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Abstract

We present a novel algorithm for joint state-parameter estimation using se-
quential three dimensional variational data assimilation (3D-Var) and demon-
strate its application in the context of morphodynamic modelling using an
idealised two parameter 1D sediment transport model. The new scheme com-
bines a static representation of the state background error covariances with a
flow dependent approximation of the state-parameter cross covariances. For
the case presented here, this involves calculating a local finite difference ap-
proximation of the gradient of the model with respect to the parameters. The
new method is easy to implement and computationally inexpensive to run.
Experimental results are positive with the scheme able to recover the model
parameters to a high level of accuracy. We expect that there is potential
for successful application of this new methodology to larger, more realistic
models with more complex parameterisations.

Keywords: Data assimilation, morphodynamics, parameter estimation,
state augmentation

1. Introduction

A numerical model can never completely describe the complex physical
processes underlying the behaviour of a real world dynamical system. State
of the art computational models are becoming increasingly sophisticated but
in practice these models suffer from uncertainty in their initial conditions
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and parameters. Even with perfect initial data, inaccurate representation of
model parameters will lead to the growth of model error and therefore affect
the ability of our model to accurately predict the true system state.

Parameterizations are typically used in applications where the underlying
physics of a process are not fully known or understood, or to model subgrid
scale effects that cannot be captured within a particular model resolution.
Coastal morphodynamic modelling is one such field; sediment transport mod-
els are typically based on empirical formulae that use various parameteriza-
tions to characterise the physical properties of the sediment flux [1]. The
consequence of this is that model parameters often do not represent directly
measurable quantities. Poorly known input parameters are a key source of
uncertainty in sediment transport models [1]. A fundamental question in
model development is how to estimate these parameters a priori. One option
is to use data assimilation.

Data assimilation is a sophisticated mathematical technique for combin-
ing observational data with model predictions. Recent examples of the ap-
plication of data assimilation to coastal modelling are given in [2] and [3].
Most previously published work focuses on either state or parameter esti-
mation. However, by employing the method of state augmentation [4], it
is possible to use data assimilation to estimate uncertain model parame-
ters concurrently with the model state. The parameters are appended to
the model state vector, the model prediction equations are combined with
the parameter evolution equations and the chosen assimilation algorithm is
simply applied to this new augmented system in the usual way [5, 6]. The
approach has previously been successfully used in the context of model error
or bias estimation, e.g. [7, 8, 9], and more recently for parameter estimation
in biogeochemical models using the Kalman filter [10].

Here, we combine the technique with a sequential three dimensional vari-
ational data assimilation (3D Var) scheme (e.g. [11]). Variational data as-
similation is a popular choice for state estimation in large problems; it has
many advantages, such as ease of implementation (no model adjoints re-
quired), computational robustness and computational efficiency. Under cer-
tain statistical assumptions, the 3D Var method approximates the Bayesian
maximum a posteriori likelihood estimate of the state and parameters of the
system [12].

A key difficulty in the construction of a data assimilation algorithm is
specification of the background error covariances. For joint state-parameter
estimation, it is the cross-covariances between the parameters and the state
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that transfer information from the observations to the parameter estimates
and therefore play a crucial role in the parameter updating. A good a priori
specification of these covariances is therefore vital for accurate parameter
updating [13, 14].

By combining ideas from 3D Var and the extended Kalman filter (EKF)
we have developed a novel hybrid sequential data assimilation algorithm that
provides a flow dependent approximation of the state-parameter cross covari-
ances without explicitly propagating the full system covariance matrix. The
technique involves calculating a local finite difference approximation of the
gradient of the model with respect to the parameters; it is simple to code and
computationally inexpensive. In this paper we give details of this new method
and demonstrate its application in the context of morphodynamic modelling
using an idealised two parameter 1D sediment transport model. Although
the long term goal is to implement a concurrent state-parameter estimation
scheme in a full morphodynamic assimilation-forecast system applied to some
specific coastal study sites, this simple model provides a framework within
which we can develop, test and understand our ideas without the obfuscating
features of a more complex system.

This paper is organised as follows. Section 2 introduces the model system
equations and gives a brief overview of the data assimilation methods we use
in this work. In section 3 we outline our new hybrid approach. Our simple
test model is introduced in section 4. The experimental design is described
in section 5 together the main results. Finally, in section 6 we summarise the
conclusions.

2. Data assimilation

We consider the discrete non-linear time invariant dynamical system model

zk+1 = f(zk,p) k = 0, 1, . . . (1)

The vector zk ∈ Rm is known as the state vector and represents the model
state at time tk, p ∈ Rq is a vector of q (uncertain) model parameters, and
f : Rm −→ Rm is a non-linear operator describing the evolution of the state
from time tk to tk+1. We assume that specification of the model state and
parameters at time tk uniquely determine the model state at all future times.
We also assume that f(z,p) is differentiable with respect to z and p for all
z ∈ Rm and p ∈ Rq.
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In the example described in this paper, the model state vector z is a 1D
vector representing bathymetry or bed height, the operator f represents the
equations describing the evolution of the bed-form over time and the vector
p contains parameters arising from the parameterisation of the sediment
transport flux. We assume that the system can be represented on a discrete
grid and that the system model is ‘perfect’, i.e. it gives an exact description
of the true behaviour of the system on the grid.

In this work, the model parameters are assumed to be constants and so
are not altered by the forecast model from one time step to the next. The
equation for the evolution of the parameters therefore has the simple form

pk+1 = pk. (2)

The augmented system model is derived by appending the parameters to the
model state vector, and combining the evolution equation for the parameters
(2) with the model for the evolution of the state (1). This gives the equivalent
augmented system model

wk+1 = f̃(wk), k = 0, 1, . . . (3)

where wk = (zk,pk)
T ∈ Rm+q is the augmented state vector and f̃(wk) =

(f(zk,pk),pk)
T with f̃ : Rm+q −→ Rm+q.

For sequential assimilation, we start with a priori (or background) esti-
mates of the state and parameters wb

k = (zbk,p
b
k)

T at time tk. We suppose
that we have a set of rk observations to assimilate and that these are related
to the model state by the equations

yk = h(zk) + δk, k = 0, 1, . . . (4)

Here yk is a vector of rk observations at time tk, where the number of avail-
able observations may vary with time. The operator h : Rm −→ Rrk is a
nonlinear observation operator that maps from model to observation space
and the vector δk ∈ Rrk represents the observation errors. We can rewrite
the equation for the observations (4) in terms of the augmented system as

yk = h̃(wk) + δk = h̃

(
zk
pk

)
+ δk

def≡ h(zk) + δk k = 0, 1, . . . (5)

where h̃ : Rm+q −→ Rrk .

4



The aim is to combine the measured observations yk with the model
predictions wb

k to produce an updated model state that most accurately
describes the true augmented system state wt

k at time tk. This optimal
estimate is called the analysis and is denoted wa

k.
The analysis wa

k = (zak,p
a
k)

T is found by minimising a cost function pe-
nalising the misfit between the state, wk, the observations, yk and the back-
ground forecast, wb

k

J(wk) = (wk−wb
k)

TBk
−1(wk−wb

k)+ (yk−h̃k(wk))
TR−1

k (yk−h̃k(wk)). (6)

The relative weighting of the background and observations in the analysis
are determined by their error statistics, expressed as error covariances, Bk

and Rk, respectively.
Prescription of the matrix Bk is a key challenge. This matrix plays a

crucial role in the filtering and spreading of observational data [13, 14, 15]. In
the 3D Var method (e.g. [11]), the background covariances are approximated
by a fixed matrix (i.e. Bk = B for all k) and the nonlinear optimization
problem (6) is solved numerically using a gradient iteration algorithm at
each time tk. In the EKF (e.g. [4]), the background covariances are evolved
explicitly according to the linearised model dynamics and the analysis is
calculated directly.

For joint state-parameter estimation, it is particularly important that the
a priori cross-covariances between the parameters and the state are well spec-
ified [13, 15]. Since it is not possible to observe the parameters themselves,
the parameter estimates depend on the observations of the state variables.
It is the state-parameter cross covariances that pass information from the
observed variables to update the estimates of the unobserved parameters.
Success of the state augmentation approach therefore relies strongly on the
relationships between the parameters and state components being well de-
fined. Previous work [15] indicated that whilst the assumption of static
covariances made by the 3D Var algorithm is sufficient for state estimation
it is insufficient for parameter estimation as it does not provide an adequate
representation of the state-parameter cross covariances required by the aug-
mented system. In order to yield reliable estimates of the true parameters
these covariances need to evolve with the model. However, updating the
background error covariance matrix at every time step is computationally
expensive and impractical when the system of interest is of high dimension.

To overcome this problem we have combined ideas from 3D Var and the
EKF to produce a new hybrid assimilation scheme that captures the flow
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dependent nature of the state-parameter cross covariances without explicitly
propagating the full system covariance matrix. A simplified version of the
EKF forecast step is used to estimate the state-parameter forecast error cross
covariances and this is then combined with an empirical, static approximation
of the state background error covariances. We outline this new approach in
the next section.

3. A hybrid approach

We can partition the background error covariance matrix B as follows

Bk =

(
Bzzk Bzpk

(Bzpk
)T Bppk

)
. (7)

Here Bzzk ∈ Rm×m is the background error covariance matrix for the state
vector zk at time tk, Bppk

∈ Rq×q is the covariance matrix of the errors in the
parameter vector pk and Bzpk

∈ Rm×q is the covariance matrix for the cross
correlations between the forecast errors in the state and parameter vectors.

In the EKF, the background covariance at tk+1 is determined by propa-
gating the analysis covariance forward in time from tk using a linearisation
of the forecast model. We want to avoid updating the whole matrix (7) at
every time step. For the state and parameter background error covariances
we adopt a 3D Var approach; these matrices are prescribed at the start of the
assimilation and held fixed throughout as if the forecast errors were statisti-
cally stationary. For the state-parameter cross covariances, we require a flow
dependent approximation. If we assume that the state-parameter cross co-
variances are initially zero, and take a single step of the EKF we find that the
state-parameter cross covariance can be approximated as Bzpk+1

= NkP
a
ppk

[14], where Nk = ∂f(z,p)
∂p

∣∣∣
zak,p

a
k

∈ Rm×q is the Jacobian of the forecast model

with respect to the parameters and Pa
ppk

is the parameter analysis error
covariance. This leads us to propose the following approximation for the
augmented forecast error covariance matrix

Bk+1 =

(
Bzz NkBpp

BppN
T
k Bpp

)
. (8)

In other words, all elements of the augmented background error covariance
matrix are kept fixed except the state-parameter cross covariance Bzpk+1
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which is updated at each new analysis time by recalculating the Jacobian
matrix Nk.

Explicitly calculating the Jacobian of complex functions can be a difficult
task, requiring complicated derivatives if done analytically or being computa-
tionally costly if done numerically. A simple alternative is to use a local finite
difference approximation. Defining zbk+1 = f(zak,p

a
k) and ẑbk+1 = f(zak, p̂

a
k), the

q columns of Nk are given by computing

∂f(zak,p
a
k)

∂pi
≈

ẑbk+1 − zbk+1

δpi
i = 1, . . . , q, (9)

for each parameter pi. Here p̂
a
k is the current parameter vector with element

pi replaced with pi + δpi where δpi is a small perturbation to the current
approximation of pi.

4. The model

We apply our hybrid scheme to a simplified sediment transport model
based on the 1D sediment conservation equation [1]

∂z

∂t
= −

(
1

1− ε

)
∂q

∂x
, (10)

where z(x, t) is the bathymetry, t is the time, q is the total (suspended
and bedload) sediment transport rate, and ε is the sediment porosity. The
transport rate q is a complex function of the water and sediment properties.
For this work we use one of the most basic sediment tranport flux formula
[16], q = Aun, where u = u(x, t) is the current in the x direction and A
and n are parameters whose values need to be set. The parameter A is
a dimensional constant whose value depends on various properties of the
sediment and water. The derivation of the parameter n is less clear. It is
usually set by fitting to field data and generally takes a value in the range
1 ≤ n ≤ 4.

To solve (10) we assume that the water height h and flux F are constant
in space and set u(h− z) = F . Equation (10) can then be re-written in the
advection form [14]

∂z

∂t
+ c(z)

∂z

∂x
= 0, (11)

where the bed celerity c(z) is a function of the bed height z and parameters
h, F, ε, A, n only. For the purpose of this work, we assume that h, F and ε

7



are known constant values but that the values of A and n are uncertain. To
prevent unphysical solutions a small diffusive term is added to to the right
hand side of (11). This equation is then solved numerically using a combined
semi-Lagrangian Crank-Nicolson scheme based on that presented in [17].

5. Experiments & results

We have tested our scheme by running a series of identical twin exper-
iments using an initially symmetric, isolated bedform, with initial profile
given as a Gaussian hump. We assume that our numerical model is perfect
and generate a reference or ‘true’ solution by running the model with set
parameter values A = 0.002 ms−1 and n = 3.4. This solution is used to
provide pseudo-observations for the data assimilation and also to evaluate
the performance of our scheme. The model is then re-run from a perturbed
initial bathymetry and with incorrect starting values for the parameters A
and n.

The assimilation process is carried out sequentially, with a new set of
observations being assimilated every hour. The model was sampled on a
regular grid with a spacing of ∆x = 1.0 m and timestep ∆t = 15 min. The
cost function was minimised iteratively using a quasi-Newton descent algo-
rithm [18]. Observations were generated from the true solution at intervals
of 25∆x. They are assumed to be perfect and without any added noise.

For the observation error covariance matrix we set Rk = R = σ2
oI, where

σ2
o is the observation error variance. Although the observations are perfect,

specifying a non-zero observation error variance allows us to consider the im-
pact of the accuracy of the observations on the assimilation without actually
adding noise. This is a recognised practice, routinely used for the preliminary
testing of data assimilation schemes with pseudo data (e.g. [8]). Results from
a related set of experiments in which noisy observation errors are simulated
by adding random error can be found in [14].

The state background error covariance matrixBzz is given by the isotropic
correlation function [19] bij = σ2

bρ
|i−j|, i, j = 1, . . . ,m, with ρ = exp(−∆x/L)

where L is a correlation length scale that is adjusted empirically, and σ2
b is the

background error variance. The parameter error covariance matrix Bpp is a
fixed 2× 2 matrix with parameter error variances σ2

A and σ2
n on the diagonal

and off-diagonal elements σAn. The state-parameter cross covariance matrix
Bzpk is recalculated at each new assimilation time as described in section 3,
with perturbations δA = 10−5 and δn = 10−2. At the end of each assimilation
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cycle the model parameters are updated and the state analysis is integrated
forward using the model (with the new parameter values) to become the
background state for the next analysis time.

Figure 1 illustrates the impact incorrect parameter estimates can have
on the modelled bathymetry by comparing model runs performed with and
without data assimilation over a 24 h period. For this example, the param-
eter A is initially over estimated (A0 = 0.02ms−1) and n under estimated
(n0 = 2.4). With no data assimilation (top), the model bathymetry rapidly
diverges away from the truth. After 24 hours it has moved beyond the
model domain. Running the model with the joint state-parameter assimila-
tion scheme greatly improves the model predictions (bottom). At 24 hours it
is almost impossible to distinguish between the predicted model bathymetry
and the true bathymetry. The corresponding parameter updates are shown
in figures 2(a) and (b). The scheme successfully recovers the true values of
A and n to a high level of accuracy.

Experiments were repeated for a range of starting combinations of A and
n, investigating the sensitivity of the parameter estimates to different error
ratios, observation combinations and observation noise. The quality of the
state and parameter estimates is highly dependent on the accuracy of the
information fed into the assimilation algorithm. We do not present the re-
sults of these experiments here but refer the reader to [14] for further details
and discussion. It was found that various factors can affect the convergence
and accuracy of the parameter estimates, such as the quality of the initial
background guesses, the estimated parameter error variances and cross co-
variances, the location and spatial frequency of the observations, the level of
observational noise and the time between successive assimilations.

6. Conclusions

We have presented a novel method for joint state-parameter estimation
and demonstrated its efficacy in the context of morphodynamic modelling.
By combining ideas from the 3D Var and EKF data assimilation techniques
we have developed a scheme that provides a flow dependent approximation
of the state-parameter cross-covariances but which avoids the computational
complexities associated with implementation of the full Kalman filter.

This new method has been tested using an idealised, 1D non-linear sed-
iment transport model that has two uncertain parameters. The results are
positive with the scheme able to recover the true parameter values to a good
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Figure 1: Top: model run with without data assimilation. Bottom: model run with data
assimilation. The dotted red line represents the true bathymetry zt, the dashed blue line
represents the model predicted (background) bathymetry zb, observations y are given by
black circles and the analysis za is given by the solid green line.
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Figure 2: Parameter updates for initial estimates (a) A0 = 0.02ms−1 and (b) n0 = 2.4.
True parameter values (a) A = 0.002ms−1 and (b) n = 3.4 are given by the dotted line.
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level of accuracy. This has a positive impact on the predictive skill of the
model. Our findings indicate that there is great potential for the use of 3D
Var data assimilation for joint state-parameter estimation. In this paper we
have focussed on application of the method to morphodynamic modelling
but the versatility of the method has recently been demonstrated via a series
of tests with a range of simple dynamical system models [20].
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