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Abstract

Implementations of incremental variational data assimilation require

the iterative minimization of a series of linear cost functions. The accuracy

and speed with which these linear minimization problems can be solved

is determined by the condition number of the Hessian of the problem. In

this study we examine how different components of the assimilation sys-

tem influence this condition number. Theoretical bounds on the condition

number for a single parameter system are presented and used to predict

how the condition number is affected by the observation distribution and

accuracy and by the specified lengthscales in the background error co-

variance matrix. The theoretical results are verified in the Met Office

variational data assimilation system, using both pseudo-observations and

real data.

1 Introduction

An important component of numerical weather prediction (NWP) systems is
the determination of an appropriate set of initial conditions from observations
by means of techniques of data assimilation. In general observations of the at-
mosphere are only indirectly related to model variables and are many fewer in
number than the number of model states that need to be initialized. Data assim-
ilation techniques aim to combine these measurements with a previous forecast,
or background field, in order to provide the best estimate of the model state
given all the available information. One such technique is that of variational
data assimilation, which defines the best estimate as that which minimizes a
nonlinear least squares cost function representing the error between the solution
and the observations and the error between the solution and the background.
The weights in the cost function are defined by appropriate covariance matrices.
Under certain assumptions this ensures the solution provides the maximum a
posteriori Bayesian estimate of the system state (Lorenc, 1988).
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Variational data assimilation is the method of choice for many current NWP
systems, including that of the Met Office, the European Centre for Medium-
range Weather Forecasting (ECMWF) and several other centres (Rawlins et
al., 2007; Rabier et al., 2000; Gauthier and Thépaut, 2001; Gauthier et al.,
2007; Huang et al., 2009). It is usually implemented using the incremental
formulation, which approximates the minimization of the nonlinear cost function
by a sequence of minimizations of linearized cost functions and is equivalent to a
Gauss-Newton procedure (Courtier et al., 1994; Lawless et al., 2005). This has
the advantage of allowing further approximations in the solution procedure in
order to make the problem computationally feasible. The minimization of each
linearized problem is performed using an iterative method, such as a conjugate
gradient technique.

The speed and accuracy with which a solution to each linear minimization
problem can be found is determined by the condition number of the Hessian
of the linearized problem. A large condition number implies that the solution
will be very sensitive to small changes in the data and iterative methods may
need many iterations to reach the solution. Since in practice the number of
iterations that can be performed is limited by operational time requirements, it
is important that the system is well-conditioned, so that a good solution can be
found in relatively few iterations.

Operationally the linear minimization problem is preconditioned by formu-
lating the problem in variables whose errors are assumed to be uncorrelated.
Bounds on the conditioning of the preconditioned and unpreconditioned systems
found in Haben et al. (2009) for a one-parameter periodic system indicated that
the preconditioned system has, in general, a signicantly reduced condition num-
ber compared to that of the unpreconditioned system. This has been supported
with experiments using the operational systems at the Canadian Meteorological
centre and the UK Met Office that have shown that preconditioning significantly
improves the rate of convergence of the inner-loop minimisation (Lorenc, 1997;
Gauthier et al., 1999). Once the system has been transformed using this variable
transformation, further preconditioning techniques may then be applied.

The main factors that influence the conditioning of the preconditioned sys-
tem have only been partially studied. In Andersson et al. (2000) it was shown
for a simple 2 grid point system with multiple observations that the condition
number of the preconditioned system was proportional to the background error
variance and the number of observations at the grid points, while being inversely
proportional to the error variances on the observations. An experiment with the
ECMWF minimisation scheme showed, after establishing that the dense, accu-
rate surface observations over Europe dominated the conditioning, that doubling
the observation error variance reduced the conditioning of the system, in rough
agreement with the results from the simple model (Trémolet, 2007). In Haben
et al. (2009) the effect of the observation error on the condition number was
confirmed for a more general case and it was also shown that increasing the
separation of the observations causes a reduction in the condition number.

In this paper we present theory for the conditioning of the variational data
assimilation problem and use it to interpret the conditioning of the Met Of-
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fice assimilation scheme. In particular we show, using both theory and the
operational system, that the conditioning of variational data assimilation is de-
pendent on the spacing and error variance of the observations. We begin in
section 2 where we set out the variational assimilation problem. In section 3 we
present theoretical results concerning the conditioning of the problem and illus-
trate them using a simple example. The conditioning of the Met Office system
is investigated in section 4, using both pseudo-observations and real observa-
tions. We show how the condition number is dominated by the dense, surface
observations over Europe and how this can be explained using the theory we
have developed. Finally we make some concluding remarks in section 5.

2 Background

2.1 Incremental variational data assimilation

In four dimensional variational data assimilation (4DVar) we assume that we
have observations yi at times ti, i = 0, . . . , n over a time window [t0, tn], with
observation error covariance matrices Ri, and a background state xb

0 at the
initial time t0, with background error covariance matrix B. Then the analysis
is defined as the state which minimizes the nonlinear cost function

J(x0) =
1

2
(x0 − xb

0)
T B−1(x0 − xb

0)

+
1

2

n
∑

i=0

(Hi(xi) − yi)
T R−1

i (Hi(xi) − yi), (1)

subject to the states xi satisfying the nonlinear forecast model

xi = M(ti, ti−1,xi−1), (2)

for i = 1, . . . , n. The operator Hi is the observation operator that maps the
model state to observation space at time ti. For the case where n = 0 and all
the observations are at the initial time, the scheme is known as three-dimensional
variational data assimilation (3DVar) and the model equation (2) plays no part
in the minimization problem.

In many operational NWP centres variational data assimilation has been
implemented using the incremental formulation, in which the minimization of
(1) is replaced by the minimization of a sequence of linearized cost functions
(Courtier et al., 1994). The nonlinear cost function (1) is linearized about the
model trajectory xi, i = 1, . . . , n produced from the current estimate of the
initial state x0. This linearized cost function is minimized to find an increment
δx0 at time t0, in what is known as an inner loop step, and the increment is
then used to improve the estimate of x0 in an outer loop step. This method
is equivalent to applying an approximate Gauss-Newton method to solve the
original nonlinear problem (Lawless et al., 2005; Gratton et al., 2007).
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In the case of incremental 4DVar the linearized minimization problem takes
the form

J̃(δx0) =
1

2
[δx0 − (xb

0 − x0)]
T B−1[δx0 − (xb

0 − x0)]

+
1

2

n
∑

i=0

(Hiδxi − di)
T R−1

i (Hiδxi − di), (3)

subject to the perturbations δxi satisfying the linearized model equations

δxi = M(ti, ti−1) δxi−1, (4)

where di = yi −Hi(xi) and the operators Hi and M(ti, ti−1) are the Jacobians
of the nonlinear operators Hi and M(ti, ti−1,xi−1) respectively, calculated at
the current estimate of the trajectory. For the case of 3DVar we have n = 0 and
there is no evolution of the perturbation by the linear model (4).

In practice it is not possible to formulate and minimize the linear cost func-
tion (3) directly. The background error covariance matrix B cannot be repre-
sented explicitly and must be built implicitly. Furthermore, the minimization
of the cost function as written has been shown to give slow convergence in
practice (Lorenc, 1997; Gauthier et al., 1999) and its ill-conditioning has also
been demonstrated theoretically for common covariance structures (Haben et
al., 2009, 2010). For these reasons a variable transformation is defined of the
form δz = Uδx, where the variables δz and the transformation U are chosen
to ensure that the new variables are uncorrelated (Lorenc et al., 2000; Cullen,
2003; Bannister, 2008; Katz et al., 2010). Implicitly this is equivalent to pre-
conditioning by U−1 = B1/2 and the cost function in the transformed variables
is given by

Ĵ [δz0] =
1

2
[δz0 − (zb

0 − z0)]
T [δz0 − (zb

0 − z0)]

+
1

2

n
∑

i=0

(HiB
1/2δzi − di)

T R−1
i (HiB

1/2δzi − di), (5)

where zb
0 = B−1/2xb

0, z0 = B−1/2x0 and δzi = B−1/2δxi.

2.2 Conditioning of the variational problem

The accuracy and efficiency with which the inner minimization problem can
be solved is determined by the condition number of the Hessian of the cost
function. In this study we consider the condition number of a matrix defined
in the matrix 2-norm, which for a symmetric matrix is equal to the ratio of the
largest and smallest eigenvalues of the matrix. The condition number measures
the sensitivity of the solution to small perturbations in the input data (Golub
and Van Loan, 1996). If the condition number is large then small changes in the
inputs can lead to large variations in the solutions. Moreover, a large condition
number can lead to a slow rate of convergence of iterative minimization methods.
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For example, the rate of convergence of the conjugate gradient method can be
bounded in terms of the condition number of the Hessian (Golub and Van Loan,
1996, Theorem 10.2.6).

For the preconditioned variational cost function (5) the Hessian is given by
the expression

S = I +

n
∑

i=0

B1/2M(ti, t0)
T HT

i R−1
i HiM(ti, t0)B

1/2, (6)

where M(ti, t0) = M(ti, ti−1)M(ti−1, ti−2) . . .M(t1, t0). In general we have
fewer observations than variables we are trying to estimate and so the second
term in the expression (6) is not full rank. In this case the smallest eigenvalue
of S is one and the condition number is equal to the largest eigenvalue. We now
investigate the different factors that affect the conditioning of the preconditioned
Hessian. We first present the conditioning theory using a simple system.

3 Conditioning for a single parameter system

3.1 Theory

We consider the case of 3DVar applied to a single parameter system on a one-
dimensional periodic domain, discretized using N grid points ξi, i = 1, . . . , N .
For this case the preconditioned Hessian (6) reduces to

S = IN + B1/2HT R−1HB1/2. (7)

We assume we have a set of p < N direct observations of the parameter at grid
points, so that HT H is a diagonal matrix, where the diagonal element is equal to
one if that component of the state is observed and zero otherwise. We further
assume the observation errors are uncorrelated with error variance σ2

o , which
implies that the observation error covariance matrix R = σ2

oIp. We write the
background covariance matrix in the form B = σ2

bC where C is the background
error correlation matrix with components ci,j and σ2

b denotes the background
error variance. We assume that the correlation structures are homogeneous and
isotropic, so that the coefficients ci,j depend only on the distance between points
ξi and ξj . Then, under the assumptions given we can show that the condition
number of the matrix (7) satisfies

1 +
σ2

b

σ2
o

β ≤ κ(IN + B1/2HT R−1HB1/2)

≤ 1 +
σ2

b

σ2
o

||HCHT ||∞

= 1 +
σ2

b

σ2
o



max
i∈J

∑

j∈J

|ci,j |



 , (8)
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where β = 1
p

∑

i,j∈J ci,j , and J is the set of indices of the variables that are

observed. A proof of this result is given in Haben et al. (2009).
From this bound we can understand the effect of the observation accuracy

and spacing on the conditioning of the preconditioned 3DVar problem. We note
first that, as the observations become more accurate and σ2

o decreases, both the
upper and lower bounds in (8) increase. Hence an increase in accuracy of the
observations results in a more poorly conditioned Hessian. Furthermore, the
condition number of the Hessian is of the form

κ(IN + B1/2HT R−1HB1/2) ≡ λmax(IN + B1/2HT R−1HB1/2)

= 1 +

(

σ2
b

σ2
o

)

λmax(C
1/2HT HC1/2), (9)

where λmax indicates the largest eigenvalue of the matrix. In the case where
the second term in (9) is much greater than one we see that the condition
number itself is approximately proportional to the inverse of the observation
error variance. Thus as the accuracy of the observations increases by a given
factor, with the background error variance fixed, we would expect the condition
number of the Hessian also to increase by the same factor. Similarly, for a set of
observations with a given accuracy, we expect the condition number to decrease
as the background becomes more accurate.

We also note that the upper bound on the condition number is dependent
on the infinity norm of the matrix HCHT , which is defined as the maximum
absolute row sum of the matrix. Since in this example we assume that observa-
tions are at the grid points, then the matrix HCHT is a reduced version of the
correlation matrix C, which is formed by deleting those rows and columns that
are not observed. If we assume that the correlations between grid points de-
crease with distance, then the coefficients of this reduced matrix will be smaller
the farther apart the observations are. Hence, as the spacing between observa-
tions increases, we expect the condition number of the preconditioned Hessian
to decrease. Similarly, when we have fewer observations then the infinity norm
of the reduced correlation matrix will be smaller, since fewer coefficients appear
in the sum, and the condition number will be smaller. On the other hand, as
the observations become more dense or the number of observations increases,
the upper bound on the condition number will become larger. For forms of the
covariance matrix in which the coefficients are all positive, the lower bound will
also increase. Thus in this case we would expect the problem to become more
ill-conditioned. We note that these bounds can also be generalised to take into
account more than one observation at each of the observed grid points. They
then include as a special case the result of Andersson et al. (2000), who consid-
ered the effect of observation density when just two grid points are analysed.

From this analysis we can also expect the condition number of the Hessian
to increase as the correlation lengthscales in the background error covariance
matrix increase. The correlation lengthscales determine the distance over which
errors in the background field are correlated. For larger lengthscales the coef-
ficients of the background error covariance matrix are larger and so both the
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Figure 1: Row 50 of the correlation matrix generated using the SOAR function
with a grid length of 0.1 for lengthscales L = 0.2 (Solid line), L = 0.5 (dashed
line) and L = 1 (dotted line).

coefficient β and the infinity norm of HCHT will be larger. Thus both the
lower and upper bounds will increase and so the conditioning of the problem
will worsen for larger correlation lengthscales.

3.2 Example using the SOAR function

In order to illustrate our theory using a specific example we consider the single
parameter system described in section 3.1, where the background error correla-
tion matrix C is given by the second-order auto-regressive (SOAR) correlation
matrix. This correlation structure has been used in operational data assimila-
tion systems, for example the Met Office 3DVar system (Ingleby, 2001). For a
set of N discrete points on a 1-dimensional periodic domain with equal spacing
∆x, the coefficients of the matrix are given by

ci,j =
(

1 +
ri,j

L

)

exp
(

−
ri,j

L

)

, (10)

where ri,j = ∆x|i − j| is the distance between the grid points at position i
and j with |i − j| < N/2. The remaining coefficients are determined by the
periodicity of the domain. We illustrate the shape of the correlation function in
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Figure 2: Variation of the condition number of the SOAR correlation matrix
with lengthscale.

Figure 1 by plotting the 50th row of the matrix for a system of size 100 using
different correlation lengthscales L. The grid length is fixed at ∆x = 0.1. We
see that the function has the form of a bell shape, whose width depends on
the lengthscale. Furthermore, we see that this correlation function describes
only positive correlations and so the absolute value of the matrix coefficients
are a monotonically decreasing function of the distance between the points. In
Figure 2 we show the condition number of this covariance matrix as a function
of the correlation lengthscale. As the lengthscale is increased there is a sharp
growth in the condition number of the matrix. This has also been found to be
true for other commonly used correlation matrices (Haben et al., 2009).

In order to illustrate the effect of the observation accuracy on the condition
number of the Hessian we define a periodic domain of 500 grid points with 20
equally spaced observations made every 25 grid points. The lengthscale is fixed
to be 0.2, the grid length to be ∆x = 0.1 and the background error variance is
fixed at σ2

b = 1. The condition number of the Hessian (7) for different values of
the observation error variance is shown in table 1. We see that as predicted from
the bounds (8), the condition number of the Hessian increases as the observation
error variance decreases. We also find that for condition numbers much larger
than one the condition number is approximately inversely proportional to the
errors on the observations. For example, we see that when the observation error
variance is halved from 0.1 to 0.05 then the condition number is approximately
doubled.

We now consider the effect of the spacing of the observations on the condition
number. We fix the observation and background error variances to be σ2

o = σ2
b =
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Variance σ2
o Condition Number

0.01 101.0
0.05 21.0
0.1 11.0
0.5 3.0
1 2.0
2 1.5
5 1.2
10 1.1

Table 1: Condition number of the preconditioned Hessian of the single param-
eter system with changing observation variance. The first column shows the
observation error variance and the second column shows the condition number.

1 and reduce the number of observations to be at only four equally spaced points.
The observations are initially placed in the centre of the domain with a spacing of
one grid point between them. In Figure 3 we plot the variation in the condition
number of the Hessian as the spacing between the observations is increased
from one to twelve grid points for three different values of the background error
correlation lengthscale L. As expected from the discussion in section 3.1, the
condition number decreases as the spacing between the observation increases.
Furthermore, the graphs confirm that for a fixed value of the observation error
variance, the condition number increases with the lengthscales specified in the
correlation matrix of the background errors.

3.3 Extension to 4DVar

The theory of section 3.1 can be easily extended to the case of 4DVar. If we
define the matrix

Ĥ = [HT
0 , (H1M(t1, t0))

T , . . . , (HnM(tn, t0))
T ]T (11)

and define the matrix R̂ to be a block diagonal matrix with diagonal blocks
equal to Ri, then the Hessian (6) of the preconditioned 4DVar system can be
written

S = I + B1/2ĤR̂−1ĤT B1/2. (12)

We assume that we have the same single parameter system as described in
section 3.1, but with observations taken at n + 1 time steps, from time t0 to
time tn. We furthermore assume that the same observations are made at each
step, each with observation error variance σ2

o , so that we can write Hi = H for
i = 0, . . . , n and R̂ = σ2

oI(n+1)p. Then the theory of Haben et al. (2009) can
be applied to the 4DVar Hessian (12) to obtain the following bounds on the
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Figure 3: Condition number of the Hessian of the single parameter system
against observation spacing using the SOAR background covariance matrix with
correlation lengthscales L = 0.2 (Solid line), L = 0.3 (dashed line) and L = 0.5
(dotted line).
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condition number,

1 +
1

(n + 1)p

σ2
b

σ2
o

(n+1)p
∑

i,j=1

(ĤCĤT )i,j

≤ κ(S) ≤ 1 +
σ2

b

σ2
o

||ĤCĤT ||∞. (13)

A comparison of this expression with (8) shows that the bounds on the condition
number of the 4DVar Hessian for this system are very similar to those of the
3DVar Hessian, with the matrix Ĥ taking the place of the linear observation
operator H. Hence many of the qualitative conclusions discussed in section 3.1
for the 3DVar case also apply in the 4DVar case. In particular, as the accuracy
of the observations increases then both the lower and upper bounds of (13) will
increase and so the conditioning of the system will worsen.

Furthermore, we note that the matrix ĤCĤT which appears in both the
lower and upper bounds can also be written in the form H̃C̃H̃T , where H̃

is a block diagonal matrix of n + 1 blocks each equal to H and C̃ is the four-
dimensional covariance matrix associated with the four-dimensional background

state (xb
0
T
,xb

1
T
, . . . ,xb

n
T
)T . Thus the matrix ĤCĤT is formed by deleting rows

and columns from each block of the four-dimensional covariance matrix, where
the deleted entries correspond to variables that are not observed. Hence we
would expect the bound on the norm of this matrix to depend on the way the
covariances evolve with a particular choice of the linear model. If the linear
model dynamics act to ensure that the coefficients of the correlation matrix
remain positive and remain a decreasing function of distance, then we would
expect the bounds on the condition number to decrease as the observations are
spaced further apart, as for the 3DVar case. However, as observations are taken
at more time levels, the upper bound in (13) will increase, since coefficients
at more observation times are being summed, and so the condition number of
the problem may also increase. Thus the behaviour of the condition number is
likely to be very dependent on the form of the linear model dynamics and on
the number of observations. Having considered this scalar example we now turn
our attention to the variational data assimilation scheme of the Met Office.

4 Met Office variational assimilation scheme

The variational data assimilation system of the Met Office is based the incremen-
tal formulation, preconditioned by means of the square root of the background
error covariance matrix, as described in section 2.1 (Rawlins et al., 2007). In
the operational system only one outer loop update of the scheme is performed
and hence the computational expense is dominated by solving the inner loop
problem. Here the inner loop is minimized using a conjugate gradient scheme.
The state variables are defined on a global grid of 216 latitudinal points and
163 longitudinal points, giving a horizontal resolution of 10/9 × 5/3 degrees.
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Condition number
Error Variance 3DVar 4DVar

1 152422 180781
10 15243 18078
25 6098 7232
50 3050 3618
75 2033 2412
100 1525 1809

Table 2: Change of condition number with observation error variance in the
Met Office 3DVar and 4DVar systems using pseudo-observations.

The largest eigenvalues of the Hessian are calculated using the Lanczos method
and, since the Hessian is of the form (6), the condition number is simply equal
to the largest eigenvalue. We begin by verifying the theory developed above
using pseudo-observations before looking at the effect of real observations in the
assimilation system.

4.1 Pseudo-observations

The performance of data assimilation experiments using pseudo-observations
has the advantage that we can alter the observation accuracy and density in a
controlled manner. A subset of experiments using pseudo-observations in the
Met Office 3DVar system was reported in Haben et al. (2010). Here we present
a more complete set of these results using both 3DVar and 4DVar, in order to
link them to experiments using real observations. For the 3DVar case we define
a set of 16 surface pressure pseudo-observations and position them in a 4-by-
4 grid with one grid spacing between each row and column of 4 observations.
The observations are positioned to be in a square approximately covering the
U.K. For the 4D-Var case we have 6 surface pressure pseudo-observations at
the start, middle and end of a 160-minute time window, with the observations
arranged in a 2-by-3 grid over the U.K. The reduced number of observations
at each time for the 4D-Var case is determined by the limitation on the total
number of pseudo-observations that may be specified in the Met Office system.

We first consider the effect of changing the accuracy of the observations.
The position of the observations is fixed and the observation error variances are
varied from 1Pa to 100Pa. In table 2 we show the variation in the condition
number of the Hessian as the observation error variance is changed. We find
that, as predicted by the theory and experiments of section 3, the condition
number for both 3DVar and 4DVar increases as the observations become more
accurate, with the relationship between them being approximately inversely
proportional. For example, a doubling of the variance from 25Pa to 50Pa
approximately halves the condition number of 3DVar from 6, 098 to 3, 050 and
of 4DVar from 7, 232 to 3, 618.
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Figure 4: Condition number of the Met Office 3DVar assimilation scheme against
spacing of 8 equatorial pseudo-observations.

We next examine the effect of changing the spacing of the observations.
The observation error variance is fixed at 100Pa and the spacing between the
observations is increased. As in the previous experiment we use a 4-by-4 grid
of surface pressure pseudo-observations for 3DVar and a 2-by-3 grid of pseudo-
observations at three different times for 4D-Var, with equal spacing between grid
points. When the spacing between observations increases from one grid length
to four grid lengths the condition number of the Hessian decreases from 1,525
to 690 for 3DVar and from 2,809 to 1,061 for 4DVar. A further spread of the
observations, to a 16-grid-point spacing, results in even lower condition numbers
of 163 for 3DVar and 344 for 4DVar. To illustrate further this effect we perform
another 3DVar experiment using only 8 equally-spaced pseudo observations,
positioned in a line along the equator, with an observation error variance of
1Pa. In Figure 4 we show the variation of the condition number as the spacing
between the observations is increased from one to 25 grid lengths. We see clearly
the reduction of the condition number with increased separation. Furthermore
we note that the curve has a similar shape to those shown in Figure 3 for the
simple example using the SOAR function. This reflects the use of the SOAR
correlation function to model the horizontal background error correlations in
the Met Office 3DVar scheme (Ingleby, 2001). Hence the results of experiments
using pseudo-observations in the Met Office system confirm the theory presented
and illustrated using the scalar system in section 3. We now consider how
the conditioning of the system is affected by real observations. We begin by
considering the effect of observation type.
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4.2 Observation type

The Met Office, like most NWP centres, uses a variety of different observation
types, including surface observations, upper-air measurements and satellite data
(for example, ATOVS and SSMI). In Trémolet (2007) it was suggested that the
conditioning of the ECMWF variational data assimilation is dominated by the
accurate and densely distributed surface observations. In this section we look
at the conditioning of the Met Office 3DVar and 4DVar schemes and investigate
how the conditioning is affected by the different observation types. To do this
we perform assimilations using all available observations and then separate as-
similations in which single observations types are assimilated individually. We
consider data from two different dates, 12Z on 27 October 2008 and 12Z on 14
July 2009.

In Figure 5 we show the condition number of the Hessian calculated from
the 3DVar assimilations using both the full observations and single observation
types. Some observation types, such as GPSRO and SSMIS, give a condition
number of less than 50 when assimilated alone and so have not been shown in the
plot. These are not considered to be major contributers to the conditioning of
the inner loop minimisation at the Met Office. A similar plot for the conditioning
of the Hessian of the 4DVar problem is shown in Figure 6, where the 4DVar
system is run with a 6-hour assimilation window, from 9Z to 15Z.

We notice first that the values for the condition numbers of both the 3DVar
and 4DVar systems are very similar for the two different dates. Experiments
with the 4DVar system using data at different times of the day also produced
similar condition numbers. It is clear from Figures 5 and 6 that in both 3DVar
and 4DVar the observations types which give the largest condition number are
the surface observations followed by ATOVS. The condition number of the varia-
tional cost function when only the surface observations are included is compara-
ble in magnitude to the condition number when full observations are used within
the assimilation. This is true for both 3DVar and 4DVar and suggests that the
surface observations dominate the conditioning of the variational assimilation
problem.

To further test this hypothesis we perform further experiments in which we
use all observations except the surface observations in the assimilation and then
all except the ATOVS observations. The condition numbers for these experi-
ments are given in table 3 for the 3DVar assimilation and table 4 for the 4DVar
assimilation. In these tables we show the condition numbers for both dates
when we assimilate all observations, only surface or only ATOVS observations
and all observations except surface observations. For 3DVar we also include an
experiment in which we assimilate all observations except ATOVS. We see that
the condition number when using all the observations is similar in magnitude to
the condition number for the Hessian where only the surface observations are
used. When only ATOVS observations are assimilated the condition number is
about half of that where full observations are used. We find that the removal of
the surface observation provides more than a 60 % reduction in the condition
number of the assimilation problem. However, the conditioning of the 3DVar
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Figure 5: Conditioning of the Met Office 3DVar scheme using only selected
observation types.
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Figure 6: Conditioning of the Met Office 4DVar scheme using only selected
observation types.
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Condition number
Observation Type 27/10/2008 14/07/2009

All 3658 3673
Only Surface 3345 3355
Only ATOVS 1372 960
No Surface 1431 1215
No ATOVS 3667 3624

Table 3: Condition number of the Met Office 3DVar Scheme when assimilating
different observations. Details of the experiments are given in the main text.

Condition number
Observation Type 27/10/2008 14/07/2009

All 3197 3163
Only Surface 2869 2827
Only ATOVS 905 809
No Surface 972 976

Table 4: As table 3, using the 4DVar scheme.

problem remains largely unaffected if ATOVS observations are removed. Hence
we conclude that the surface observations dominate the conditioning of 3DVar
and 4DVar.

From the theory and example of section 3 we expect the condition number to
be dominated by areas of dense and accurate observations. An examination of
the distribution of observations assimilated into the Met Office data assimilation
system shows that there is a high density of surface observations over Europe.
A calculation of the leading eigenvector of the Hessian produced when assim-
ilating all observation types shows its largest components to be concentrated
around Europe, giving a further indication that the observations in this area
dominate the conditioning. A similar result was found by Trémolet (2007), who
concluded that the dense and accurate network of surface pressure observations
over Europe control the convergence of the ECMWF 4DVar system. Our exper-
iments with the Met Office variational data assimilation scheme show that the
same effect is seen in this system and that this is consistent with the new theory
presented in section 3 and the pseudo-observation experiments of section 4.1.

4.3 Thinning of observations

A consequence of the high dependence of the condition number on the dense
surface observations is that the conditioning should be better if a less dense
set of observations is used. In practice dense observations are usually thinned,
to ensure that no correlations between observation errors remain which are not
accounted for in the assimilation scheme (Dando et al., 2007). We now consider
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Experiment Condition number
Scheme Observations No Thinning Thinned Data
3DVar Only Surface 3395 501
3DVar All 3590 1406
4DVar Only Surface 2778 456
4DVar All 2975 928

Table 5: Variation of condition number using thinned data for 3DVar and 4DVar
experiments, assimilating only surface data or all data.

the effect of observation thinning on the condition number of the Met Office
system. We consider only the surface observations since as shown in section 4.2,
the conditioning of the Met Office minimisation problem is dominated by these
observations. For these experiments we use data from 12Z on 11 March 2009.
The density of the surface observations is reduced by applying a 300km thinning.
As a result of the thinning a large number of the land observations are removed.
The Met Office variational system is then run first using the original observation
data and then using the thinned surface observations. We calculate the condition
number for experiments in which only the surface observations are assimilated
and in which all observations are assimilated, using both the 3DVar and the
4DVar methods.

In table 5 we show the condition numbers calculated from the 3DVar and
4DVar experiments. We see that when only surface observations are assimi-
lated then there is a large improvement in the conditioning when the data are
thinned. The condition number falls by over 80% in both the 3DVar and 4DVar
cases. When all other data are included in the assimilation then the thinning of
surface observations has the effect of reducing the condition number to less than
40% of its original value, to 1406 for 3DVar and 928 for 4DVar. By comparison
with tables 3 and 4 we see that these numbers are of the same order of mag-
nitude as the experiments in which no surface data are assimilated. Hence we
conclude that once the surface observations are thinned they have little effect
on the conditioning of the system. As expected from the theory, by reducing
the density of the observations used in the assimilation we are able to improve
the conditioning of the problem. Of course the condition number cannot be the
only criterion used to thin data, since any thinning of observations in this way
also reduces the amount of information provided to the assimilation system and
so may degrade the accuracy of the analysis. Nevertheless, when only a limited
amount of computer time is available in which to perform the assimilation, it
may be that more accuracy can be obtained by solving the more well conditioned
problem, even with less data, than by solving the ill-conditioned problem with
all the data.
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5 Conclusions

The conditioning of the variational data assimilation problem plays an impor-
tant role in determining how accurately the current state of the atmosphere can
be determined in operational NWP. In most operational assimilation systems an
initial preconditioning is performed by means of a variable transformation. In
this work we have considered the conditioning of this preconditioned problem.
Theoretical results have illustrated that the condition number of the problem
is likely to increase when the observations are accurate and dense or when the
background error correlation lengthscales are large. These results have been
confirmed in a simple scalar example and illustrated using the variational data
assimilation system of the Met Office.

With advances in observing technology and the move to higher resolution
systems, it is clear that many more dense and accurate observations will be used
in future variational data assimilation schemes of NWP centres. The results
presented here imply that this will worsen the conditioning of the minimization
problem. We have shown that thinning of the data can help to improve the
conditioning, but a balance must be sought between the loss of accuracy due to
solving an ill-conditioned problem and the loss of accuracy caused by removing
observations. Further preconditioning techniques will also be needed in order to
ensure that the data assimilation component of the forecasting system can be
solved quickly and accurately. Some progress has already been made in this area
(for example Tshimanga et al. 2008; Fisher et al. 2009), but further development
of such techniques is required.

Acknowledgements

This work was supported in part by the NERC National Centre for Earth Ob-
servation and by an EPSRC CASE award with the Met Office. We are grateful
to Dr T. Payne from the Met Office for his help with the experiments of section 4
and to Prof M.J.P. Cullen from the Met Office for useful discussions throughout
the course of this work.

References

E. Andersson, M. Fisher, R. Munro and A. McNally, 2000: Diagnosis of back-
ground errors for radiances and other observable quantities in a variational data
assimilation scheme, and the explanation of a case of poor convergence, Q. J.
R. Met. Soc., 126, 1455–1472.

R. Bannister, 2008: A Review of forecast error covariance statistics in atmo-
spheric variational data assimilation. II: Modelling the forecast error covariance
statistics, Q. J. R. Met. Soc., 134, 1971-1996.

P. Courtier, J.-N. Thépaut and A. Hollingsworth, 1994: A strategy for opera-

18



tional implementation of 4D-Var, using an incremental approach, Q. J. R. Met.
Soc., 120, 1367–1387.

M. J. P. Cullen, 2003: Four-dimensional variational data assimilation: A new
formulation of the background-error covariance matrix based on a potential
vorticity representation, Q. J. R. Met. Soc., 129, 2777–2796.

M. L. Dando, A. J. Thorpe, J. R. Eyre, 2007: The optimal density of atmo-
spheric sounder observations in the Met Office NWP system, Q. J. R. Met.
Soc., 133, 1933–1943.
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