ⇒ (H7/3)x is zero (12)

Case 2:
7α

3
< 1, ⇒ (H7/3)x is infinite (13)

Case 3:
7α

3
= 1, ⇒ (H7/3)x is finite (14)

In case 1, from equation (9), the initial velocity of the snout of the glacier is

zero, and it remains stationary. In case 2 the velocity is infinite, which is not

physical. In case 3 we get a finite velocity value at the snout when α = 3
7
,

and the right hand boundary moves. From this analysis we can expect H

to be asymptotically of the form H = (1 − x2)3/7 for (1 − x) small at the

moment of initial movement, i.e. if H approaches case 3 asymptotically at

the snout then the boundary will move.
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4. Subdomain mass balance (SDMB)

Since the problem involves a moving boundary, a natural description is to

use a moving framework, for which we define a velocity v(x, t) at any arbitrary

point x̂ [1]. To define this velocity we assume that equation (8) holds in any

moving subdomain [0, x̂(t)] of [0, b(t)]. In physical terms this velocity v is such

that the ice volume changes only due to the local accumulation/ablation of

snow. In equation form we assume that

d

dt

∫ x̂(t)

0

H(x, t)dx =

∫ x̂(t)

0

s(x)dx (15)

for each subdomain (0, x̂(t)).

By Leibniz’s integral rule, making use of (6) and the boundary conditions

given in Section 2,

d

dt

∫ x̂(t)

0

H(x, t)dx =

∫ x̂(t)

0

∂H

∂t
dx + H(x̂(t), t)

dx̂(t)

dt

∣∣∣∣∣

x̂

0

= cH5H3
x|x̂ +

∫ x̂(t)

0

s(x)dx + H(x̂(t), t)
dx̂(t)

dt
. (16)

Therefore the assumption (15) is equivalent to

∫ x̂(t)

0

{
cH5H3

x + H(x̂(t), t)
dx̂(t)

dt

}
dx = 0

which, since x̂(t) is arbitrary, gives

cH5H3
x + H(x̂(t), t)

dx̂(t)

dt
= 0.

Hence the velocity v = dx̂/dt is driven only by the diffusion term and we

obtain

v =
dx̂(t)

dt
= −

cH5H3
x

H
= −cH4H3

x = −c2

[
(H7/3)x

]3
(17)

8



where c2 = (3/7)3c. Note that this velocity is the same as taking v to be

the model velocity (5) at each of the nodes. Reversing the argument implies

that the assumption (15) and the velocity (5) are equivalent.

5. Numerical Method

Equation (6) is generally impossible to solve analytically, so we seek a

numerical approximation via a mesh. To do this we discretise (15) and (17).

The mesh positions are updated at every time step.

Computation is performed with initial conditions (10) with α set to 1.

The snow term is approximated for all time by the linear function (as in Van

Der Veen [8])

s(x) = e(1 − dx), (18)

where d and e are the snow parameters, set to be 0.5 and 0.05 respectively.

The model is run for a sufficient length of time for the boundary to wait,

then move. The initial mesh is chosen to be evenly spaced.

5.1. Explicit time-stepping

To advance the node positions x̂i from the velocity (17) we use an explicit

Euler scheme. Letting k denote the time discretisation level,

x̂k+1
i − x̂k

i

∆t
= −c2

[[
(H

7/3
i )x

]3
]k

,

(19)
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Therefore, dropping the hat notation for convenience, at each time step we

update each mesh point by:

xk+1
i = xk

i − c2∆t

[[
(H

7/3
i )x

]3
]k

(20)

Since we do not seek high levels of accuracy Euler time-stepping is sufficient,

provided the time step is suitably small to ensure stability.

To determine the updated ice thickness we use the same time-stepping scheme

on equation (15). Note that the limits have been chosen to give an incremental

form. [∫ xj+1

xj−1
Hdx

]k+1

−
[∫ xj+1

xj−1
Hdx

]k

∆t
=

∫ xj+1

xj−1

sdx.

Using the midpoint rule we obtain the approximation

(xk+1
j+1 − xk+1

j−1)H
k+1
j − (xk

j+1 − xk
j−1)H

k
j = ∆t(xk

j+1 − xk
j−1)s

k
j ,

giving

Hk+1
j =

(xk
j+1 − xk

j−1)

(xk+1
j+1 − xk+1

j−1)
(Hk

j + ∆tsk
j ). (21)

5.2. Results

The model is run with 51 mesh points (∆x = 0.02), with a time step

∆t = 0.005.

Varying the parameter α in the initial conditions shows the snout profile

behaviour of Section 3. In Fig. 2(a) we see that when α = 3/7 the gradient

is effectively infinite at the boundary, while a comparison case of α > 3/7

shows a finite gradient. Similarly, looking at the initial velocities for each of

the two cases we see in Fig. 2(b) that the boundary does not move when

α > 3/7, while in the comparison case it does. Also of note is that the peak
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velocity is at the snout of the glacier under the required condition, compared

with near the centre for the stationary boundary case. This suggests that

over time the peak velocity moves towards the boundary before the the glacier

begins to move.

We may also look at the results over a period of time. For the experiments

shown, the value of α has been set to 3/7 and 60000 steps were taken, or

300 time units. The results are outputted every 5000 steps. From Fig.3(a),

the change in ice thickness is initially dominated by the build-up of snow.

Even though the boundary is already moving, it is not until a larger amount

of snow has fallen that the speed notably increases and the boundary moves

further away. It is here that the diffusion term begins to dominate the flow.

Similarly, the velocity (Fig. 3(b)) builds up more on the boundary initially,

then as the outward movement speeds up, the peak velocity starts to return

to the centre of the glacier. This is due to the glacier entering a region

with less accumulation of snow, slowing down the end points. Eventually the

model will reach an equilibium where the accumulation/ablation balances

the diffusion.

6. Waiting Time

We now discuss in more detail the mechanism whereby the snout waits

and then moves. We define b0 as the initial location of the boundary, i.e.

b(0).

Since initally H > 0 for x < b0 and H = 0 at x = b0 ∀ t, the function

H(x) in the vicinity of x = b is of the form

H(x) = (b0 − x)αg(x) (22)
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Figure 3: Numerical results using explicit time-stepping. (a) shows the evolution of the

ice thickness and (b) shows the corresponding evolution of velocity.

to leading order in (b0 − x), where α is positive and g(x) > 0. Note that for

the initial conditions in the computations g(x) = (1 + x)α. Hence to leading

order in (b0 − x),

H(x)7/3 = (b0 − x)7α/3G(x) (23)

where G(x) = (g(x))7/3 > 0.

The velocity (17) then takes the form

v(x) = cα3(b0 − x)7α−3 {G(x)}3 (24)

to leading order in (b0 − x). When α = 3/7 the velocity reduces to

v(x) = c(3/7)3 {G(x)}3 . (25)

We see from (24) that v(b0) = limx→1 v(x) = 0 when α > 3/7, while from (25)

v(b0) is non-zero when α = 3/7. The discrepancy indicates a discontinuity in

v(x) at α = 3/7 as x → b0. Fig. 4 shows a schematic plot of v(x), normalised

by c{G(x)}3, against x for small (b0 − x) and various α, showing how the
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discontinuity forms. Since the velocity must remain continuous for physical

reasons, the limit α = 3/7 cannot be attained and the snout must move.

We now consider the transition in time of v(x, t) to α = 3/7 from above

for small (b0 − x) under the subdomain mass balance assumption (15). To

leading order in (b0 − x) the time-varying form of (23) is

H(x, t) = (b0 − x̂)αg(x, t) (26)

where x̂ = x(t), while that of (24) is

v(x, t) = cα3(b0 − x̂)7α−3 {G(x̂, t)}3 . (27)

We consider the evolution of the velocity under the subdomain mass

balance assumption (15) applied to the interval (x, b0), where (b0 − x̂) is

small. Let θ(t) be the positive mass in the triangle consisting of points

(x̂, H(x, t)), (x̂, 0) and the fixed point (b0, 0). To leading order in (b0 − x̂),

therefore,

θ(t) =
1

2
(b0 − x̂)H(x, t). (28)

Hence, from (26), to leading order in (b0 − x̂),

1

2
(b0 − x̂)α+1g(x̂, t) = θ(t)

so that on the trajectory given by (28) from (27) the velocity at time t can

be written

v(t) = cα3(b0 − x̂)7α−3

(
2θ(t)

(b0 − x)α+1

)7

= cα3(2θ(t))7(b0 − x̂)−10 (29)

and thus on the trajectory given by (28)

α3 =
1

c

1

(2θ(t))7
(b0 − x̂)10v(t)
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Since dx̂/dt = v(t), differentiating α3 with respect to time along this

trajectory,

3α2 dα

dt
= −

1

c

10

(2θ(t))7
(b0 − x̂)9v(t)2

to leading order in (b0 − x̂), assuming that dθ/dt is of the same order as

θ(t) and dv/dt is of the same order as v(t). Thus dα/dt is strictly negative.

Hence, for sufficiently small (b0 − x̂), α is strictly decreasing and when α

reaches 3/7 the boundary moves.

It is possible to interpret v(x, t) in terms of (curved) characteristics.

Although v is given explicitly by (17) it is useful to consider a PDE satisfied

by v. Differentiating v we get

vx = −3cH4H2
xHxx − 4cH3H4

x (30)

vt = −3cH4H2
xHxt − 4cH3H3

xHt (31)

To keep equation (31) in terms of space derivatives, we can substitute equation

(17) into the original equation (1), with u replaced by v, giving

Ht = s − (Hv)x

= s − Hxv − Hvx, (32)

which we can differentiate to get

Htx = sx − Hxxv − 2Hxvx − Hvxx. (33)

The expressions for Ht and Htx can be substituted into (31) to give

vt = 3cH5H2
xvxx − 10vvx − vxv − 3cH4H2

xsx − 4cH3H3
xs,
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and finally rearranged in the form of a Burgers-like equation with additional

source terms,

vt + 11vvx = 3cH5H2
xvxx − 3cH4H2

xsx − 4cH3H3
xs. (34)

Hence
dv

dt
= 3cH5H2

xvxx − 3cH4H2
xsx − 4cH3H3

xs (35)

along the (curved) characteristics given by

dx

dt
= 11v(x, t) (36)

where H is obtained from dH/dt = Ht +(dx/dt)Hx using (36). The presence

of the dissipative terms in dv/dt prevents a shock forming in the interior

but from (36) the characteristics become infinitely steep as v(x, t) → 0 at

the boundary x = b0, consistent with the formation of the discontinuity in

v(x, t) at the snout.
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Figure 4: Plots of v against x for α = 15/28, 1/2, 13/28, 25/56, 49/112, 3/7 showing

formation of the discontinuity
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7. Discussion

We have seen that a moving mesh method based on local mass balance

works well for a simple one-dimensional glacier. We also analysed the conditions

required for the snout to move, which required an infinite slope condition to

be met asymptotically at the boundary in order for the velocity at this point

to be non-zero. For an initial condition in the form of the quadratic function

(10) with α > 3/7, we were able to simulate the qualitative waiting time

behaviour of the glacier as the power of α evolved to 3/7.

The model (6) works well for glaciers that are advancing, but since the

velocity is proportional to the negative slope at the snout the glacier cannot

retreat.

However, it is observed that glaciers also break-up, where large sections of

ice completely break off from the main part and drift away or melt which,

although presenting problems for a depth-averaged model such as the one

considered here with the ice thickness vanishing at points other than at the

boundary, might see a positive Hx gradient in certain areas, which would

generate a negative velocity. A mechanism to allow these events to occur

needs investigating.

A number of other avenues await exploration. The model we have been

analysing throughout is only a 1D depth-averaged model, so a logical next

step is to take the model into more dimensions. This could mean one of two

things. The first is to consider a fully 3D model of the glacier instead of depth

averaging. When the velocity varies with height we should see quite different

movement which would require a far more complex model with mesh points

moving in the vertical in addition to the x direction. We would expect the
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top and bottom of the glacier to be moving quicker than the middle section,

and the impact of basal sliding could then be analysed more effectively.

Alternatively we could keep the depth averaged vertically and consider the

domain in the (x, y) plane, as opposed to a cross-section in the x-plane as

is modelled currently. This will require additional boundary conditions at

the sides of the glacier, the type depending on whether the boundary is a

solid wall (no flux condition) or whether the glacier just curves to the ground

(H = 0). The model itself then takes the form

Ht(x, y, t) = ∇.
[
H(x, y, t)5∇H(x, y, t)3

]
+ s(x, y). (37)

A viable 2D numerical model using the same moving mesh approach is

possible using finite element approximation.

Steering away from H = 0 at the snout, Payne et. al. [5] consider the

different boundary conditions which occur when a glacier reaches the edge

of a cliff or enters the ocean, as well as different representations of u. For

cases where the glacier mostly sits on the water (ice shelf) there is the added

problem of buoyancy. Payne et. al. propose a maritime boundary condition

of the form
∂v

∂x

∣∣∣∣
shelffront

= A

[
1

4
ρig

(
1 −

ρi

ρw

)]n

hn, (38)

where ρw is an additional variable introduced for the density of the water.

A further objective in this ongoing work is to introduce the concepts

of Data Assimilation. Here the aim is to set up an inverse problem to

predict internal variables and model forcing using observations (mostly taken

remotely) to further improve the model accuracy.
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