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The formation of a planar hydraulic jump has been analysed in the framework of a full depth-
averaged thin film model (DAM) with surface tension effects included. We have demonstrated
regular weak solutions of the full DAM and analysed surface tension effects. It has been shown that
surface tension effects within the parameter range relevant to the recent experiments are expected
to be very weak and practically negligible. The developed methodology can be used in the analysis
of laminar flow regimes and as a benchmark in developing full scale hydrodynamic models.

I. INTRODUCTION

The phenomenon of a hydraulic jump, which is com-
monly observed in free surface flows, is well known to
the research community. However, despite of almost a
century of intensive research [1–29], the phenomenon it-
self and its mechanisms are still the subject of hot de-
bates [21–29].

The phenomenon is quite interesting and to some ex-
tent intriguing, even though its appearance looks rather
ordinary. The most commonly encountered are the cir-
cular hydraulic jumps, which can be observed practically
in any kitchen using a tap and a lid, Fig. 1.

In general, hydraulic jumps could be of many different
forms [14, 16], but the second most studied is a planar
hydraulic jump observed in channel flows [12, 16, 21, 26].

Recent debates have been instigated by experimental
observations indicating that the position (the radius) of a
circular hydraulic jump is practically independent of the
gravity field direction to the substrate where the flow
with a jump takes place [17, 18, 20–22]. That is when
a liquid jet of a certain intensity impinges on solid walls
oriented at different angles to the gravity force, the hy-
draulic jump radius measures almost the same at a fixed
value of the total liquid flux in the jet.

These observations in line with the previously reported
data obtained in low gravity conditions [10, 13] inspired
a revision of the main mechanisms involved in the jump
formation, emphasising the role of the surface tension,
and the subsequent polemic [21–25, 27, 29].

Indeed, the role of gravity in the formation of a hy-
draulic jump is well known. Continuity of mass and
momentum fluxes across the jump region treated as a
discontinuity implies that at that point

Y (1 + Y )

2Fr2
+
hU
R0

YWe−1 = 1, (1)

which can be used to estimate the position of the jump
and its magnitude if somehow the free surface profiles
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are provided [11, 15]. Here Y = hD

hU
is the ratio of the

interface height hD in the downstream region, straight
after the jump, to that in the upstream region hU , just
before the jump, Fig. 2, R0 is the jump radius, Fr2 =
6
5

q20
g0h3

U
and We = 6

5
ρq20
γhU

are the local values of the Froude

and Weber numbers defined through the upstream height
hU , q0 is the flux density per the unit length of the jump,
γ is surface tension and g0 is the acceleration of gravity.
The coefficient of 6/5 has appeared due to a particular
parabolic velocity profile used for averaging in this study,
as in Appendix (A.16).

As the aspect ratio of the layer height to the jump
radius R0 (in the case of a circular jump geometry),
hU

R0
� 1, is usually very small or zero in the case of a

planar jump, contribution of the surface tension is often
neglected leading to the classical Bélanger equation [30]

Y =

√
1 + 8Fr2 − 1

2
. (2)

This implies that the main mechanism of the hydraulic
jump formation is supposed to be due to gravity. Some-
how, the opposite was observed in the recent experi-
ments [17, 18, 20–22].

In a simplified approach, the position of the jump can
be roughly estimated as the critical point of the average
velocity gradient [15] leading to a local condition

Fr = 1. (3)

Note, criterion (3) is very approximate and can not in
principle distinguish different far-field conditions, as it
was rightly noticed in [25], while the far-field can dra-
matically affect the flow and the development of the hy-
draulic jump, as one can see from a simple experiment
shown in Fig. 1.

Based on the experimental observations [17, 18, 20–
22], the local criterion (3) was revisited and modified
to [21, 22]

We−1 + Fr−2 = 1, (4)

which is supposed to be fulfilled in the case of an arbitrary
jump geometry.
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The modified criterion is still local and lacks informa-
tion from the downstream conditions. But, it mitigates
the effect of gravity while amplifying the role of the sur-
face tension. As a result, other (different) trends are
expected with the change of the controlling parameters
of the flow (such as the total flux) and the liquid prop-
erties (such as surface tension) [22]. Condition (4) has
been the subject of a polemic in the subsequent publica-
tions [23–28].

The authors of [24], using the full system of the Navier-
Stokes equations, though in simplifying assumptions of a
strictly laminar free-surface radial flow, have concluded
that there are two typical flow conditions, capillary-
dominant and gravity-dominant regimes, at any rate, the
role of gravity cannot be eliminated or even substantially
diminished.

In a similar comparative study [23], the authors us-
ing the Navier-Stokes numerical solutions in a laminar
flow regime with surface tension effects included, a shal-
low water approximation and a depth-averaged model
(DAM), though neglecting surface tension, have also
demonstrated the dominant role of gravity. At the same
time, the laminar flow regime in full Navier-Stokes simu-
lations was found to be unstable, when the coefficient of
surface tension was exceeding some critical values. The
critical values were well below the real values of the sur-
face tension for such liquids as water. So that, the surface
tension was found to be a destabilising factor.

At the same time, in a recent publication [29], the au-
thors have demonstrated that there is compelling exper-
imental evidence to doubt that the role of the surface
tension is negligible, and the gravity dominates in the
observed effects.

One can summarise that at the moment the opinions
are polarised that gravity still plays the dominant role.
Moreover, no air-tight explanation for the effect of the
invariance on the gravity force direction has been pro-
posed. The role of surface tension, as a destabilising fac-
tor, also requires some further clarification to understand
the extent that this mechanism can affect the formation
of the transient region between the two separated zones,
the upstream and the downstream regions.

The purpose of the current study is manifold. First of
all, we would like to clarify the role of surface tension in
the formation of a hydraulic jump. This problem is in-
tertwined with the short scale structure of the hydraulic
jump region and the flow itself, that is with the contribu-
tion from the smaller scale eddy (turbulent) motion and
capillary waves, and with the existing methodologies to
model such flow regimes.

Indeed, there are three main methodologies (ap-
proaches) commonly used in the analysis of free surface
flows engaging different levels of approximation, and as
a consequence a different number of simplifying assump-
tions. That is, flows with a jump region have been anal-
ysed based on the full system of the Navier-Stokes equa-
tions, using a shallow water (SW) approach reminiscent
of the Prandtl boundary layer equations and applying

the DAMs [23].

The numerical analysis of the full Navier-Stokes model
requires the least number of assumptions mostly related
to the spatial resolution. But simulations are hindered by
the high computational costs, especially if the flow regime
develops instabilities and eventually a turbulent state.
For these reasons, the use of the full model in practice has
been always limited to a nearly laminar flow regime, when
the spatial resolution and the time dependent features
were rather limited [23, 24].

The SW models appeal to the small aspect ratio of the
two characteristic dimensions in the free surface flows
when the liquid layer thickness is much smaller than the
longitudinal length scales. The model can resolve some
transient features in the flow and the lateral velocity pro-
file with slow variations along the flow directions. But,
the turbulent, short scale eddy motion, cannot be in prin-
ciple resolved by the SW approach due to the approxi-
mation. Moreover, despite the simplifications, the SW
approach still requires numerical tools to obtain a solu-
tion and is still can be computationally expensive to test
in view of Courant-Friedrichs-Lewy stability restrictions.

The DAM approach introduces another level of averag-
ing and approximation, and have the advantage of avail-
able analytical solutions and relatively low cost numeri-
cal solutions. The averaging over the layer thickness is
applied resulting in a greater simplified system of govern-
ing equations (5)-(7) but requires closure in the form of a
lateral velocity profile as in Appendix (A.13), for exam-
ple. While the lateral velocity profiles required to define
the coefficients in the model are to some extent assumed,
the actual variations in the model parameters have been
found non-essential [28], as that any velocity profile still
has to satisfy the boundary conditions.

Therefore, the DAMs have been widely accepted as
a reasonable approximation in many practical applica-
tions, but the contribution from the surface tension has
been so far neglected resulting in discontinuous solutions.
From the analytical solutions point of view, this was un-
derstandable, since surface tension contribution led to
derivatives of the third order with no observable analyt-
ical solutions available. From the numerical simulations
point of view, the progress was also surprisingly slow,
which was also related to the high order derivatives. So
that no continuous solutions have been developed so far.

The common trend in the use of DAMs was to obtain
discontinuous analytical solutions neglecting surface ten-
sion effects in the separated by the jump upstream and
downstream regions and then to apply additional argu-
ments, such as conditions (2) and (3) to identify the jump
position. It is informative, that the layer averaging is still
applied to obtain practical criteria such as (2) and (3).
But the neglect of the surface tension effects left room
for speculation as to the applicability of the DAMs (oth-
erwise very efficient) somehow implying that the DAMs
have always inherent singularities leading to discontinu-
ous solutions, while the use of the next level models, such
as the SW models has the advantage of continuity.
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So, the first purpose of this study is to develop re-
liable weak continuous solutions (and methodologies to
obtain them) of the full system of DAM equations in-
cluding the awkward third order terms responsible for
the surface tension effects, to investigate the role of the
surface tension in the formation of the jump region. The
only disadvantage in comparison to the full Navier-Stokes
model appears to be the resolution of the eddy motion.
So that in the laminar flow regime, the weak solutions
will be almost exact up to the minor corrections due to
uncertainties with the lateral velocity profile.

Here, we would like to demonstrate, that the DAMs
can always provide a regular solution, which carries, in
fact, all the features available in the SW approximation.
The comparative analysis of the three main approaches
in [23] has shown that the DAMs even in the presence
of a critical point (due to the neglect of the surface ten-
sion terms, we argue) can catch the main features of the
hydraulic jump effect. We will further stress and de-
velop this point by demonstrating that the full DAM can
provide a regular solution continuously linking the two
regions of the flow and taking into account the effects of
surface tension in full.

The second main task we are going to pursue is to
analyse contribution from the small scale eddy motion.
In the first approximation, we introduce effective eddy
viscosity, as in [16], to account for the effect of the small
scale motion on the averaged flow profiles.

The importance of effects of turbulence has been
stressed in several studies involving planar and circu-
lar hydraulic jumps [3, 16, 20]. The experimental study
of planar hydraulic jumps in channels has demonstrated
that eddy viscosity in both regions, the upstream and
the downstream, exceeds the physical dynamic viscosity
of the liquid by a factor of four. This means that the
turbulence effects are by far more important than the
average structure of the lateral velocity field producing
only minor effects.

In this flow regime, we will test, using the continu-
ous solutions developed, how the averaging of the small
scale flow structure affects the global solutions. We will
demonstrate limitations of the full DAM and, at the same
time, as a byproduct, develop means for a clear separa-
tion of different effects contributing to the formation of
the free surface profile with a hydraulic jump. The ad-
vantage of the DAM in this case is that it can clearly
split up the effects of the surface tension and the eddy
motion.

In the current study, we will concentrate on the planar
hydraulic jumps, where effects of the finite jump radius
are expected to be absent. We will develop weak solu-
tions to the full system of the DAM equations including
third order (spatial derivative) terms responsible for the
surface tension effects. Using the DAM methodology, we
will analyse parametric dependencies, including the effect
of surface tension, and provide a comparative analysis of
the experimental data in [16], where the turbulent effects
manifest in full. We compare the obtained continuous so-

lutions with the approximate theory and the criteria (2).
In what follows, we first provide a mathematical model

relevant to the DAM approximation and briefly revisit
previous analytical results involving discontinuous solu-
tions.

27 cm

FIG. 1. Illustration of the circular hydraulic jump with dif-
ferent far-field conditions applied at a fixed value of the total
flux in the jet ≈ 0.06 l/s: without (left) and with (right) the
boundary edge. The boundary edge in the picture is about
≈ 3mm. The substrate material is Teflon.

h0 q0=U h0
hU

hD

Inlet

Outlet

x0

FIG. 2. Illustration of the planar hydraulic jump geometry.

II. THE MATHEMATICAL MODEL

The mathematical model we utilise is relatively well
understood. As such, we only sketch its derivation in
the Appendix, while details can be found elsewhere [31].
The problem setup is illustrated schematically in Fig. 3.
This is a three-dimensional viscous flow of a Newtonian
liquid at a solid wall located at x3 = B(x1, x2) with a
free surface parametrised accordingly x3 = h(x1, x2, t) +
B(x1, x2), Fig. 3.

The problem is characterised by two different length
scales H and L in the vertical, x3, and the horizontal
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FIG. 3. Illustration of the thin film flow geometry.

x1, x2 directions respectively. Angle θ characterises the
inclination of the flow plane to the direction of the gravity
field g0, Fig. 3. In the thin film approximation taken
in the study H/L = δ � 1 is assumed to be a small
parameter.

The non-dimensional formulation is achieved by intro-
ducing reduced variables, that is the coordinates x1 =
x̂1/L, x2 = x̂2/L, x3 = x̂3/H, velocities v1 = v̂1/U ,
v2 = v̂2/U , v3 = v̂3/δU , time t/t0 and pressure p =
p̂/p0. Here U is characteristic velocity, t0 = L/U is the
timescale, p0 = ρU2 is the characteristic pressure in the
inertial range, ρ is the liquid density.

The system of the governing equations in the thin film
approximation is obtained by introducing averaged (over
the layer) quantities

q1,2 =

∫ h+B

B

v1,2 dx3.

As a result of the averaging procedure, see details in
Appendix and [31],

∂h

∂t
+
∂q1
∂x1

+
∂q2
∂x2

= 0, (5)

∂q1
∂t

+
6

5

∂

∂x1

(
q21
h

)
+

6

5

∂

∂x2

(q1q2
h

)
= (6)

h

{
Ka‖ sin θ − ∂p

∂x1

}
− 3

Re

q1
h2

and

∂q2
∂t

+
6

5

∂

∂x1

(q1q2
h

)
+

6

5

∂

∂x2

(
q22
h

)
= (7)

−h ∂p

∂x2
− 3

Re

q2
h2
,

where pressure p is given in the hydrostatic approxima-
tion by

p = pa +Ka cos θ (h+B − x3)− (8)

1

ĈaRe

(
∂2(h+B)

∂x21
+
∂2(h+B)

∂x22

)
.

Here pa is external gas pressure. The non-dimensional
parameters of the problem are the Reynolds number,
Re = δ ρUHµ , the Kapitza numbers, Ka‖ = g0L

U2 and

Ka = g0H
U2 and Ĉa = Ca δ−3, which is a renormalised

Capillary number Ca = µU
γ , where γ and µ are surface

tension and dynamic viscosity of the liquid respectively.
To understand the functionality of the thin film sys-

tem of equations (5)-(8) and the admissible solutions, we
further simplify the problem to a one-dimensional case
on a flat substrate, B = 0, when a planar hydraulic jump
is regularly observed.

One-dimensional steady state problem

In a one-dimensional case and on a flat substrate, B =
0,

∂h

∂t
+
∂q

∂x
= 0, (9)

∂q

∂t
+

6

5

∂

∂x

(
q2

h

)
= − 3

Re

q

h2
− (10)

h

(
Ka cos θ

∂h

∂x
−Ka‖ sin θ − 1

ĈaRe

∂3h

∂x3

)
.

In a steady state q = const, and

0 =
h3

ĈaRe

∂3h

∂x3
+
∂h

∂x

(
6

5
q2 −Ka cos θh3

)
+ h3Ka‖ sin θ − 3q

Re
.

(11)

There are four non-dimensional parameters in the
model reflecting the roles of gravity (Ka and Ka‖), sur-

face tension (Ĉa), viscosity and inertia (Re). The non-
dimensional parameter Ka is actually the inverse Froude
number Fr2 = 6

5Ka
−1. In what follows, we focus on the

case θ = 0 (unless otherwise specified), that is when the
gravity is perpendicular to the liquid layer.

HYDRAULIC JUMP AS A DISCONTINUITY

A set of typical experimental results in planar chan-
nel flows when a hydraulic jump was commonly observed
in both laminar (inset) and turbulent flow regimes are
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shown in Fig. 4 with the parameters summarised in Ta-
ble I. The main input and output parameters are the flux
density q0, initial film thickness h0 at the entrance of the
flow and the position of the jump X with respect to the
entry point. In this study, we define the jump position
as the inflection point of the free surface profile.

As one can see, the dimensional flux density in the
experiments q0 spans

7 · 10−5 m2/s ≤ q0 ≤ 2 · 10−3 m2/s.

The range of the non-dimensional parameters of the prob-
lem based on the upstream conditions then suggests a set
of potentially asymptotic parameters Ka � 1, Ĉa � 1
and Re � 1, if we define H = h0 and the characteristic
velocity by means of q0 = Uh0, so that non-dimensional
q = 1. The horizontal length scale L is chosen on the ba-
sis of h0 by setting δ = 0.1. That is in the case of water
8 ≤ Re ≤ 200, 4 ≤ Ĉa ≤ 140 and 3·10−4 ≤ Ka ≤ 4·10−2.

If contribution of the surface tension, the third order
differential operator, is ignored away from the transition
region at ĈaRe� 1, equation (11) is reduced to

∂h

∂x

{
6

5
q2 −Kah3

}
=

3q

Re
. (12)

Note, in our choice of non-dimensional parameters
(H = h0), q = 1 and the equation can be further simpli-
fied. In an arbitrary normalisation, one can re-scale the
non-dimensional variables x, h according to

x = x̃
Re

3

(
6

5

)4/3
q5/3

Ka1/3
, h = h̃

(
6

5

)1/3
q2/3

Ka1/3
(13)

to bring (12) into a parameter-free equation

∂h̃

∂x̃

{
1− h̃3

}
= 1. (14)

The scaling (13) suggests that the position of the hy-

draulic jump should be proportional to X ∝ q5/30 , which
is indeed observed in the experiments [12, 16, 21, 26], as
one can see from Fig. 4, linear fits to the data.

Solving equation (12) with h(0) = 1 and q = 1, one
gets

6

5
(h− 1)− Ka

4
(h4 − 1) =

3

Re
x. (15)

The obtained solution has a critical point at h3c = 6
5Ka

and covers the range

x ≤ xc =
6

5
(hc − 1)− Ka

4
(h4c − 1),

see Fig. 5. The obtained solution can not connect the
upstream region to the downstream far-field so the dis-
continuity is inherent to this approximation due to the
low order of the differential equation with a critical point.

The second branch describing the downstream free sur-
face profile, Fig. 5, is obtained from the far-field condi-
tion at x = ls in a similar way as in [15, 16] by placing
the critical point at x = ls, that is h = hc at x = ls, and
the the second branch

6

5
(h− hc)−

Ka

4
(h4 − h4c) =

3

Re
(x− ls). (16)

The obtained discontinuous solution can not inform us
about the position of the jump, which may occur any-
where x < xc, subject to an additional condition of the
mass and momentum flux continuity [11, 15].

The discontinuous solution can not, of course, describe
the shape of the jump itself, but, despite the neglect of
the surface tension term, can match observations away
from the jump region in a laminar case.

Laminar flow regime

The formation of a planar hydraulic jump in a laminar
flow regime (8 ≤ Re ≤ 16) has been recently studied in
detail with free surface profiles observed at different incli-
nation angles −0.6◦ ≤ θ ≤ 1.5◦ [26]. In a particular case
of θ = 0◦, the profile is demonstrated in Fig. 6, where
the branches of the analytical solutions (15) and (16) are
shown for comparison. As one can observe, the solutions
match the experimental profiles very well away from the
jump region. In particular, one can see the typical lin-
ear dependence in the upstream part as is expected from
(15). The location of the hydraulic jump according to (2)
is practically at the point where the experimental profile
starts to deviate from the upstream branch of the solu-
tion. The subsequent values of the local non-dimensional
parameters at that point are Fr2 ≈ 7 and We ≈ 0.4
(0 < x < xc, 1 < Fr2 < 120, 0.2 < We < 1), so that
neither (3) nor (4) are fulfilled at the point of the jump
or at the inflection points.

The flow rate dependence of the jump position X in

the laminar case follows the well-known trend X ∝ q5/30 ,
as well as its dependence on the inclination angle, Fig.
4.

Turbulent flow regime

We consider now particular experimental observations
in water flows [16], where detailed measurements of the
surface profiles have been conducted in a turbulent flow
regime (Re ≈ 100), Fig. 7. The free surface profile has
again that distinctive, almost linear upstream part, but
the linear fit (15) only matches the profile, if the effective
viscosity µε is about four times larger than that of water
µ used in the experiments, leading to much lower effec-
tive Reynolds numbers. As it has been discussed in [16],
the observed upstream free surface (linear) profile can be
explained by the appearance of the eddy viscosity due to
the flow turbulisation in the narrow channel.
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One can also observe that the turbulence contribution
was non-uniform over the flow domain, as the down-
stream profile (16) using the same value of µε = const
did not match the experimental observations.

Therefore, additional terms associated with the turbu-
lence were empirically introduced into a thin film model
based on the mixing-length theory of Prandtl [16, 30]
with the main assumption that the eddy viscosity µε is
proportional to the value of the flux density µε ≈ ρk2ε q0
with kε = const. Such an assumption was supported by
the observation that the inclination of the upstream free
surface profile was practically independent of q0, which
was the feature absent in the laminar regime [26].

Indeed, if we consider only the linear part of (12), then
dh
dx ∝ Re−1 ∝ µε q

−1
0 , so that if µε ∝ q0, then the ob-

served profile should show no dependence on the flux den-
sity value, as is indeed observed. The estimated values of
kε were found at kε ≈ 0.065 leading to µε ≈ 4.2·10−3 Pa·s
for water at q0 = 10−3 m2/s.

The appearance of the turbulent motion was attributed
to a relatively narrow channel used in the experiments,
Table I. One should note though, as the authors did
as well, that similar enhanced elevation of the upstream
linear profile was observed in [12] with a much wider
channel at comparable values of the other parameters.
This was an indication that turbulent flow regimes were
inherent to all experiments shown in Fig. 4.

There were two different branches in the modified for-
mulation [16]. They are given by, using scaling (13) with
µ = µε,

dh̃

dx̃
(1− h̃3) = 1 + aεh̃

2 (17)

in the upstream region and by

dh̃

dx̃
(1− h̃3)h̃ = 1 + aεh̃

2 (18)

in the downstream, where parameter aε ∼ O(1) char-
acterizes the velocity profile and the aspect ratio of the
channel flow hc/d [16].

General solutions to (17) and (18) are given by

x̃ =
1

2a2ε
ln(1+aεh̃

2)+
1

a
1/2
ε

arctan(a1/2ε h̃)− h̃2

2aε
+C (19)

and

x̃ =
1

2a2ε
ln(1+aεh̃

2)−a5/2ε arctan(a1/2ε h̃)+
h̃

a2ε
− h̃3

3aε
+C

(20)
respectively. In the limit of aε → 0 corresponding to a
wide channel, both solutions converge to (15).

As one can see, the surface tension contribution was
still neglected in the modified formulation, but as a re-
sult, the authors were able to obtain quite treatable an-
alytic solutions to get a good comparison in some cases
with their experiments.

As far as the jump conditions (2) and (4) are con-
cerned, none of them are fulfilled as one can observe in
Fig. 7, where the location of condition (2) is shown by
an arrow, while at the transition point x ≈ 24 cm, the
second condition Fr−2 +We−1 ≈ 0.4, so that it can only
be fulfilled further downstream, though can not be ruled
out.

To note, the empirical mixing-length theory approach
is ad hoc and discontinuous leading to different models
applied in the upstream and downstream regions. As a
result, it can not be directly implemented into the full
DAM. To circumvent this limitation, we only used one
element of that treatment in comparison with observation
in turbulent flows, the modified, eddy viscosity µε.

In the next part, we will briefly discuss the numerical
technique we utilised, and demonstrate regular solutions
to the full DAM, (9) - (10), with the surface tension term
included. We study their parametric dependencies and
attempt to model the liquid flows observed in [16, 26].
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FIG. 4. Hydraulic jump position X (symbols) as a function of

the flow rate q
5/3
0 as is observed in the experiments [12, 16, 21],

see Table I for details. The insert shows experimental obser-
vations in the laminar case from [26] at different inclination
angles θ = 0◦ and θ = 0.3◦. The solid lines (brown) are linear

fits X ∝ q5/30 to the experimental data.

NUMERICAL DISCRETISATION AND
BENCHMARKING

We discretise (9) - (10) through a method of lines ap-
proach utilising a finite volume spatial discretisation with
a Lax-Friedrichs flux type.

Let T = {xi} be a partition of the domain [0, L] into
cells Ki = (xi−1/2, xi+1/2). Here xi = 1

2 (xi+1/2 +xi−1/2)
denotes the midpoint of a cell Ki. Let ∆xi = xi+1/2 −
xi−1/2 denote the length of the cell. We only consider
the case ∆xi ≡ ∆x for all i, however note that various
adaptive strategies exist for this class of problems [32]
that may be able to provide better resolution at the jump
interface.



7

0

5

10

15

20

25

0 50 100

h=h
c

x=l
s

 

 

x/L

h
/H

Re=26, Ka=0.0013

h=h
c

x=x
c

FIG. 5. Illustration of the two branches of the steady state
solutions, (15) and (16), at Re = 26, Ka = 0.0013, Ĉa = 108
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FIG. 6. Illustration of the experimental free surface profile
(symbols) in a laminar regime from [26] at θ = 0◦, q0 =

1.25 · 10−4 m2/s, Re = 12.5, Ĉa = 6.9 and Ka = 0.0098.
The dashed lines are analytical solutions (15) and (16), the
solid line is the numerical solution of (9) - (10). The arrows
are the positions of the inflection points of the experimental
and numerical profiles, xE and xN , respectively, and the jump
according to (2).

For exposition, we reformulate (9) - (10) in a conser-
vative form

∂h

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x
F (q, h)− ∂

∂x
G(h) = − 3

Re

q

h2
,

(21)

where

F (q, h) =
6

5

q2

h
− Ka

2
h2

G(h) =
1

ĈaRe

(
1

2

∂2h2

∂x2
− 3

2

(
∂h

∂x

)2
)
.

(22)
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FIG. 7. Experimental (symbols, [16]) and numerical (solid
line, brown, solution to (9)-(10)) free surface profiles in water

channel flows at q0 = 10 cm2/s, at θ = 0◦, Re = 26, Ĉa = 108
and Ka = 1.3 · 10−3. The dashed lines are the linearised
solutions (15) in the upstream at Re = 26 and Re = 100
respectively, and the downstream solution (16) at Re = 26.
The upper dashed line hT (x) is the inverse of (20) at aε = 1.
The dashed arrow is positioned at the jump according to (2).
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FIG. 8. Free surface profiles calculated numerically at θ = 0◦,
Re = 26, Ĉa = 108 and Ka = 0.0013 and at different spatial
resolutions ∆x = 100/N , where N is the number of intervals.

Let χKi denote the indicator function over the cell Ki,
we then define our numerical approximation

H(x, t) =
∑
i

Hi(t)χKi(x)

Q(x, t) =
∑
i

Qi(t)χKi
(x),

(23)
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solid line).
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FIG. 10. Free surface profiles calculated numerically in the
parameter range relevant to the experiments [16] at θ = 0◦.
The non-dimensional parameters were scaled up and down

from the reference values Re(0) = 26, Ĉa
(0)

= 108 and
Ka(0) = 1.3 · 10−3 to mimic variations of the flux accord-

ing to Re = ScRe(0), Ĉa = Sc Ĉa
(0)

and Ka = Ka(0)/Sc2,
where 0.5 ≤ Sc ≤ 1.1.

where Hi, Qi solve the following system of ODEs:

d

dt
Hi +

1

∆x

[
Qi+1/2 −Qi−1/2

]
= 0

d

dt
Qi +

1

∆x

[
Fi+1/2 −Fi−1/2

]
+

1

∆x

[
Gi+1/2 − Gi−1/2

]
= − 3

Re

Qi
H2
i

(24)

and F ,G represent approximations to F and G respec-

tively. For our experiments we chose a Lax-Friedrichs
flux

Fi+1/2 =
1

2
(F (Ui) + F (Ui+1))

−max(∇F (Ui),∇F (Ui+1)) ·(Ui+1 − Ui)

Gi+1/2 =
Wi+1 +Wi

2
,

(25)

where ∇F is the vector valued gradient of F , Ui =
(Qi, Hi) and Wi represents a standard central approx-
imation to G. This is formally a first order scheme in
space, note that higher order schemes are available in-
cluding MUSCL and WENO schemes.

For the temporal discretisation, we use a third-order
strong stability preserving scheme. To ensure the method
remains stable we make use of an adaptive time-step cho-
sen to ensure the Courant–Friedrichs–Lewy condition is
always met.

To test the method converges we fix parameters Re =
26, Ĉa = 108,Ka = 0.0013 and simulate solutions over
a family of mesh sizes until a steady state is found. We
select ∆x ∈ [0.00625, 0.05] and plot specific numerical
profiles in Figure 8. Notice that the method is quite dif-
fuse for coarse mesh-scale and the position and profile of
the jump is mesh-dependent. To ensure physically accu-
rate results, all our experiments henceforth were obtained
using ∆x = 0.00625.
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FIG. 11. Free surface profiles calculated numerically at θ =
0◦, Re = 26 and Ka = 0.0013 at different values of Ĉa. The
insert shows simulations with all parameters fixed at θ = 0◦,
Re = 26, Ĉa = 108,Ka = 0.0013 , but in different domains.

RESULTS AND DISCUSSION

The third order partial differential equation has suffi-
cient degrees of freedom to satisfy boundary conditions



9

at the inlet and the outlet of the flow. We solve prob-
lem (9)-(10) numerically with two boundary conditions
at each end of the interval x ∈ [0, ls] to reach a steady
state in time. That is,

h(0, t) = 1, q(0, t) = 1 (26)

at the inlet at x = 0, and

h(ls, t) = hc, q(ls, t) = 1 (27)

at the outlet at x = ls.
The simulation results are illustrated in Figs. 6-11 in

different scenarios and at variations of different parame-
ters.

Laminar flow regime

First of all, we obtained a reference point by simulat-
ing free surface profiles in the parameter range relevant to
the laminar experiments in water with a planar hydraulic
jump developed [26]. We have numerically generated a
profile observed at θ = 0◦ and q0 = 1.25 · 10−4 m2/s,
which corresponds to non-dimensional parameters Re =
12.5, Ĉa = 6.9 and Ka = 0.0098, Fig. 6. The experimen-
tal profile has a pronounced linear part in the upstream
region and a hydraulic jump followed by a smooth down-
stream profile.

As one can observe, Fig. 6, the numerical solution pro-
vides a good approximation to the experimental depen-
dence within the experimental error involved. It closely
follows the asymptotic solution in the upstream region till
the point where the jump starts developing. In the down-
stream region, the numerical solution follows the asymp-
totic solution straight after the maximum is achieved, as
is expected.

Remarkably, the inflection points of the experimental
and numerical profiles, xE and xN , corresponding to the
midpoints of the jump region were found to be very close
to each other.

In the second set of simulations, the non-dimensional
parameters were scaled from the reference values R(0),
Ĉ(0), Ka(0) to mimic the change of the flow rate q0 in the
experiments according to Re = ScR(0), Ĉa = Sc Ĉ(0),
Ka = Ka(0)/Sc2, where Sc was the scaling factor. One
can observe the expected trends that the jump position

follows X ∝ q
5/3
0 , Fig. 9. Variations of the inclination

angles in the numerical solutions also demonstrated the
trends observed in the experiments, Fig. 9.

One can conclude that the full DAM provides an ade-
quate description of laminar flows generating regular so-
lutions with smooth, continuous free surface profiles. We
note, even though the model parameters in the simula-
tions were taken at real surface tension values for water,
there is no transient behaviour observed, but a steady-
state. So the transient features observed in the Navier-
Stokes laminar flow simulations [23] were either averaged
out in the DAM or could be computational artefacts of
the numerical scheme.

Parametric dependencies of the full DAM

Consider now how variations of the main parameters of
the system affect the flow and the formation of the jump
transition region. As a reference point, for a demon-
stration, we choose θ = 0◦ and larger values of the
Reynolds and capillary numbers, Re = 26, Ĉa = 108 and
Ka = 0.0013, relevant to the experimental conditions
in [16]. Variations of the surface profiles corresponding
to variations of the flow rate q0 are shown in Fig. 10.
The observed trend is expected, that is the jump regions
moves away from the entry point with increasing flux
rate, that is, in fact, with increasing the Reynolds num-
ber. One can also observe the effect of the far-field condi-
tions by changing the size of the flow domain but keeping
all other parameters fixed, as is demonstrated in Fig. 11,
inset. The larger domains provide stronger resistance to
the flow so that the jump regions moves closer to the en-
try point. It is worth noting that the far-field conditions
do not affect the upstream profiles, but the transition
point. So that the local criteria are indeed insensitive to
the far-field conditions.

At the same time, the effect of the capillary numbers
is very weak and practically negligible, Fig. 11. That is
variations of the surface tension do not have any effect
on the flow itself and the developing jump region.

The observed trends are typical, that is they have been
present in the numerical solutions at different parameters
within the parameter range in this study.

Turbulent flow regime

To investigate the full DAM solutions in the parameter
range relevant to the experiments in [16], we have ad-
justed the liquid (water) viscosity to much larger values,
assuming constant eddy viscosity at µε = 4.2 · 10−3 Pa · s
in the liquid.

Taking this value of the effective viscosity as the refer-
ence point in the entire simulation domain, we adjusted
the non-dimensional parameters of the model accordingly
Re = 26, Ĉa = 108 and Ka = 0.0013. The result of the
simulations is shown in Fig. 7. As one can observe, the
continuous steady-state solution to the system (9)-(10)
with a hydraulic jump developed follows very closely the
asymptotic solutions expected at these parameters away
from the jump region. Also, surprisingly, the position of
the jump follows the experimental observations, not just
at the parameter values used in the comparison, Fig. 7,
but in the entire parameter range. We do not have a
clear explanation for this effect at the moment, and it
requires further studies, possibly using the full Navier-
Stokes model with sufficient resolution to simulate small
scale eddy motion.

At the same time, the numerical solution goes below
the observed free surface profile in the downstream re-
gion. This shows the limitation of the DAM approach, on
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the one hand, on the other hand, the result demonstrates
that the effects of the developed eddy motion are by far
more important (or at least can match) than the contri-
bution from the far-field conditions or the weak surface
tension effects.

The observed deviation also demonstrates that a sim-
ple averaging approach to obtain any practical criteria
for the developing hydraulic jump instability could easily
fail and mislead in the presence of strong eddy motion in
the flow. One effect that needs further studies is why the
position of the jump in the DAM solution was so close to
the experimental values.

CONCLUSIONS

We have shown that the full DAM possesses continu-
ous, regular solutions manifesting instability leading to
the formation of a steady hydraulic jump, and thus con-
tinuously linking the two regions, the upstream and the
downstream of the jump region. A comparison with ex-
perimental data has shown that the numerical solution
can adequately describe flows with hydraulic jumps in a
laminar flow regime.

The obtained numerical solutions demonstrate antici-
pated trends with variations of the flux density, and the

non-dimensional parameters of the problem. At the same
time, the effect of the surface tension is found to be neg-
ligible in the formation of a planar hydraulic jump in the
laminar flow regime.

The results of our analysis demonstrate that the full
DAM can be used for experimental data analysis and as
a benchmark case in the laminar flow regimes.

A comparison with the data where flow turbulisation
took place, on the other hand, shows that simple re-
normalisation of viscosity, in this case, is insufficient to
adequately describe the flow and the formation of the
jump region. So that, in general, the problem requires
adequate tools to include short-scale eddy motion, which
is dominant at high Reynolds numbers.
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Appendix: The approximation of thin films

If we start from the full system of the Navier-
Stokes equations for Newtonian liquids, introduce non-
dimensional variables, that is the coordinates x1 = x̂1/L,
x2 = x̂2/L, x3 = x̂3/H, velocities v1 = v̂1/U , v2 = v̂2/U ,
v3 = v̂3/δU , time t/t0 and pressure p = p̂/p0, ne-
glect terms of the order of O(δ2), but assuming that the

Reynolds number Re = δ ρUHµ ∼ O(1), one arrives at

∂vk
∂xk

= 0 (A.1)

Re

{
∂v1
∂t

+ vl
∂v1
∂xl

}
= −Re ∂p

∂x1
+ (A.2)

∂2v1
∂x32

+ReKa|| sin θ,

Re

{
∂v2
∂t

+ vl
∂v2
∂xl

}
= −Re ∂p

∂x2
+
∂2v2
∂x32

, (A.3)

0 =
∂p

∂x3
+Ka cos θ. (A.4)

Here L andH are the vertical and horizontal length scales
respectively, δ = H/L� 1 is the small parameter of the
problem, U is characteristic velocity, t0 = L/U is the
timescale, p0 = ρU2 is the characteristic pressure in the
inertial range, ρ is the liquid density and µ is dynamic
viscosity. The non-dimensional parameters featured in
the formulation are (in addition to the Reynolds number

Re) Ka|| = g0L
U2 , Ka = g0H

U2 .
The reduced system of the Navier-Stokes equations

(A.1)-(A.4) should be augmented with the boundary con-
ditions on the solid at x3 = B(x1, x2) and the free sur-
face at x3 = h(x1, x2, t) + B(x1, x2). Keeping leading
order terms at δ � 1, we have no-slip and impermeabil-
ity boundary conditions at x3 = B(x1, x2)

vk = 0, k = 1, 2, 3, (A.5)

the zero stress, the normal stress and the kine-
matic boundary conditions at the free surface x3 =
h(x1, x2, t) +B(x1, x2)

∂v1
∂x3

= 0,
∂v2
∂x3

= 0, (A.6)

p = pa −
1

ĈaRe

(
∂2(h+B)

∂x21
+
∂2(h+B)

∂x22

)
(A.7)

and

v3 =
∂h

∂t
+ v1

∂(h+B)

∂x1
+ v2

∂(h+B)

∂x2
. (A.8)
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Here pa is external gas pressure and Ĉa = Ca δ−3 is a
renormalised capillary number Ca = µU

γ , γ is surface

tension of the liquid.

Using (A.4) and boundary condition (A.7), one can
resolve pressure explicitly

p = pa +Ka cos θ (h+B − x3)− (A.9)

1

ĈaRe

(
∂2(h+B)

∂x21
+
∂2(h+B)

∂x22

)
.

Karman-Pohlhausen approach to averaged equations

Integrating the incompressibility condition (A.1) from
x3 = B to x3 = h+B, using (A.8) one gets

∂h

∂t
+
∂q1
∂x1

+
∂q2
∂x2

= 0, (A.10)

where q1,2 =
∫ h+B
B

v1,2 dx3.

Integrating the remaining Navier-Stokes equations
(A.2)-(A.3)

∂q1
∂t

+
∂

∂x1

∫ h+B

B

v1v1dx3 +
∂

∂x2

∫ h+B

B

v1v2dx3 =

(A.11)

h

{
Ka|| sin θ −

∂p

∂x1

}
− 1

Re

∂v1
∂x3

∣∣∣∣
x3=B

,

∂q2
∂t

+
∂

∂x1

∫ h+B

B

v2v1dx3 +
∂

∂x2

∫ h+B

B

v2v2dx3 =

(A.12)

−h ∂p

∂x2
− 1

Re

∂v2
∂x3

∣∣∣∣
x3=B

.

Using the Karman-Pohlhausen ansatz

v1,2 = −3

2

q1,2
h3
{
x23 − 2(h+B)x3 +B(B + 2h)

}
,

(A.13)
which satisfies no-slip condition (A.5) and zero-stress
condition (A.6), one finally gets

∂q1
∂t

+
6

5

∂

∂x1

(
q21
h

)
+

6

5

∂

∂x2

(q1q2
h

)
= (A.14)

h

{
Ka|| sin θ −

∂p

∂x1

}
− 3

Re

q1
h2

and

∂q2
∂t

+
6

5

∂

∂x1

(q1q2
h

)
+

6

5

∂

∂x2

(
q22
h

)
= (A.15)

−h ∂p

∂x2
− 3

Re

q2
h2
,

where pressure p is given by (A.9). System (A.10)-(A.15)
is the required system in the thin film approximation.

Note, we used the following properties of the Karman-
Pohlhausen ansatz for i, j = 1, 2∫ h+B

B

vi dx3 = qi,

∂vi
∂x3

∣∣∣∣
x3=B

= 3
qi
h2

and ∫ h+B

B

vivj dx3 =
9

4

qiqj
h6

∫ h+B

B

(x23−

2(h+B)x3 +B(B + 2h))2 dx3 =
6qiqj
5h

. (A.16)


