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NUMERICAL ESTIMATION OF COERCIVITY CONSTANTS FOR
BOUNDARY INTEGRAL OPERATORS IN ACOUSTIC SCATTERING

T. BETCKE∗ AND E.A. SPENCE†

Abstract. Coercivity is an important concept for proving existence and uniqueness of solutions to variational
problems in Hilbert spaces. But, while the existence of coercivity estimates is well known for many variational
problems arising from partial differential equations, it is still an open problem in the context of boundary inte-
gral operators arising from acoustic scattering problems, where rigorous coercivity results have so far only been
established for combined integral operators on the unit circle and sphere. The main motivation for investigating
coercivity in this context is that it has the potential to give error estimates for the Galerkin method which are
explicit in the wavenumber k. One way to interpret coercivity is by considering the numerical range of the oper-
ator. The numerical range is a well established tool in spectral theory and algorithms exist to approximate the
numerical range of finite dimensional matrices. We can therefore use Galerkin projections of the boundary integral
operators to approximate the numerical range of the original operator. We prove convergence estimates for the
numerical range of Galerkin projections of a general bounded linear operator on a Hilbert space to justify this
approach. By computing the numerical range of the combined integral operator in acoustic scattering for several
interesting convex, nonconvex, smooth and polygonal domains, we numerically study coercivity estimates for vary-
ing wavenumbers. Surprisingly, it turns out that for many domains a coercivity result seems to hold independently
of the wavenumber or with only a mild dependence on it. Finally, we consider a trapping domain, for which there
exist resonances (also called scattering poles) very close to the real line, to demonstrate that coercivity for a certain
wavenumber k seems to be strongly dependent on the distance to the nearest resonance.

Key words. numerical range, coercivity, boundary integral operators

AMS subject classifications. 45P05, 47A12, 65R20,

1. Introduction. Let H be a Hilbert space and t : H×H → C a sesquilinear form on H. A
standard variational problem is to find u ∈ H such that

t(u, v) = f(v), ∀v ∈ H (1.1)

for a given f ∈ H′, the dual space of H. It is a classical result that there exists a unique solution
to this problem if there are C, γ > 0 such that

|t(u, v)| ≤ C‖u‖‖v‖, ∀u, v ∈ H (Continuity), (1.2)

γ‖u‖2 ≤ |t(u, u)|, ∀u ∈ H (Coercivity). (1.3)

Furthermore, if u(h) is a Galerkin solution of (1.1) in a finite dimensional subspace V(h) ⊂ H then
Céa’s Lemma [9] gives

‖u− u(h)‖ ≤ C

γ
inf

v∈V(h)
‖u− v‖. (1.4)

Hence, the stability of the Galerkin approximation u(h) can be determined by the continuity
constant C and the coercivity constant γ.

While estimates for C and γ are known for variational formulations of several classical PDEs
they are still an open problem for boundary integral equation operators in acoustic scattering.
Consider the problem of time-harmonic acoustic scattering from a sound-soft bounded obstacle
Ω ⊂ Rd, (d = 2, 3) with Lipschitz boundary Γ := ∂Ω. That is, we are looking for the solution u of
the problem

∆u+ k2u = 0 in Rd\Ω (1.5)

u = 0 on ∂Ω (1.6)

∂us
∂r
− ikus = o(r−(d−1)/2), (1.7)
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where u = uinc+us is the total field, uinc is a solution of (1.5) in a neighborhood of Ω, such as an
incident plane wave, us is the scattered field, and r is the radial coordinate. With the standard
free-space Green’s function defined as

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), d = 2, Φ(x, y) =

eik|x−y|

4π|x− y|
, d = 3,

for x, y ∈ Rd, x 6= y, the solution u is given by

u(x) = uinc(x)−
∫

Γ

Φ(x, y)un(y)ds(y), x ∈ Rd\Ω,

where un is the outward pointing normal derivative of u. To compute un one can solve the
boundary integral equation

Ak,ηun = 2
∂uinc
∂n

− 2iηuinc (1.8)

with

Ak,η := I +K ′ − iηS, (1.9)

where η ∈ R\{0}, I is the identity, and K ′ and S are defined by

K ′u(x) := 2

∫
Γ

∂Φ(x, y)

∂n(x)
u(y)ds(y), Su(x) := 2

∫
Γ

Φ(x, y)u(y)ds(y), x ∈ Γ.

Here, n(x) is the outward pointing unit normal at Γ. The corresponding sesquilinear form is
defined as ak,η(u, v) := 〈Ak,ηu, v〉, with 〈u, v〉 :=

∫
Γ
u(y)v(y)ds(y) being the standard L2-inner

product. It was recently shown by Chandler-Wilde and Langdon in [14] that the operator Ak,η is
bijective with bounded inverse in the Sobolev spaces Hs−1/2(Γ) for |s| ≤ 1

2 and η ∈ R\{0} (see
also the book by Colton and Kress [16] for unique solvability of (1.8) in C(Γ) with C2 boundary).

The common choice for the coupling parameter η is to take η proportional to k for k large,
and η constant for k small. This has been based on theoretical studies for the case of Γ a circle
or sphere [26, 25, 2, 3], and also on computational experience [10]. Recently this choice has been
backed up as near optimal for conditioning for more general domains by the analysis of [13]. In this
paper we will always assume that η = k and therefore only write Ak instead of Ak,k. If k is clear
from the context then for simplicity we just write A and a(·, ·) for the corresponding sesquilinear
form. However, it is important to keep in mind that A and a(·, ·) are k−dependent.

In acoustic scattering continuity of a(·, ·) is much more easy to establish than coercivity. The
key question is not only whether a(·, ·) is coercive, but also how γ depends on the wavenumber k.
Indeed, this is the main motivation for studying the variational form of (1.8). The classical theory
of second kind integral equations such as (1.8), which is based on the fact that for sufficiently
smooth domains the operator (1.9) is a compact perturbation of the identity, gives quasi-optimal
error estimates of the form (1.4) when the approximation space V(h) consists of piecewise poly-
nomials. However these error estimates have the following two disadvantages: The first is that
they are not explicit in the wavenumber k; i.e. they do not say how either the constant on the
right hand side of (1.4), or the dimension of the approximation space N , depend on k [4]. The
second is that much research effort has been focused recently on determining novel approximation
spaces which take into account the high oscillation of the solution as k increases [12], and it does
not appear that the classical theory can be used to prove error estimates for numerical methods
using these subspaces. On the other hand, if continuity (1.2) and coercivity (1.3) of a(·, ·) can
been established with constants C, γ explicit in k, then the error estimate (1.4) is valid for V(h)

any finite dimension subspace of L2. (There is the weaker theory of inf-sup constants for the
variational problem (1.1) [9], [23], but this does not seem well-adapted to give k-explicit error
estimates.)
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A first result on the coercivity of a(·, ·) was given in [18], where it was shown that with
Γ the unit circle (in 2-d) and the unit sphere (in 3-d) a(·, ·) is coercive for sufficiently large k
with γ ≥ 1. However, the question of coercivity and of k−dependence of γ is still unanswered
for more complicated domains. In Section 2 we give an overview of existing coercivity results.
To numerically estimate the coercivity constant on more complicated domains we use the close
connection between coercivity and the numerical range of the operator A. The numerical range
is defined as the set of all values 〈Au, u〉 in the complex plane with u ∈ L2(Γ), ‖u‖ = 1. It holds
that a(·, ·) is coercive if and only if 0 is not in the closure of the numerical range. Hence, we can
determine coercivity by computing the numerical range of the operator A, which is a well studied
problem in the numerical linear algebra literature for matrices acting on Cn. In Section 3 we
describe some key properties of the numerical range, and in Section 4.1 we review a well known
simple algorithm for computing the numerical range of an operator. Since in practice we need
to work with Galerkin discretizations of a(·, ·) in Section 4.2, we give convergence estimates of
the numerical range based on Galerkin discretizations with standard piecewise constant boundary
element discretizations. In Section 5 we demonstrate numerically the convergence of the numerical
range and use the numerical range computations to give numerical estimates of the coercivity
constant for several interesting polygonal and smooth domains in two dimensions. We summarize
our results and give conjectures about the coercivity constant in Section 6.

2. A summary of stability results for boundary integral operators in acoustic
scattering. In this section we summarize the known continuity and coercivity results about the
operator A, namely whether the inequalities (1.2) and (1.3) hold, and if so, how the constants C
and γ depend on k. We note that these results also apply to the related operator:

A′k,η := I +K − iηS (2.1)

where K is the double layer potential

Ku(x) := 2

∫
Γ

∂Φ(x, y)

∂n(y)
u(y)ds(y), x ∈ Γ.

This operator appears in the classic indirect boundary integral formulation due to Brakhage and
Werner [8], Leis [28] and Panič [33]. (“Indirect” refers to the fact that this integral operator does
not arise from Green’s integral representation, whereas the so-called “direct” integral operator
(1.9) does.) The operator A′k,η is the adjoint of Ak,η with respect to the real inner product

〈u, v〉R :=
∫

Γ
u(y)v(y)ds(y). Thus

‖Ak,η‖ = ‖A′k,η‖,

where the norm is that induced by the standard L2-inner product, and if the inequalities (1.2),
(1.3) hold for Ak,η then they also hold for A′k,η with the same C, γ.

Much less is known about coercivity (1.3) than continuity (1.2), so we discuss coercivity first.
We then include a brief discussion of continuity results, for more comprehensive treatments see
[13, 12]. In this section we will use the notation D . E where D/E is less than a constant which
is independent of k.

2.1. Coercivity. The only domains for which coercivity is completely understood is the
circle (in 2-d) and sphere (in 3-d); this is because the operator A acts diagonally in the basis
of trigonometric polynomials or spherical harmonics in 2 and 3-d respectively. For the circle,
Domı́nguez, Graham and Smyshylaev [18] showed that for the case η = k coercivity holds for all
sufficiently large k, with

γ ≥ 1,

and for the sphere they proved

γ ≥ 1−O(k−2/3).
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These difficult proofs relied on bounding below the eigenvalues of A, which are combinations of
Bessel functions, uniformly in argument and order.

Although nothing is known directly about the coercivity constant γ for domains other than
the circle/sphere, results on the norm of the inverse of A can be used to deduce information about
γ using the fact that if A is coercive then

γ ≤ 1

‖A−1‖
.

This follows from (1.3) using Cauchy-Schwartz. Chandler-Wilde, Graham, Langdon and Linder
[13] proved that if a part of Γ is C1 then

‖A−1‖ ≥ 1 (2.2)

and hence

γ ≤ 1. (2.3)

Thus the bound obtained for γ for the circle in [18] is sharp. (2.2) follows from the fact that S
and K are smoothing operators on smooth parts of Γ. In the same paper the authors constructed
an example of a non-convex, non-starlike “trapping” domain in 2-d for which there exists an
increasing sequence kn where ‖A−1‖ grows as kn increases. Indeed, for this domain, when η = k,

‖A−1‖ & k9/10
n (2.4)

where B is independent of k. It is not known whether A is coercive for this domain or not, but
this example shows that if it is coercive, it cannot be uniformly coercive in k since

γ . k−9/10
n

which tends to zero as kn →∞. A trapping domain to which this result applies is given in Section
5.3.

The final result on ‖A−1‖ which is relevant for coercivity was obtained by Chandler-Wilde
and Monk in [15]. Their result implies that if Γ is Lipschitz , C2 in a neighborhood of almost
every x ∈ Γ, and starlike with respect to the origin, that is

ess inf
x∈Γ

x · n(x) > 0,

then for η & k

‖A−1‖ . 1.

Thus, the “blow-up” of ‖A−1‖ for the “trapping” domain in [13] cannot occur when Ω is starlike.

2.2. Continuity. By Cauchy-Schwartz, (1.2) holds for the bilinear form involving A with
C = ‖A‖, and this is seen to be sharp by letting v = Au. The question of bounding ‖A‖ was
investigated in detail in [13]. We summarise the main results below for the case η = k, noting
that [13] obtains bounds explicit in both η and k.

In 2 and 3-dimensions, for Γ Lipschitz and piecewise C1, if k is sufficiently large,

1 ≤ ‖A‖ . k(d−1)/2,

where d is the dimension. In 2-dimensions if Γ is piecewise C2 there is an improved lower bound
leading to

k1/3 . ‖A‖ . k1/2 (2.5)

for sufficiently large k . In addition, in 2-d if Γ contains a straight line segment of length a then

‖A‖ & (ak)1/2 (2.6)
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for sufficiently large k, so that in this case the upper bound (2.5) is sharp in its k-dependence.
For the circle and sphere, the Fourier basis allows for bounds on ‖A‖ to be obtained by

bounding the eigenvalues of A, and this specialised method obtains sharper bounds than the
general methods of [13]. For the circle and the sphere, when η = k and k is sufficiently large,

‖A‖ . k1/3

[18]. (This result was obtained earlier for the sphere in the unpublished thesis [21].) Banjai and
Sauter [5] recently obtained an improved bound on ‖A‖ for the sphere: when k is sufficiently large

‖A‖ . (1 + |η|k−2/3).

This result, obtained partly by improved bounds on the eigenvalues, reduces to the earlier bound
if η = k, but indicates that the norm of A is k-independent if η = k2/3.

3. The numerical range and its connections to coercivity. In this section we discuss
the connections between the numerical range of a bounded linear operator T on a Hilbert space
with associated sesquilinear form t(u, v) = 〈Tu, v〉 and the coercivity constant γ. From (1.3) it
follows that the largest possible coercivity constant γ is determined by

γ = inf
u∈H

|t(u, u)|
‖u‖2

. (3.1)

This value is closely related to the numerical range of T .
Definition 3.1 (Numerical Range). Let T be a bounded linear operator in a Hilbert space

H. The numerical range W (T ) is defined as the set

W (T ) = {〈Tu, u〉, u ∈ H, ‖u‖ = 1} .

The numerical range is also known under the name field of values. A beautiful summary of
the numerical range and its connections to spectra and pseudospectra is given by Trefethen and
Embree in [37]. Many results about the numerical range of linear operators in Hilbert spaces
are contained in the book by Gustafson and Rao [22]. The numerical range has the following
fundamental properties.

Proposition 3.2 (Properties of the numerical range).
1. W (T ) is convex.
2. The spectrum σ(T ) is contained in the closure of W (T )
3. The closure of the numerical range of a normal operator is the convex hull of its spectrum

σ(T ).
The proofs can be found in [22]. From the definition of the numerical range we have the

following equivalent characterisation of coercivity.
Proposition 3.3. The sesquilinear form t(u, v) := 〈Tu, v〉 associated with a linear operator

T on a Hilbert space is coercive if and only if 0 6∈ W (T ). Furthermore, if t(·, ·) is coercive then
the coercivity constant γ is given by γ = d(0,W (T )), where d is the usual set distance.

Proof. If t(·, ·) is coercive then, by definition, 0 < inf
u∈H\{0}

|〈Tu, u〉|
〈u, u〉

. Hence, 0 6∈ W (T ).

On the other hand, if t(·, ·) is not coercive there exists a sequence u(n) ⊂ H\{0} such that
〈Tu(n), u(n)〉
〈u(n), u(n)〉

→ 0 for n → ∞. Therefore, 0 ∈ W (T ). It follows immediately from (1.3) that

γ = d(0,W (T )) if t(·, ·) is coercive.
This result allows us to rephrase the question of determining coercivity to the question of

computing the numerical range W (T ). In fact, if T is normal then we immediately obtain from
Proposition 3.2 the following characterisation.

Proposition 3.4. If T is normal then the associated sesquilinear form t(·, ·) is coercive if
and only if 0 is not in the closed convex hull of the spectrum of T .

An example is the operator Ak,η defined in (1.8) on the unit circle.
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Fig. 3.1: Eigenvalues and boundary of the numerical range of the boundary integral operator Ak,η
on the unit circle (left plot) and on the equilateral triangle with side length 1 (right plot) for
k = η = 50.

Lemma 3.5. If Γ is the boundary of the unit circle (in 2-d) or the unit sphere (in 3-d) then
Ak,η is normal.

Proof. On the unit circle the integral operators K ′ and S and their adjoints diagonalise in
the Fourier-basis (einθ)n=−∞...∞. Hence, Ak,η and A∗k,η commute. The standard way to prove the

diagonalisation is to apply Green’s theorem to einθ multiplied by an appropriate Bessel function
[25, 26, 18], however the easiest way is to use the Fourier series representation of the fundamental
solution,

H
(1)
0 (k|reiθ − ρeiφ|) =

∞∑
n=−∞

ein(θ−φ)H(1)
n (kr>)Jn(kr<), (3.2)

where r> = max(r, ρ), r< = min(r, ρ), [1] equation (9.1.79), in the definitions of K ′ and S. The
case of the sphere is similar, with spherical harmonics Y mn (x̂) replacing the Fourier basis, and (3.2)
replaced by

eik|x−y|

4π|x− y|
= ik

∞∑
n=0

jn(kr<)h(1)
n (kr>)Y mn (x̂)Y mn (ŷ) (3.3)

where r> = max(|x|, |y|), r< = min(|x|, |y|), [32] equation (11.3.44).

In the left plot of Figure 3.1 the boundary of the numerical range is shown for the operator
Ak,η on the unit circle with k = η = 50 (we explain how this was computed in Section 4.1).
The black dots are the eigenvalues of the Galerkin discretization used for this computation. As
expected the numerical range is the convex hull of the eigenvalues. Since on smooth curves Γ the
operator Ak,η is a compact perturbation of the identity the point 1 is the limit point of σ(A),
which is visible in the plot. Interestingly, some eigenvalues also seem to cluster around 2.

Let us now consider a more interesting domain. In the right plot of Figure 3.1 we show
the eigenvalues and the numerical range for the operator Ak,η on the boundary of an equilateral
triangle with side length 1 and k = η = 50. Two observations are of interest. First of all, the
numerical range is again bounded away from zero. Hence, the associated sesquilinear form is
coercive for this k. Second, the numerical range is not the convex hull of the eigenvalues any
more. This shows that the corresponding operator Ak,η is not normal, and, as a consequence, that
spectral information is not sufficient any more to determine whether the operator is coercive or
not.

Characterisations of when 0 ∈ W (T ) were given by Burke and Greenbaum in [11]. They
proved the following equivalence relation.
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Proposition 3.6. Let T be a bounded linear operator. The following statements are equiva-
lent:

(i) 0 6∈W (T ).
(ii) There exists c ∈ C such that W (cT ) lies in the open right half plane.

(iii) min {‖I − cT‖ : c ∈ C} < 1.
Statement (ii) is equivalent to the existence of α > 0 and c ∈ C, |c| = 1, such that

Re{〈cTu, u〉} ≥ α for all u ∈ H. This is sometimes used instead of (1.3) as definition of co-
ercivity. Statement (iii) as characterisation of coercivity has not been previously encountered by
the authors. Its theoretical appeal is that it turns the question of proving coercivity of a bounded
linear operator T into the question of estimating the norm of I − cT for constants c ∈ C.

The numerical range is not only of interest for the estimation of coercivity constants. It tells
us much more about an operator. Let r(T ) := sup{|z| : z ∈W (T )} be the numerical radius of T .
The numerical radius of T is equivalent to ‖T‖ since

r(T ) ≤ ‖T‖ ≤ 2r(T ). (3.4)

(see [22, Theorem 1.3-1]). The lower and upper bound are sharp. This result together with (3.1)
allows us to formulate Céa’s Lemma (1.4) purely using the numerical range.

Theorem 3.7 (Céa’s Lemma). Let T be a bounded and coercive linear operator, V(h) a
subspace of H and W (T ) the numerical range of T . Then for the Galerkin solution u(h) of (1.1)
in the subspace V(h) we have the estimate

‖u− u(h)‖ ≤ 2d(T ) inf
v∈V(h)

‖u− v‖,

where d(T ) :=
supz∈W (T ) |z|
infz∈W (T ) |z|

.

The numerical range is also of practical interest for matrix iterations. For example, bounds for
the convergence of GMRES applied to T can be formulated based on the numerical range [19, 20].
Hence, it is justified to study not only the coercivity and continuity constants γ and C separately
but to consider the numerical range W (T ) itself. In particular, for boundary integral operators in
acoustic scattering it is of interest to study the k−dependence of the numerical range.

4. Computing the numerical range. In Section 3 we showed that coercivity constants
are determined by the distance of the numerical range to the origin. In this section we discuss the
approximation of the numerical range. We start with the standard algorithm for computing the
numerical range and then give a detailed convergence analysis given that we will be working with
finite dimensional Galerkin approximations of the operator.

4.1. An algorithm for numerical range computations. Standard algorithms for com-
puting the numerical range are based on the following principle. Let T be a bounded linear
operator on a Hilbert space. We split up T as T = TH + iTS , where TH := 1

2 (T + T ∗) and
TS := 1

2i (T −T
∗). TH is the self-adjoint (or Hermitian) part of T and iTS is its skew-adjoint part.

Then

〈Tu, u〉
〈u, u〉

=
〈THu, u〉
〈u, u〉

+ i
〈TSu, u〉
〈u, u〉

.

Since TH and TS are self-adjoint, 〈THu, u〉 ∈ R and 〈TSu, u〉 ∈ R for all u ∈ H. It follows that the
real part of all elements in the numerical range is determined by TH . Hence, W (T ) is contained
in the strip {z ∈ C : h(m) ≤ Re{z} ≤ h(M)}, where

h(m) = inf
u∈H\{0}

〈THu, u〉
〈u, u〉

, h(M) = sup
u∈H\{0}

〈THu, u〉
〈u, u〉

. (4.1)

By multiplying the operator T with eiθ for θ ∈ [0, π] and computing h(m) and h(M) again we obtain

a set of enclosing lines that characterise the convex set W (T ). Denote by h
(m)
θ and h

(M)
θ the left
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and right bound for the numerical range W (eiθT ) obtained as in (4.1). We have the following
algorithm to compute the coercivity constant γ.

Input: Bounded linear operator T , Number of approximating points N
Output: 0 or lower bound for coercivity constant γ
W := C; angles := { jπN , j = 0, . . . , N − 1};1

foreach θ ∈ angles do2

Compute h
(m)
θ , h

(M)
θ ;3

W := W ∩ e−iθ{z ∈ C : h
(m)
θ ≤ Re{z} ≤ h(M)

θ };4

end5

if 0 6∈W then6

return γ := d(0,W );7

else8

γ := 0;9

end10

return γ;11

Algorithm 1: Computation of coercivity constant γ

Algorithm 11 computes an enclosing domain W ⊃W (T ) using N rotations of the original operator
T . For N → ∞ from the convexity of W (T ) it follows that W → W (T ). If 0 6∈ W then the
algorithm returns a positive lower bound for γ. Otherwise, either T is not coercive or N needs to
be increased. If H is finite dimensional, and therefore T a matrix, we can also directly compute
points on the boundary of the numerical range and thereby give an interior approximation. Let

λ
(θ)
min and λ

(θ)
max be the smallest, respectively largest, eigenvalue of the Hermitian part of eiθT with

associated eigenvectors vmin and vmax. Then the corresponding points on the boundary of the

numerical range of W (T ) are given by p
(θ)
min = 〈Tvmin,vmin〉

〈vmin,vmin〉 and p
(θ)
max = 〈Tvmax,vmax〉

〈vmax,vmax〉 . It follows

that the convex hull of all such points for different θ is a subset of W (T ), since W (T ) itself is
convex. More information to numerical range computations can be found in [22]. An algorithm
for estimating the numerical range of large and sparse matrices is described in [7].

IfH is infinite dimensional we approximate T from a finite dimensional basis {χ1, . . . , χn} ⊂ H
using a Galerkin approximation of T . The numerical range of T is then approximated by

W (T (h)) =

{
xHT (h)x

xHM (h)x
, x ∈ Cn\{0}

}
,

where T (h) = [〈Tχi, χj〉], i, j = 1, . . . , n is the Galerkin projection of T and M (h) = [〈χi, χj〉], the
mass-matrix, is the corresponding projection of the identity in the finite dimensional basis. Hence,
we need to solve generalized eigenvalue problems of the form

T (h)(θ)

H x = λM (h)x,

where T (h)(θ)

H is the Hermitian part of eiθT (h).

When solving integral equations using the Galerkin method with locally defined basis functions
typically, at least in 2-d, the matrix M (h) has low bandwidth or is even diagonal. We therefore
compute the Cholesky decomposition M (h) = CCH to obtain the standard eigenvalue problem

C−1T (h)(θ)

H C−Hy = λy with y = CHx. This is equivalent to changing to an orthonormal basis of
the Galerkin subspace.

4.2. Convergence of the numerical range of a Galerkin discretization. In this section
we analyse the convergence of the numerical range W (T (h)) of a Galerkin discretisation T (h) to
the numerical range of W (T ) for a sequence of subspaces V(h0) ⊂ V(h1) ⊂ · · · ⊂ H, where h is
usually interpreted as the fineness of a boundary element discretisation of an integral operator.
The Galerkin discretisation T (h) is obtained by restricting the variational problem (1.1) on H to
a variational problem on a finite dimensional subspace V(h) ⊂ H. From the definition of T (h)
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as Galerkin discretisation and the variational characterisation of the numerical range it follows
immediately that

W (T (h)) = {〈Tu, u〉 : u ∈ V(h), ‖u‖ = 1} ⊂W (T ).

In this section we will use the notation d(X,Y ) := inf{|x − y| : x ∈ X, y ∈ Y } for the distance
of two sets. Correspondingly, d(x, Y ) := d({x}, Y ) is the distance of a single point x to the set Y .
For the analysis we need the following perturbation Lemma.

Lemma 4.1. Let z ∈ W (T ) with associated u ∈ H, ‖u‖ = 1, such that z = 〈Tu, u〉. Let
0 < ε ≤ 1 and choose û ∈ H with ‖u− û‖ ≤ ε. Then∣∣∣∣z − 〈T û, û〉〈û, û〉

∣∣∣∣ ≤ 8‖T‖ε,

Proof. Let f = u− û. Then ‖f‖ ≤ ε. We have

z = 〈T (û+ f), û+ f〉

and therefore

|z − 〈T û, û〉| ≤ 2‖T‖‖û‖‖f‖+ ‖T‖‖f‖2. (4.2)

We now estimate

|z − 〈T û, û〉| ≥
∣∣∣∣z − 〈T û, û〉〈û, û〉

∣∣∣∣− ∣∣∣∣〈T û, û〉 − 〈T û, û〉〈û, û〉

∣∣∣∣
≥
∣∣∣∣z − 〈T û, û〉〈û, û〉

∣∣∣∣− ‖T‖ ∣∣1− ‖û‖2∣∣ . (4.3)

Combining this with (4.2) and using
∣∣1− ‖û‖2∣∣ ≤ 2‖f‖+ ‖f‖2 gives∣∣∣∣z − 〈T û, û〉〈û, û〉

∣∣∣∣ ≤ 2‖T‖‖f‖ [‖û‖+ ‖f‖+ 1] .

With ‖û‖ ≤ ‖u‖+ ‖f‖ = 1 + ‖f‖ we have∣∣∣∣z − 〈T û, û〉〈û, û〉

∣∣∣∣ ≤ 2‖T‖‖f‖ [2 + 2‖f‖] ≤ 8‖T‖ε

since ‖f‖ ≤ ε ≤ 1.
We can now give a first convergence result. In order to state it we define the set Wε(T ) := {z ∈

W (T ) : d(z, ∂W (T )) ≥ ε}. Hence, for any ε > 0 we haveWε(T ) ⊂W (T ) and limε→0 d(z,Wε(T )) =
0 ∀z ∈ W (T ). Also, by conv{z1, . . . , zM} ⊂ C we denote the closed convex hull of the points
z1, . . . , zM ∈ C.

Theorem 4.2. Let V(h`) be an asymptotically dense sequence of finite dimensional subspaces
of H such that V(h0) ⊂ V(h1) ⊂ · · · ⊂ H. Denote by T (h`) the associated Galerkin discretization of
T . For any ε > 0 there exists m ∈ N such that Wε(T ) ⊂W (T (hj)) ⊂W (T ) for any j ≥ m.

Proof. Without restriction let 0 < ε ≤ 1. The case of larger ε follows from this since
Wε1(T ) ⊂ Wε2(T ) for ε1 ≥ ε2. Choose a finite number of M points zj in W (T )\Wε(T ) such that
for Z = conv{z1, . . . , zM} we have Wε(T ) ⊂ Z and d(∂Wε(T ), ∂Z) > 0. This is possible due to the
convexity of W (T ). Now let δ > 0 be small enough, such that for any set Zδ = conv{ẑ1, . . . , ẑM}
with ẑj satisfying |zj − ẑj | ≤ δ it holds that Wε(T ) ⊂ Zδ. Hence, perturbing the points zj by at
most δ still results in a convex set that encloses Wε(T ). Denote by uj ⊂ H, ‖uj‖ = 1, elements of
H associated with zj such that zj = 〈Tuj , uj〉 and choose m ∈ N sufficiently large such that there
exists ûj ∈ V(hm)\{0} with ‖uj − ûj‖ ≤ δ/(8‖T‖) for all 1 ≤ j ≤M . The existence of such an m
follows from the asymptotic density of the subspaces V(h`) in H. From Lemma 4.1 and the choice
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of δ it follows now for the points ẑj =
〈T ûj ,ûj〉
〈ûj ,ûj〉 that Wε(T ) ⊂ conv{ẑ1, . . . , ẑM}. Furthermore,

from ẑj ∈ W (T (hm)) and the convexity of the numerical range we have Wε(T ) ⊂ W (T (hm)) and
due to the definition of the subspaces V(hj) also Wε(T ) ⊂W (T (h`)) ⊂W (T ) for any ` ≥ m.

Remark 4.3. It follows from Theorem 4.2 that every point in the interior of W (T ) also belongs
to the numerical range of a sufficiently fine Galerkin discretisation. Hence, the main difference
between the numerical range of a Galerkin discretisation and that of the original operator T is the
behaviour of their boundaries. Indeed, T (h) is finite dimensional, and hence W (T (h)) is closed.
However, W (T ) is in general neither open nor closed.

We now prove a simple convergence estimate for the numerical range of a boundary integral
operator based on a Galerkin boundary element discretization with piecewise constant elements
of diameter h. To express the convergence result let ∆ν := {z ∈ C : |z| ≤ ν}. Also, for two sets
A,B ⊂ C let A+B := {a+ b : a ∈ A, b ∈ B}.

Theorem 4.4. Let Ω be a piecewise smooth Lipschitz domain with boundary Γ and T :
L2(Γ)→ L2(Γ) a bounded linear operator. Denote by T (h) its Galerkin discretisation from a space
V(h) of piecewise constant elements of diameter at most h. Then W (T (h)) ⊂ W (T ) and for any
ε > 0 and 0 < α ≤ 1 there exists C > 0, which depends on T , ε and α such that

Wε(T ) ⊂W (T (h)) + ∆Chα .

Proof. As in the proof of Theorem 4.2 we choose M points in W (T )\Wε(T ) such that Wε(T ) ⊂
Z := conv{z1, . . . , zM} and d(∂Wε(T ), ∂Z) > 0. Denote by uj ∈ L2(Γ), ‖uj‖L2(Γ) = 1 functions
associated with zj , such that zj = 〈Tuj , uj〉. Also, as in the proof of Theorem 4.2 let δ > 0 be
small enough such that for every Zδ := conv{ẑ1, . . . , ẑM} with |zj − ẑj | ≤ δ we have Wε(T ) ⊂ Zδ.

Since Γ is a Lipschitz boundary, the Sobolev space Hα(Γ) is well defined for 0 < α ≤ 1. Also,
Hα(Γ) is dense in L2(Γ). Hence, there exist functions ûj ∈ Hα(Γ)\{0}, such that ‖uj− ûj‖L2(Γ) ≤
δ/(8‖T‖L2(Γ)). From Lemma 4.1 it now follows that |zj − ẑj | ≤ δ for ẑj =

〈T ûj ,ûj〉
〈ûj ,ûj〉 and therefore

Wε(T ) ⊂ conv{ẑ1, . . . , ẑM}.
Without restriction we now assume that the functions ûj have been scaled to ‖ûj‖L2(Γ) = 1.

By approximation results for piecewise constant basis functions [35] there exists û
(h)
j ∈ V(h) such

that

‖ûj − û(h)
j ‖L2(Γ) ≤ Chα|ûj |Hα(Γ), (4.4)

j = 1, . . . ,M for some C > 0 independent of j and h. Let L := maxj |ûj |Hα(Γ). For the points

ẑ
(h)
j =

〈T û(h)
j ,û

(h)
j 〉

〈û(h)
j ,û

(h)
j 〉

it follows from Lemma 4.1 that |ẑj − ẑ
(h)
j | ≤ 8CL‖T‖hα. Subsuming the

constants in C we have

|ẑj − ẑ(h)
j | ≤ Ch

α (4.5)

for some C > 0. It follows that the boundary of the convex hull of the points ẑj and the boundary

of the convex hull of the points ẑ
(h)
j also have a distance bounded by Chα for some C > 0 and

therefore, by the choice of the points ẑj

Wε(T ) ⊂ conv{ẑ1, . . . , ẑM} ⊂ conv{ẑ(h)
1 , . . . , ẑ

(h)
M }+ ∆Chα .

From the convexity of the numerical range we have conv{ẑ(h)
1 , . . . , ẑ

(h)
M } ⊂W (T (h)) giving

Wε(T ) ⊂W (T (h)) + ∆Chα .

The statement W (T (h)) ⊂ W (T ) follows trivially from the variational characterisation of the
numerical range.

Remark 4.5. Asymptotically, the rate of convergence in Theorem 4.4 is O(h). However, in
practice the constant C may be large if the ûj are measured in the H1(Γ) norm. If ûj is better
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represented in Hα(Γ) for some α < 1 then we may numerically only see convergence of the rate
O(hα). However, for sufficiently small h the rate of convergence will eventually approach O(h).
An example is given in Section 5.1.

A slight improvement on the convergence rate of Theorem 4.4 can be obtained using properties
of the Galerkin approximations. However, we will see that this only applies to the boundary
integral operator A on domains which are smoother than just Lipschitz: we prove that C2,β , 0 <
β ≤ 1 is sufficient. In addition the operator must be self-adjoint, however this is not restrictive
since, as shown earlier, we can compute W (T ) by only considering the Hermitian part TH . We
first prove a refinement of Lemma 4.1 in the case where û is the Galerkin approximation of u.

Lemma 4.6. Let X be a continuous linear operator on H which is self adjoint: X∗ = X. Let
z ∈W (X) with associated u ∈ H, ‖u‖ = 1, such that z = 〈Xu, u〉. Let V(h) be a finite dimensional
subspace of H, let u(h) denote the Galerkin approximation to u defined by

〈u(h) − u, v(h)〉 = 0, ∀v(h) ∈ V(h), (4.6)

and suppose that

‖u− u(h)‖ ≤ 1

2
‖u‖.

Then∣∣∣∣z − (u(h), Xu(h))

(u(h), u(h))

∣∣∣∣ ≤ 4‖u− u(h)‖
(
‖Xu(h) − (Xu(h))(h)‖+ ‖Xu− (Xu)(h)‖+ ‖X‖‖u− u(h)‖

)
,

(4.7)

where (Xu(h))(h) and (Xu)(h) are the Galerkin approximations of Xu(h) and Xu.
Proof. By the triangle inequality, Cauchy Schwartz, and the fact that ‖u − u(h)‖ ≤ 1/2 we

have ∣∣∣∣〈u,Xu〉 − 〈u(h), Xu(h)〉
〈u(h), u(h)〉

∣∣∣∣ ≤ ∣∣∣∣ 〈u,Xu〉 − 〈u(h), Xu(h)〉
〈u(h), u(h)〉

∣∣∣∣+ |〈u,Xu〉|
∣∣∣∣ 1

〈u, u〉
− 1

〈u(h), u(h)〉

∣∣∣∣ ,
≤
∣∣∣∣ 〈u,Xu〉 − 〈u(h), Xu(h)〉

〈u(h), u(h)〉

∣∣∣∣+ ‖X‖
∣∣∣∣ 〈u, u〉 − 〈u(h), u(h)〉

〈u(h), u(h)〉

∣∣∣∣ ,
≤ 4

(
|〈u,Xu〉 − 〈u(h), Xu(h)〉|+ ‖X‖|〈u, u〉 − 〈u(h), u(h)〉|

)
.

The result (4.7) now follows from the following two relations

〈u,Xu〉 − 〈u(h), Xu(h)〉 =
〈
Xu(h) − (Xu(h))(h), u− u(h)

〉
+
〈
u− u(h), Xu− 〈Xu)(h)

〉
(4.8)

and

〈u, u〉 − 〈u(h), u(h)〉 = 〈u− u(h), u− u(h)〉. (4.9)

These are both consequences of the Galerkin property (4.6) and the fact that X is self-adjoint.
Indeed

〈u(h), Xu(h)〉 − 〈u,Xu〉 = 〈u(h), X(u(h) − u)〉+ 〈u(h) − u,Xu〉
= 〈Xu(h), u(h) − u〉+ 〈u(h) − u,Xu〉

by X = X∗, and using the property (4.6) to subtract off (Xu(h))(h) and (Xu)(h) from the first
and second brackets respectively yields (4.8). Property (4.6) also implies

〈u(h), u(h)〉 = 〈u, u(h)〉 = 〈u(h), u〉

which gives (4.9).
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The key point about equation (4.7) is that each term on the right hand side is the product of
two errors in Galerkin approximations, thus the Galerkin approximation to the functional 〈u,Xu〉
converges faster than ‖u − u(h)‖ – this is an example of superconvergence. Another example of
Galerkin approximations of functionals exhibiting superconvergence is given in [34].

Using Lemma 4.5 instead of Lemma 4.1 we can now prove a refined version of Theorem 4.4
for the numerical range of self-adjoint operators.

Theorem 4.7. Let Ω be a Lipschitz domain with boundary Γ and X : L2(Γ)→ L2(Γ) a self-
adjoint bounded linear operator which also maps H1(Γ) to H1(Γ). Denote by X(h) its Galerkin
discretisation from a space V(h) ⊂ L2(Γ) of piecewise constant elements of diameter at most h.
Then W (X(h)) ⊂W (X) and for any ε > 0 there exists h0 and C > 0 (C depending on X, ε, and
h0), such that for all h ≤ h0

Wε(X) ⊂W (X(h)) + ∆Ch2 .

Proof. This is identical to that of Theorem 4.4 for the case α = 1 except that now Lemma 4.5
gives that

|ẑj − ẑ(h)
j | ≤ Ch

2

for some C > 0. The requirement that X : H1(Γ)→ H1(Γ) is necessary to apply the interpolation

result (4.4) to Xûj and Xû
(h)
j , and h0 is chosen such that for all h ≤ h0

‖ûj − û(h)
j ‖L2(Γ) ≤

1

2
, j = 1, · · · ,M.

We now proof that the approximation of the numerical range of Ak,η also shows superconver-
gence if Γ is sufficiently smooth. We need the following two lemmas.

Lemma 4.8. If Γ is C2,β , 0 < β ≤ 1 then the operators AH := 1
2 (Ak,η + A∗k,η), and AS :=

1
2i (Ak,η − A

∗
k,η), where Ak,η is given by (1.9) and A∗k,η = A′k,η where A′k,η is given by (2.1), map

L2(Γ)→ L2(Γ) and H1(Γ)→ H1(Γ)
Proof. Certainly if S,K, and K ′ all map L2(Γ)→ L2(Γ) and H1(Γ)→ H1(Γ) then so do AH

and AS . When Γ is Lipschitz

S : Hs−1/2(Γ)→ Hs+1/2(Γ),

K ′ : Hs−1/2(Γ)→ Hs−1/2(Γ),

K : Hs+1/2(Γ)→ Hs+1/2(Γ)

for |s| ≤ 1/2, [29, Theorem 7.1]. Thus all three map L2(Γ) → L2(Γ), but only S and K map
H1(Γ)→ H1(Γ). By [17, Theorem 3.6], if Γ is C2,β , 0 < β ≤ 1 then K ′ : L2(Γ)→ H1(Γ) and thus
maps H1(Γ)→ H1(Γ).

Lemma 4.9. Let Γ be C2,β, 0 < β ≤ 1. Let A
(h)
k,η be the Galerkin discretisation of Ak,η from a

space V(h) ⊂ L2(Γ) of piecewise constant elements of diameter at most h and denote by u(h) ⊂ V(h)

the Galerkin approximation of u ∈ L2(Γ). Denote by z and z(h) the corresponding points in the
numerical range of Ak,η given by

z :=
〈Ak,ηu, u〉
〈u, u〉

, z(h) :=
〈Ak,ηu(h), u(h)〉
〈u(h), u(h)〉

Then there exists h0 such that for all h ≤ h0 we have

|z − z(h)| ≤ Ch2 (4.10)

for some C > 0 independent of u and h.
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Proof. Splitting up Ak,η into AH and AS as defined in Lemma 4.8 gives

z =
〈AHu, u〉
〈u, u〉

+ i
〈ASu, u〉
〈u, u〉

From Lemma 4.8 it follows that Lemma 4.6 can be applied separately to the real and imaginary
parts of z and z(h) resulting in (4.10).

By using the approximation result (4.10) in the proof of Theorem 4.4 we immediately obtain
the following O(h2) convergence result for the numerical range of the operator Ak,η.

Theorem 4.10. Let the assumptions of Lemma 4.9 hold. Then for any ε > 0 there exists

C > 0, which depends on Ak,η and ε such that W (A
(h)
k,η) ⊂W (Ak,η) and

Wε(A) ⊂W (A
(h)
k,η) + ∆Ch2 .

5. Numerical examples. In this section we demonstrate the convergence of the numerical
range and the coercivity constant as h → 0 and apply the numerical range computation to test
the coercivity of the integral operator A for several interesting domains. For simplicity, we take
the most commonly used choice of coupling constant, η = k and omit the indices in Ak,η since the
k-dependence is clear from the context.

5.1. Convergence of the numerical range as h → 0. We start by demonstrating the
convergence results of Section 4.2. Consider the operator A on the unit circle with k = 1. For the
BEM discretisation we decompose the unit circle into elements of equal length h and choose piece-
wise constant basis functions on each element. From Theorem 4.10 it follows that the convergence
of the numerical range is at least quadratic. We approximate the numerical range of A(h) with
the exterior approximation algorithm described in Section 4.1 using 50 eigenvalue computations,
resulting in an approximating polygon with 100 corners. An approximation for the coercivity con-
stant γ(h) of A(h) is then given as the distance of the exterior polygon to the origin. The rate of
convergence for decreasing h is shown in Figure 5.1. For smooth domains, such as the circle, with
boundary length L we use approximately NLk

2π elements, that is h ≈ 2π
Nk . For polygonal domains,

considered later, L is the length of a boundary segment. Hence, h can differ on each segment.
With this notation N = 10 corresponds to the rule of thumb of 10 elements per wavelength. The
error for the coercivity constant of the circle is measured as |γ(h) − 1| since it is known that for
sufficiently large k the exact coercivity constant is 1. Indeed, the convergence curve seems to
confirm this result for the wavenumber k = 1.

With piecewise constant basis functions the convergence is approximately quadratic as pre-
dicted. At an accuracy of around 10−4 it starts slowing down. We suspect that this is due to the
limit in accuracy given by the polygonal approximation of the numerical range. For comparison
we also give the rate of convergence using piecewise quadratic basis functions. Already with 10
elements per wavelength the approximate coercivity constant has an error of less than 1%.

We now consider the approximation of the coercivity constant of A on the unit square. Again,
we choose k = 1. The convergence of the coercivity constant for approximations with piecewise
constant basis functions is shown in the upper left plot of Figure 5.2 (square-dotted line). The
observed convergence is much slower than the expected maximum asymptotic rate of O(h) from
Theorem 4.4. The reason is shown in the upper right plot of Figure 5.2. It shows the logarithmic
plot of a boundary function that is associated with a point in the numerical range close to 0.5.
It was computed as an eigenfunction of a Galerkin discretisation of A with piecewise quadratic
basis functions and exponential h−refinement towards the corners. It has a large H1(Γ) norm,
indicating that the constants of the estimate in Theorem 4.4 will become large for α = 1. Hence,
this function is much better represented as a function in Hα(Γ) for some α < 1 and we expect the
visible numerical rate of convergence to be O(hα), even though eventually the asymptotic rate will
approach O(h). The lower left plot of Figure 5.2 shows the effect on the shape of the numerical
range. With N = 2000, that is roughly 2000 elements per wavelength, the numerical range of
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Fig. 5.1: Convergence of the coercivity constant for a growing number of elements per wavelength
on the unit circle for k = 1 with linear and quadratic basis functions.

the discretisation only fills parts of the exact numerical range, leading to an overestimation of the
coercivity constant. The (up to plotting accuracy) correct numerical range was obtained by using
piecewise quadratic basis functions together with exponential h-refinement towards corners. The
lower right plot shows the approximate spectrum (black dots) and the boundary of the numerical
range obtained with this strategy. The convergence of the coercivity constant γ(h) for the refined
discretisations is shown as the circle-dotted line in the upper left plot of Figure 5.2. N means
here that approximately N elements per wavelength were used until a distance of 2π

Nk away from
the corner together with exponential h-refinement in the direct neighbourhood around the corner.
This gives an accuracy of around 10−2 for N = 10. The best obtained value for the coercivity
constant on the square is 0.318 using N = 3000. As comparison for N = 10 we obtain 0.329, a
relative distance of less than 4% to the best value. On the plotting scale there is no significant
difference between the numerical range for N = 10 and for N = 3000 using the exponential
refinement close to the corners.

5.2. Numerical range and coercivity constant for growing k. In this section we nu-
merically investigate the behavior of the numerical range and the coercivity constant for growing
wavenumber k of the integral operator A for the boundaries of several polygonal and smooth
domains.

For smooth domains we used BEM discretisations with piecewise quadratic basis functions
and for cornered domains we additionally applied exponential h-refinement towards the corners.
Typically we used between 10 and 20 elements per wavelength away from the corners depending
on the overall system size. Whenever possible within the limit of the available memory and
feasible computing times we checked the accuracy by refining h. At least on the level of plotting
accuracy we always found good agreement between the results for 10 elements per wavelength
and higher values for the number of elements. All computations were done using a self-developed
C++ code, which is OpenMP parallelized. It ran on an 8 core Linux workstation with 64GB
RAM. The finest discretisations that were still feasible in terms of computing time led to matrix
problems of dimensions between ten and eleven thousand. Since 50 eigenvalue decompositions
of the Hermitian part of complex rotations of the operator needed to be performed to obtain
an approximating polygon for the numerical range with 100 corners, the overall computing time
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Fig. 5.2: Upper left:) Rate of convergence of γ(h) on the unit square. Upper right:) A function
associated with a point of the numerical range close to 0.5 . Lower left:) Approximate numerical
range using piecewise constant basis functions (solid line) against exact numerical range (dotted
line). The dots show the eigenvalues of the Galerkin projection A(h). Lower right:) Approxima-
tion to exact numerical range and the spectrum of A on the square obtained by using piecewise
quadratic basis functions and h-refinement towards corners of the square.

was roughly in the range of 12 to 20 hours for the largest matrix problems. Due to the cubic
dependence of the computing time for the full matrix problems on the dimension of the matrices,
doubling the number of elements leads to an additional factor 8 in time.

5.2.1. Smooth domains. For the unit circle coercivity was already shown for sufficiently
large k in [18]. Therefore, we are more interested for this domains in what happens as k → 0. The
corresponding values of the coercivity constant γ are given in the following table.

k 0.01 0.1 1 10
γ 0.01 0.57 1.00 1.00

For k = 1 and above the coercivity constant indeed seems to be 1. However, as k → 0 the numerical
range starts deteriorating into a line and it appears that also γ → 0. This is consistent with the
fact that the choice η = k is not optimal for small wavenumbers (see Section 2), and also with the
fact that A0 = I+K ′0 is not invertible, and hence not coercive, on L2(Γ) for any Lipschitz domain
since it maps any L2 function into one with zero mean and hence is not surjective [38]. However,
if we fix η = 1, then for k = 0.1 and k = 0.01 we obtain that the coercivity constant is 1. Since the
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Fig. 5.4: The numerical range of A on a kite shape (upper left plot) for k = 10, 50, 100.
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Fig. 5.5: An inverted ellipse and the associate numerical range of A for k = 10, 50, 100.

eigenvalues of A on the unit circle are explicitly known (see for example [18]) and the numerical
range is just the convex hull of the spectrum in this case one may also approximate the coercivity
constant for the unit circle directly without using a Galerkin discretization of the operator. Also,
it is interesting to note that for growing k more and more eigenvalues cluster around the point
2 (see Figure 3.1). However, for each k there can only be a finite number of eigenvalues close
to 2 since A on the unit circle is a compact perturbation of the identity and therefore the only
accummulation point of the eigenvalues is 1.

The next domain is a kite shape. A parameterization of its boundary is given by Z(t) =
cos t+ 0.65 cos 2t− 0.65 + 1.5i sin t, t ∈ [0, 2π]. The numerical range for k = 10, 50, 100 is shown in
Figure 5.4. Again, as in the case of the unit circle there are more and more eigenvalues appearing
close to 2 as k becomes larger. However, the main difference between this domain and the circle
is that the operator A is not normal since the numerical range is not just the convex hull of the
eigenvalues. But interestingly we still have γ ≈ 1 for all three cases. Again, the coercivity constant
seems to be independent of the wavenumber for sufficiently large k. The size of the numerical
range grows as k becomes larger. This is due to the norm bound (2.5) and the equivalence of the
numerical radius and the norm of A in (3.4).

In the next example we show results for a domain, which like the kite is nonconvex and star-
shaped but for which the coercivity constant of A shows a very different behaviour for growing

k. It is an inverted ellipse defined by Z(t) = eit

1+ 1
2 e

2it , t ∈ [0, 2π]. The inverted ellipse and the

corresponding numerical range of A for k = 10, 50, 100 are shown in Figure 5.5. The following
table shows approximations of the coercivity constant γ for the different wavenumbers.

k 10 50 100 200
γ 0.988 0.737 0.672 0.585

It is striking that in contrast to the circle and the kite shape γ does not seem to be independent
of k. It is an open question whether there is a lower bound C > 0, such that γ > C for all k on
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the inverted ellipse or whether γ → 0 as k →∞ (see also the discussion in Section 6).

5.2.2. Polygonal domains. We start with two simple convex polygons, namely the unit
square and the equilateral triangle. For the unit square and k = 1 a plot of the numerical
range was already shown in Figure 5.2. We now present results for growing k. Figure 5.6 shows
the numerical range and approximations of the spectra for A on the square in the case of the
wavenumbers k = 10, 50, 100. The lower right plot shows a comparison of the numerical range in
all three cases. Again, due to (2.6) and (3.4) the size of the numerical range grows for growing
k. For γ we obtain in all three cases the approximation γ ≈ 0.328. It is interesting to note
that close to the origin for all three wavenumbers the boundary of the numerical range is almost
identical (see the lower right plot of Figure 5.6). For k = 1 we computed a value of γ ≈ 0.318
using approximately 3000 elements per wavelength while here we used around 20 elements per
wavelength. Hence, the value of γ for the higher wavenumbers has a relative distance of around
3% to the value for k = 1, which is likely due to the higher discretisation error (note that for 10
elements per wavelength we reported a value of 0.329 in Section 5.1).

As Figure 5.7 shows the operator A on the equilateral triangle has a very similar behaviour.
Again, the computed coercivity constant does not seem to change in dependence on the wavenum-
ber. For the three considered wavenumbers k = 10, 50, 100 we have γ ≈ 0.17.

The square and the triangle are both convex domains, and both exhibit numerical wavenum-
ber independence of γ. To see that this feature is not restricted to convex polygonal domains
consider the L-Shape in Figure 5.8. Again, the coercivity constant seems to be independent of
the wavenumber with a value of γ ≈ 0.30. Figure 5.9 shows the results for a polygon which is not
only non-convex, but is also non-star-shaped, and again the results are very similar to the other
domains. In this example we have γ ≈ 0.30 for all three wavenumbers, which interestingly is, up
to numerical accuracy, identical to the value for the L-Shape.

5.3. A trapping domain. Our last example is the trapping domain shown in Figure 5.10,
so-called because the open cavity can “trap” high frequency waves. That is, we expect there to
be asymptotically trapped modes of the PDE (1.5) in the cavity for large wavenumbers k that are
multiples of 5 (since the width of the cavity is π/5). This fact was used in [13] to show that for this
domain ‖A−1‖ satisfies (2.4) for kn multiples of 5, and hence the operator A cannot be uniformly
coercive for large k. Figure 5.11 shows the numerical range of A for this domain in the cases
k = 4, 5, 8, 10. For k = 4 and k = 8 the operator A is coercive. But for k = 5 and k = 10 we lose
coercivity. These numerical results seem to indiciate that the loss of coercivity is closely connected
to the nonnormality of the operator: for all wavenumbers in Figure 5.11 the spectrum of A is in the
right-half plane independent of whether the operator is coercive or not. This again suggests that
spectral information is not sufficient to understand coercivity. We now give a possible explanation
for the loss of coercivity at k = 5 and k = 10 by considering resonances of the exterior scattering
problem. A resonance (or scattering pole) can be defined as a wavenumber kres, for which there
exists a sequence u(n) ∈ L2(Γ), ‖u(n)‖ = 1, satisfying

‖Au(n)‖ → 0

as n → ∞, that is ‖A−1‖ is infinite (see Remark 5.2). For Im{k} ≥ 0 this is not possible as in
this case A is bijective on L2(Γ) (the proof of this for k ∈ R in [14] can easily be extended to the
case Im{k} > 0). Hence, any resonances can only be in the lower half-plane.

If a resonance kres is close to the real axis we expect that solutions of the soundsoft scattering
problem for real wavenumbers close to kres will be affected since ‖A−1‖ will still be large for k
sufficiently close to the resonance. However the coercivity of the operator may be also affected as
the following Theorem shows.

Theorem 5.1. Let kres ∈ C, Im{kres} < 0, be a resonance. Then Akres,η is not coercive for
this wavenumber.

Proof. If kres is a resonance then by definition there exists a sequence u(n), ‖u(n)‖ = 1, such
that ‖Akres,ηu(n)‖ → 0 for n → ∞. It follows that 〈Akres,ηu(n), u(n)〉 → 0. Hence, Akres,η is not
coercive.
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Fig. 5.6: The numerical range of A on the unit square for k = 10, 50, 100. The black dots are
approximations to the spectral values of A. The lower right plot shows a comparison of the
numerical ranges for the three different wavenumbers.
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Fig. 5.7: The numerical range of A on the equilateral triangle with sides of unit length for k =
10, 50, 100.
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Fig. 5.8: The numerical range for k = 10, 50, 100 of A for the L-shaped domain.
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Fig. 5.9: The numerical range for k = 10, 50, 100 of A for a non-starshaped domain (“double-L”).

If 0 is in the interior of the numerical range W (A) for a resonance kres then by continuity
there exists a neighbourhood of kres, such that A is not coercive for any wavenumber k in this
neighbourhood.

In Figure 5.12 we show a contour plot of log10(‖A‖−1) in the case of the trapping domain
over a part of the negative half of the complex plane. Three resonances in the negative half of the
complex plane are visible in this plot. We also computed the numerical range for k in the interval
from 4 to 12 to obtain estimates for which real wavenumbers the operator A loses coercivity. The
corresponding ranges are shown as dashed lines in Figure 5.12. Note that the coercivity statements
are with respect to the corresponding real wavenumbers.

Remark 5.2. Resonances, or scattering poles, are fundamental objects in the study of scat-
tering theory. A nice introduction to this area is given in [36, Chapter 7] , but we sketch a brief
outline below. Consider the scattered field us for the acoustic scattering problem: this satisfies the
Helmholtz equation (1.5), the radiation condition (1.7), and a Dirichlet boundary condition which
we shall write as

us = f on ∂Ω.

We can then abstractly write

us = Bkf

where Bk is the solution operator, where the subscript emphasises the k-dependence. Bk is a
uniquely defined operator-valued function of k for Im{k} ≥ 0, and analytic for Im{k} > 0. In
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Fig. 5.10: A trapping domain. The open cavity has a width of π/5.
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Fig. 5.11: The numerical range of A for the trapping domain from Figure 5.10 in the cases
k = 4, 5, 8, 10.

fact, Bk can be analytically continued into Im{k} < 0 except for certain poles, and these are called
the “resonances” or “scattering poles”. When k is one of these scattering poles, there exists an
outgoing solution of (1.5) which is zero on ∂Ω, where a function v is called outgoing if

v ∼ C eikr

r(d−1)/2
as r →∞,

where C depends only on the angular variables and d is the dimension. However outgoing solutions
with k having negative imaginary part grow exponentially towards infinity and do not satisfy the
Sommerfeld radiation condition (1.7).
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Fig. 5.12: Contour plot of log10(‖A−1‖) over a part of the complex plane. The dashed lines show
ranges, where for k on the real axis the operator A is not coercive.

Smooth Polygonal
Convex Circle –coercive, uniform in k Square –coercive, uniform in k

Equilateral triangle –coercive, uniform in k
Non-convex, Kite –coercive, uniform in k L-shaped –coercive, uniform in k
star-shaped Inverted ellipse –coercive,

not uniform in k
Non-star-shaped Double-L –coercive, uniform in k

Trapping –coercivity depends on k

Table 6.1: Summary of the numerical results on coercivity of the operator A on various domains
for k = 10, 50, 100.

In a neighborhood of the positive real k axis, Bk can be expressed in terms of the boundary
integral operator A′k, equation (2.1), as follows:

Bk = 2(Dk − iηSk)(A′k)−1 (5.1)

where the double- and single-layer potentials are defined by

Dku(x) :=

∫
Γ

∂Φ(x, y)

∂n(y)
u(y)ds(y), Sku(x) :=

∫
Γ

Φ(x, y)u(y)ds(y), x ∈ R2\Γ

η ∈ R+\{0}, and the subscripts again emphasise the k-dependence, [36, equation (7.32)]. This
representation of Bk shows that, in the neighborhood of R+ where this formula is valid, the scat-
tering poles are equal to the poles of (A′k)−1, and hence to the poles of A−1

k (using the fact that
‖(A′k)−1‖ = ‖A−1

k ‖ [15]). The scattering poles, as defined above, are also equal to the poles of the
so-called “scattering operators” for both the acoustic scattering problem and the time-dependent
wave equation [36, Chapter 7].

6. Conclusions. Coercivity is still a largely open problem for boundary integral formulations
of acoustic scattering problems. In this paper we used the close connection to the numerical range
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of the operator to investigate coercivity on several interesting domains in two dimensions. The
numerical results demonstrate that coercivity of the direct combined boundary integral operator
A seems to hold uniformly on a wide range of domains. This is surprising since for standard
domain based variational formulations of the underlying Helmholtz equation only a weaker G̊arding
inequality, with k dependent perturbation term, holds [23]. Table 6.1 summarizes the results for
the different domains. Coercivity seems to hold uniformly (with respect to the numerical accuracy
of the results) and independently of the wavenumber for all considered domains apart from the
inverted ellipse and the trapping domain. For the inverted ellipse it is not clear from the current
results whether γ → 0 as k →∞ or whether there exists a lower bound C, such that C < γ for all
sufficiently large k. The trapping domain behaves very differently from the other domains, and
we saw that the boundary integral operator has resonances close to the real axis which helped
explain why it is not coercive. This leads us to make the following conjecture:

Conjecture 6.1. The combined boundary integral operator A is coercive on bounded domains
for all wavenumbers k that are sufficiently far away from a resonance.

The fact that the trapping domain behaves so differently from the other domains considered
here is not surprising. Indeed, in scattering theory for the time dependent wave equation, the
geometry of the domain, and in particular whether it is trapping or not, plays a key role [27].
Recall the definition of “trapping” and “non-trapping” from the epilogue of [27]: consider all the
rays starting in the exterior of Ω inside some large ball of finite radius. Continue all the rays
according to the law of reflection (angle of incidence equals angle of reflection) whenever they hit
∂Ω, until they finally leave the large ball. We call Ω trapping if there are arbitrary long paths or
closed paths of this kind; otherwise Ω is non-trapping. (Note that there are subtleties associated
with rays hitting the boundary at a tangent, and also for domains with non-smooth boundaries.)

The connection between whether a domain is trapping or not and the location of resonances
is a classic problem: in the 1967 first edition of [27], Lax and Philips conjectured that

1. for a non-trapping domain there are no resonances in a strip {k : Im{k} ≤ α} for some
constant α > 0, and

2. for a trapping domain there is a sequence of resonances {kj}∞j=1 such that Im{kj} → 0 as
j →∞.

The first statement was proved to be correct in [31] and [30]; however examples of trapping domains
for which there are no resonances in a strip below the real axis were given in [6], [24], and thus
the second statement is incorrect. (More details about these results are given in [27, Epilogue].)

Returning to the question of coercivity, the result 1 above implies that for the inverted ellipse
there are no resonances in a strip below the imaginary axis, lending support to the idea that
coercivity is uniform for higher k. Combining Conjecture 6.1 with the result 1, leads to the
following conjecture:

Conjecture 6.2. The combined boundary integral operator A is coercive uniformly in k, for
all sufficiently large wavenumbers k, for all non-trapping domains. (This obvious depends on
whether the strip in result 1 causes the resonances to be “sufficiently far away” from the real axis,
however there are some results which say that the resonances increase in distance from the real
axis as k increases [27, Epilogue].)

Note that, as mentioned in Section 2, for a certain class of trapping domains (including the
domain considered in Section 5.3) A has already been proven not to be uniformly coercive in k,
however still much work has to be done to establish whether these conjectures are true or not. In
particular, the connection between resonances/trapping and coercivity needs to be more closely
investigated.

Apart from investigating coercivity itself, this paper points to several other open research
directions. We did not discuss the plots of the spectra in detail, but nevertheless they show some
interesting features, especially for the polygonal domains where the operator is not a compact
perturbation of the identity. In addition the connection to nonnormality should be investigated
further: it appears that the operator is nonnormal for all domains other than the unit circle, and
it would be interesting if this could be proved. It seems that coercivity is intimately linked to this
nonnormality: indeed, as the example of the trapping domain shows, spectral information appears
to be largely irrelevelant for answering the question of whether coercivity holds or not. However,
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the behaviour of nonnormal matrices and operators is still an open problem in many applications
(see the book by Trefethen and Embree [37]).

Finally, with this paper we would like to advertise the use of the numerical range and related
concepts like pseudospectra [37] for investigating the properties of boundary integral operators.
Many interesting results can be expressed in terms of the numerical range such as the reformulation
of Céa’s Lemma in Theorem 3.7, and estimates for iterative solvers [19, 20].
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