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Abstract: The analysis error variance of a 3D-FGAT assimilation is examined analytically using a simple scalar equation. It is
shown that the analysis error variance may be greater than the error variances of the inputs. The results are illustrated numerically
with a scalar example and a shallow-water model. Copyright c© 0000 Royal Meteorological Society
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1 Introduction

Data assimilation is widely used in weather and ocean
forecasting to provide initial conditions for numerical
forecast models. By combining observational data with
an a priori, or background, estimate of the model state,
it is possible to obtain an improved estimate of the
current state of the system, known as the analysis. Many
data assimilation techniques are based on Bayes’ rule,
which in the case of Gaussian errors is equivalent to a
least squares fitting. For such techniques, provided that
the errors in the observations and background state are
correctly represented, the analysis obtained will be at
least as accurate as the most accurate piece of input
information, in a statistical sense. Thus the addition of
more information into the assimilation procedure cannot
degrade the analysis.

In practice many approximations must be made in
designing data assimilation schemes for practical use.
One such approximation is known as 3D-FGAT (first-
guess at appropriate time), which can be considered as
a half-way step between incremental three-dimensional
variational data assimilation (3D-Var) and incremental
four-dimensional variational data assimilation (4D-Var).
The aim of 3D-FGAT is to provide some of the time
information of a sequence of observations, without the
need to code a full tangent linear and adjoint model, as
needed in incremental 4D-Var. Such a scheme was used
to generate the ERA-40 reanalysis (Uppala et al., 2005)
and has been used in several atmospheric, oceanic and
chemical assimilation systems (for example, Lee et al.,
2004; Vialard et al., 2003; Barret et al., 2008). In this note
we examine the effect of the 3D-FGAT approximation on
the analysis errors for a simple problem. By considering
the scheme as an approximation to incremental 4D-Var
we show that the effect of the approximation is to increase
the variance of the analysis error. In particular, we show
that whereas for a perfect incremental 4D-Var system the
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analysis error variance can be no larger than the smallest
of the variances on the inputs, the analysis error variance
in 3D-FGAT can exceed the error variance of the inputs.

2 Assimilation schemes

Incremental 4D-Var requires the minimization of a
sequence of linearized cost functions of the form

J [δx0] =
1
2
δxT

0 B−1δx0

+
1
2

N∑
i=0

(Hiδxi − di)TR−1
i (Hiδxi − di), (1)

where B is the background error covariance matrix, Ri,
Hi and di are the observation error covariance matrices,
linearized observation operators and innovation vectors
at times ti and δxi satisfies the tangent linear model
equation. The method is equivalent to solving the full
nonlinear 4D-Var problem using a Gauss-Newton method
(Lawless et al., 2005).

The algorithm for 3D-FGAT is very similar to incre-
mental 4D-Var, except that the tangent linear model is
approximated by the identity, so that in the linearized cost
function (1) we have δxi = δx0 for all times ti. This intro-
duces a discrepancy between the nonlinear model used to
calculate the innovations in the outer loop and the linear
model used to evolve the perturbations in the inner loop.
We note that in operational implementations of 3D-FGAT
the increment is usually defined to be at the centre of a
time window of observations rather than at the beginning.
In this case the linearized cost function takes the form

J [δx0] =
1
2
δxT

0 B−1δx0

+
1
2

N/2∑
i=−N/2

(Hiδx0 − di)TR−1
i (Hiδx0 − di). (2)

In the next section we examine the analysis error of 3D-
FGAT for a simple scalar example.
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2 A.S. LAWLESS

3 Analysis error for a simple example

We consider the analysis error after one outer loop of
incremental 4D-Var and of 3D-FGAT. In order to illustrate
the effect of the FGAT approximation we consider the
simple example of a linear model for a scalar variable x.
We define the full discrete system model to be

xi+1 = αxi, (3)

where α is a scalar constant and xi ≡ x(ti). We consider
an example in which we have a time window [t0, t2] with
observations y0, y2 at times t0 and t2 respectively. We
assume that the errors on each observation have error
variance σ2

o and that the errors are uncorrelated. For this
system, since the full model (3) is already linear, the
tangent linear model has the same form as the full model
and is given by

δxi+1 = αδxi, (4)

where δxi is a small perturbation to the state xi. We note
that by using a linear system we expect the incremental
4D-Var algorithm to give the same solution as the mini-
mization of the full 4D-Var cost function, since no approx-
imation is being made in the linearization step. Although
this is a big simplification in order to make the mathemati-
cal analysis tractable, it does not take away from the valid-
ity of the approach, but allows us to analyse the effects of
3D-FGAT in the simplest system possible.

We must be very precise about the properties of
the background field at the different points in the time
window. We will assume that the background field for
the 3D-FGAT scheme is xb(t1), defined at the centre of
the window, time t1, with error variance σ2

b . In order to
derive a 4D-Var scheme for this system we need to have a
background field at the start of the time window, time t0.
Since the model is linear then the background field at time
t0 is simply given by

xb(t0) =
1
α
xb(t1) (5)

and this will have an error variance of σ2
b/α

2. The innova-
tion vectors for this problem are

d0 = y0 − xb(t0), d2 = y2 − α2xb(t0). (6)

The inner loop cost function for incremental 4D-Var is
then

J [δx0] =
1
2
α2 δx

2
0

σ2
b

+
1
2

(d0 − δx0)2

σ2
o

+
1
2

(d2 − α2δx0)2

σ2
o

. (7)

We minimize this to obtain δx0 and add this to the back-
ground field xb(t0) at time t0 to obtain the incremental
4D-Var analysis

xa(t0) =
1

α2σ2
o + σ2

b (1 + α4)
[α2σ2

oxb + σ2
by0 + α2σ2

by2],

(8)

which has analysis error

σ2
a(t0) =

σ2
oσ

2
b

α2σ2
o + σ2

b (1 + α4)
. (9)

As expected we find that the analysis error variance is both
less than the observation error variance and less than the
error variance of the background field used, which in this
case is given by σ2

b/α
2 at time t0.

If the analysis is evolved to the centre of the time
window using the model (3), then the analysis error of the
incremental 4D-Var scheme at that time is

σ2
a(t1) =

α2σ2
oσ

2
b

α2σ2
o + σ2

b (1 + α4)
, (10)

which is less than σ2
b , the background error variance at

time t1. This result is a simple extension in time of
a standard result for minimum variance estimation (for
example, Daley, 1991, section 4.1).

For the 3D-FGAT scheme applied to this problem the
increment is considered to be valid at the centre of the time
window t1 and the inner loop cost function (2) is given by

J [δx1] =
1
2
δx2

1

σ2
b

+
1
2

(d0 − δx1)2

σ2
o

+
1
2

(d2 − δx1)2

σ2
o

, (11)

which has a minimum at

δx1 =
σ2

b (d0 + d2)
σ2

o + 2σ2
b

. (12)

For this scheme the analysis is found by adding the
increment to the background field in the centre of the time
window. Thus we have

xa(t1) = xb(t1) +
σ2

b

σ2
o + 2σ2

b

(y0 − xb(t0))

+
σ2

b

σ2
o + 2σ2

b

(y2 − α2xb(t0)). (13)

A calculation of the analysis error variance gives

σ2
a(t1) =

σ2
bσ

2
o

σ2
o + 2σ2

b

+
σ4

b

(σ2
o + 2σ2

b )2
(2− β)((2− β)σ2

b + 2σ2
o), (14)

where
β = α+

1
α
. (15)

We note that where α = 1, so that there is no approxi-
mation in 3D-FGAT, we have β = 2 and the analysis error
variance is the same as that for incremental 4D-Var. In this
case the analysis error variance is bounded above by the
smallest of the variances of the observational and back-
ground errors. For α 6= 1 the second term of (14) intro-
duces an error dependent on the factor 2− β. Thus this
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3D-FGAT ANALYSIS ERROR 3

term measures how close the identity approximation used
in 3D-FGAT is to the true tangent linear model. The fur-
ther the tangent linear model is from the identity, the larger
this term will become. It is particularly important to note
that for values of α far from unity this term may be arbi-
trarily large and so the analysis error variance at the initial
time may exceed the error variance of the inputs.

In this example we have assumed that the variance
information of the background field is correct at the
centre of the time window. However, by removing the
model evolution of the perturbation, the evolution of the
variance information is neglected, so that the innovations
are weighted incorrectly. For the case where α > 1 so that
the variance grows throughout the assimilation window,
then the innovation at time t0 is over-weighted with
respect to the background and the innovation at time t2 is
under-weighted (with the opposite occurring for α < 1).
It is this incorrect use of the statistical information which
leads to a sub-optimal analysis.

If we consider 3D-Var scheme applied to this system,
so that the observations are assumed to be valid at the
centre of the time window, then the analysis is found to
be no longer unbiased. This arises from the fact that the
innovations are calculated as

d0 = y0 − αxb(t0), d2 = y2 − αxb(t0). (16)

This introduces terms in the expected analysis error
dependent on the change in the true state between observa-
tion times. Terms involving the true state then also occur
in the expression for the variance. Hence we see that 3D-
FGAT theoretically removes a major source of error in
3D-Var, even if the analysis error variance may be large.

4 Numerical results

In order to illustrate the problems associated with the
analysis error for 3D-FGAT we present numerical results
based on the example presented in the previous section
and on a shallow-water model. In practice we may expect
the effect of the 3D-FGAT approximation to depend
on the ratio of σ2

b/σ
2
o , which in turn will depend on

the physical system and variable being modelled. Fisher
(2007) states that this ratio is approximately equal to one
for a numerical weather prediction system, the figures of
Weaver et al. (2003) indicate a ratio of approximately 2
for the temperature of the central Pacific ocean, whereas
the figures presented in Daget et al. (2009) indicate a
ratio of 0.1− 0.5 for a global ocean model. The different
combinations of the background and observation error
variances σ2

b and σ2
o presented here are chosen to illustrate

possible effects of the 3D-FGAT approximation rather
than to imitate any particular physical system.

4.1 Scalar example

We consider the simple model given by (3). We define a
true value of the state at the initial time, xt(t0) and spec-
ify the value of the model parameter α. Values of the true

Table I. Analysis error variance for different values of α for the
scalar example using incremental 4D-Var and 3D-FGAT.

α 4D-Var 3D-FGAT

0.25 0.02 1.9
0.5 0.09 0.20
1.5 0.14 0.17
2.0 0.09 0.20
2.5 0.06 0.37

2.75 0.05 0.51

state at subsequent times in the assimilation window are
calculated using the model equation (3). We consider a
two-time-step window [t0, t2], with observations at times
t0 and t2 and the background field xb(t1) defined at time
t1. The observations are taken to be equal to the true field
at the appropriate time plus a random, unbiased, Gaussian
error, with a specified variance σ2

o . The background field
is defined to be equal to the true state at time t1 plus a ran-
dom, unbiased, Gaussian error with specified variance σ2

b .
We calculate the analyses from the incremental 4D-Var
and 3D-FGAT schemes over a total of 100,000 indepen-
dent cases, using different random noise inputs with the
same specified variances, and then calculate the variance
of the analysis error over all of these cases. The incremen-
tal 4D-Var scheme uses the true tangent linear model, with
the specified value of α, whereas 3D-FGAT approximates
this by α = 1.

We choose the true initial state to be xt(t0) = 5 and
the input variances on the observational and background
errors to be σ2

o = 0.4 and σ2
b = 2.0 respectively. The

values of the analysis error variance from the different
experiments are shown in Table I. For the incremental 4D-
Var scheme the analysis error is calculated at the centre
of the time window, so as to provide a direct comparison
with the 3D-FGAT error. For the values of α shown the
analytical values calculated from the formulae (10) and
(14) match the numerical values to the accuracy given, and
so these values are not duplicated in the table. For values
of the true model parameter α close to one, where the
3D-FGAT scheme is a good approximation, we find that
the analysis errors for the two schemes are very similar.
However, as the value of α moves away from one and the
3D-FGAT approximation breaks down, the analysis error
variance for this scheme also increases. We see that for
α = 0.25 and for α = 2.75 the analysis error variance is
greater than the observation error variance. Thus the use
of a sub-optimal assimilation system with an inaccurate
background field has resulted in a loss of the accurate
information present in the observations. It is also possible
to find values of the parameters such that the analysis
error variance is greater than both the observational and
background error variances. For example, if we choose
α = 0.25, σ2

o = 0.5 and σ2
b = 5, then the analysis error

variance using 3D-FGAT is 5.46, which is greater than
either of the input variances.
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4 A.S. LAWLESS

4.2 Shallow water model

As a second example we consider a more realistic system,
the one-dimensional nonlinear shallow water system for
the flow of a fluid over an obstacle in the absence of
rotation. The model equations are given by

Du

Dt
+
∂φ

∂x
= −g ∂h̄

∂x
,

1
φ

Dφ

Dt
+
∂u

∂x
= 0, (17)

with D/Dt = ∂/∂t+ u∂/∂x. In these equations h̄ =
h̄(x) is the height of the bottom orography, u is the veloc-
ity of the fluid and φ = gh is the geopotential, where g is
the gravitational acceleration and h > 0 the depth of the
fluid above the orography. The system is discretized using
a semi-implicit semi-Lagrangian integration scheme, as
described in Lawless et al. (2003). We define the problem
on a periodic domain of 1000 grid points, with a spacing
∆x = 0.01 m between them, so that x ∈ [0 m, 10 m] and
assume a model time step ∆t = 0.0092 s. Other parame-
ters for the problem are as defined in Lawless et al. (2005).

A 3D-FGAT scheme for this system is set up over
a time window [−T, T ], with observations of u and φ at
every spatial point at times−T, 0, T . The true state at time
−T is defined using the initial conditions from Case I of
Lawless et al. (2005) and we take T = 0.23, so that there
are 50 time steps in the assimilation interval. The solu-
tion to this problem is given by a stationary field over the
orography and two outgoing gravity waves moving away
from the orography in opposite diretcions. The assimi-
lation time window corresponds to approximately 40%
of the time scale of the gravity waves. For the assimila-
tion experiments the observations and background field
are generated by adding random, uncorrelated Gaussian
noise to the true state with given variances. The assimi-
lation is then run using these variances and a background
error covariance matrix defined using an exponential cor-
relation function with length scale 0.05 m.

In order to calculate the analysis error variance for
this system, instead of sampling over different assimila-
tion experiments, we assume that the analysis errors at
different spatial points are independent statistical sam-
ples. In Table II we show the analysis error variance from
assimilation experiments in which the comparative accu-
racy of the background and observations changes. For the
‘accurate’ observations or background the variances are
set to 10−4 ms−1 for u and 4× 10−4 m2s−2 for φ. For
the ‘inaccurate’ data these are increased by two orders
of magnitude to 10−2 ms−1 and 4× 10−2 m2s−2 respec-
tively. These correspond to standard deviations of approx-
imately 1% of the full fields for the accurate data and
10% of the full fields for the inaccurate data. We see that
when the background and observations are both accurate,
or when the background is more accurate than the obser-
vations, then the analysis error variances for both u and
φ are both of order 10−5, which is less than all the input
variances. However, when the background is inaccurate
and the observations are accurate, then the variance of the
analysis errors for both u and φ are greater than the vari-
ances of the observations. Thus, as for the simple scalar

Table II. Analysis error variances for experiments using the shallow
water model with different comparative accuracies of the observa-

tions and background.

Accurate Inaccurate
observations observations

Accurate background u 1.95× 10−5 1.94× 10−5

φ 3.24× 10−5 3.97× 10−5

Inaccurate background u 8.16× 10−4 -
φ 1.06× 10−3 -

Table III. Analysis error variances for experiments using the shal-
low water model with different time windows.

Time window u error φ error

30 7.35× 10−4 9.95× 10−4

10 1.87× 10−4 3.69× 10−4

2 1.70× 10−5 3.44× 10−5

example, the inaccurate background is able to degrade the
information available in the good observations. The results
for inaccurate observations and background are not dis-
cussed, since this is qualitatively the same as for accurate
observations and background.

From the results with the simple example we may
expect this problem to arise when the linear model is
far from the identity, and so to be worse for a larger
assimilation window. To test this hypothesis we perform
further experiments using an inaccurate background and
accurate observations for time windows of 30 time steps,
10 time steps and 2 time steps. The analysis errors for
these experiments are shown in Table III. We find that
as the time window is shortened, so that the FGAT
approximation is more accurate, then the analysis error
is reduced. However, for the time windows of 30 and 10
time steps the variance of the analysis errors for u are
still higher than those of the observations. It is only when
we have a very small window that the analysis is more
accurate than the observations.

5 Concluding remarks

Assimilation schemes based on 3D-FGAT are widely used
as an extension to 3D-Var in cases where the implementa-
tion of a 4D-Var system is prohibitively expensive. In this
note we have demonstrated a property of 3D-FGAT which
has hitherto been unremarked on in the literature, namely
that the variance of the analysis error may be greater than
the variance of any or all of the inputs. This is an inher-
ent property which arises from the approximation of the
tangent linear model by the identity within the assimila-
tion scheme, which is not accounted for statistically. It
can be interpreted as a kind of representativeness error
within the linear problem, where the error is in how well
the approximate linearization of the nonlinear observation
operator represents the exact linearization, rather than how
well the observation operator represents the true mapping
between the state and observation space. The neglect of

Copyright c© 0000 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–5 (0000)
DOI: 10.1002/qj



3D-FGAT ANALYSIS ERROR 5

this component of the error within the assimilation sys-
tem may lead to a sub-optimal analysis, which can cause
an increase in the analysis error even when all other prior
statistical information is correctly specified. It is impor-
tant not to confuse this assumption with the tangent linear
assumption used in 4D-Var. Even in a linear situation the
assumption of 3D-FGAT may not hold.

Although these results have been demonstrated for
simple examples, there is no reason to think that this prob-
lem will disappear as the model becomes more compli-
cated. Rather, the problem may arise whenever the true
tangent linear model matrix is far from the identity. How-
ever, it must be recognized that 3D-FGAT is still likely to
be an improvement over 3D-Var, which assumes that the
observations in a time window are all valid at the same
time. In fact, operational practice has shown great ben-
efits from moving to a 3D-FGAT scheme. Hence, these
results are not designed to discourage the use of 3D-
FGAT. Rather they illustrate the importance of under-
standing the assumptions in this assimilation approach and
their possible effects on the analysis error. One indica-
tion arising from this work is the importance of testing
the validity of the 3D-FGAT approximation, in much the
same way as a 4D-Var system is tested. Such a test was
implemented by Weaver et al. (2003) in the design of
a 3D-FGAT assimilation system for an ocean circulation
model. More routine tests of this type in a 3D-FGAT sys-
tem would indicate where the error in the approximation is
high and so provide an indication of possible uncertainties
in the 3D-FGAT analysis.

Finally we comment that the approximation of the
tangent linear model by the identity in 3D-FGAT can
be considered an extreme example of using an approxi-
mate linear model in incremental 4D-Var. In most oper-
ational 4D-Var systems the linear model is not an exact
linearization of the nonlinear model used in the outer
loop, but often contains simplifications, such as differ-
ent physical parametrizations or a different spatial resolu-
tion. Although we wished to concentrate on the 3D-FGAT
approach in this note, a simplified incremental 4D-Var
scheme could be analysed in the same way. It is clear from
the analysis presented here that if the error betweeen the
approximate and true linear model is not accounted for
statistically, then this may lead to the increase in analysis
error variance illustrated in this note.
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