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Abstract

In this thesis, we investigate two problems of entangled branched polymers, i.e.,

the numerical solutions of the arm-retraction problem for well entangled star arms

and the relaxation behaviours of branched polymers with different architectures.

For the first problem, the arm retraction dynamics is studied using both the one-

dimensional Rouse chain model and the slip-spring model by an advanced numerical

method for the first-passage time problems, namely the forward flux sampling (FFS)

method. In the one-dimensional Rouse chain model, we measured the first-passage

time that the arm free end extends to a distance away from the origin, showing

that the mean first-passage time is getting shorter if the Rouse chain is represented

by more beads. The simulation results validate the prediction of an asymptotic

solution for the multi-dimensional first-passage problem, which suggests the arm

retraction time is much shorter than the prediction of the Milner-McLeish theory

without constraint release. Then, we implement the FFS method to the slip-spring

model and get the relaxation spectra for different arm lengths, ranging from mildly

entangled to well-entangled star arms. We also proposed an algorithm to extract

the dynamic observables, i.e., the end-to-end vector and stress relaxation functions,

from the FFS simulation results. For the second problem, we conduct a series of

molecular dynamics (MD) simulations using high performance GPU methods on the

mildly entangled branched polymers of different architectures, including 3-arm sym-

metric and asymmetric stars, and H-shaped polymers. The slip-spring model, whose

parameters are carefully calibrated according to the MD results of linear chains, is
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also implemented to predict the relaxation behaviours of the branched polymers. We

present a detailed analysis on the arm end-to-end vector relaxation functions and

the monomer mean-squared displacements. By comparing the MD and slip-spring

model simulation results, we propose a slip-link “hopping” mechanism, which ac-

counts for the behaviour that the entanglements can pass through the branch point

when the third arm is disentangled.
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Chapter 1

Introduction

1.1 Background

The annual worldwide production of synthetic polymers has reached several mil-

lion tons and still undergoes continuous growth. Before being shaped into com-

mercial plastic or rubber products, the raw materials are processed in molten or

liquid state, thus our understanding of their rheology is crucial to enhancing their

processing properties. Driven by industrial interests and scientific curiosity, both

experimental and theoretical research on the rheological properties of bulk polymer

fluids has experienced a fast development in the past half century. It is known that

polymeric liquids have very complicated rheological and thus processing properties

due to the hierarchical relaxation behaviours at different time and length scales.

These behaviours are governed by polymer architectures and distribution of molec-

ular weights. A typical example is that the presence of a small amount of long

chain branching (LCB) in commercial polymers can dramatically affect rheolog-

ical behaviour, e.g., giving them a much higher zero-shear viscosity η0 than in linear

systems with the same molecular weights. Understanding the relationship between

LCB and rheology could simultaneously solve both the direct and inverse problems:

to predict the rheological and thus the processing properties of a given polymer

1



CHAPTER 1. INTRODUCTION 2

system and using rheological measurements to deduce molecular weight distribu-

tion and identify LCB. Such relationship, however, remains to be one of the most

challenging problems in polymer physics.

A typical polymer chain is constituted by repeated chemical units, called monomers,

connected via covalent bonds. When polymers are in bulk, the polymer melts ex-

hibit a fascinating property called “viscoelasticity”. The stress of the viscoelastic

materials neither simply depends on the strain nor the strain rate, but is a function

of the deformation history [1, 2]. For example, in response to a small step strain γ,

the stress σ of of an isotropic polymer liquid first raises to a level proportional to the

strain, then slowly decays over a long period. Such behaviour showing both elastic-

ity and viscosity could be qualitatively described by the general Maxwell model,

which is constructed by connecting a set of linear springs and dashpots in series [3].

The stress modulus of the this mechanical model, G(t), is a sum of exponentials:

G(t) =
m∑
i=1

Gi exp (−t/τi)

where Gi and τi are the moduli and the relaxation times of the Maxwell modes.

The stress relaxation modulus exhibits an exponential decay beyond the longest

relaxation time τm, which is also referred to as the terminal relaxation time τd in

literature due to its significance.

The complexity of polymer dynamics is far beyond the description of the phe-

nomenological mechanical models, which can be reflected in the rheological prop-

erties of polymers [4–7], and thus other measurements analogous to rheology, such

as dielectric [8], optical [9] and diffusional [10, 11] properties. A typical example

is the dependence of rheological properties on the molecular weight, M . For linear

polymer melts, the viscosity η0 increases linearly with M at low molecular weights,

but exhibits power law growth of M3.4 when M exceeds a critical value, Mc:

η0 ∼

 M, M < Mc

M3.4, M > Mc
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Figure 1.1: The typical relaxation modulus G(t) of a well-entangled linear polymer

melt after a step-strain.

Fig. 1.1 sketches the stress relaxation modulus of a linear polymer melt with

M �Mc. At short time scales, the stress relaxation moduli cannot be distinguished

between different molecular weights. After a certain time τe, G(t) for polymers with

a large molecular weight barely decays, exhibiting a plateau with a M -independent

modulus, Ge. Such plateau regime cannot be observed in low-M polymer systems,

but is analogous to the plateau modulus of a cross-linked polymer network with a

strand molecular weight Me between the cross-links [12, 13]. The critical molecular

weightMc is approximately 2Me for all amorphous melts independent of their chem-

istry. After the plateau regime, G(t) decays exponentially with the characteristic

time τd which grows with M as M3.4. It is well known that the remarkable differ-

ence in the rheological behaviours of linear melts with different molecular weights is

attributed to “entanglements”, which are essentially the topological interactions

between neighboring polymers. In a melt of short-chain polymers, a probe chain

diffuses freely as in a frictional fluid, whose dynamics could be well interpreted by

the Rouse model [14]. In the long-chain polymer melts, the probe polymer chain

feels the topological constraint, by which the chains cannot cross each other, thus

lateral diffusion against such constraints is prohibited, leading to a drastic slowing

down on diffusion.
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The most successful theoretical framework for entangled polymers is the famous

tube model originally proposed by de Gennes, Doi and Edwards [12, 13, 15–17],

based on which theories for entangled dynamics have developed for half century,

accounting for extensive experimental data. In the fundamental assumption of the

tube model, the topological constraints imposed by surrounding chains act to confine

the probe chain in a tube-like region. The contour line of the tube is called the prim-

itive path, upon which the projected chain is called the primitive chain. The

monomer diffusion perpendicular to the primitive path is restricted in the tube-like

region with a diameter a. The chain can only diffuse curvilinearly along the primitive

path at time scales longer than the entanglement time τe, which is the time taken by

an entanglement segment to diffuse a distance of its own size a, i.e., the tube diam-

eter. This type of diffusion is known as “reptation” [16]. “Reptation”, which means

“creeping” in Latin, represents the snake-like motion of a polymer chain in its own

tube. On the length scales larger than the tube diameter a, reptation is equivalent

to the one-dimensional diffusion of the primitive chain: the central sections of the

chain follow the tube contour while the chain ends explore in the melt to create new

tube segments. With very limited parameters, the original tube model successfully

captures the qualitative features of entanglement dynamics of linear chains, but fails

to provide quantitative predictions. For example, the predicted dependence of vis-

cosity on molecular weight is η0 ∼ M3.0 rather than the experimentally observed

M3.4. Such discrepancies arise from the oversimplified assumptions made in the

original tube model, such as the inextensibility of the primitive chain.

In order to provide quantitative predictions, the tube model needs to be im-

proved by incorporating additional relaxation modes, such as the contour length

fluctuation (CLF) due to the fluctuations of tube length around the average value,

and the constraint release (CR) due to the exchange of surrounding chains. In

the picture of reptation plus CLF, Doi [18] deduced the 3.4 power law as well as

the particular range it accounts for, which quantitatively predicted the experimen-
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tal observation that the power law for very long chains would deviate from 3.4 to

3.0. The CR mechanism, which is extraordinarily important in polydisperse systems

where the molecular weights of different species are significantly separated from each

other, represents the effect brought by the exchange of the surrounding chains on

the tube confinement. In a CR event, a probe chain is permitted to move transverse

to the confining tube when some neighbouring chains move away by reptation or

CLF. Graessley [6, 19] assumes that the exchange of the surroundings chains does

not modify the tube diameter, but results in a rearrangement of tube segments

of the probe chain. So the tube becomes a random walk and thus amounts to a

Rouse-like motion, which is also referred to as the constraint-release Rouse (CR

Rouse) motion. Cloizeaux [20] proposed a “double-reptation” approximation and

inferred the stress relaxation modulus G(t) as a quadratic function of the tube sur-

vival fraction µ(t). This “double-reptation” picture works best for the polydisperse

systems with broad molecular weight distributions, but show limitation in binary

blends of chains with greatly separated lengths. Rubinstein [21–23] considered the

broad distribution of the CR rates, and proposed a self-consistent theory for binary

blends, where the stress relaxation modulus G(t) is in a product form of the tube

survival fraction µ(t) and a Rouse-like relaxation function R(t) of the tube repre-

senting the CR process. By incorporating CLF and CR, the tube model explained

the additional stress relaxed at the reptation time of short chains in comparison

with the pure reptation model. A quantitative tube theory for well-entangled linear

chain systems was proposed by Likhtman and McLeish [24], who combined the main

relaxation mechanisms in a self-consistent manner.

As anticipated, a simple change in the polymer architectures, such as adding a

branch to a linear chain to create a 3-arm star polymer could completely change

the dynamics. In a f -arm star polymer (f ≥ 3), reptation is highly suppressed

because entropically it is extremely unfavourable to drag f − 1 arms into one tube.

Thus the branch point would be localized in a volume of tube diameter size before



CHAPTER 1. INTRODUCTION 6

the arms are relaxed by CLF and CR. In star polymers, the CLF mechanism is

also termed as “arm retraction”, in which the arm repeatedly retracts inwards

along the primitive path toward the branch point to release original tube segment

and stretches out to create new tube segments. de Gennes [25] indicated that arm

retraction in a fixed network is an exponentially-rare event, whose probability was

later calculated by Kuzzu and Doi [26]. Based on their works, Person and Helfand

[27] presented a refined theory for arm retraction, which assumes the entropically

unfavoured retraction is a thermally activated process in a quadratic potential field,

U(s) = νkBT (M/Me)s
2, where s represents the relaxed fraction of the primitive

path changing from zero to unity during the retraction, ν ≈ 0.6 is a numerical

factor obtained by fitting experimental results. The Person-Helfand theory confirms

the experimental observation that the viscosity of star polymers grows exponentially

with the increasing molecular weight of the arm, Ma. However, the numerical factor

ν ≈ 0.6 is in contrast to the CLF model which provides ν = 15/8 [17].

Ball and McLeish [28] realized that the discrepancy in the value of ν can be

attributed to the absence of CR mechanism in the Person-Helfand theory. By in-

voking a “tube-dilation” hypothesis [29], they proposed a well-known concept called

“dynamic tube dilation” (DTD), which incorporates the CR mode into the tube

model for branched polymers. The key assumption of DTD is that the relaxed arm

segments could be treated as solvent for unrelaxed materials, such that the arm

would retract in a gradually widening tube. The molecular weight of the dilated

tube segment subjects to a dilation exponent α: Me(s) = Me0(1 − s)−α, where

Me0 is the molecular weight of the undilated tube segment and α is either 4/3 or

1 whose exact value should depend on the physical nature of entanglements that

is not yet fully resolved. When taking α = 1, the effective potential Ueff(s) is

(15/8)(Ma/Me)kBT (s2 − 2s3/3), which gives ν = 0.625 at s = 1 in accordance with

ν ≈ 0.6 in Person-Helfand theory. The DTD hypothesis is expected to work better

for branched polymers due to the well-separated relaxation timescales. In the mean-
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time, the continuous and smooth spectrum of relaxation time validates the gradual

dilation ansatz. Milner and McLeish [30] developed a theory to predict the first-

passage time of arm retraction by solving the Kramers problem [31] of a one-bead

linked to the branch point by a harmonic spring. The solution gives the prefactor

of the exponential function of the relaxation time τ(s):

τ(s) ∼ τe

(
Ma

Me

)3/2

exp (Ueff (s))

where a scaling of (Ma/Me)
3/2 is found. Milner-McLeish theory also considers the

early time fluctuations where the energy barrier is smaller than kBT , and formulates

τ(s) into a crossover function of early to late timescales. The predictions of Milner-

McLeish theory on the loss modulus modulus G′′(ω) of symmetric star polymer melts

are in good agreement with the experimental data for the whole range of frequency

[32, 33]. Recently, Cao et al. [34] presented an analytical solution for arm retraction

by solving it as a multi-dimensional first-passage time problem. By including all

Rouse modes rather than only considering the slowest one as in Milner-McLeish

theory, the relaxation time in the absence of CR is reduced by a factor of 2/Ma,

implying a smaller prefactor for τ(s).

After the remarkable success on monodisperse symmetric stars, the Milner-

McLeish model was then extended to other systems, such as star-linear blends [35]

and asymmetric stars [36]. In a blend of monodisperse linear chains and stars, the

DTD picture fails when the linear chains are fully relaxed by reptation at their ter-

minal time τd, such that the tube diameter can not increase as fast as the decrease

of unrelaxed materials in the system. Milner et al. [35] dealt with this problem by

assuming three relaxation stages. In the early regime t < τd, the standard DTD

model is applied by treating the linear chains as two-arm stars. After τd, the tube

of star arms undergoes CR Rouse motion with a tube segmental relaxation time

τd. The CR Rouse motion ends when the tube has explored the “supertube” de-

fined by remaining entangled arm segments, after which the DTD picture resumes.

In the simplest asymmetric stars consisting of one short arm and two long arms,
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the terminal relaxation time of the short arm τs is much shorter than that of the

long arm τl. Each time the short arm is fully retracted, the branch point is able

to hop by a distance of a fraction of tube diameter pa with p ≤ 1. Thus, at the

time scales t > τs, the short arm can be treated as effective frictional bead with

a larger friction at the branch point, whose diffusion coefficient is estimated using

Einstein relation: Db = p2a2/(2τs) [36]. More recently, the Milner-McLeish theory

has been generalized to model branched polymers with more complicated architec-

tures, such as H-shaped, comb, Cayley tree polymers and their general mixtures

[37–44]. Relaxation of these polymers proceeds hierarchically, starting from the re-

traction of the outermost branch arms and proceeding to inner layers until the core

of the molecules. Under this frame, several computational models were developed

for predicting viscoelastic properties of general mixtures of branched polymers with

different architectures, including the hierarchical model by Larson et al. [39, 44, 45],

the “bob” (“branch-on-branch”) model by Das et al. [42] and the time marching

algorithm by van Ruymbeke et al. [46–48]. These models differ in certain compu-

tational algorithms and relaxation mechanisms, but share similar theoretical frame-

work that incorporates reptation, contour length fluctuation (or arm retraction),

and constraint release by dynamic tube dilation or constraint-release Rouse motion.

A detailed comparison between hierarchical model and “bob” model was carried out

in Ref. [44].

Although tube-based theories have been shown to provide semi-quantitative pre-

dictions for rheological behaviours of various branched polymers, they are far from

first-principle due to many mathematical and physical approximations involved. For

example, the empirically fitting parameter p2 which determines the fractional hop-

ping distance of the branch point is found with a broad range from 1 to 1/60 for

different asymmetric stars. For H-polymers, however, the range of p2 is relatively

narrow, roughly from 1/12 to 1/15 [36]. Whether the value of p2 should be univer-

sal or system-dependent remains unknown. In star-linear blends, the DTD picture
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would fail when the dilation speed is higher than the diffusion rate which the chain

segments explore the tube. Before the DTD resumes, the confining tube of arms un-

dergoes CR Rouse motion in a “supertube” [35]. In fact, arm retraction also happens

in this intermediate regime, but how to handle it remains a question.

These open questions invariably point to the same origin: despite the concepts

of entanglement and tube having been widely used in theoretical models for half

century, there is still a lack of clear microscopic pictures about them. Computer

simulations using a generic bead-spring polymer chain model, namely the Kremer-

Grest (KG) model [49, 50] makes it possible to find the highly desired picture of

entanglement and tube. One of the remarkable accomplishments was achieved by

Everaers et al. [51]. They conducted a “primitive-path analysis” (PPA) to count

the number of entanglements per chain and the average number of monomers in an

entanglement strand, and thus predicted the plateau modulus comparable to ex-

perimental data. Recently, Likhtman and Ponmurugan [52] employed “mean-path

analysis” [53] to trace the entanglements by constructing the “contact map” of

chain segments, and got the lifetime distribution and the mean-square displacements

of persistent binary contacts between neighbouring chains or entanglements. This

algorithm has been applied by Cao and Wang to investigate the microscopic picture

of constraint release in symmetric star polymer melts [54]. Likhtman [55] also pro-

posed an algorithm to construct the “tube axis” for entangled polymers, whereby

the binary and triple entanglements could be manifested through the smoothly av-

eraged paths of the polymers. Likewise, the assumptions in tube theory that are

necessarily empirical and speculative could be tested microscopically, such as the

direct visualization of branch point hopping [56, 57].

In the past two decades, the slip-link or slip-spring models which work as alter-

native descriptions for entangled polymers have captured great attention. Different

from the tube model that treats the topological constraints given by the surround-

ing chains in a mean-field way, this class of models assume the entanglements as
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binary interactions between neighbouring chain segments, and thus can incorporate

more refinements, such as the discrete description of entanglements that distribute

along the chains with a wide range of lifetimes. The “slip-link” picture was first

proposed by Doi [58] in his slip-link network model, where each slip-link repre-

sents an entanglement, and the release of an entanglement occurs only when either

ends of the two individual chains passes through the slip-link to destroy it. The

later slip-link based models, without exception, follow the primary picture of Doi’s

model, but differ in modeling and algorithms. Schieber et al. [59–61] developed a

single-chain slip-spring model, in which each slip-link represents an entanglement

whose dynamics is governed by a stochastic equation that exchanges the number of

monomers between neighbouring entanglement strands. The rheological properties

can thus be obtained by tracking the location of slip-links and number of monomers

along each entangled strand in between two adjacent slip-links. Shanbhag and Lar-

son [62, 63] developed a multi-chain slip-link model by simulating an ensemble of

primitive chains. In this slip-link model, the entanglements are modeled by pair-

ing the slip-links on different chains, whereby the constraint release is incorporated

naturally by destroying the slip-link pairs when either of them escapes the ends of

involved chains by primitive path fluctuation or reptation. The multi-chain slip-link

model developed by Masubuchi et al. [64, 65] simulates the primitive chains bundled

by slip-links that form a 3D network, whereby this model is called primitive chain

network (PCN) model (also implemented in the NAPLES code). The motion of

the slip-links is governed by the force balance between entanglement strands, while

the diffusion of the monomers along each chain contour is operated according to the

tension distribution along the chain. The slip-link based model developed by Likht-

man [66] is called slip-spring model due to the slip-links are connected to a set of

virtual springs anchored in space, which provides extra fluctuation to the location of

entanglements. The polymer chains are modeled as Rouse chains, whose primitive

paths are defined by the slip-links sitting on the monomers. The contour length fluc-
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tuation is incorporated by the Rouse motion of the chains confined in the slip-links,

while the constraint release is included in a similar way as other slip-link models.

Based on the slip-spring model and the primitive chain network model, Langeloth

el al. [67] recently developed another slip-spring model which employs dissipative

particle dynamics (DPD) to simulate a 3D chain network. This model is built

on a finer level by incorporating excluded volume as non-bonded interaction, but in

return requires much large system and expensive computational cost.

The aim of this thesis is to study the relaxation dynamics of branched polymers

with the simplest architectures, such as star and H-polymers, on which a complete

set of observables predicted by tube theories have been compared with experiments.

Efficient methodology to investigate the arm-retraction dynamics of well entangled

branched polymers would be developed to examine existing tube-based theories,

such as the Milner-McLeish theory on arm retraction dynamics [30, 34]. We will

also explore the possibility of extending the slip-spring model to branched polymers.

Despite its success on describing linear polymers, the slip-spring model encounters

difficulty in extending its applications to branched polymers. The problem may lie

in the absence of certain relaxation mechanisms close to the branch point, which

could possibly be resolved by incorporating the hypothesis in tube theory for asym-

metric stars, i.e., the fully retracted short arm allows the reptation of other two long

arms. Such attempt can reversely verify the tube theory for polymers with different

architectures.

The content of this thesis is arranged as follows. In the remaining part of this

chapter, we will introduce the theoretical background of polymer dynamics. In the

second chapter, we investigate two advanced numerical methods, namely forward

flux sampling (FFS) [68] and weighted ensemble (WE) [69, 70] method, and

their applications on the multi-dimensional first-passage time problem of arm retrac-

tion of star polymers. The FFS simulation results are compared with theoretical

predictions from both one-dimensional and multi-dimensional solutions of arm re-
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traction dynamics. In the third chapter, a combinational method of FFS and the

slip-spring model is implemented to investigate the dynamics of arm-retraction in

star polymers. With a controllable precision, this method allows direct comparison

between the slip-spring model and the tube theory for well-entangled star polymers

of arm length up to 16 entanglements. Moreover, a study is conducted on the ex-

traction of experimentally measurable observables from FFS simulations, such as

the end-to-end relaxation and stress relaxation functions. We believe this work will

not only expand the application of FFS method to polymer dynamics by reproduc-

ing full dynamic spectrum rather than just the first-passage time, but also to many

other scientific areas. In the fourth chapter, we present a multi-scale computer sim-

ulation study on the relaxation dynamics of various branched polymers, including

symmetric and asymmetric stars, and H-polymers. The slip-spring model is updated

for branched polymers by incorporating a parameter free mechanism, whose results

are compared with the fully flexible Kramer-Grest model [49]. The conclusions are

given in the last chapter.

1.2 Polymer Chain Models

This section introduces the static properties of polymers by focusing on the single-

chain conformation. By comparing the static properties of the ideal chain and

the real chain, the fundamental concept of “universality” on chain conformation is

concluded.

1.2.1 Ideal Chains

Consider a chain formed by n + 1 monomers that are connected in sequence via n

bonds, as shown in Fig. 1.2. If the monomers several bonds apart do not interact

with each other, this chain is called ideal chain. For example, in an ideal chain,

there is no interaction between monomer i and monomer i+ j (j � 1), even though
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Figure 1.2: Freely jointed chain model.

Figure 1.3: (a) Freely rotating chain model; (b) Hindered rotation model.

they might be very close in space. The simplest ideal chain model is the freely

jointed chain model, in which the bond length is fixed while the orientation

of bonds is random. Based on this model, more features could be included to

resemble the polymer chains. For example, the orientational priority of the bonds

can be introduced by fixing the bond angle θ, which is called the freely rotating

chain model (Fig. 1.3(a)). Likewise, a torsion potential U(ϕ) could be introduced

to represent the steric hindrance between functional groups, which is called the

hindered rotation model (Fig. 1.3(b)).

An important quantity to characterize the static property of a polymer chain is

the end-to-end vector, Re, which is the vector between the end beads, Re = rn−r0

or the sum of the bond vectors, Re =
∑n

i=1 ri. For an ideal chain that is long enough,
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the average end-to-end vector 〈Re〉 is zero, but the average mean-square end-to-end

distance is non-zero: 〈
R2

e

〉 ∼= C∞nl
2 (1.1)

where l is the bond length, C∞ is called Flory’s characteristic ratio that deter-

mines the local stiffness of the chain. C∞ for different models are listed as below:

Freely Jointed Chain Model C∞ = 1

Freely Rotating Chain Model C∞ =
1 + cos θ

1− cos θ

Hindered Rotation Model C∞ =

(
1 + cos θ

1− cos θ

)(
1 + 〈cosϕ〉
1− 〈cosϕ〉

)

Eq. 1.1 indicates a universal property of the ideal chains: the models having various

stiffnesses show similar behaviors at length scales larger than C∞l. Coarse-graining

C∞ monomers into one monomer, these ideal chains are equivalent to a freely jointed

chain with N bonds:

〈
R2

e

〉 ∼= Nb2, N = n/C∞, b = C∞l.

where the length b is called Kuhn length.

1.2.2 Entropic Elasticity

Consider a freely jointed chain with N + 1 monomers. The N bonds connecting

these monomers have a fixed bond length b. The conformation of the chain can be

visualised as a 3D random walk with a constant step length b. In each direction,

the 3D random walker could be decomposed into 1D random walk, whose mean-

square step length is b2/3. Such 1D random walk follows an Ornstein-Uhlenbeck

process, thus the end-to-end distance of the chain in each direction follows Gaussian

distribution:

P1d(N,Re,α) =

√
3

2πNb2
exp

(
−

3R2
e,α

2Nb2

)
,
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where α is the Cartesian component. Therefore, the end-to-end vector Re of an ideal

chain also follows Gaussian distribution, which is a product of the 3 components:

P3d(N,Re) = P1d(N,Re,x)P1d(N,Re,y)P1d(N,Re,z) =

(
3

2πNb2

)3/2

exp

(
− 3R2

e

2Nb2

)
.

(1.2)

The distribution above indicates that the free chain is keen to collapse into coil

with a zero end-to-end vector (chain ends tend to overlap). If the chain is stretched

with an end-to-end vector of Re, the free energy F increases by

∆F = F (N,Re)− F (N,0) = −T∆S = −kBT (ln Ω(N,Re)− ln Ω(N,0)) ,

where S is the entropy, kB is the Boltzmann constant, Ω(N,Re) is the number of

the states with end-to-end vector equal to Re. Then the statistical weight of the

conformations with the end-to-end vector equal to Re is given by

P3d(N,Re) =
Ω(N,Re)∫

Ω(N,Re)dRe

.

Then we have,

ln Ω(N,Re) = ln(P3d(N,Re)) + Const = −3

2

R2
e

Nb2
+ Const.

Therefore, the increase of the free energy ∆F is a quadratic function:

∆F =
3

2

kBT

Nb2
R2

e, (1.3)

which is effectively equal to a harmonic spring with an elastic constant 3kBT/Nb
2.

The elasticity of a ideal chain due to the change of the entropy is called entropic

elasticity.

1.2.3 Real Chain

Different from the ideal chains, a real chain has long-range interactions, which means

that two monomers in one chain can interact even if they are chemically well-

separated by many bonds. Such interactions can be evaluated by the excluded
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volume, which is the negative integral of the Mayer f-function:

f(r) = exp

(
−U(r)

kBT

)
− exp

(
− 0

kBT

)
= exp

(
−U(r)

kBT

)
− 1,

where U(r) is the potential between two monomers with a distance of r. According to

this equation, the Mayer f -function describes the difference between the Boltzmann

factors of two potential fields: one is U(r), the other is U(r) = 0 as r → ∞. The

excluded volume v is an integral of f(r) over the whole space,

v = −
∫
f(r)d3r =

∫
exp

(
− 0

kBT

)
d3r −

∫
exp

(
−U(r)

kBT

)
d3r.

Therefore, the excluded volume is a quantity that determines whether the net in-

teraction between two monomers is attractive(v < 0) or repulsive(v > 0).

In polymer solvent, the interaction between monomers is affected by the solvent

molecules. When the monomers like to stay with the solvent molecules more than

with each other, v is positive and thus this solvent is called “good” solvent. When

the monomers are more likely to stay with each other, v is negative and thus the

solvent is called “poor” solvent. When v = 0, the state is called “θ-state” and the

solvent is called “θ-solvent”. In a polymer melt, the polymers are the θ-solvent of

themselves, because the monomers cannot distinguish which polymer chain they

come from. Therefore, the static properties of the polymer chains in melts can be

evaluated by the same scaling of ideal chains. Our discussions throughout the thesis

will be restricted to the melt state.

1.2.4 Gaussian Chain

Since the end-to-end vector of the ideal chain follows Gaussian distribution, one can

also conclude that the distribution of the vector between monomers i and j also

follows Gaussian, as long as the chain segment length between them is much longer

than the Kuhn length b. It seems that the freely jointed chain model is already

good enough to give the static properties of flexible polymers in melt state. But this
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Figure 1.4: The discrete (a) and continuous (b) Gaussian chain model.

model is not the simplest in mathematics. The simplest model is called Gaussian

chain model, which assumes the chain follows Gaussian distribution over all length

scales.

The discrete Gaussian chain model is shown in Fig. 1.4(a). N + 1 beads are

connected by N harmonic springs, whose potential is given by

Ubond(Ri+1 −Ri) =
3kBT

2b2
(Ri+1 −Ri)

2, i = 0, 1...N

The vector between any two monomers also follows Gaussian distribution

P (i− j,Ri −Rj) =

(
3

2π|i− j|b2

)3/2

exp

(
−3(Ri −Rj)

2

2|i− j|b2

)
.

This notation can be written into a continuous formula, in which Ri − Ri−1 is

replaced by ∂Rn/∂n, where n ranging from 0 to 1 is the coordinate of the points on

the continuous chain (Fig. 1.4(b)). Then the last equation can be written as

P [Rn] = C exp

(
− 3

2b2

∫ N

0

dn

(
∂Rn

∂n

)2
)
, (1.4)

where C is a constant.

1.3 Observables for Polymer Dynamics

In this section, we will introduce a few observables to describe the relaxation dy-

namics for linear rheology.
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1.3.1 Stress Relaxation

One important observable to describe the relaxation dynamics is the stress tensor

[17]. To define the stress tensor of a homogeneous system, one can consider a volume

V , which is divided by a hypothetical plane perpendicular to β-axis. The boundary

of the volume along β-axis is 0 and L. The stress tensor σαβ is the component of

force per unit area on the plane (α-axis is orthogonal to β-axis and thus parallel to

the hypothetical plane):

σαβ =
〈Fα〉
A

=
1

AL

∫ L

0

dh 〈Fα(h)〉 ,

where A is the area of the plane, and the angular bracket is the ensemble average,

the force Fα is force which the upper part exerts on the lower part through the

plane. Defining Xα as the integral for Fα(h), we have

Xα =

∫ L

0

dh 〈Fα(h)〉 =
∑
n,m

〈
Fmnα

∫ L

0

dhΘ(h−Rmβ)Θ(Rnβ − h)

〉
,

where Fmnα is the component force along α-axis that monomer n exerts on monomer

m, Rmβ is the coordinate of monomer m on β-axis, h is the coordinate of the plane

along β-axis, Θ(x) is the Heaviside step function which restricts that the hypothetical

plane must be in the between of monomer m and n. Since the integral is non-zero

only when the hypothetical force is in the middle of monomer m and n, the last

equation could be written as

Xα =

〈∑
m.n

Fα
mn (Rnβ −Rmβ) Θ (Rnβ −Rmβ)

〉
.

Exchanging m and n, and using Newton’s third law: Fmnα = −Fnmα, we have

Xα =

〈
1

2

∑
m,n

Fmnα (Rnβ −Rmβ) [Θ (Rnβ −Rmβ) + Θ (Rmβ −Rnβ)]

〉

=

〈
−1

2

∑
m,n

Fmnα (Rmβ −Rnβ)

〉
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Defining Fm as the sum of the forces acting on monomer m: Fm =
∑

n Fmn, the

stress tensor of a homogeneous polymer melt is given by

σαβ =
1

AL

〈
−1

2

∑
m,n

FmnαRmβ +
1

2

∑
m,n

FmnαRnβ

〉
= − 1

V

〈∑
m

FmαRmβ

〉
,

After a small step strain γ0 along x axis, in xy plane the stress relaxes in the

form of

σxy(t) = γ0G(t),

where G(t) is so-called stress relaxation modulus or stress relaxation func-

tion. In experiments, G(t) can be easily measured by rheometer with oscillating

mode, where the oscillating strain changes with time, γ(t) = γ0 sin(ωt), where ω is

the frequency of oscillation. The stress response due to elasticity is instantaneous to

the strain, and thus the in-phase response is called storage modulus G′(ω). The

stress response due to viscosity is proportional to the shear rate, and the out-of-

phase response is called loss modulus G′′(ω). G′(ω) and G′′(ω) are respectively

sine and cosine Fourier transform of G(t):

G′(ω) = ω

∫ ∞
0

sin(ωt)G(t)dt; G′′(ω) = ω

∫ ∞
0

cos(ωt)G(t)dt. (1.5)

In experiments, G′(ω) and G′′(ω) are useful to characterize the relaxation regimes.

In computer simulation, it is easy to measure G(t). According to the fluctuation-

dissipation theorem [71, 72], the response of a system in thermodynamic equi-

librium to a weak external field (e.g., magnetic and electric field) is the same as its

response to a spontaneous fluctuation, and the change of a physical quantity is a

linear function of the field. Using the fluctuation-dissipation theorem, G(t) of an

isotropic system is given by

G(t) =
V

kBT
〈σαβ(t)σαβ(0)〉 , (1.6)

where the angular brackets indicates ensemble average, α and β are any two orthog-

onal directions and G(t) is averaged over all pairs of α and β.
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1.3.2 End-to-End Vector Relaxation

In computer simulation, the end-to-end vector relaxation function of a polymer chain

can be easily calculated by the autocorrelation function:

Φ(t) =
〈Re(t) ·Re(0)〉
〈Re(0)2〉

In experiments, Re of the polymers whose molecular dipoles are parallel to backbone

can be directly measured by dielectric spectroscopy [8]. By applying an external

electric field, the polymer would be polarized. For each chain, the sum of the

molecular dipoles is equal to the induced polarization P(t), which is proportional to

end-to-end vector Re(t). Therefore, the end-to-end vector relaxation is given by

Φ(t) =
〈P(t) ·P(0)〉
〈P(0)2〉

. (1.7)

1.3.3 Mean-Square Displacement

Mean-square displacement (MSD) is a quantity to describe the diffusion of

particles. The mean-square displacement of monomer i is given by

g1(i, t) =
〈
(Ri(t)−Ri(0))2〉 . (1.8)

The center-of-mass mean-square displacement is given by

g3(t) =
〈
(Rcm(t)−Rcm(0))2〉 ,

which is widely measured in experiments to give diffusion coefficient of the chain

[73, 74].

1.4 Rouse Model

The Rouse model provides analytical solutions for almost all observables in unen-

tangled polymer melts. In this section, we will introduce the analytical solution for

the relaxation time of the Rouse model, which is related to the discussion in chapter

2. For other quantities, their scaling behaviours will be briefly introduced.
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1.4.1 Rouse Chain

The schematic plot of the Rouse chain is identical to the discrete Gaussian chain

as shown in Fig. 1.4(a). Consider a chain with N + 1 beads that are connected by

N harmonic springs of an average bond length b. The potential of the chain Ur is

the sum of the free energies of the springs

Ur (R0 . . .RN) =
3kBT

2b2

N−1∑
i=0

(Ri+1 −Ri)
2 . (1.9)

In melt state, the non-bonded interaction applied to a given monomer due to the

collision of surrounding particles could be represented by a random force satisfying

〈fi(t)〉 = 0, 〈fiα(t)fjβ(t′)〉 = 2kBTξδijδαβδ (t− t′) .

where i and j are the monomer index, α and β are the Cartesian components, and ξ

is the friction coefficient of the beads. Then the equation of motion of the monomer

i is given by

m
d2Ri

dt2
= −∂U (R0, . . . ,RN)

∂Ri

− ξdRi

dt
+ fi(t).

In an “overdamped” system, the left term of the above equation can be neglected,

giving the Langevin or stochastic equation:

ξ
dRi

dt
= −∂U (R0, . . . ,RN)

∂Ri

+ fi(t). (1.10)

1.4.2 Rouse Modes

In matrix notation, the Langevin equation for all monomers can be combined into

a simple equation:

ξ
dRi

dt
= −3kBT

b2

N∑
j=0

AijRj + fi(t). (1.11)
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Aij is a N -order connectivity matrix,

A =



1 −1 . .

−1 2 −1 .

. . . . . . . .

. 2 −1 .

. −1 2 −1

. . −1 1


,

where only the non-zero elements are presented. It is difficult to directly give a

analytical solution for Eq. 1.11, because the motion of the monomers are correlated

with their neighbours. But some independent behaviours could be decomposed.

These behaviours are coherent on certain length scales. For example, the mechanical

wave on an oscillated string is a coherent motion of the points on the string, which

could be described by a cosine function. On a chain, similar coherent motions can

be extracted by diagonalizing the matrix Aij. Hence the equations of motion are

transformed to the normal coordinates

ξp
dXp

dt
= −kpXp + fp(t), p = 0 . . . N, (1.12)

where Xp defines the coherent motion of a chain section of length N/p and is called

Rouse mode, which is a function of Ri,

Xp =
1

N + 1

N∑
i=0

Ri cos

(
πp(i+ 1/2)

N + 1

)
. (1.13)

The dynamics of each mode is equivalent to the diffusion in a quadratic poten-

tial field. The elastic coefficient of the potential field kp and the effective friction

coefficient ξp are respectively given by

kp =


0 (p = 0)

24kBT (N + 1)

b2
sin2

(
πp

2(N + 1)

)
(p = 1, . . . , N)

(1.14)
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and

ξp =

 (N + 1)ξ (p = 0)

2(N + 1)ξ (p = 1 . . . N)
(1.15)

The inverse transform from Xp to monomer coordinate is given by

Ri = X0 + 2
N∑
p=1

Xp cos

(
πp (i+ 1/2)

N + 1

)
(1.16)

For a Rouse chain, Xp is a sum of cosine functions whose wave length varies

in respect of p (See Eq. 1.13,). Apart from X0 which represents the diffusion of

the center of mass, other modes represent the coherent motion of a chain section

containing N/p monomers. For example, X1 describes the relaxation over the whole

chain length.

1.4.3 Relaxation Times

Eq. 1.12 is a stochastic differential equation (SDE) of a Ornstein-Uhlenbeck

process,

ξpdXp = −kpXpdt+
√

2kBTξpdW,

where T is the temperature, and W is a Wiener process. The solution of this

SDE is

Xp(t) = Xp(0) exp (−t/τp) +
√

2Dp

∫ t
0

exp

(
−t− t

′

τp

)
dW′,

τp = ξp/kp, Dp =
kBT

ξp
. (1.17)

The autocorrelation function of Xp is

〈Xpα(t)Xqβ(t′)〉 = δpqδαβ 〈Xpα(0)Xpβ(0)〉 exp

(
−t+ t′

τp

)
+Dpτp

(
exp

(
−|t− t

′|
τp

)
− exp

(
−t+ t′

τp

))
(1.18)



CHAPTER 1. INTRODUCTION 24

Let t′ = 0 and t > 0, it becomes

〈Xpα(t)Xqβ(0)〉 = δpqδαβ 〈Xpα(0)Xqβ(0)〉 exp

(
− t

τp

)
;
〈
X2
pα

〉
= Dpτp =

kBT

kp
.

(1.19)

Thus τp is the characteristic time or relaxation time of Rouse mode p. According to

Eqs. 1.14, 1.15 and 1.17, τp is given by

τp =
ξb2

12kBT
sin−2

(
πp

2(N + 1)

)
≈ ξb2N2

3π2kBTp2
. (1.20)

The relaxation time for the slowest mode is the so-called Rouse time,

τR ≡ τ1 =
ξb2

12kBT
sin−2

(
π

2(N + 1)

)
≈ ξb2N2

3π2kBT
. (1.21)

For the fastest mode, the relaxation time is

τN =
ξb2

12kBT
sin−2

(
πN

2(N + 1)

)
≈ ξb2

12kBT
. (1.22)

In the qualitative discussion on scaling behaviours [75], it is also common to use τ0

to denote the fastest mode,

τ0 =
τR

N2
, (1.23)

which is in fact 2.5 times smaller than τN .

1.4.4 Monomer Mean-Square Displacement

When p = 0, the solution of Eq. 1.17 gives the center of mass mean-square displace-

ment of the chain:

g1,mass(t) =
〈
(X0(t)−X0(0))2〉 =

6kBTt

(N + 1)ξ
.

This equation simply follows theEinstein-Smoluchowski relation, thus the whole

chain could be visualized as an effective Brownian particle with a diffusion coefficient

D ≈ kBT/Nξ.

The monomer mean-square displacement, g1(t), is more complicated. At the

time scales t < τ0, the monomers are not aware of that they are part of a chain, thus
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experiencing free diffusion. After τ0, the monomers follow Rouse motion. According

to Eqs. 1.20 and 1.23, the relaxation time for a Rouse mode τp can be written as

τp =

(
1

p

)2

τR =

(
N

p

)2

τ0.

During τp, the monomers on average move a distance of the order of (N/p)b2, which

is the mean-square size of the sections containing N/p monomers. Substituting t for

τp, we have

p =
(τR

t

)1/2

= N
(τ0

t

)1/2

, (1.24)

which means, at the time scale t, the index of relaxed modes must be higher than

p. The monomer mean-square displacement is of the order of the mean-square size

of the section involved in the coherent motion at this time scale:

g1(t) ≈
(
t

τ0

)1/2

b2 (τ0 < t < τR). (1.25)

For t > τR, the monomer follows free diffusion, the mean-square displacement is

linear in time. In summary, g1(t) for Rouse model has 3 regimes:

g1(t) ∼


t, t < τ0

t1/2, τ0 < t < τR

t, t > τR

(1.26)

1.4.5 Stress Relaxation and Viscosity

After a step-strain, each unrelaxed mode contributes the energy of the order of kBT

to the stress relaxation modulus. Therefore, at the time scales τ0 < t < τR, the

stress relaxation modulus G(t) is proportional to the number density of sections

with N/p monomers at time τp, where p is given by Eq. 1.24, leading to

G(t) ≈ φ

Nb3
kBTp =

φ

b3
kBT

(
t

τ0

)−1/2

(τ0 < t < τR), (1.27)

where φ is the polymer volume fraction, G(t) decays with the time as t−1/2. The

analytical solution of G(t) for a long chain is given by

G(t) =
φkBT

Nb3

∞∑
p=1

exp

(
−2t

τp

)
.
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According to this equation, we can estimate the power laws in the short and terminal

regimes. At the time scales shorter than τ0, the fastest mode has not yet fully

relaxed. According to the expansion of single exponential, e−2t/τ0 ≈ 1 − t/(2τ0),

the early relaxation shows linear decay, G(t) ∼ 1 − t/(2τ0). Beyond the longest

relaxation time τR, the stress relaxation modulus has a single-exponential decay:

G(t) ≈ φkBT

Nb3
exp

(
− 2t

τR

)
(t > τR).

In summary, there are 3 regimes in the stress relaxation function of Rouse chain:

G(t) ∼


1− t

2τN
, t < τ0

t−1/2, τ0 < t < τR,
1

N
exp(−2t/τR), t > τR

(1.28)

The viscosity of the Rouse chain can be calculated from the time integral of G(t):

η0 =

∫ ∞
0

G(t)dt =
φτR

2Nb3
kBT

N∑
p=1

1

p2
=

φξ

36b
N,

which explains the linear relationship between viscosity η0 and molecular weight M

for unentangled polymers.

1.4.6 End-to-End Vector Relaxation

The analytical solution of the End-to-end vector correlation function is derived using

the inverse transform of Rouse mode (see Eq. 1.16), and the end-to-end vector is

Re = RN −R0 = −4
N∑

p=1,odd

cos

(
πp

2(N + 1)

)
Xp.

Substituting this equation into Eq. 1.7, the correlation function becomes

Φ(t) =
2

N(N + 1)

N∑
p=1,odd

tan−2

(
πp

2(N + 1)

)
exp

(
− t

τp

)
.
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Since
∑N

p=1,odd tan−2 (πp/2(N + 1)) = N(N + 1)/2, this function would start from

1. Φ(t) also has 3 regimes:

Φ(t) =



1− 6kBT

ξNb2
t t < τ0

1− 4

π3/2

√
t

τR

τ0 < t < τR

8

π2
exp

(
− t

τR

)
t > τR.

(1.29)

From t = 0 to τ0, Φ(t) decays from 1 to 1− 1/(2N), this early time decay is hard to

observe when N � 1. Therefore, unlike the stress relaxation modulus G(t), Φ(t) is

not sensitive to early time relaxation.

1.5 Tube Model

In this part, we will introduce the tube model. This model originated from the

study of rubber elasticity [12, 15], then was expanded to uncrosslinked systems by

de Gennes [16], and formulated by Doi and Edwards [17]. Afterwards, theories for

entangled polymers have been for half century primarily based on the tube model,

which is considered as one of the most successful models in polymer dynamics.

1.5.1 Mean-field Tube

The diffusion of an entangled polymer is much slower than that of the free Rouse

chain due to the topological interactions with surrounding chains which prevent

them from crossing each other. Consider a chain confined in a polymer network, the

topological constraints imposed on the probe chain could be described by a set of

obstacles scattered around the chain, as shown in Fig. 1.5. These obstacles do not

affect the static properties of the probe chain, but significantly change dynamics.

Since the transverse fluctuation of the chain is restricted to a “tube-like” region

(dashed curves in Fig. 1.5), the chain can be assumed as confined in an effective

tube with a constant diameter. Such mean-field assumption captures the essence of
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Figure 1.5: A schematic plot of the tube model.

entanglement and allows relatively simple mathematical treatment. Along the tube

contour, the shortest path between the two chain ends is called the “primitive path”,

as shown by the red curve in Fig. 1.5. On the primitive path, the projected chain

is called the “primitive chain”, which has a contour length L.

Defining the primitive chain in a continuous manner, say R(s, t) is the position

of the chain segment s at time t, s ∈ [0, . . . , L]. The tangent vector on s is given by

u(s, t) =
∂R(s, t)

∂s
.

The original tube mode has two assumptions about the primitive chain. The first one

is that the contour length of the primitive chain does not fluctuate. This assumption

significantly simplifies the theoretical treatment, but introduces a non-trivial error

(see Sec. 1.5.5). The second assumption is that the correlation of the tangent

vectors u(s, t) and u(s′, t) decays quickly with |s− s′|, such that the primitive chain

is Gaussian. With these two assumptions, the primitive path could be visualized as

a random walk with a step length a, which is the length of the tube statistical

segments (or “tube segments”). Since the mean-square end-to-end vector of the

primitive chain is equal to that of the 3D chain, we have

〈
R2

e

〉
= Za2 = Nb2,

where Z is the number of tube segments or entanglements per chain. The contour
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length L of the primitive chain is then given by

L = Za =
Nb2

a
.

According to Eq. 1.3, the free energy of a chain reaches its minimum when the

end-to-end distance is zero, which seems to imply a chain confined in a tube should

collapse into a coil. To understand the paradoxical result, one must distinguish the

effective tube from the infinite long tube. In the tube model, the chain ends are

not confined in the tube, but can freely explore the polymer network. Therefore,

the chain ends have higher degree of freedom than middle monomers, acting as a

hypothetical tensile force applied at the chain ends to keep a contour length L:

feq =
3kBT

Nb2
L =

3kBT

a
.

According to this equation, the virtual force only depends on the tube segment

length a.

In a tube segment, the average number of monomers is Ne = N/Z, thus a is

given by

a =
√
Neb

In the discussion of scaling behaviours, a is also regarded as the tube diameter.

At the length scales smaller than a, the monomers are not aware of the tube con-

finement, and thus follow Rouse motion. Therefore, the entanglement strand with

Ne monomers relaxes with a characteristic time τe:

τe = N2
e τ0,

which is the Rouse time of a tube segment.

1.5.2 Reptation

The breakthrough that makes the tube model applicable to describe polymer dy-

namics was brought by de Gennes [16], who proposed a “reptation” model to depict
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Figure 1.6: Reptation of the primitive chain.

the “snake-like” motion of the chain in a fixed network. In the “reptation” picture

(see Fig. 1.6), the primitive chain moves forward and backward along the tube

contour with a friction proportional to the number of monomers, Nξ, such that the

diffusion coefficient of the primitive chain is

Dc =
kBT

Nξ
.

During reptation, the chain ends will extend out of the original tube and create

new tube segments with random orientations. In this way, the original tube will be

forgotten gradually. The time for the chain to completely diffuse out of the original

tube is the “reptation time”, which could be estimated by

τrep ≈
〈L2〉
Dc

≈ ξN2
e b

2

kBT

(
N

Ne

)3

=
ξN2

e b
2

kBT
Z3. (1.30)

As shown in Fig. 1.6(b) and (c), a tube segment is released when either chain

ends passes through it. The survival probability of the segment s after time t, ψ(s, t),

can be obtained by solving the diffusion equation:

∂ψ(s, t)

∂t
= Dc

∂2ψ(s, t)

∂s2
,

with the boundary conditions:

ψ(s, 0) = 1; ψ(0, t) = 0; ψ(L, t) = 0.

The solution of the equation is

ψ(s, t) =
∞∑

p=1,odd

4

πp
sin
(πps
L

)
exp

(
− p

2t

τrep

)
, τrep =

L2

π2Dc

. (1.31)
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The analytical solution of τrep is smaller than the scaling approximation (Eq. 1.30)

by a factor of 1/π2. The fraction of the tube segments that live longer than t is an

integral of ψ(s, t) over the contour length:

µ(t) =
1

L

∫ L

0

ψ(s, t)ds =
8

π2

∞∑
p=1,odd

1

p2
exp

(
− p

2t

τrep

)
(1.32)

The tube model assumes that once a tube segment is deleted, any deformation

associated to it is forgotten, therefore µ(t) is proportional to the end-to-end vector

relaxation function Φ(t):

Φ(t) =
〈Re(t) ·Re(0)〉

R2
e

= µ(t).

1.5.3 Stress Relaxation and Viscosity

At the time scales τ0 < t < τe, the monomers follows Rouse motion, such that the

stress relaxation modulus G(t) is the same as Eq. 1.27:

G(t) = G0

(
t

τ0

)−1/2

=
φkBT

b3

(
t

τ0

)−1/2

(τ0 < t < τe)

On the time scale t = τe, each entanglement strand contributes order of kBT to the

stress relaxation modulus Ge:

Ge = G(τe) =
G0

Ne

=
φkBT

Neb3
=
ρRT

Me

,

where ρ is the density of the melt, R is the idea gas constant. At time scales t > τe,

the chains are relaxed by reptation. Thus the stress relaxation modulus G(t) is

proportional to the survival fraction of the tube segments (Eq. 1.32):

G(t) = Geµ(t) =
8

π2
Ge

∞∑
p=1,odd

1

p2
exp

(
− p

2t

τrep

)
, (1.33)

Due to the factor 1/p2 in Eq. 1.33, the longest relaxation time τrep dominates G(t).

At the timescales τe < t < τrep, G(t) shows a plateau regime. Thus, Ge is also

termed as the “plateau modulus”, analogous to a permanent polymer network.
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The viscosity predicted by the reptation model is given by the time integral of

G(t):

η0 =

∫ ∞
0

G(t)dt =
π2

12
Geτrep.

Since Ge is independent of the molecular weight M and τrep is proportional to M3,

the viscosity η0 is proportional to M3. However, experimental results indicate a

power law η0 ∼ M3.4 [4–7], whose exponent 3.4 is significantly larger than the

prediction of reptation picture.

1.5.4 Monomer Mean-Square Displacement

At time scales smaller than τe, the monomers are not aware of the tube confinement,

thus the monomer mean-square displacement follows the Rouse behaviour same as

Eq. 1.25:

g1(t) ≈ b2

(
t

τ0

)1/2

(τ0 < t < τe) .

After τe, the monomer displacement perpendicular to the primitive path on the

length scales larger than a is prohibited by the effective tube confinement, while the

diffusion along the tube contour is free. At the time scales τe < t < τR, the monomers

are involved in the coherent Rouse motion of the chain sections containing (t/τ0)1/2

monomers, thus the 1D curvilinear mean-square displacement of the monomers is of

the order of the mean-square size of the chain sections:

〈
(∆s (t))2〉 ≈ b2

(
t

τ0

)1/2

= a2

(
t

τe

)1/2

τe < t < τR. (1.34)

However, the displacement of such subdiffusive motion is much shorter in 3D space,

because the primitive path is effectively a random walk in 3D space with a step

length equal to the tube segment length a. Since the primitive length of the random

walk along the tube is
√〈

(∆s (t))2〉, the monomer mean-square displacement in 3D

is the product of the step length and the primitive length:

g1(t) ≈ a
√〈

(∆s (t))2〉 ≈ a2

(
t

τe

)1/4

τe < t < τR.
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At t = τR, g1(t) ≈ Nb2 indicates the monomer mean-square displacement is of the

order of the mean-square end-to-end distance R2
e. At the time scales larger than

τR, the monomers are involved in the reptation of the primitive chain, thus the 1D

mean-square displacement is〈
(∆s (t))2〉 ≈ Dct =

kBT

Nξ
t τR < t < τrep.

The corresponding mean-square displacement in 3D space is

g1(t) ≈ a
√〈

(∆s (t))2〉 = a

√
kBT

Nξ
t τR < t < τrep.

At the time scales t > τrep, the whole chain follows free diffusion, g1(t) ∼ t.

In summary, the mean-square displacement of the monomers g1(t) have 4 regimes

in reptation model:

g1(t) ∼



t1/2, τ0 < t < τe

t1/4, τe < t < τR

t1/2, τR < t < τrep

t, t > τrep

(1.35)

1.5.5 Contour Length Fluctuation

In the reptation model, the primitive chain or primitive path is assumed to have a

constant length L. Doi [18] suggested that the contour length can fluctuate due to

the Rouse motion of the chain. Thus, one can expect that the characteristic time of

the contour length fluctuation (CLF) is the Rouse time τR. According to Eq. 1.34,

the inherent curvilinear leads to contour length fluctuation:〈
[L(t)− L(0)]2

〉1/2 ≈ b

(
t

τ0

)1/4

(τ0 < t < τR) .

The contour length fluctuations at the early times slightly reduce the stress

relaxation modulus G(t), because a fraction of tube is released:

G(t) ≈ Ge

〈L〉 −
〈
[L(t)− L(0)]2

〉1/2

〈L〉
≈ Ge

[
1− Ne

N

(
t

τe

)1/4
]

(τe < t < τR) .

(1.36)
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Since (τR/τe)
1/4 is proportional to N1/2, the difference between Ge and G(τR) de-

creases as the chain length N increases. Therefore, the contour length fluctuation

is more important on relatively short chains.

According to Eq. 1.36, the stress relaxation modulus at the Rouse time of the

chain is lower than Ge:

G(τR) ≈ Ge

[
1− Ne

N

(
τR

τe

)1/4
]
≈ Ge

(
1− µ

√
Ne

N

)
,

where µ is a coefficient of order unity [75]. The reptation time is also reduced by a

factor of
(

1− µ
√
Ne/N

)2

:

τrep ≈
〈L2〉
Dc

(
1− µ

√
Ne

N

)2

≈ τ0
N3

Ne

(
1− µ

√
Ne

N

)2

.

The viscosity can be estimated by the product of the dominate reptation time and

the stress relaxation modulus at τrep:

η0 ≈ G(τrep)τrep ≈
τ0kBT

b3

N3

N2
e

(
1− µ

√
Ne

N

)3

Over a reasonable range of molecular weight, this equation predicts that the molar

mass dependence of viscosity, η0 ∼M3.4 [18], which explains the difference between

the predictions of reptation model and the experimental results. For very long

chains, the contribution of the contour length fluctuations become less important,

thus the exponent will slowly fall back to 3.0 with increasing chain length.

1.5.6 Constraint Release

The model combining reptation and contour length fluctuation can describe the

dynamics of polymer chains in a matrix of much longer chains or in a fixed network.

In a monodisperse system, the chains imposing topological constraints to a probe

chain also experience reptation and contour length fluctuations in their own tubes.

Therefore, the tube segments of the probe chain can fluctuate when some of these
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Figure 1.7: The schematic plot of constraint release.

chains move away by CLF or reptation. As shown in Fig. 1.7(a), the departure of

a neighboring chain is represented by the disappearing of one obstacle (red), which

leaves a vacant volume of dimension of a3. The probe chain can explore this volume

as shown in Fig. 1.7(b). If a new chain moves in, as shown by the inserted obstacle

(blue) in Fig. 1.7(c), the probe chain effectively hop a distance of a. The local

rearrangement of the tube segments due to the exchange of the surrounding chains

is called constraint release.

The constraint release process could be modelled by the Rouse motion of the

tube consisting of N/Ne segments, called constraint release Rouse (CR Rouse) mo-

tion [25]. The hopping frequency of tube segments is inversely proportional to the

reptation time τ s
rep of the surrounding chains that impose constraints [76, 77]. There-

fore, the relaxation time of CR Rouse motion of the tube is

τCR ≈ τ s
rep

(
N

Ne

)2

.

For monodisperse systems, τCR is proportional to N5, which is much longer than the

reptation time, τrep ∼ N3. Therefore, one should not expect the constraint release

to affect the terminal relaxation time τrep or the end-to-end relaxation Φ(t) strongly,

because they are dominated by reptation of the chain itself.

Combining both reptation and constraint release, the diffusion coefficient of a

probe chain could be approximated as

D ≈ 〈R
2
e〉

τrep

+
〈R2

e〉
τCR

. (1.37)
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In monodisperse systems, τrep is much shorter than τCR, and thus the second term

on the right-hand side of Eq. 1.37 is negligible. In polydisperse systems, the con-

tribution of constraint release on chain diffusion can be non-trivial. Consider the

binary blend of polymers with drastically different molecular weights, where the long

chains are confined in the matrix of the short chains. When the reptation time of

the surrounding chains is much shorter than the reptation time of the long chain,

the diffusion coefficient is dominated by constraint release effect.

Due to the broad distribution of the hopping rates of the tube segments, signif-

icant amount of constraint release events happen much earlier than the reptation

time of the probe chain, whose effect needs to be taken into account for predict-

ing stress relaxation, even for monodisperse systems [78, 79]. The stress relaxation

caused by the CR Rouse motion of the tube is proportional to t−1/2 (see Eq. 1.27):

GCR(t) ∼
(

t

τ s
rep

)−1/2

.

Accordingly, certain fraction of the stress would be released at τ s
rep. The CR contri-

bution to the stress relaxation modulus of monodisperse systems was first deduced

by Graessley [80]:

G(t) = Geµ(t)R(t),

where G(t) is proportional to the product of the fraction of the surviving tube at t,

µ(t), and contribution due to CR Rouse motion of the tube, R(t). In the “double

reptation” model, R(t) ∼ µ(t), we have G(t) ∼ µ(t)2 [20]. Rubinstein and Colby

[21] presented a self-consistent model to describe the stress relaxation of the binary

blends, in which the stress modulus is calculated using a linear mixing rule of the

stress relaxation moduli of the two components:

G(t) = Ge (φLµL(t)RL(t) + φSµS(t)RS(t)) ,

where “L” and “S” represent the long and short chains, and φL,S refer to their volume

fractions.
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1.6 Multiscale Computer Simulations

1.6.1 Molecular Dynamics Simulation

Due to the rapid advances of the computer technology, molecular dynamics (MD)

simulation is widely used in the study of polymer dynamics. With well-defined

potential field, the motion of the molecules can be obtained by integrating the

equations of motion, e.g., the Newton’s equation. Comparing to coarse-grained

models, MD simulations based on bead-spring models carry much more fine details

and can provide microscopic understanding that are generally not accessible by

experiments. However, MD simulation requires much longer simulation time than

the coarse-grained models. A typical MD simulation system for polymer dynamics

usually has to simulate more than 104 ∼ 105 particles, with a simulation time span

over nine decades. Such computational cost strongly limits their applications to the

entanglement dynamics at large time scales.

For studying dynamics in polymer melts, a well-developed generic bead spring

model is the Kremer-Grest (KG) model [49, 50]. In this model, the non-bonded

interactions are given by the truncated-shifted Lennard-Jones (LJ) potential,

ULJ(r) =

 4ε

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
r < rc

0 r > rc

(1.38)

where r is the distance between two beads, ε is the depth of the potential well, σ

is the diameter of the beads, rc = 21/6σ is a typical cutoff-distance beyond which

the potential is zero. ε and σ are used as the units for potential and distance. The

corresponding LJ time unit is τLJ = σ(m/ε)1/2, where m is the mass of the beads.

In the KG model, the bonding potential between two adjacent particles in a chain

is given by the finitely extensible nonlinear elastic (FENE) potential,

UFENE(r) =


−1

2
kR2

0 ln

(
1−

(
r

R0

)1/2
)

r ≤ R0

∞ r > R0

(1.39)



CHAPTER 1. INTRODUCTION 38

Figure 1.8: The schematic plot of the slip-spring model.

where k = 30ε/σ2 is the spring constant, R0 = 1.5σ is the maximum bond length.

FENE potential can effectively prevent chain crossing, thus the KG model is appli-

cable to entangled polymers. In the KG model, the particle density is ρ = 0.85σ−3,

and the average bond length is 〈l2〉1/2 = 0.97σ.

In addition, using harmonic bending potential is considered as an effective way

to introduce chain stiffness and consequently more entanglements to the chain. A

typical bending potential is given by

Ubend(θ) = kθ (1− cos θ) ,

where the coefficient kθ is usually set to be 2ε or 3ε. θ is the angle of the neighboring

bond vectors.

1.6.2 Slip-Spring Model

Model Construction

The basic building block of the slip-spring model is the Rouse chain. Consider a

Rouse chain constituted by N + 1 monomers. The bonding potential between the
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neighbouring monomers i and i+ 1 is harmonic:

Ubond(i, i+ 1) =
3kBT

b2
(Ri −Ri+1)2 .

The topological constraints imposed by the surrounding chains are represented by a

set of virtual springs, as shown in Fig. 1.8. Each virtual spring has one end (“anchor

point”) anchored in space, and the other end connected to the chain via the slip-link.

The slip-links are the small rings that the chain can pass though, due to reptation

or CLF. The potential of virtual springs is harmonic,

Uss(j) =
3kBT

Nsb2

(
aj −Rxj

)2
,

where aj is the coordinate of the anchor point of the j-th virtual spring, xj is

the index of the bead that the slip-link sits on, Ns is the number of monomers in

the virtual spring. The average number of slip-springs on each chain is equal to

ZSS = N/NSS
e . There are thus on average one slip-link per chain segment of NSS

e

monomers. NSS
e and Ns are a pair of adjustable parameters in the slip-spring model,

their combination determines the plateau modulus GSS
e and terminal properties [66].

The total energy of a chain is a sum of the potential of the bonds and the virtual

springs:

Uchain =
N−1∑
i=0

Ubond(i, i+ 1) +
ZSS∑
j=1

Uss(j).

The equation of motion of the Rouse beads in the slip-spring model is similar to Eq.

1.10:

ξ
dRi

dt
= −∂Uchain

∂Ri

+ fi(t). (1.40)

Algorithms for Slip-Link Motion

In the slip-spring model, an algorithm is required to govern the diffusion of the slip-

links along the chain. There are two versions of slip-spring models with different slip-

link motion algorithms. The original version uses Brownian dynamics that allows the

slip-links to slide along the chain continuously [66, 81, 82]. The friction of slip-links



CHAPTER 1. INTRODUCTION 40

ξsl is artificially defined, but must be much smaller than the frictions of the Rouse

beads ξ, i.e., ξsl = 0.1ξ in Ref. [66]. A small friction ξsl ensures that the slip-links

does not affect the chain diffusion. But in accompany with it, a small time-step ∆t

must be employed, e.g., the standard time-step is 0.01τ0 for integrating the equation

of motion of the Rouse beads and slip-links, where τ0 is the slip-spring unit time.

In order to increase ∆t, an updated slip-spring model employs Monte-Carlo

method to govern the motion of the slip-links [83]. Specifically, at each time-step, a

slip-link hops between the nearest neighbouring monomers with a frequency of fSS.

The hopping is governed by the Metropolis-Hasting algorithm: the hopping from

monomer i to j (j = i ± 1) is accepted with a probability of exp(−∆E/kBT ). ∆E

is the change of the potential energy due to the hopping:

∆E =
3kBT

Nsb2

(
R2
j −R2

i + 2a · (Ri −Rj)
)
,

where a is the position of the anchor point. When ∆E < 0, the hopping will always

be accepted because exp(−∆E/kBT ) > 1.

Constraint Release

With the assumption that the entanglements are binary events, the slip-spring model

can easily incorporate constraint release effect by simulating an ensemble of chains.

The algorithm is based on the “duality” of the constraint release: disentanglement

between a pair of chains takes place when either chain moves away by reptation or

contour length fluctuation. Particularly, each slip-link is paired with another slip-

link sitting on another chain in the ensemble. When one slip-link is deleted from the

end of one chain, the paired slip-link will also be released instantaneously, leading

to a CR event. To ensure a constant number of the slip-springs in the ensemble, a

new pair of slip-springs would be added back immediately after the removal of the

old pair: one slip-spring is attached to the end of a randomly selected chain, while

the paired one would be added on a random bead of another chain. Because the

slip-links cannot sit on the same bead, the newly added slip-slinks must be added
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on the beads without slip-links. It should be noted that the slip-links on the same

chain are not coupled, because the fraction of the self-entanglement in this model is

not fully consistent with the real system.



Chapter 2

The First-Passage Time Problem of

One-Dimensional Rouse Chain

2.1 Overview

The simplest branched polymer is 3-arm symmetric stars. In the description of

the tube model, star arms are confined in their own tubes. Reptation is highly

suppressed because one arm has to simultaneously drag all other arms into the same

tube to reptate. In order to relax, arms must retract some distance towards the

branch point along the primitive path, and poke out to create new tube segments.

By repeating this process, the old tube segments that have been visited by the arm

free end will be forgotten, whereby the stress associated with them would be relaxed.

An arm is fully relaxed when its free end retracts all the way back to the branch

point. Due to the steeply growing quadratic potential field, the arm retraction

process, essentially analogous to contour length fluctuation, is a thermally activated

process, whose relaxation time can be obtained from the solution of the first-passage

problem (or Kramers problem [31]) for a diffusing chain [27].

Consider the primitive chain as a 1D Rouse chain along the tube contour with one

end fixed to the branch point and the other end stretched by a virtual tensile force

42
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[17]. The arm retraction problem is a multi-dimensional first-passage problem, whose

dimensionality is equal to the number of Rouse modes. Milner and McLeish [30]

solved this problem by treating the whole chain as one bead attached to the branch

point via a harmonic spring, which essentially reduces the multi-dimensional problem

into a 1D case by only considering the slowest mode, which might overestimate the

relaxation time.

As the simplest stochastic model of polymer dynamics, the 1D Rouse model al-

most has everything solved analytically, such as the stress and end-to-end relaxation

functions. A notable exception is the first-passage problem, which in fact is a general

challenge for the study of rare events [84]. To cope with such problems, many ad-

vanced numerical methods have been developed to accelerate computer simulations

in order to provide reliable numerical solutions [68–70, 85–87]. These numerical

methods, which have been shown to be remarkably successful in other scientific ar-

eas, should also be applicable to the first-passage problem of the 1D Rouse chain

model.

At the beginning of this chapter, we introduce the solution of the Milner-McLeish

theory without constraint release and an asymptotic solution for multi-dimensional

first-passage problems. In order to examine these two theoretical predictions, we

employ advanced numerical methods, including the forward flux sampling (FFS)

and weighted ensemble (WE) method, which have been reported with excellent

performance for solving other first-passage problems. Before being applied to the

arm-retraction problem, both methods are tested on a simple 2D case, which is the

simplest multi-dimensional first-passage problem. Then we choose the FFS method

to investigate the extension problem of 1D Rouse chain, which is analogous to the

arm-retraction problem. The mean first-passage time τ(z) is measured when the

free end of the chain extends over a certain distance z away from the origin (fixed

end). The results show that the mean first-passage time is getting shorter if the

Rouse chain is represented by more beads, which validates the prediction of the
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asymptotic solution.

2.2 Theoretical Solutions of Arm Retraction

2.2.1 From Retraction to Extension

Consider an arm confined in an effective tube as shown in Fig. 2.1(a). At length

scales shorter than the tube diameter a, the monomers are not aware of the confining

tube, and thus the dynamics follows Rouse motion. Above the length scale of a,

one can use the primitive chain to describe the dynamics. Consider the primitive

chain as a 1D Rouse chain along the tube contour, whose one end is fixed to the

branch point and the other end is free to move, leading to creation or deletion of

tube segments (see Fig. 2.1(b)). Because the arm free end is able to explore more

directions in the polymer melt than the middle monomers, the primitive chain has

a non-zero average length due to the entropy gain at the end:

L̄ = (N/Ne)a

where N is the number of monomers, a is the tube diameter, and Ne is the entan-

glement segment length. The entropic tensile force acting on the chain end is given

as (Fig. 2.1(c)):

feq =
3kBT

Nb2
L̄ =

3kBT

a
,

where kB is the Boltzmann constant, T is the temperature, and b is the Kuhn length.

Define z as the length of the tube sections that have been visited by the free end

during arm retraction, as shown in the Fig. 2.1(b) and (c). The energy barrier for

the arm end required to retract a distance z is given by [27]:

U(z) =
3kBT

2Nb2
z2. (2.1)

This potential function takes the same form as for a 1D Rouse chain with one end

fixed to extend over a distance z, as shown in Fig. 2.1(d). Therefore the Rouse
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Figure 2.1: A schematic plot of the transformation from the arm-retraction problem

to an extension problem of a 1D Rouse chain.

chain extension is a reverse process of arm retraction, and so can be mathematically

treated in the same way. Due the steeply growing energy barrier, the first-passage

time to retract a distance z can be approximated by

τ(z) = τ0 exp

(
U(z)

kBT

)
,

where τ0 was intuitively considered as the Rouse time τR of the 1D Rouse chain with

one end fixed [26].
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Figure 2.2: Rouse chain with one end fixed.

2.2.2 Rouse Chain with One End Fixed

Consider a Rouse chain with one end fixed, whose N beads are connected by N − 1

harmonic springs with an elastic constant k = 3kBT/b
2. The first bead i = 1 is

connected to the origin by another harmonic spring, as shown in Fig. 2.2. Using a

N -order connectivity matrix, the equations of motion of beads can be written as:

ξ0dRi = −kAijRjdt+
√

2kBTξ0dWi, i = 1, ..., N (2.2)

where ξ0 is the friction coefficient of beads, W is a Wiener process, Aij is the element

of the connectivity matrix:

A =



2 −1 . .

−1 2 −1 .

. . . . . . . .

. 2 −1 .

. −1 2 −1

. . −1 1


Multiplying Ri by matrix Φ which consists of the eigenvectors of A, the equations

of motion are transformed into normal modes:

ξpdXp = −kpXpdt+
√

2kBTξpdWp, (2.3)
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where the Rouse mode Xp is given by

Xp =
1

N + 1/2

N∑
i=1

Ri sin

(
πp (i+ 1/2)

N + 1/2

)
, p = 1, 2, ..., N, (2.4)

and the friction coefficient ξp and the elastic constant kp are given by

ξp = 2(N + 1/2)ξ0, kp =
24kBT (N + 1/2)

b2
sin2

(
π(p− 1/2)

2(N + 1/2)

)
. (2.5)

The inverse transform from Xp to monomer coordinate is given by

Ri = 2
N∑
p=1

Xp sin

(
πi (p− 1/2)

N + 1/2

)
. (2.6)

For each mode, the relaxation time τp is given by

τp =
ξp
kp

=
ξ0b

2

12kBT
sin−2

(
π (p− 1/2)

2 (N + 1/2)

)
, p = 1, . . . , N,

Thus, the relaxation time of the fastest mode is τN ≈ ξ0b
2/12kBT , and the Rouse

time τR is given by,

τR = τ1 ≈
4ξ0b

2N2

3π2kBT
, (2.7)

which is 4 times larger than τR of the chain with both ends free.

2.2.3 The Kramers Problem in Arm Retraction

According to Eq. 2.3, the extension of 1D Rouse chain can be decomposed into

independent Rouse modes, whereby the bead coordinates Ri are converted into Xp

via Eq. 2.4 (italic rather than bold font is for 1D case). Since each mode corresponds

to one degree of freedom, this extension problem can be treated as a particle diffusing

in an N -dimensional space. Therefore, the arm retraction problem is equivalent to

the following first-passage problem: a particle is injected at the origin and deleted

when it reaches the absorbing boundary satisfying

z = 2
N∑
p=1

Xp sin

(
πN (p− 1/2)

N + 1/2

)
, z � a, (2.8)
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while the potential in each dimension is given by

U(Xp) =
1

2
kpX

2
p . (2.9)

In the Milner-McLeish theory [30, 37], this multi-dimensional problem is simpli-

fied into a 1D case by coarse-graining the whole chain into a single bead connected to

the origin via a harmonic spring, whose elastic constant is 3kBT/Nb
2. The equation

of motion of the bead is

ξeff
dx

dt
= −3kBT

Nb2
x+ f(t), (2.10)

where x is the coordinate of the particle, f(t) is the random force satisfying 〈f(t)f(t′)〉 =

2ξeffkBTδ(t − t′), ξeff = Nξ0/2 is the effective friction coefficient. ξeff is half of the

chain friction because the center of mass travels half the distance of the free end.

The relaxation time τMM(z) is the first-passage time that the bead extends over a

distance of z.

2.2.4 Exact Solution of 1D Kramers Problem

In this subsection, we start from a general solution of the Kramers problem without

specifying the dimensionality. Then we will introduce the exact solution of 1D

Kramers problem and use it to calculate τMM(z).

Consider a Brownian particle in a deep potential well, U(R). To escape from

the potential well, the particle has to overcome an extremely high energy barrier at

the boundary Rs, U(Rs) � kBT . Define ψ(R, t) as the probability density to find

the particle at coordinate R and time t. ψ(R, t) can be obtained by solving the

Smoluchowski equation:

ξ
∂ψ

∂t
= ∇ (∇U(R) + kBT∇)ψ.

If there is no absorbing boundary, ψ is independent of t and follows Boltzmann

distribution:

ψ(R) =
1

N
exp

(
−U(R)

kBT

)
, N =

∫
exp

(
−U(R)

kBT

)
dR. (2.11)
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With an absorbing boundary, one can find a steady state solution for ψ. In steady

state, ψ is time-independent. The current J(R) is given by Fick’s law,

J(R) = −1

ξ
ψ(R)∇U(R)− kBT

ξ
∇ψ(R). (2.12)

Assuming that ψ follows Boltzmann distribution in most places apart from the small

region close to the absorbing boundary, it is convenient to change the unknown ψ(R)

in this case to

φ(R) ≡ ψ(R) exp

(
U(R)

kBT

)
(2.13)

Substituting φ(R) into Eq. 2.12, we have

J(R) = −kBT

ξ
exp

(
−U(R)

kBT

)
∇φ(R). (2.14)

In a 1D case, R is reduced to x. J is constant everywhere, which can be replaced

by J . Then we can rewrite the above equation into

dφ(x)

dx
= − ξJ

kBT
exp(

U(x)

kBT
).

At the absorbing boundary x = xs, we have φ(xs) = 0, thus the solution of the last

equation can be written as

φ(x) =
Jξ

kBT

∫ xs

x

exp(
U(x′)

kBT
)dx′

The mean-first passage time is given by

τ =
1

J

∫ xs

−∞
ψ(x)dx =

1

J

∫ xs

−∞
φ(x) exp

(
−U(x)

kBT

)
dx

Substituting Eq. 2.15 to the last equation gives

τ =
ξ

kBT

∫ xs

−∞
dx exp

(
−U(x)

kBT

)∫ xs

x

exp

(
U(x′)

kBT

)
dx′

The inner integral is dominated by x close to xs, one can expand U(x) near xs,

U(x) ≈ U(xs) + (x − xs)U ′(xs). The outer integral is dominated by the minimum
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of the potential where x = xb, we can expand U(x) ≈ U(xb) + (U ′′(xb)/2) (x− xb)2.

Then the mean first-passage time is given by

τ ≈ ξ

U ′(xs)

√
2kBTπ

U ′′(xb)
exp

(
U(xs)− U(xb)

kBT

)
.

In Milner-McLeish theory, we have U(x) = 3kBTx
2/(2Nb2), ξ = Nξ0/2, xb = 0

and xs = z. Setting kBT to 1, we get the relaxation time:

τMM(z) ≈ π5/2

4
√

6
τR

1

s
exp

(
3s2

2

)
, (2.15)

where s = z/
√
Nb2, τR is given by Eq. 2.7.

2.2.5 Asymptotic Solution

Base on the early works of Kifer [88], the asymptotic solution for the N -dimensional

Kramers problem was obtained and proved rigorously by Meerkov [84, 89]. With a

similar idea, Cao et al. [34] proposed an asymptotic solution, which gives

τ(Ω) ≈ ξ

U ′x(xs,Ys)

√
2πkBTdet(Σ)

det(Λij)
exp

(
U(xs,Ys)

kBT

)
, (2.16)

In this equation, the potential field U(R) is redefined by rotated coordinates, as

shown in Fig. 2.3. After rotation, the x-axis is perpendicular to the absorbing

boundary Ω, Y = {yi} are the axes of other dimensions orthogonal to x. The

current close to Ω is assumed parallel to the x-axis, and dominated by the minimum

of the potential on Ω: (xs,Ys). Λ is the Hessian matrix of the potential computed at

the minimum of the potential in the original coordinates. Σ is a covariance matrix.

Applying it to the arm-retraction problem, the relaxation time τ(z) in the limit of

large N is given by

τ(z) =
π5/2

2
√

6

τR

N

√
Nb

z
exp

( 3z2

2Nb2

)
(2.17)

where τR is given by Eq. 2.7. This asymptotic solution is 2/N times smaller than

the prediction of Milner-McLeish theory without constraint release (Eq. 2.15).
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Figure 2.3: Coordinate rotation according to the absorbing boundary in the asymp-

totic theory. The left and right plots are before and after the coordinate rotation.

2.3 Advanced Numerical Methods

In the previous sections, we have shown some analytical solutions for the first-passage

problems. These solutions can only predict the first-passage time in the limit of the

infinitely high barrier. Apart from these analytical solutions, one can use numerical

solutions, such as computer simulations, to solve the problems. However, rare events

occur in a extremely low frequency, making them hardly observed in brute-force

simulations.

In the past a few decades, great efforts have been put into the development of

numerical methods that can accelerate the computer simulations on rare events.

Starting from the initial idea of “reactive flux” [90, 91], several classes of methods

have been developed, such as the “transition path sampling”, the “conformation

dynamics”, and the “reactive trajectory sampling”. In this part, we will test two

advanced methods that have been reported with excellent performance on first-

passage problems, namely the forward flux sampling [68] and weighted ensemble

[69, 70, 85–87] methods, which belong to transition path sampling and reactive

trajectory sampling respectively.



CHAPTER 2. FIRST-PASSAGE PROBLEM OF 1D ROUSE CHAIN 52

2.3.1 2D Kramers Problem

To test their performance, we will use the FFS andWEmethods to solve the simplest

multi-dimensional Kramers problem: the escaping time of a Brownian particle from

a 2D harmonic potential well. The potential field is given by

U(x, y) =
1

2
βxx

2 +
1

2
βyy

2. (2.18)

The equation of motion of the particle is

ξdr = −∂U(r)

∂r
dt+

√
2ξkBTdW, (2.19)

where r = (x, y). The absorbing boundary locates at

z = x+ y. (2.20)

This toy model is intrinsically analogous to the extension model of a 1D Rouse chain

with only 2 beads.

The minimum of the potential on the absorbing boundary is at the point (xs, ys):

xs =
βyz

βx + βy
, ys =

βxz

βx + βy
.

When U(xs, ys)� kBT , the current on (xs, ys) will dominate the flux through absorb-

ing boundary. According to the asymptotic solution in Eq. 2.16, the first-passage

time for this toy model is

τ(z) =

(
βx + βy
βxβy

)3/2(
kBTπ

2

)1/2
1

z
exp

(
βxβyz

2

2(βx + βy)kBT

)
.

When the elastic coefficients are equal, βx = βy, this problem will be reduced into

1D case. Thus we should set different coefficients, e.g., βx = 1 and βy = 10. Then

the analytical solution is given by

τ(z) =

(
11

10

)3/2(
kBTπ

2

)1/2
1

z
exp

(
5z2

11kBT

)
, (2.21)

which will be compared with the FFS and WE results to test their accuracy.
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2.3.2 Forward Flux Sampling Method

Unlike most transition sampling methods, FFS requires no prior -knowledge about

the phase space density, but needs a clear definition of the reaction coordinate.

The reaction coordinate could be any quantity that can characterize the transition

process, whose choice in principle only affects the efficiency. Using the reaction

coordinate, a sequence of non-intersecting interfaces λi (i = 0 . . .m) can be defined

to divide the phase space into many layers. Through these interfaces, a set of

consecutive samplings are performed instead of the brute-force simulation.

Figure 2.4: (a) The schematic plot of the interface definition in FFS for a general

transition from state A to B. (b) The schematic plot of two FFS stages.

Consider a general transition from state A to B as shown in Fig. 2.4(a), and

assume that the potential of state B is much higher than that of state A. The space

between the two states have been divided by a set of interfaces, while the first

interface λ0 and the last interface λm are the borders of A and B. The standard FFS
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method proceeds in two stages. In the first stage, a long simulation starting from

A is continuously performed to explore the space. During this stage, the trajectory

will cross the interface λ1 many times, as shown in Fig. 2.4(b1). Among the crossing

points, we count those last crossed interface λ0 rather than λ1, and recorded them in

the database for λ1, e.g., the 3 labeled crossing points in Fig 2.4(b1) will be counted.

The result of this stage is the attempt frequency:

ν0 = N0/T0, (2.22)

where N0 is the number of counted crossings and T0 is the simulation time.

In the second stage, a series of short consecutive samplings are performed from

interface λ1 to λm−1. For the interface λi, the sampling simulations start from

the points on the interface (randomly selected from the database), as shown in

Fig. 2.4(b2). These simulations finish when their trajectories either reach the next

interface λi+1 (successful run), or go back to the first interface λ0 (unsuccessful

run). The first arriving points of the successful runs on λi+1 are recorded in the

database for λi+1, e.g., points 1 and 2 in Fig. 2.4(b2). The fraction of successful

runs gives an estimate of the probability to progress from one interface to the next,

P (λi+1|λi) = Ni/Mi, where Mi is the total number of runs from λi to λi+1, and Ni

is the number of successful runs. Thus the mean first-passage time from state A to

a interface λn (n� 1) is given by

τ(λn) =
1

ν0

(
n−1∏
i=1

P (λi+1|λi)

)−1

. (2.23)

As shown in Fig. 2.5, the application of FFS method to the 2D Kramers problem

is straightforward. Defining the reaction coordinate by λ = x+ y. The first and last

interfaces are λ0 = 0 and λm = z. Other interfaces λi, i = 1 . . .m − 1, are equally

inserted between λ0 and λm, demanding that the transition from A to B must cross

all of them in sequence.
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Figure 2.5: Application of the FFS method to the 2D Kramers problem.

Time-Step

In a Brownian dynamics simulation, the continuous trajectory is represented by the

discrete movement steps, whose variance is proportional to the time-step ∆t. Thus

the precision of the simulation results strongly depends on ∆t, because the variance

of the movement steps determines the probability of an unobservable crossing event

as shown in Fig. 2.6(a): a movement step (solid arrow line) shows no crossing while

its real trajectory (dashed arrow line) has actually crossed the interface. Without

counting these crossings, the first-passage time will be surely overestimated. In

Fig. 2.7, the first-passage time τ from direct simulation are plotted at different ∆t

(circles). One can find τ decreases quickly with the reducing ∆t. Fitting the data by

a parabolic function, the extrapolated τ at ∆t = 0 is 665, which is still smaller than

τ = 690 obtained at ∆t = 10−4. Therefore, the systematic error is non-negligible

even with a small time-step.

To cope with this problem, Öttinger [92] presented an algorithm to predict the

probability of the unobservable crossings. As shown in Fig. 2.6(a), l1 and l2 are the
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Figure 2.6: Setting parameters according to the Öttinger’s algorithm: (1) time-step

∆t, (b) interface distance ∆λ.

distance of the particle to the interface before and after a time-step. The crossing

probability of the real trajectory during this step is given by

Pcross = exp(− l1l2
D∆t

)., (2.24)

where D = kBT/ξ is the short time diffusion coefficient of the reactive coordinate.

Thus one can use a random number uniformly generated on [0..1] and compare it

with Pcross to determine whether the crossing happened or not. The results of the

direct simulation optimized by this algorithm are the cubics in Fig. 2.7. For all time-

steps, the results agree well with the extrapolated τ at t = 0 from direct simulations

without Öttinger’s algorithm.

Interface Distance

Intuitively, a small interface distance is in favour to enhance the transition rates be-

tween the neighbouring interfaces, especially for those with a steep potential barrier

[93]. However, the Öttinger’s algorithm requires that the interfaces distance cannot

be too small, because it gives only the probability to cross one interface. When

the interface are very close, the probability that the particle crosses more than one

interfaces in ∆t is non-negligible, which may cause a significant systematic error

by underestimating the transition rate. To prevent this problem, a safe interface
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Figure 2.7: A comparison between the first-passage time τ obtained from the direct

simulations with and without Öttinger’s algorithm. The simulations are performed

on the 2D toy model with an absorbing boundary at z = 4

distance should be calculated according to Pcross.

Define l′1 and l′2 as the distance of the particle to the second interface before and

after a time-step ∆t, as shown in Fig. 2.6(b). The probability to cross the second

interface P2nd must obey

P2nd = exp

(
− l

′
1l

′
2

D∆t

)
≤ exp

(
−∆λ2

D∆t

)
, (2.25)

where ∆λ is the interface distance. In the 2D case, the diffusion coefficient D = 2

when the friction coefficient on each axis ξ0 and the energy kBT are set to unity.

Assuming the crossing probability of the 2nd interface is negligible when it is smaller

than 0.01, the safe distance can be obtained at different ∆t, e.g., ∆λ > 0.3 when

∆t = 0.01, and ∆λ > 0.09 when ∆t = 0.001.

It must be noted that the distance ∆λ0 between λ0 and λ1 should be larger than

other interface distances. Because the crossing points on λ1 are obtained during

a continuous simulation in the first stage, when λ0 and λ1 are too close, these
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crossing points will be strongly correlated. In order to reduce the correlation, one

should choose a larger distance, ∆λ0, and a longer simulation time, T0. In our

simulations, we set ∆λ0 to be 2.0, and other interface distances smaller: ∆λ = 0.5

when ∆t = 0.01, and ∆λ = 0.1 when ∆t = 0.001.

Systematic Error and Averaging Method

In a multi-dimensional problem, the exploration of the phase space is very expensive

(there could be more than 100 dimensions in the 1D Rouse chain problem!). In

the meantime, the FFS method works in a consecutive manner, which restricts

the application of advanced techniques, such as the parallel computing. Therefore,

instead of getting the first-passage time by a very long FFS simulation, it is better

to conduct a series of short independent FFS runs (on different CPUs) and calculate

the first-passage time by averaging their results, such that the computational cost

on each CPU is much cheaper.

In order to investigate the errors due to the averaging methods, we perform the

FFS simulations on the 2D case with an absorbing boundary at λm = 14, where

the potential barrier is higher than 88kBT . For all independent runs, the sampling

number from each interfaces, Mi, must be identical to ensure an equal statistical

weight of each trajectory. For convenience, Mi for all interfaces is set to be a

constant. We compare the averaged results using two different sets of parameters:

(1) Mi = 104 and Nffs = 100, (2) Mi = 105 and Nffs = 10, where Nffs is the number

of independent FFS runs in each case. One can find both sets have exactly the same

total sampling numbers, NffsMi. Mi in first set is 10 times smaller than in the second

one, thus the variance of its results is bigger, which means larger statistical error.

For both parameter sets, the time step ∆t is 0.001, and the interfaces distance ∆λ

is 0.1.

In Fig. 2.8, τ(λ) is normalized by a factor λ exp−1 (Umin(λ)), such that τ(λ)

should approach to a plateau when λ � 1 (see Eq. 2.21). The triangle symbols in
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Figure 2.8: First-passage time τ(λ) obtained by arithmetic and harmonic means

from the 2D Kramers problem.

Fig. 2.8 represent the results by arithmetic mean,

τ(λ) =
1

Nffs

Nffs∑
k=1

τk(λ)

where τk(λ) is the mean first-passage time obtained in k-th independent run. When

λ < 4, τ(λ) is much higher than the asymptotic solution, due to the low energy

barrier at the early stages. With increasing λ, τ(λ) is suppose to gradually converge

to the predicted value (dashed line in Fig. 2.8). However, after λ = 8, the normalized

τ(λ) values obtained by using the first parameter set deviate from the plateau value

and increases sharply. For the second parameter set, similar deviation happens at

slightly larger λ (after λ = 10), and the growth rate is lower than that using the

first set. Also, such unexpected behaviour seems related to the sampling number

Mi. If we keep increasing Mi, the deviation of τ(λ) from predicted value happens

at larger λ.

We consider this deviation as a systematic error arising from the averaging
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method. Arithmetic mean is valid only when these independent runs have exactly

the same statistical weights. In FFS, there are a few samples which have very long

τ(λ) (many times of the expected value), which will dominate the arithmetic mean

and so lead to unrealistic large mean value. We can compare this averaging method

with one direct simulation. In a continuous long run, τ(λ) can be calculated by the

total simulation time divided by the number of first crossings on the boundary λ

(those last crossed λ0 now crosses λ), because the time spent from λ back to λ0 is

negligible comparing to τ(λ). In a continuous run, the trajectories that arrive λ with

a shorter period of time will also return to the λ0 immediately to start another trip to

λ, which means these faster trajectories have higher probability or higher statistical

weights. It implies that τ(λ) should be calculated by the harmonic mean

τ(λ) =
Nffs∑Nffs

k=1 1/τk(λ)
. (2.26)

As shown in Fig. 2.21, the circles and squares representing the harmonic means are

very close to each other and both converge to the asymptotic line. Additionally, a

general observable A associated to the interface (eg. the first-passage point on the

interface) could be averaged by the following equation:

A(λ) =

∑Nffs

k=1Ak(λ)/τk(λ)∑Nffs

k=1 1/τk(λ)
, (2.27)

where Ak(λ) is the observable obtained in k-th FFS run. Replacing Ak(λ) by τk(λ),

this equation is exactly the same as Eq. 2.26.

It should be noted that the harmonic mean is not an universal averaging method

for all first-passage time problems. For example, we will use arithmetic mean in

the first-passage problem of slip-spring model discussed in next chapter. This is

because there are many starting states, while the transitions between them are also

rare events. In that case, the faster arriving trajectories have the same statistical

weight as the slower ones.
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2.3.3 Weighted Ensemble Method

The WE method was first proposed by Hurber and Kim [69], who employed it in

Brownian dynamics simulations to study binding process in protein. Rojnuckarin

et al. [85] used this method to explore the configuration space of folded coarse-

grained proteins. Later, Zhang et al [70] extend the WE method to a broad class

of stochastic dynamics. Recently, Darve et al. [86, 87] improved the resampling

algorithm, making it applicable to various transition problems.

In the WE method, the phase space is divided into many non-overlapping do-

mains, as shown in Fig. 2.9. These domains could be hexagons (Fig. 2.9(a)), layers

(Fig. 2.9(b)), or any other arbitrary shapes. For convenience, the domains in the 2D

Kramers problem are defined by the non-intersecting interfaces similar to the FFS

method; therefore, we call the domains as “layers” in discussion. In simple words, the

WE method works as running a lot of parallel brute-force simulations with different

priorities. Such priority is weighted by so-called “resampling” algorithm.

Figure 2.9: Domains in WE method.

Before applying the WE method to a specific problem, it is necessary to introduce

the general idea of resampling. Resampling is a flexible algorithm that duplicates

or kills the sample elements without changing their distributions. Consider a col-

lection of numbers which follow the Gaussian distribution with an average of 0. For

convenience, we set the weights of the numbers to be 1. If we randomly delete half
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of the numbers, and double the weights of the rest (or keep their weights to be 1 but

duplicates the rest of the numbers), the distribution and the sum of weights does

not change. Supposing we are more interested in the numbers larger than 0, another

resampling algorithm with two steps could be taken: (1) find all the numbers smaller

than 0, delete half of them and increase the weights of the other half to 2; (2) find

all the numbers larger than 0, randomly duplicate half of them and let their copies

take half of their weights. With these resampling steps, a new collection of numbers

are created, which is dense in the particular part of interest and sparse on the rests.

In the WE method, the mean first-passage time to an absorbing boundary λ is

calculated by

τ(λ) =
W0t∑Nλ
j=1w

λ
j

, (2.28)

where t is the simulation time, Nλ is the total number of trajectories which have

crossed the interface λ, wλj is the weight of j-th trajectory that has crossed λ, the

constant W0 is the total weight of the trajectories in the system. Similar to Eq.

2.27, a general observable associated to λ, A(λ), can be calculated by

A(λ) =

∑Nλ
j=1 w

λ
jAj(λ)∑Nλ

j=1w
λ
j

(2.29)

Resampling Algorithm

Apparently, one can design his resampling procedure. However, it is rather diffi-

cult to find a balance between efficiency and accuracy. In the early WE method

for Brownian dynamics, new trajectories are created by splitting the weights of the

older ones, leading to a strong polarisation on the weights of trajectories in each

layer, i.e. some trajectories have very large weights while the others are very small.

Such polarisation makes the results hard to converge to the correct value. Recently,

an advanced resampling algorithm without suffering such polarisation has been pro-

posed [87]. Briefly, this resampling algorithm tend to delete the elements with small

weights and split the elements with large weights; therefore, this method not only
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keeps a constant number of elements but also keeps the weight of the elements equal

in each domain.

We use Fig. 2.10(a1) and 2.10(a2) to explain the resampling algorithm adopted

in the 2D case. In Fig. 2.10(a1), there are 3 trajectories labelled by different colours

in the first layer Λ1. Define the weight of the red, blue and grey trajectories are,

respectively, wr, wb and wg (wr > wb > wg). Suppose the expected number of

trajectories in each layer is MΛ = 2, the first step of the resampling algorithm is to

kill one trajectory and give its weight to another. Because the red trajectory carries

the greatest weight, the choice would be made between the other two trajectories.

Since the survival probability of a trajectory is proportional to its weight, one can

uniformly generate a random number on [0...1]; if it is larger than wg/(wb +wg), we

kill the grey trajectory and add its weight to the blue one, and vice versa. In the

example of the layer Λ1 in Fig. 2.10(a2), we keep the blue trajectory, whose weight

becomes w′

b = wb + wg. If wr = w
′

b, the resampling is finished, otherwise further

steps must be taken. For example, in layer Λ2 of Fig. 2.10(a1), the red trajectory

has larger weight than the blue one, wr > wb, and their average is w̄ = wr + wb.

Because wr > w̄, we split the red trajectory into two, their weights are w′
r = w̄

and w
′′
r = wr − w̄, respectively. Now, it turns into the situation in layer Λ1, and

one should repeat the previous step. The iteration terminates when the trajectory

number is MΛ in layer Λ and their weights are equal.

Parameters

For the 2D case, the simplest layer definition is equally dividing the phase space by

a set of interfaces as in the FFS method. But this definition can be further improved

by adjusting the width of the layers. Since the total weight of trajectories in each

layer roughly follows Boltzmann distribution at steady state, it is reasonable to set

density of the interfaces sparse at the bottom of the potential field and dense close

to the absorbing boundary, as shown in Fig. 2.10(b). Because only the absorbing
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Figure 2.10: (a) Resampling algorithm. (b) Definition of interfaces for the WE

method in the 2D Kramers problem.

boundary λm requires the judgement of crossing by the Ötinger’s algorithm, small

interface distance is not an issue in WE simulations. In our case, the coordinates of

interfaces are given by

λi = − z

m2
i2 +

2z

m
i i = 1, 2, ...,m, (2.30)

which is a parabolic function whose maximum locates at λm = z.

Apart from the layer definition, the performance of the WEmethods also depends

on a few parameters, i.e., the resampling frequency frs, the number of layers m,

and the expected trajectory number mΛ in each layer. We separately investigated

these parameters on the 2D Kramers problem with an absorbing boundary at λ =

9. As shown in Fig. 2.11(a), higher resampling frequency is always in favour to

raise the hitting rate on the absorbing boundary, Nλ/tcpu, where tcpu is the CPU

time. Therefore, the resampling procedure should be taken every time-step. In Fig.

2.11(b), we fix MΛ to 20 for all layers, and change m from 10 to 30. The real-time

first-passage time τwe has been normalized by the asymptotic value τ asy from Eq.

2.21, such that it should converge to 1. On can find that the convergence rate with
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Figure 2.11: WE method performance with different parameters: (a) the resampling

frequency frs, (b) the number of layers m, (c) the expected trajectory number in

each layer MΛ.

more layers is higher than that with less layers. In Fig. 2.11(c), the number of

layers is fixed, MΛ changes from 10 to 30. It is found that the convergence rate for

MΛ = 30 is much higher than the other two. In addition, such convergent behaviour

implies that one should let the system to relax before collecting the data, which can

significantly reduce the noise at the beginning.

2.3.4 A Comparison Between FFS and WE Methods

In this section, we will compare the results of the FFS and WE methods on the

2D Kramers problem. The simulations are perform on the same CPU core (Intel

Xeon E5-2620). The parameters are set as follows. The time-step ∆t is 0.01 for

both methods. In the FFS simulations, the interfaces distance ∆λ is 0.5. For each

interface, the number of sampling Mi is 105. The number of independent FFS runs

is Nffs = 100, which is sufficient to provides good statistics. In the WE simulations,

layer definition is given by Eq. 2.30 with m equals 20. Each layer contains MΛ = 20
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Figure 2.12: First-passage time obtained from the FFS and WE methods (symbols)

and the theoretical predictions of Eq. 2.21 (dashed line).

trajectories. All WE simulations must have a relaxation period over 600 seconds

before collecting the data.

The mean first-passage time τ(λ) obtained by different methods are shown in Fig.

2.12. Owing to their mechanisms, the FFS method manages to get the spectrum of

τ(λ) for all interfaces in a single run, while the WE method has to set up independent

runs for each interface λ. Generally, the results from both methods are consistent

apart from the early region λ < 4 and the late region λ > 10. When λ < 4,

the energy barrier is relatively low. Since the WE simulation is close to brute-

force simulation, the results from the WE method are more precise for lower energy

barrier, while the FFS method is precise only when the energy barrier is much higher

than kBT . When λ > 10, the WE data show a sharp deviation from the plateau

and fails to converge even after a long run. The deviations are random and could be

alleviated by increasing m andMΛ. Nevertheless, it reveals a risk of the WE method

on solving the first-passage time problems, because the users cannot predict if the

parameters are still safe for current potential barrier. In contrast, the precision of
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Figure 2.13: Time-cost of the FFS simulation to reach each interface in the 2D

Kramers problem.

FFS method is controllable by monitoring the conditional probability P (λi+1|λi).

When P (λi+1|λi) drops to a dangerous level, one can accordingly increase Mi. As a

consequence, the FFS method is more advanced on the accuracy and stability.

On efficiency, both methods have good performance. The WE method approxi-

mately takes less than 600 seconds to converge as shown in Fig. 2.11, while a single

FFS simulation is even faster, which requires merely about 50 seconds to reach

λ = 12, as shown in Fig. 2.13. On parallel computing, WE is stronger than FFS,

but the latter allows a remedy by simulating lots of independent runs. Consider-

ing its advantage on exploring the whole spectrum in one run, FFS is still a better

choice.

Apart from τ(λ), there are some other observables related to the interfaces could

be obtained via Eq. 2.27 and Eq. 2.29. For example, the coordinates of the average

first arriving points on interfaces, (xfp(λ), yfp(λ)). Since xfp(λ) +yfp(λ) = λ, we only

plot yfp(λ) in Fig. 2.14. It is found that yfp(λ) obtained by FFS and WE method

are consistent. The first arriving points are all on one side of ys(λ), but gradually

converge to it.
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Figure 2.14: First arriving point on each interface yfp(λ) obtained from the WE

and FFS simulations for the 2D Kramers problem (circles) and the minimum of the

potential (dashed line).

In conclusion, the FFS method performs better than the WE method in this 2D

case, and will be employed in the following study on the 1D Rouse chain model. Nev-

ertheless, it must be noted that WE method still has some remarkable advantages

over FFS method, such as the flexibility on defining the domains and its mecha-

nism close to the brute-force simulation, which makes it widely applicable to some

complicated rare events, such as the protein folding.

2.4 Computer Simulation Study on 1D Rouse Chain

Model

In Sec. 2.2.1 and 2.2.2, we have introduced the relationship between the arm re-

traction and the extension of the 1D Rouse chain with one end fixed. By coarse-

graining, Milner and McLeish [30, 37] reduced the multi-dimensional first-passage

problem into a 1D Kramers problem, and proposed an approximate solution (see
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Sec. 2.2.3 and 2.2.4). Cao et al. [34] proposed an exact asymptotic solution for

multi-dimensional first-passage problems and predicted a result smaller than the

prediction of Milner-McLeish theory (see Sec. 2.2.5). In this section, both the di-

rect (brute-force) and FFS simulations will be applied to the 1D Rouse chain model

to examine the analytical solutions.

We perform computer simulations with variable number of beads representing

the Rouse chain. The bead friction ζ0, energy kBT , and statistical segment length b

are set to be unity in the simulations without loss of generality, whereby the units

for length, time and energy are respectively b, ζ0b
2/kBT , and kBT . The predictor

corrector method [94] was employed in simulations. The detection of trajectories

crossings on interfaces is improved by Öttinger’s algorithm [92].

2.4.1 Direct Simulation

Direct simulation results are plotted in Fig. 2.15. The horizontal axis is s = z/
√
Nb2,

where z is the end-to-end distance or extension length, N increases from 1 to 128.

In a continuous simulation, when the free end last crossing s0 = 0 reaches s > 0 for

the first time, its time cost is recorded as the first-passage time for s. Fig. 2.15(a)

shows decimal logarithm of the mean first-passage time. Clearly, the time grows

very fast with s, approximately as exp (3s2/2) as expected. The direct simulation

can approach τ(s) ≈ 107 or so. Fig. 2.15(b) shows the same data but normalized by

τ(s)sτ−1
R exp (−3s2/2). For clarity, both predictions by Milner-McLeish theory and

asymptotic solution are divided by the trivial factor exp (−3s2/2). Such normaliza-

tion brings all data with one decade in vertical scale and allows clear comparison

between theories and simulations. In particular, the direct simulation are signifi-

cantly faster than the Milner-McLeish prediction (dotted-dashed line) when N is

larger.
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Figure 2.15: (a) The decimal logarithm of first-passage time τ(s) for FFS simulations

(dots) and direct simulations (solid lines). (b) Normalized τ(s) versus s for FFS

simulations (circles) and direct simulations (solid lines), the dashed lines are the

prediction of Eq. 2.17. Milner-McLeish Theory is shown by the red dotted-dashed

line
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Figure 2.16: Applicaiton of FFS method onto 1D Rouse chain extension model

2.4.2 FFS Simulation

In order to extend simulation results to longer times and facilitate detailed theory

verification and calibration, we also performed FFS simulation of the same model.

First of all, we need to define the reaction coordinates and the non-intersecting

interfaces, which is quite straightforward in this model. As shown in Fig. 2.16, the

extension length z is employed as the reaction coordinate. The original interface λ0

is define at z = 0, other interfaces are placed according to

λi = (1 + 0.25× (i− 1))N1/2b, i = 1, 2, . . . (2.31)

Such interface definition avoids the systematic errors due to very small interface

distance and large statistical errors due to large interface distance.

The simulation then proceeds in two stages. In the first stage, we run one long

simulation for time T0 and count the number of crossings, N0, of the first interface λ1

by the trajectories which last crossed interface λ0, rather than λ1. Besides counting

the crossings, we store the full chain configurations at the moments of these crossings.

In the second stage, we run many short consecutive simulations for interfaces 1 to

n− 1 in sequence. For the interface λi, the simulation starts from the stored points

on the interface λi (selected at random from the database) and finish when they

either reach the next interface λi+1(successful run), or go back to the 0-th interface
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(unsuccessful run). The fraction of successful runs Ni/Mi gives an estimate of the

probability to progress from one layer to the next, P (λi+1|λi), where Mi is total

number of runs from layer i, and Ni is the number of successful runs. Thus, the

mean first-passage time is given by Eq. 2.23.

The value of Mi has a decisive effect on the statistical error of the final outcome,

with the best strategy to increase Mi for higher energy barriers between the layers

to ensure an approximately constant Ni. A simple way to determine Mi is to run a

few simulations with smaller Mi and get the rough ratio of P (λi+1|λi), and estimate

Mi for an expected Ni. Ref. [93] recommends selecting interface distances such that

P (λi+1|λi) > 0.3. Our selection satisfies this criteria. By running a quick simulation

for N = 1, the properMi can be obtained. Using the sameMi and the same distance

defined by s for N = 1, a proper ratio P (λi+1|λi) for larger N is also guaranteed

since the P (λi+1|λi) increases with larger N .

In Sec. 2.3.2, the difference between the harmonic and arithmetic means has

been discussed. In Fig. 2.17, we compare the two averaging methods on the chain

with 32 beads. The averaging are performed on two samples: (1) Ni = 103 and

Nffs = 100, (2) Ni = 104 and Nffs = 10. Despite the variance
〈
(τ(s)− 〈τ(s)〉)2〉 for

Ni = 104 is much larger than that for Ni = 103, their harmonic means are consistent,

allowing us to reduce the computational cost of a single run by performing a lot of

independent runs on different CPUs. This method is very useful when the extension

length is long.

The mean first-passage time τ(s) for different chain lengths N are presented

in Fig. 2.15. Comparing with direct simulations, a disagreement can be found at

s < 1.5. In this region, the first-passage time given by the FFS method is inaccurate

since the energy barrier is lower than 3.5kBT . In the region of s > 1.5, two simulation

methods are consistent with each other. FFS method is able to predict the first-

passage time till s = 5.5, with the chain length up to N = 128.

In the normalized plot in Fig. 2.15(b), all curves show a fast decay for the
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Figure 2.17: A comparison between arithmetic and harmonic mean for averaging

independent FFS runs of 1D Rouse chain model.

intermediate values of s and then gradually saturate around certain transition length

st with clear plateau reached in the systems with small N values. The slopes of the

curves from the peak to st increases with increasing N . In the mean time, the

transition length st also increases. One finds that the result differs from the Milner-

McLeish theory significantly. When increasing N , the first-passage time becomes

much shorter than their prediction, leading to the difference of a factor of 10 at s = 3

and N = 128, and even bigger for larger s and N . This shows conclusively that

the one mode assumption of the Milner-McLeish theory is inadequate and better

theory must be developed. Note that this discrepancy is much bigger than the 20%

reported by Vega et.al. [95].

The results of FFS simulations verifies asymptotic solution in the limit of large

extension (z ∼ Nb), where the prefactor of τ(z) has z−1 scaling. In the intermediate

regime, FFS results show different scaling behaviour, which is roughly τ(z) ∼ z−3.

In Ref. [34], Cao et al. combined the asymptotic solution at large s and the one in

the intermediate regime (calculated by so-called “minimum action path”), and
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proposed an empirical expression:

τ(s) =

(
C1(N)

Ns
+
C2(N)

s3

)
τR exp

(
3s2

2

)
, (2.32)

where C1(N) is given by

C1(N) =

√
32π

3
N2 sin2

(
π

4(N + 1/2)

)
, (2.33)

C2(N) is a fitting parameter. By fixing C1(N), C2(N) is obtained by fitting the FFS

simulation results, whereby a combination of the theory and FFS simulation leads

to a simple expression for the first-passage time

τ(s) = τR

(
3.57

Ns
+

1

(N−1.41 + 0.83) s3

)
exp

(
3s2

2

)
. (2.34)

2.5 Conclusions

In this work, we have studied the first-passage problem of the 1D Rouse chains,

as a proxy for dynamics of arm retraction of isolated star polymers in a network.

In the widely known Milner-McLeish theory, star arms are represented by Rouse

chains inside their confining tubes and further replaced by one bead attached to

the branch point by a harmonic spring [30]. The mean disengagement time of a

tube segment is τ(z) ∼ z−1 exp (U(z)/kBT ). In order to check the validity of the

Milner-McLeish theory, Cao et al. [34] proposed an asymptotic solution to solve

the multi-dimensional Kramers problem. This asymptotic solution is only valid in

the limit of very large extensions z ∼ Nb, corresponding to a fully extended chain.

The results show that the mean first-passage time drops significantly if the arm is

represented by Rouse chain with more beads instead of a single bead.

Because the large deviations of the 1D Rouse chain rarely happen, the verification

of the asymptotic theory by a direct simulation is practically impossible. To cope

with it, we can employ the advanced numerical methods for first-passage problems.

Two advanced methods, i.e., forward flux sampling and weighted ensemble methods,
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were tested on a 2D Kramers problem, which is a simplest multi-dimensional first-

passage problem. Considering their performance on all aspects, such as accuracy,

efficency and stability, the FFS method was chosen to investigate the 1D Rouse

chain model. The results of the FFS simulations are in good agreement with the

asymptotic solutions at very large extension. In the intermediate regime, τ(z) shows

richer scaling behaviours.



Chapter 3

Arm Retraction Dynamics of

Entangled Star Polymers: The

First-Passage Problem in Slip-Spring

Model

3.1 overview

Development of quantitative theories for predicting the dynamic and rheological

properties of entangled branched polymers is of both fundamental and practical

importance. In the past decades, theoretical efforts have been primarily based on

the concept of tube model originally proposed by de Gennes, Doi and Edwards

[16, 17, 24]. Different from entangled linear polymers where reptation, contour

length fluctuations (CLF) and constraint release (CR) are the main relaxation mech-

anisms, reptation in branched polymers is strongly suppressed due to the effectively

localized branch points. In the simplest case of symmetric star polymers, the stress

relaxation is conjectured to proceed via CLF or arm retraction by which the free

end of an arm retracts inward along the primitive path to escape from the original

76
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tube segments and pokes out again to explore new tube. Since arm retraction is

entropically unfavorable and so thermally activated, this process can be formulated

into a first-passage (FP) problem or Kramers problem.

A star arm retracting in a fixed network experiences a potential barrier theoreti-

cally described by a quadratic function U(s) = νkBTZs
2 where kB is the Boltzmann

constant, Z = M/Me is the number of entanglements per arm, M the arm molec-

ular weight, Me the entanglement molecular weight and ν a constant [26]. The

fractional coordinate s measures the retraction depth of the arm free end. Pear-

son and Helfand predicted an exponential dependence of the arm terminal relax-

ation time, τd, and correspondingly the viscosity, η0, on the arm molecular weight,

η0 ∼ τd ∼ exp(νM/Me) [27]. This prediction however shows large discrepancy from

experimental data obtained in star polymer melts due to the neglect of CR effects.

Ball and McLeish [28] took into account the CR effects by applying the dynamic

tube dilution (DTD) hypothesis [29] where the relaxed arm segments are considered

to work as effective solvent for the unrelaxed materials. Milner and McLeish further

improved this theory by including the contributions of fast Rouse fluctuations at

early times and solving the first-passage problem of a diffusing end monomer to

retract a fractional distance s to get the arm relaxation spectrum τ(s) at late times

[30, 37]. The Milner-McLeish theory predicts the stress relaxation of symmetric

star polymer melts reasonably well, but not the dielectric or arm end-to-end vec-

tor relaxation function. It also encounters difficulty in using a single set of model

parameters to describe the rheological behaviors of asymmetric star polymers with

different short arm lengths [36]. In recent years computational models based on the

framework of Milner-McLeish theory have been developed for describing the linear

viscoelasticity of branched polymers with arbitrary architectures and their general

mixtures [39, 42, 44, 47, 96]. These models have been shown to provide predic-

tions in reasonably good agreement with experimental data for a variety of systems,

but are facing problems in describing the linear rheology of some simple mixtures,
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such as the star-linear blends, especially at low fractions of star polymers [44, 97].

Therefore more quantitative theories that can simultaneously predict different dy-

namic and rheological properties of entangled branched polymers are still highly

desired. The development of such theories requires the analytical solution of the

multi-dimensional FP problem of arm retraction [34].

On the other hand, the coarse-grained slip-link or slip-spring (SS) simulation

models have demonstrated strong potential in describing dynamics and rheology

of entangled polymers [59, 60, 64, 66, 98–101]. For example, the single-chain slip-

spring model developed by Likhtman [66] can provide simulation results on multiple

experimentally measurable observables, such as neutron spin echo, linear rheology,

dielectric relaxation and diffusion. Using a limited number of fitting parameters,

the predictions of this model match the results obtained from both experiments and

molecular dynamics (MD) simulations on linear and symmetric star polymers very

well [81–83, 101]. The SS model serves as an intermediate between tube theory

and MD simulations. As a discrete model, it not only naturally builds in all the

relaxation mechanisms of the tube model, but also carries more system details,

such as explicit polymer chains and entanglements [102]. At higher level of coarse-

graining, the SS model is significantly more efficient than MD simulations using

bead-spring polymer model, which is of great advantage in the study of branched

polymers. Furthermore, the slip-spring model can separate the contributions from

different relaxation mechanisms by enabling some of them while disabling others.

This is particularly helpful for examining assumptions made in current theoretical

models and providing valuable information for developing more quantitative models.

One typical application is to evaluate the magnitude of constraint release effects by

comparing simulation results obtained from entangled polymer systems with and

without CR.

Since deep arm retractions are rare events due to the high energy barrier, the

time and length scales accessible to standard slip-spring simulations are still much
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shorter than those in well-entangled experimental systems where the tube models

are supposed to work best. Similar problems have also been seen in brute force

simulations of many other rare events, such as crystal nucleation [103, 104], biological

switches [68] and protein folding [105]. The required computational time may take

up to several decades [106]. Advanced numerical techniques, such as the umbrella

sampling [107] and transition path sampling [108] methods, have to be employed to

accelerate the simulations. Recently the forwards flux sampling (FFS) method has

been proposed [68, 93, 109] and proven to be successful in molecular dynamics and

Monte Carlo (MC) studies of rare events [106, 110].

In this chapter, we will combine the FFS method with the slip-spring model for

studying the dynamics of entangled symmetric star polymers. This is a proof-of-

concept work. To our knowledge there seems no other reported work in the literature

on applying the transition path sampling methods to study entangled polymer dy-

namics, especially on arm retraction dynamics. We will mainly focus on the systems

without constraint release for the following reasons: 1) It is relatively convenient

to implement the FFS method and find an appropriate reaction coordinate in the

non-CR systems; 2) The terminal relaxation times in the systems without CR are

much longer than those with CR, allowing us to test the computational efficiency

and limit of the combined method; 3) Reliable simulation data on the FP times of

arm retractions without CR are highly desired for examining analytical solutions

of the multiple-dimensional Kramers problem [34]; 4) The extension of the method

developed in the non-CR case to the CR case is fairly straightforward, as will be

shown in Sec. 3.5. With an optimized selection of the reaction coordinate, which

is the index of the monomer that the innermost slip-link sits on, we first validate

the proposed simulation method by producing simulation results on the terminal

relaxation times τd of mildly entangled star arms up to 8 entanglements in good

agreement with those obtained from SS model simulations. The FFS simulations

are then extended to longer arms with lengths up to 16 entanglements and so reach



CHAPTER 3. FIRST-PASSAGE PROBLEM IN SLIP-SPRING MODEL 80

τd values about 6 decades beyond that accessible by brute force simulations (from

6 × 106 to 3 × 1012 SS unit time). The FP times of other original slip-links along

the arm can be calculated using similar FFS simulations as for the innermost one,

which consequently provides the entire arm relaxation spectrum τ(s). Moreover,

we propose a numerical route to construct the arm end-to-end vector correlation

functions, Φ(t), and stress relaxation functions, G(t), from the discrete data stored

at each interface during the FFS runs. Such time correlation functions are generally

not discussed in other FFS studies. Our simulation results will contribute to the de-

velopment of theoretical models for describing the dynamics of entangled branched

polymers and also the general first-passage problems in multi-dimensional systems.

The simulation methodology developed in this work should also be applicable to the

study of rare events in other scientific areas.

The rest of this chapter is organized as follows. In Sec. 3.2, we introduce the

single-chain slip-spring model for entangled star polymers in the absence of CR. The

detailed description of the combined FFS and SS model is given in Sec. 3.3. The

simulation results obtained in the non-CR systems are presented and discussed in

Sec. 3.4, including the terminal relaxation times τd, the arm retraction spectra τ(s)

and the numerical route for constructing Φ(t) and G(t). In Sec. 3.5, the simulation

method is extended to study the arm retraction dynamics of star polymers in the

presence of CR. We draw conclusions in Sec. 3.6.

3.2 Slip-spring Model for Entangled Symmetric Star

Polymers

3.2.1 Model Description

In the single-chain slip-spring model for entangled symmetric stars, each star arm is

represented by a Rouse chain with N + 1 monomers linked by N harmonic springs
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[14, 66], as shown in Fig. 1.8. One end monomer with index 0 of the chain is

treated as the branch point which is fixed in space, while the other end with index

N moves freely. The topological constraints on the arm are modelled by a set of

virtual springs each of NSS
s beads. Each virtual spring has one end connected to the

Rouse chain by a slip-link that can slide along the chain, and the other end, called

anchor point, is fixed in space. The slip-spring model effectively assumes a binary

picture of entanglements, which is qualitatively supported by recent MD simulation

studies [52, 54, 111]. There is on average one slip-spring every NSS
e monomers. The

values of NSS
e and NSS

s are adjustable for describing the intensity of entanglements.

It should be noted that NSS
e is not necessarily equal to the entanglement length Ne

used in tube theory. Their relation will be discussed in Sec. 3.4.2. To be consistent

with previous publications [34, 66, 82], we choose NSS
e = 4 and NSS

s = 0.5. Other

parameters, such as the bead friction coefficient ζ0, the average bond length b of the

Rouse chain, the temperature kBT and consequently the time scale τ0 = ξ0b
2/kBT ,

are all set to unity.

The Hamiltonian of the SS model is determined by the potential energies of both

the harmonic bonds of the Rouse chains and the virtual springs. The trajectories of

the Rouse monomers are obtained by solving their Langevin equations of motion. In

the original slip-spring model [66, 81, 82], the slip-links are assumed to travel contin-

uously along the straight lines between adjacent monomers and so can sit anywhere

on the chain. In a latter version of this model [83], the slip-links move discretely

by hopping from one monomer to one of its nearest neighbors with the acceptance

rate controlled by a Metropolis Monte Carlo algorithm. The long-time behavior of

the system is not sensitive to the details of the slip-link motion. For simplicity and

computational efficiency, we employ the discrete motion approach in the current

work. The slip-links are not allowed to sit on or pass through the branch points

of the star arms. In the systems without constraint release, such as star polymers

in a fixed polymer network, the destruction and creation of slip-links can only take
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place at the free ends of the star arms. Different from the systems with CR [66], the

slip-links are not coupled with each other. In addition, the slip-links on the same

arm are not allowed to pass over each other or occupy the same monomer. This as-

sumption introduces an effective excluded volume interaction between the slip-links,

which is consistent with the low swapping rate between neighboring entanglements

as revealed in a recent MD simulation of symmetric star polymer melts [54] .

The previous slip-spring simulations were typically carried out in an ensemble of

chains and the total number of slip-links in the system is kept constant [66]. In the

non-CR case, when one slip-link is deleted from a chain end, another slip-link will

be added to the end of a randomly selected chain in the ensemble. For convenient

installation of the FFS method, we modify the SS model for the non-CR case by

simulating each entangled arm individually. The destruction of slip-links on a given

arm is still incurred by the retraction of the arm free end (monomer index N), but

the addition of new slip-links to the same arm end is now determined by a probability

Padd which satisfies the detailed balance condition

(1− ρsl) (Padd + ρslPN−1,N) = ρsl (Ploss + (1− ρsl)PN,N−1) , (3.1)

where ρsl = 1/NSS
e is the average number of slip-links sitting on each monomer. Pi,j

is the transition probability for a slip-link to move from monomer i to monomer j and

Ploss is the probability for a slip-spring sitting on the arm free end to be destructed

after one time step, respectively. Eq. 3.1 thus represents the balance between the

flux of slip-links to and from the end monomer. Assuming PN−1,N = PN,N−1 without

loss of generality, Eq. 3.1 gives Padd ≈ 0.167 for the system parameters NSS
e = 4 and

Ploss = 0.5. The modified SS model is validated by studying the static properties of

the simulation system.
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Figure 3.1: Slip-spring model simulation results (solid circles) and predictions of Eq.

3.2 (open squares) on the probability distribution of number of slip-links per arm,

P (Nsl, N), for symmetric star polymers with arm length N = 24.

3.2.2 Static Properties

The static property of the slip-spring model system of entangled symmetric star

polymers can be well characterized by the distribution of slip-links along the star

arms. Considering the effective excluded volume interactions between the slip-links,

the problem is similar to one-dimensional real gas in equilibrium. The probability

distribution of finding Nsl slip-links on a star arm of N monomers is simply given

by

P (Nsl, N) = CNsl
N ρNsl

sl (1− ρsl)
N−Nsl , (3.2)

where CNsl
N =

N !

Nsl!(N −Nsl)!
. Fig. 3.1 shows the good agreement between the

prediction of Eq. 3.2 and the SS model simulation results on P (Nsl, N) for the

system with N = 24. It can be seen that the peak value of Nsl is located at

Nsl = 6 in consistence with the expected average number of slip-links per arm,

〈Nsl〉 = ρslN = 6.

When there are Nsl slip-links on a given arm, the probability to find the i-th
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slip-link on the monomer x is

P (x, i,Nsl, N) =
Ci−1
x−1C

Nsl−i
N−x

CNsl
N

, (i ≤ x ≤ N −Nsl + i) (3.3)

where the numerator is a product of the possibilities to find i − 1 slip-links on the

arm segment from monomer 1 to x − 1 and to find Nsl − i slip-links on another

segment from monomer x + 1 to N . It should be noted that in the star polymer

systems without CR the slip-links do not change their ordering along the star arms.

In Eq. 3.3 the index i is considered to increase from 1 for the innermost slip-link to

higher values toward the arm free end. Combining Eqs. 3.2 and 3.3, we obtain the

ensemble-averaged probability to find the i-th slip-link on the monomer x:

P (x, i,N) =
N∑

Nsl=1

P (x, i,Nsl, N)P (Nsl, N). (3.4)

Fig. 3.2 presents the SS simulation results on P (x, i,N) for the slip-links with

indices i = 1 to 6 on star arms of length N = 24, together with the predictions

of Eq. 3.4. The good agreement between the two sets of data indicates that the

simulation systems are in equilibrium state and the randomly assigned locations of

the anchor points can well preserve the equilibrium distribution of the slip-links.

This is also reflected by the fact that the average number of slip-links found on each

individual monomer is equal to ρsl = 0.25, see the horizontal line in Fig. 3.2.

3.3 Combined FFS and SS Method For Entangled

Star Polymers without CR

In the systems without CR, the topological constraints or entanglements imposed

on a target arm are released hierarchically by the retraction of the arm free end.

The terminal relaxation time τd of the system is defined as the average first-passage

time that takes the free end of an arm to reach the branch point starting from a

random initial conformation. For well-entangled star arms, τd grows exponentially



CHAPTER 3. FIRST-PASSAGE PROBLEM IN SLIP-SPRING MODEL 85

Figure 3.2: Slip-spring model simulation results (symbols) and predictions of Eq.

3.4 (lines) on the probabilities of finding i-th slip-link on monomer x, P (x, i,N),

for the symmetric star polymers with arm length N = 24. The horizontal dashed

line shows the simulation results on the average number of slip-links found on each

individual monomer.

with the number of entanglements per arm Z [27]. However, full arm retraction

rarely happens at large Z and so is generally not accessible by standard brute force

simulations. There is also no exact analytical solution of this multi-dimensional FP

problem. Therefore the forward flux sampling method introduced in Ref. [68] is

employed in order to study these rare events. A successful application of the FFS

method on studying the FP time of 1D Rouse chain with one fixed end can be found

in Ref. [34].

3.3.1 Forward Flux Sampling Method

In FFS the phase space is divided by a sequence of no-crossing interfaces denoted

by λi (i = 0, . . . ,m), as sketched in Fig. 3.3(a). The starting states of the dynamic

process are on the first interface λ0, and the reactive or terminal states are on the
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Figure 3.3: (a) Schematic diagram of the FFS method. The continuous yellow

trajectory is the continuous simulation in the first stage, and the blue trajectories are

the successful shooting simulations in the second stage; (b) Algorithm for building

continuous arm relaxation pathways from the piecewise shooting trajectories shown

in (a).

last interface λm. These interfaces are defined by a reaction coordinate, which can

be any parameter evolving during the process, but different choices could result

in significantly different performance. More detailed discussion about the reaction

coordinate is given in Sec. 3.3.2.

The FFS method is operated in two stages. In the first stage, a very long

continuous simulation is performed in order to calculate the frequency µ0 at which

the trajectory crosses the interfaces λ0 and λ1 in sequence. In the second stage, a

set of consecutive shooting simulations are carried out from interface λi to interface

λi+1 for i = 1, . . . ,m− 1, which provide the transition probabilities P (λi+1|λi) that

a system starting from λi will first reach λi+1 rather than return to λ0. The first-

passage time τn for the system starting from the first interface λ0 and ending on the
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interface λn (1� n ≤ m), is then given by

τn =
1

µ0

∏n−1
i=1 P (λi+1|λi)

, 1� n ≤ m (3.5)

3.3.2 Reaction Coordinate

A key issue in applying the FFS method is the choice of the reaction coordinate.

Starting from a random initial configuration, the relaxation of a star arm in the

system without CR proceeds by the retraction of the arm free end along the primitive

path, passing through all the original slip-links on the arm sequentially until none left

between it and the branch point. The terminal relaxation time is determined by the

moment at which the innermost slip-link is released. During this process, the number

of surviving original slip-links, Nsl, on the arm drops with time from its initial value

to 0, making it an intuitively simple choice for the reaction coordinate. Considering

that the value of Nsl is statistically proportional to the length of the surviving tube

or primitive path, this choice would be consistent with a recent FFS study on the FP

time for the free end of a 1D Rouse chain to reach a certain distance z from the fixed

end where z was selected as the reactive coordinate [34]. The 1D Rouse chain study is

closely related to the current work, because arm extension is essentially the reverse

process of arm retraction. However, when using Nsl as the reaction coordinate,

our FFS simulation results on the terminal arm retraction times are found to be

significantly smaller than those obtained from standard SS model simulations. The

problem arises from the difficulty in choosing equivalent starting states for the FFS

runs. In the slip-spring model system, both the instantaneous number of slip-links

and their distribution along the arm are subject to strong fluctuations, especially

on the outer arm segments which undergo fast Rouse motion. In the FFS runs

using Nsl as the reaction coordinate, the starting states are collected in the first-

stage continuous simulation as the configurations where the number of slip-links on

the arm is equal to the ensemble-averaged value of 〈Nsl〉 = Nρsl. Shooting from

these starting configurations, only the samples in which the values of Nsl decrease
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Figure 3.4: Application of FFS method for studying the retraction dynamics of an

entangled star arm described by the slip-spring model. The cross (Monomer 0) on

the left represents the branch point that is fixed in space. The interfaces λi (vertical

lines) used in the FFS simulations are placed on the monomers of the arm.

monotonically are considered to reach interface λ1 successfully. This biased strategy

is thus in favor of the samples where the initial slip-link densities on the outer arm

segments are higher than ρsl, because in such cases the probability to lose slip-links

at short times is higher than to gain ones. Therefore a relatively large proportion

of slip-links on a sample arm are released by shallow arm retractions at early times,

leaving fewer than average number of slip-links on the surviving segments of the

primitive path. As a consequence the terminal relaxation times obtained from the

FFS simulations are shorter than those obtained from standard SS simulations where

the ensemble-averaged initial distribution of slip-links is uniform. These results

imply that the reaction coordinate should be selected close to the branch point in

order to minimize the influence of the fast fluctuating arm end.

Since the terminal arm relaxation time is determined by the release of the in-

nermost slip-link from the arm free end, one can track the motion of this particular

slip-link along the arm by defining the index of the monomer that it sits on as the

reaction coordinate. As shown in Fig. 3.4 where the 3D Rouse chain is sketched as
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a straight line for convenience of discussion, the first interface λ0 used in FFS is set

on monomer α (2 in this case) where the innermost slip-link originally sits on. Any

initial configuration of the confined arm in which the innermost slip-link locates on

monomer α can be taken as the starting state of the FFS simulation. The second

last interface λm−1 is placed on the outermost monomer N of the arm, and the last

interface λm is right outside of the arm free end, marking the final or reactive state

that the arm free end has passed through the innermost slip-link and the arm is

fully relaxed. The other m− 2 interfaces are placed on the monomers in between α

and N .

According to the standard FFS method, a database containing a large number of

configurations is accumulated on each interface. In the first stage of the continuous

simulation, the database on λ1 is a collection of configurations whose innermost slip-

link lastly crossed λ0 before crossing λ1. In the second stage, consecutive shooting

simulations are performed from interface λi to λi+1, i = 1, . . . ,m− 1 using starting

configurations randomly selected from the database on λi. Among the Mi shooting

samples, the ones whose innermost slip-links reach λi+1 before going back to λ0 are

considered as successful samples and will be stored in the database of λi+1.

3.3.3 Simulation Details

Apart from the reaction coordinate, the performance of the FFS algorithm can also

be affected by some other factors. One factor is that the configurations saved in

the database of interface λ1 during the first-stage continuous simulation could be

strongly correlated with each other due to the limited running time at this stage in

comparison with τd. This may introduce systematic errors in the simulation results

if the size of the database is fixed. This problem can be resolved by increasing the

interval l1 between the interfaces λ0 and λ1, as shown in Fig. 3.4, and recording

configurations on λ1 at a lower frequency ω. For example, rather than recording

every event that the innermost slip-link crosses λ1 when coming from λ0, one can
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record once for every 1/ω crossings. Another factor is the choices of the interface

interval l2 between λi and λi+1 (i = 1, . . . ,m−2) and the number of shooting samples

Mi from each λi which determine the performance of the FFS in the second stage.

Since l2 controls the transition probabilities P (λi+1|λi), a smaller l2 is normally

preferred for accelerating the shooting simulations. The number Mi can then be

chosen according to P (λi+1|λi) and the desired accuracy.

In the current work we take l1 = 2 and l2 = 1 which separate the first two

interfaces λ0 and λ1 by one bead and then set one interface on every bead along the

arm. The recording frequency ω has to be reduced for longer arms in order to reduce

the conformational correlations on λ1 and is empirically taken to be ω = 1/(N −15)

for arm length N ≥ 16. Since the reaction coordinate is defined by the location

of the innermost original slip-link, the transition probability P (λi+1|λi) increases

with i towards the arm free end. In order to achieve good statistics for the first few

interfaces close to the branch point,Mi should be large enough. A number of samples

Mi = 40, 000 is thus used for λi, i = 1, 2, . . . ,m − 1 in all of the FFS simulation

runs. As shown in Fig. 3.2, there is a non-negligible fraction of initial configurations

where the innermost slip-links are many monomers away from the branch point

and could be released by shallow arm retractions. The terminal relaxation times

of such arms are thus much shorter than those of the arms with uniform slip-link

distributions. Actually their terminal times have been reached in the first-stage

continuous simulations without going into the second stage of FFS. These τd data

are still counted for calculating the distribution and the mean value of the terminal

relaxation times.
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Figure 3.5: Simulation results on the terminal arm retraction time τd obtained from

FFS and direct shooting simulations as a function of arm length N .

3.4 Results and Discussions for Systems Without

Constraint Release

3.4.1 Terminal Time of Arm Retraction

The terminal time τd of the arm retraction process is the main and most straight-

forward output of the FFS simulations. Fig. 3.5 presents the FFS results on τd as

a function of the arm length N . For comparison, we have also included the τd data

obtained from the so-called direct shooting simulations which start from the first in-

terface λ0 and stop at the last interface λm without intermediate steps. These runs

are equivalent to the slip-spring simulations using initial configurations randomly

picked from the database on interface λ0 and running continuously until the inner-

most original slip-spring being deleted by the arm free end. For each arm length,

the direct shooting simulation results are averaged over 10, 000 independent samples,

while in the FFS simulations τd is averaged over 2, 000 independent runs. Since in

each FFS run there are 40, 000 samples recorded on λ1, the average is actually taken

over a much bigger ensemble than that of the direct shooting runs. Considering the
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Figure 3.6: Average computational times required for completing a single FFS and

a single direct shooting run on a single Intel Xeon processor.

high computational cost, the direct shooting simulations are only performed for arm

lengths from N = 20 to 36, corresponding to about 4 to 8 entanglements per arm

estimated with Ne ≈ 4.47 as discussed in Sec. 3.4.2. In this range of N , the FFS

and direct shoot simulation results in Fig. 3.5 show very good agreement with the

relative differences less than 5%. The combined FFS and SS method and the choice

of the reaction coordinate are thus well justified.

Fig. 3.6 compares the average computational times required to complete a single

direct shooting and a single FFS run on a single CPU (Intel Xeon E5-2620). The

direct shooting simulation is faster at short arm lengths, but its computational time

grows exponentially with N and overtakes that of the FFS when N ≥ 32. The FFS

method allows us to study much longer arms. For entangled star polymers with arm

length N = 72 in the absence of CR, the terminal relaxation time is found to be

τd ≈ 2.85×1012 which is about 8 orders of magnitude longer than that of stars with

N = 20 and is basically inaccessible to any type of direct simulations.
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3.4.2 Comparison with Theoretical Model Predictions

The τd data in Fig. 3.5 show a clear exponential dependence on the arm length

N , which is expected from the Pearson-Helfand theory for star arms retracting in a

fixed network [27]. These results can be further compared with the predictions of

more detailed theoretical models [30, 34, 37]. The Milner-McLeish theory based on

the solution of 1D Kramers problem predicts the terminal arm retraction time in

the absence of CR as [30, 37]

τd(N) =
π5/2

4
√

6
τR(N)

1

z
exp

(
3z2

2

)
, (3.6)

where z =
√
N/Ne and the arm Rouse time τR(N) = 4ζ0N

2b2/3π2kBT . The entan-

glement molecular weight Ne can be estimated by substituting the corresponding

FFS result on τd(N) into Eq. 3.6. As shown in Fig. 3.7, the obtained Ne values are

roughly independent of N , giving Ne ≈ 4.98.

Recently Cao et al. pointed out that the first-passage problem of Rouse chain

should be treated as a multi-dimensional Kramers problem [34]. FFS simulations of

1D Rouse chains showed that the z−1 scaling in the prefactor of τd as predicted in Eq.

3.6 is only valid for very large chain extensions. In the intermediate chain extension

regime corresponding to realistic arm retraction process, a new theory based on

the Freidlin-Wentzell theory was proposed [112], which predicts a z−3 scaling in the

prefactor of the terminal time [Eq. 60 in Ref. [34]]

τd(N) =
C(N)τR(N)

z3
exp

(
3z2

2

)
, (3.7)

where C(N) is a fitting parameter. For arm lengths N ≥ 20 we can take the plateau

value of C(N) = 1.2 as found in the FFS simulations of 1D Rouse chains [34]. The

Ne values calculated by substituting the FFS data on τd(N) into Eq. 3.7 are shown in

Fig. 3.7, which increase with the increasing arm-length and approach an asymptotic

value of Ne ≈ 4.47 that is smaller than the Ne value estimated by using Eq. 3.6.

The two theoretical models thus predict qualitatively different dependence of Ne on
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Figure 3.7: Entanglement molecular weight Ne calculated by substituting the FFS

simulation results on τd (Fig. 3.5) into the theoretical predictions of Eqs. 3.6

(squares) and 3.7 (circles) for various arm lengths.

N , at least in the systems without CR. Since the entanglement molecular weight

is one of the most important model input parameters for predicting the dynamics

and rheology of entangled polymers, this N -dependent behavior apparently needs

further investigation for developing quantitative theories. The FFS results on τd over

a broad range of arm lengths should work as a benchmark for examining theoretical

models that are typically developed for well entangled polymers.

We note that the Ne values given in Fig. 3.7 are different from that obtained by

mapping the slip-spring model simulation results on the linear viscoelastic properties

of linear polymer melts to the tube model predictions (Ne ≈ 5.7) [66, 82]. The

difference could be related to the use of different theoretical models for the data

fitting and also the presence of constraint release effects in the polymer melts.
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3.4.3 Arm Relaxation Spectrum

Apart from terminal relaxation time, the FFS method can also be applied to obtain

the entire relaxation spectrum of the arm. This is done in a similar way as calculating

τd. The only difference is to set the index of the monomer that the i-th original slip-

link sits on, instead of that of the innermost slip-link, as the reaction coordinate.

Accordingly the first interface λ0 in the FFS method is defined on the monomer

where the i-th slip-link originally occupied. The FP time of the i-th slip-link is

recorded as τ(X) with the fractional index X = i/ 〈Nsl〉. The simulation results on

τ(X) are plotted in Fig. 3.8 for the arm lengths 20 ≤ N ≤ 44. For the systems with

N ≤ 36, the direct shooting simulation results are also presented for comparison.

The agreement between the FFS and direct shooting data gets improved as the

arm free end retracts deeper along the primitive path, i. e., with the decrease of

the slip-link index i and so X. This is understandable because the release of the

outer slip-links or entanglements is dominated by the fast Rouse-like fluctuations.

The corresponding energy barrier is relatively low such that the FFS method does

not work well at large X. For this reason, the most reliable relaxation spectrum,

especially for the long arms, should be constructed by combining the FP times of

the inner slip-links as calculated by the FFS method with the FP times of the outer

ones obtained from direct shooting simulations. One such example is shown in Fig.

3.8 for the systems with N = 44. The complete relaxation spectrum τ(X) can be

directly applied to test theoretical models on arm retraction dynamics.

3.4.4 Constructing Relaxation Correlation Functions

In experiments the dynamics and rheology of entangled polymers are generally char-

acterized by the dielectric relaxation or chain end-to-end vector correlation function,

Φ(t), and the stress relaxation function, G(t). The calculation of these observables

usually requires the continuous trajectories of the polymers, which are however not

naturally available in FFS simulations, because only instantaneous configurations
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Figure 3.8: Relaxation spectrum calculated using the first-passage times of all slip-

links for star arms with various lengths obtained by both FFS (solid symbols) and

direct shooting (open symbols) simulations. The dashed curves are for guiding the

eye. The parameter X = i/ 〈Nsl〉 is the fractional index of the i-th slip-link along

the arm, which increases from X = 1/ 〈Nsl〉 for the innermost slip-link to 1 for the

outermost one.

at the hitting points on the interfaces are recorded. Here we introduce a numerical

route to effectively link these discrete pieces of information to construct the dielec-

tric and stress relaxation functions. The systems of entangled star polymers without

CR are used as examples to demonstrate the application of this algorithm.

Fig. 3.3(b) sketches the method used to build continuous arm relaxation path-

ways from the piecewise FFS shooting trajectories shown in Fig. 3.3(a). Considering

two hitting points on the terminal interface λm, marked as Am and Bm, there must

be two continuous trajectories or pathways that one can track back from them to the

first interface λ0. As shown in Fig. 3.3(b), the pathway to state Am is constructed

by linking the successful shooting trajectory from the hitting point Am−1 to Am with

that from Am−2 to Am−1, and so on until reaching the point A1 on the interface λ1.

The linking from A1 to a start point A0 is obtained from the trajectory generated
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in the continuous simulation in the first stage of the FFS simulations. Similarly

the pathway to the hitting point Bm can be traced back to B1 on λ1 and then to a

starting point B0. We note that these rebuilt trajectories are different from the true

continuous trajectories generated in standard slip-spring model simulations, but the

ensemble-averaged pathways obtained in these two cases should be very close, as

reflected in the consistent Φ(t) results in Fig. 3.10. From computational point view,

the rebuilding method requires the storage of all the successful shooting trajectories

between neighboring interfaces and also large memory for data processing. This may

limit its application to large systems such as the fine-grained bead-spring models

widely used in molecular dynamics simulations.

When calculating the arm relaxation correlation functions from the rebuilt tra-

jectories, two assumptions have been made. First, when one slip-link is destroyed

by the retracting arm free end, the primitive path segment in between its nearest

neighboring slip-link and itself will be forgotten immediately. This assumption is

valid for most of the slip-links due to the discrete feature of entanglements in the

SS model. The only exception is with the tube segment between the branch point

and the innermost slip-link where this assumption may affect the calculation of the

relaxation functions in the terminal regime, as discussed below. The second assump-

tion is that the FP times on each interface follow a single exponential distribution.

This assumption has also used in solving the 1D Kramers problem and in the Doi-

Edwards tube model without CR [17]. Since the slip-spring model is essentially a

multidimensional problem, we perform an extra set of simulations to examine the

validity of this assumption. A total number of 10, 000 direct shooting simulations,

all starting from exactly the same initial configuration, are carried out to mimic a

FFS run. The FP times for the innermost slip-link to reach different monomers,

or different interfaces in the FFS definition, are recorded. Fig. 3.9 presents the

probability distributions, Pi(t), of the FP times on three different interfaces for the

arms of length N = 20. It can be seen that Pi(t) on interfaces with higher indexes
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Figure 3.9: Probability distributions of the first-passage times for the innermost

slip-link to reach different monomers or different interfaces in the FFS definition

λi along the arm as calculated by direct shooting slip-spring simulations of star

arms of length N = 20. All of the 10, 000 simulations start from the same initial

configuration where the innermost slip-link sits on monomer 1 next to the branch

point. The solid lines represent single exponential fit to the simulation data in each

case.

can be well described by the exponential function

Pi(t) =
1

τi
exp

(
− t

τi

)
(3.8)

where τi is the mean FP time on the interface λi. The second assumption becomes

valid as the arm free end retracts deeply along the primitive path.

Following Eq. 3.8 the probability that the innermost slip-link has never crossed

the interface λi after time t is

P 0
λi

(t) = exp

(
− t

τi

)
, (3.9)

and the probability that it has crossed λi at least once is

P∞λi (t) = 1− exp

(
− t

τi

)
. (3.10)
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Therefore the probability that the trajectory starting from λ0 has crossed interface

λi but never crossed interface λi+1 is

P
λi+1

λi
(t) = P∞λi (t)− P∞λi+1

(t) = − exp

(
− t

τi

)
+ exp

(
− t

τi+1

)
. (3.11)

The time correlation function of a dynamic observable, V , whose instantaneous

values are calculated on different interfaces can be evaluated by

〈V (t)V (0)〉 =

〈
P λ1
λ0

(t)W0 +
m−1∑
i=1

P
λi+1

λi
(t)Wi + P∞λm(t)Wm

〉
(3.12)

where Wi is defined as

Wi =
1

hi

hi∑
k=1

V k
i V

k
0 , (3.13)

and hi is the number of hitting points on the interface λi out of the Mi−1 shootings

from λi−1, V k
i is the observable value at the k-th hitting point on λi and V k

0 is its

value at the corresponding starting point of the trajectory on the first interface λ0.

For the system sketched in Fig. 3.3(b), there are only 2 hitting points on the final

interface λm such that hm = 2 in Eq. 3.13.

Substituting Eqs. 3.10 and 3.11 into Eq. 3.12, we get

〈V (t)V (0)〉 =

〈
m−1∑
i=0

∆Wi,i+1 exp

(
− t

τi+1

)
+Wm

〉
, (3.14)

where ∆Wi,i+1 = Wi −Wi+1. The correlation function in Eq. 3.14 is expressed as a

weighted summation of a set of exponential functions, which is consistent with the

tube model predictions for the end-to-end vector and stress relaxation functions of

entangled polymers in the absence of constraint release [17]. The only difference lies

in the last term Wm on the right hand side of Eq. 3.14 which, if being nonzero, may

result in an unphysical plateau after the terminal relaxation time τd.

The problem associated withWm does not exist in the tube model where the tube

is assumed to be continuous. The arm free end can thus retract continuously along

the primitive path all the way to the branch point and so release all the memories
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in the original tube. As a result, Wm decays to zero for all dynamic observables.

However, in the slip-spring model, the entanglements are represented discretely by

the slip-links. The terminal time τd is taken to be the time when the arm free end

passes the innermost slip-link. It implies that the memories, such as stress and

end-to-end vector orientation, stored in the original tube segment between this slip-

link and the branch point are not fully forgotten right after τd, giving to a nonzero

ensemble average value of Wm. Actually this is an intrinsic problem for all models

using discrete description of entanglements. We will address this problem in more

details in a future work. For the current work, we will neglect the last term in Eq.

3.14 by setting Wm = 0, which is reasonable at least for the systems with very long

arms where the contribution from the last tube segment is relatively small. This

approximation is analogous to the so-called disentanglement relaxation mechanism

used in the tube-based computational models where a polymer branch is considered

to be fully relaxed by disentanglement when there is only one or few entanglements

left on the branch [39, 44].

The dielectric and stress relaxation functions calculated using Eq. 3.14 with

Wm = 0 from the rebuilt trajectories are plotted in Fig. 3.10 for arm lengths up

to N = 72. For comparison, the Φ(t) and G(t) results obtained from standard slip-

spring model simulations are also included for the systems with N ≤ 36. The two

sets of Φ(t) curves show very good agreement in the terminal regime, indicating the

capability of Eq. 3.14 in constructing the arm relaxation functions using discrete

FFS shooting trajectories. The discrepancy at short time scales can be attributed

to the numerical problem that the constructed Φ(t) curves start from initial values

smaller than 1. Since the Wm term in Eq. 3.14 is neglected when calculating

Φ(t) = 〈Re(t) ·Re(0)〉 where Re is the arm end-to-end vector, the resulted value

of
〈
R2

e(0)
〉
at the initial time is smaller than the true mean squared end-to-end

distance of the arms which is obtained from standard slip-spring model simulations

and used for normalizing Φ(t). The so-obtained initial values of the Φ(t) curves
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Figure 3.10: (a) Arm end-to-end vector correlation function Φ(t) and (b) stress

relaxation function G(t) obtained from standard slip-spring simulations (symbols)

and calculated using Eq. 3.14 from the rebuilt trajectories (lines), respectively.

are Φ(t = 0) = 0.80 for arm length N = 20 and 0.92 for N = 72, respectively.

As expected, the contribution of Wm becomes less significant with increasing arm

length.

The G(t) results presented in Fig. 3.10(b) are the single-arm stress autocor-

relation functions without considering the cross correlation contributions from the

virtual springs [113, 114]. This choice does not affect any discussions or conclusions

in the current work, especially when there is no constraint release effect. Different
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from the Φ(t) results, the G(t) curves calculated using the rebuilt trajectories decay

faster than those from the slip-spring simulations, which implies the existence of

systematic errors originated from different resources. First of all, the assumption

that the FP times follow an exponential distribution does not apply for the first few

interfaces due to the relatively low energy barrier, as shown in Fig. 3.9. Therefore

the constructed G(t) curves show significant difference from the standard slip-spring

simulation results at early times. Secondly, the calculation of the stress relaxation

function requires a very large ensemble average for achieving good statistics. In

the molecular dynamics and slip-spring model simulations, the instantaneous stress

tensor usually needs to be calculated at every single time step [115]. But in FFS

simulations the number of data points on each interface is rather limited. Thirdly,

Eq. 3.14 calculates the relaxation correlation functions using the information, such

as the arm conformations and the locations of the slip-links, carried by the hitting

points on each interface. These hitting points are only saved from the successful

shooting trajectories which are in favor of the arm retraction process and corre-

spondingly the redistribution of the Rouse beads in between the slip-links. The

biased change of the local conformations of polymer segments leads to faster relax-

ation of the stress, because G(t) depends on the local bond or segment reorientation.

The end-to-end vector correlation function is less sensitive to this problem, because

Φ(t) is determined by the relaxation of the vectors linking neighboring slip-links.

3.5 Extension of the combined FFS and SS method

to Systems with Constraint Release

The combined FFS and SS method can be extended to entangled polymer systems

with CR by adjusting the definition of the reaction coordinate. In the standard slip-

spring model [54, 66], constraint release is included by coupling the slip-links sitting

on different polymer chains or arms into pairs to represent the binary entanglements.
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When one slip-link is deleted from the free end of an arm, its coupled partner is also

deleted regardless of its location, which results in a CR event. This means that

for FFS simulations the originally innermost slip-link could not be used to define a

reaction coordinate alone for exploring the entire arm relaxation spectrum, because

this slip-link may be destructed by a CR event before reaching the arm free end. To

resolve this problem, we refer to a recent slip-spring simulation work on entangled

symmetric star polymers with CR [54]. There it was shown that the relaxation of the

original tube segments, and correspondingly the relaxation of the arm end-to-end

vector, is dominated by the first-passage times of the so-called tube-representative

(TR) slip-links, which are the original slip-links finally released from the arm free

end. The other original slip-links which are destructed from the middle of the arm

by CR events only contribute to stress relaxation. For determining the terminal

relaxation time of the arm end-to-end vector, we only need to find the moment

when the last tube segment held in between the branch point and the innermost TR

slip-link is released by the arm free end. Since it is not known in advance whether an

original slip-link will be deleted by the arm end or by CR, we can define the reaction

coordinate as the index of the monomer which the innermost surviving original slip-

link sits on. In other words, if at time t the innermost original slip-link was deleted

by CR, the reaction coordinate will be immediately shifted from the monomer it

sat on to the monomer occupied by the nearest original slip-link, because the latter

becomes the innermost surviving original slip-link. This procedure will continue

until the last surviving original slip-link is destructed by the arm free end and so

the terminal relaxation time τd is reached.

The ensemble-averaged terminal relaxation times, τd, obtained in the FFS sim-

ulations with the modified definition of the reaction coordinate are presented in

Fig. 3.11, together with the terminal relaxation times of the arm end-to-end vector

relaxation functions as obtained from standard slip-spring model simulations and

the mean FP times of the innermost surviving original slip-links as obtained from
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Figure 3.11: Simulation results on the terminal arm relaxation times τd obtained

from the FFS (open squares) and direct shooting (open circles) simulations, together

with the terminal times of the arm end-to-end vector correction functions calculated

from standard slip-spring simulations (open triangles), in the systems with constraint

release. For reference, the FFS results on τd for the systems without CR (solid

squares, same as in Fig. 3.5) are also plotted.

the direct shooting simulations. The three sets of data show very good agreement

within error bars, which effectively validates the proposed FFS method. The com-

bined FFS and SS method can thus provide quantitative predictions on the terminal

relaxation times of entangled star polymers either with or without CR over a broad

range of arm lengths that are surely needed for the development of quantitative

theories for entangled branched polymers. The construction of the relaxation cor-

relation functions, Φ(t) and G(t), in the CR cases is rather complicated and will be

left for further study.
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3.6 Conclusions

We present an application of the forward flux sampling method in combination with

the slip-spring model on studying the arm retraction dynamics of entangled star

polymers. The single-chain slip-spring model originally developed for describing

entangled linear polymers has been extended to model symmetric star polymers. As

a proof of concept, we start with the systems without constraint release where the

entanglements or slip-links can only be created on or deleted from the arm free ends,

making the FFS method conveniently applicable. Two possible reaction coordinates

for the FFS simulations have been tested. The choice of the index of the monomer

that the originally innermost slip-link sits on is found to provide FFS simulation

results on terminal relaxation times τd in good agreement with those obtained in

direct shooting simulations for mildly entangled stars with arm lengths up to 8

entanglements. The FFS simulations are then performed to study the terminal

relaxation of much longer arms (up to 16 entanglements) that are not accessible

by any direct simulations, especially considering the exponential growth of τd with

the arm length in the absence of CR. The FFS results on τd over such a broad

range of arm lengths allow direct comparison with the predictions of theoretical

models which are typically developed for well entangled polymers. The entanglement

molecular weight Ne extracted from such comparison is found to have an arm-length

dependence.

In addition to the terminal arm relaxation time, the first-passage times of all

other original slip-links on a given arm can also be conveniently calculated by defin-

ing the reaction coordinate as the index of the monomer that the interested slip-link

sits on, which in turn provides the entire relaxation spectrum of the arm. For mildly

entangled arms the FFS results on the FP times show good agreement with direct

shooting simulation data for the deep entanglements or inner slip-links, but some

discrepancy exists for the shallow ones, because the FFS method does not work

well at low energy barriers. The reliable relaxation spectrum of long star arms
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thus should be constructed by combining the FP times of the inner slip-links as

calculated by the FFS method with the FP times of the outer ones obtained from

direct simulations. Furthermore we have proposed a numerical route to construct

the arm relaxation correlation functions from the FFS simulation data saved on

discrete interfaces. This method is essentially a summation of weighted exponential

relaxation functions with characteristic times determined by the mean FP times of

different slip-links along the arm. The so-constructed arm end-to-end vector cor-

relation functions, Φ(t), show reasonably good agreement with those obtained in

standard slip-spring simulations, while larger quantitative discrepancies are found

for the stress relaxation functions G(t) probably due to the biased selection of local

segment conformations during the FFS simulations.

We have also attempted to extend the FFS method to systems with constraint

release, namely to entangled star polymer melts. The key change from the non-

CR case is to define the reaction coordinate using the innermost surviving original

slip-link. Again good agreement is found between the FFS simulation results on the

terminal arm relaxation time with those obtained in standard slip-spring model sim-

ulations. Therefore the combined FFS and slip-spring simulation method provides

an efficient tool for studying the dynamics of highly entangled branched polymers

which are generally inaccessible to direct simulation methods but highly desired for

the development of quantitative theories on entangled branched polymers.



Chapter 4

Relaxation of Branched Polymers: A

Combinational Study by Molecular

Dynamics and Slip-Spring Model

4.1 Overview

To describe the rheological behaviour of branched polymers and their general mix-

tures, the tube theory has to incorporate different relaxation mechanisms, such

as contour length fluctuation or arm-retraction [27], and constraint release which is

modelled by either dynamic tube dilation [28, 30] or constraint release Rouse motion

[22]. A number of approximations and assumptions have to be made for describing

various experimental results. For example, for describing 3-arm asymmetric stars, it

was assumed that the full retraction of the short arm allows the branch point to hop

a fraction of the tube diameter, pa, where p is a factor smaller than 1 and a is either

the original or dilated tube diameter under different assumptions. In order to fit

the experimental data, the fitting parameter p2 ranges from 1 to 1/60 for different

asymmetric stars. For H-polymers, however, the range of p2 is relatively narrow,

roughly from 1/12 to 1/15 [36]. Recently Bačová et al. [116] performed large-scale

107
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molecular dynamics simulations of entangled branched polymers and found that

considering hopping in the dilated tube provides the most consistent set of hopping

parameters in different architectures. However, whether the value of p2 should be

universal or system-dependent remains unknown, which implies that both the the-

oretical model and the underlying assumptions should be examined starting from

microscopic principle.

On the other hand, different theoretical or numerical models at more fine-grained

levels have been developed for describing entangled polymers. Representative exam-

ples are the slip-link based models [59–67]. This class of models treats the entangle-

ments as binary contacts between different chain segments, and thus can introduce

finer details, such as the conformation of polymers in space, the specified locations

of entanglements, and the spectrum of constraint release rates. Among these mod-

els, the slip-spring model developed by Likhtman [66] has been shown to describe

the MD simulations and experimental results on linear systems reasonably well [81].

Most recently, the slip-spring model has been extended to study symmetric stars and

star-linear blends by comparing the stress relaxation modulus G(t) with the experi-

mental data [101]. Cao and Wang [54] have also used slip-spring model and the MD

simulations based on Kremer-Grest (KG) model to investigate the arm-retraction

and constraint release effects on star polymers, and examined the mechanism pro-

posed by Shanbhag et al. [62] on explaining the release of the deepest entanglements

on the star arms.

In this chapter, we investigate the application of the slip-spring model on branched

polymers of different architectures, starting from testing the consistency of its pre-

diction power, such as the universality of model parameters for both linear chains

and branched polymers. The model systems we studied include 3-arm symmetric

stars, asymmetric-stars, and H-polymers. For the later two architectures, current

slip-spring model might fail because some mechanisms are missing, e.g., the slip-

springs on the cross-bars of H-polymers cannot be released by arm retraction. In
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order to find the additional mechanisms, microscopic understanding from molecular

dynamics simulations is required.

This chapter is arranged as follows. In Sec. 4.2, we will introduce the advanced

techniques for performing highly efficient MD simulations and data analysis of mildly

entangled branched polymers represented by the fully flexible Kremer-Grest bead-

spring model. The slip-spring model has two versions which are different on the way

to handle slip-link motion. In the original version, the slip-links diffuse continuously

along the chain backbone, following the standard Brownian dynamics (BD) [66]. In

a recently updated version (see Sec. 1.6.2), the slip-links move discretely by hopping

between neighbouring monomers as governed by a Monte-Carlo algorithm in order to

achieve higher efficiency [83]. The optimization of the model parameters, including

the frequency to perform MC algorithm fSS, the coarse-graining parameter N0, and

the time-scale mapping factor t0, and the test of their consistency between linear

and branched polymers are given in Sec. 4.3. In Sec. 4.4, we present the MD

simulation results for symmetric stars, asymmetric stars, and H-polymers, whose

observables, such as the end-to-end vector relaxation function Φ(t) and the monomer

mean-square-displacement g1(t) are compared with the predictions of the tube-based

theory. Following that, we compare the simulation results obtained by running the

standard slip-spring simulations with the MD data on the same systems and show

the significant discrepancy between them, especially for asymmetric stars and H-

polymers. Such discrepancy can be attributed to the missing mechanism mentioned

before. To cope with it, a parameter-free algorithm allowing the slip-links to cross

the branch-point will be added into the slip-spring model, whereby a remarkable

improvement can be achieved on the agreement with MD results. The conclusions

will be given in the last section.
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4.2 MD Simulation Method

The KG bead-spring model (see Sec. 1.6.1) is the most widely used generic MD

model for entangled polymers, in which the beads representing the monomeric units

interact with each other via the purely repulsive Lennard-Jones (L-J) potential.

Combined with the bonding potential modelled by FENE, the excluded volume

interactions can effectively prevent the chains from crossing. Chain stiffness can be

introduced into the KG model via a three-bead bending potential, whereby more

entanglements can be implemented with same chain length. For distinction, the

chain model with and without bending potential are, respectively, called fully flexible

and semi-flexible KG models. The semi-flexible KG model is relatively cheaper on

the computational cost, but the simulation results obtained using fully flexible KG

chain model have been shown to have better agreement with experimental data;

thus the fully flexible KG model is still the first choice as long as the computational

cost is affordable [82, 115].

MD simulations of the entangled star polymers are extremely expensive, because

the terminal relaxation time τd grows exponentially with the number of entangle-

ments per arm. In order to use the fully flexible KG model, we employed a high-

performance GPU package called HOOMD [117, 118], which allows us to reach the

terminal relaxation time of the symmetric stars with arm-length up to M = 384

(for convenience we use M to represent the number of monomers in KG model

and use N to represent the number of beads in slip-spring model in this chapter).

Considering the average entanglement segment length is about 50 to 65 [51, 82],

the corresponding number of entanglements per arm is around 6 to 7. The sim-

ulations are performed in the NVT ensemble with a periodic boundary conditions

applied to all three dimensions. The volume of the central cubic box is obtained by

V = Mtot/ρ, where Mtot is the total number of beads and ρ = 0.85σ−3 is the density
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of the beads. The equation of motion of beads is given by

mr̈i = −∇U(ri)− Γṙi + Wi(t).

where ri is the coordinate of the i-th bead,m is the mass of beads, Γ = 0.5(mkBT )1/2/σ

is the friction coefficient, W is the Gaussian white noise satisfying 〈Wi(t) ·Wj(t
′)〉 =

δijδ(t− t′)6kBTΓI, and I denotes the three-dimensional unit matrix. The simulation

time-step is ∆t = 0.012τLJ, while τLJ is the Lennard-Jones time.

The equilibration of the initial system is carried out by a home-made code called

generic polymer simulator (GPS). In order to achieve a faster equilibration, a

soft potential [102] is employed to perform the relaxation. The potential functions

for bonded and non-bonded interactions are formulated by

Ub(r) =
ks

2
(r − r0)2; Unb(r) =

 −
3u0

4
(r2 − r2

c) r ≤ rc

0 r > rc

(4.1)

where kr = 20ε, r0 = 1.222σ, rc = 1.6σ, and u0 = 2.2ε. The soft potential allows the

chains to cross each other, but can preserve the static properties, such as the chain

conformations, close to the KG model.

The dynamic observables are obtained using the data analysis tools in the GPS

code, which can efficiently calculate the time correlation functions on-the-fly via an

algorithm called “correlator” [119]. During simulations, GPS can work as an exter-

nal module of HOOMD. Specifically, HOOMD generates the trajectory coordinates

of the beads, which are read and analyzed by GPS at high frequency; then, GPS

update the data of measured observables, and stores the trajectory files at a low

frequency for further analysis.
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4.3 Calibration of the Slip-Spring Model Parame-

ters

4.3.1 Basic Parameters

In Sec. 1.6.2, we have introduced the slip-spring model that takes Monte-Carlo

algorithm to govern the diffusion of slip-links. Slip-spring model requires three basic

parameters: the average number of beads between neighbouring slip-links NSS
e , the

number of the beads on the virtual spring NSS
s , and the frequency to perform the MC

moves fSS. In Ref. [66], Likhtman compared a variety of the combinations of NSS
e

and NSS
s in the slip-spring model of the Brownian dynamics version, showing that

their combinations determine the plateau modulus Ge in stress relaxation. Thus the

plateau regimes can be superimposed on each other by adjusting them in pair. In a

standard setting, NSS
e and NSS

s are 4 and 0.5 respectively. Once NSS
e and NSS

s are

decided, the entanglement segment length is determined, thus the coarse-graining

level is also determined. Other pairs of NSS
e and NSS

s could be employed to change

the level of coarse-graining. For example, NSS
e = 8 and NSS

s = 1 will reduce the level

of coarse-graining by half, thus one must double the number of beads to preserve

the number of entanglements. The finer slip-spring model shows finer resolution in

early regimes with additional computational cost.

The frequency of MC attempts per time-step fSS is related to the friction co-

efficient of the slip-links in the original BD version. ξs is supposed to have little

effect on rheological properties when it is much smaller than the friction coefficient

of beads ξ0. In the standard setting of the BD version, ξs is set to be 0.1ξ0 since

technically it cannot be 0. Similarly, fSS in the MC version must be large enough to

ensure that the slip-link can efficiently find out the local minimum potential within

each time-step. In order to find the optimal value of fSS, we compared the viscosity



CHAPTER 4. RELAXATION OF BRANCHED POLYMERS 113

Figure 4.1: The viscosity η obtained at different frequency fSS in the slip-spring

model for linear chain systems with NSS
e = 4 and NSS

s = 0.5. (a) The logarithm plot

with fSS ranging from 0.1 to 50. (b) The linear plot zooming into the range of fSS

from 0.5 to 10.

η obtained at different fSS, where η is given by

η =

∫ ∞
0

G(t)dt.

As shown in Fig. 4.1(a), we choose three different chain lengths, N = 25, 38 and 51,

to test their viscosities at the frequencies fSS ranging over 2 decades, namely from

0.1 to 50, with the time-step ∆t = 0.05τ0 and τ0 is the slip-spring unit time [66]. In

Fig. 4.1(a), η decreases fast when fSS is smaller than 1. Afterwards, it decays much

slower with increasing fSS. If we zoom into the range from 0.5 to 10 and plot the

data in the linear scale of fSS (see Fig. 4.1(b)), the decrement of the viscosities at all

chain lengths has an obvious “plateau-like” region after fSS = 4. In fact, η decreases

by 30% when fSS increases from 5 to 50. Similar phenomenon happens to the BD

version, in which η drops by 30% when the friction of the slip-link decrease from

0.1ξ0 to 0.01ξ0 [66]. We conjecture such monotonic decease of η with increasing fSS
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or decreasing ξs as a consequence that in finite time-step the slip-links affects the

mobility of the monomers connected by them, and thus influence the dynamics of

the whole chain. Therefore, this effect can be eliminated by adjusting the horizontal

shifting factor or the time mapping factor t0.

Figure 4.2: The horizontally shifted middle monomer mean-square displacements of

linear chains at different MC frequency fSS. The chain lengths are N = 25, 38 and

51 respectively. The shifting factors are adjusted to make the curves superimposed

on each other at the chain length N = 25.

For further verification, we compare the middle monomer mean-square displace-

ments g1,mid(t) of the chains at different fSS, whose results are presented in Fig. 4.2.

The curves of g1,mid(t) have been normalized by the Rouse power law t1/2 in order

to bring the curves into one decade along vertical axis. Four frequencies are chosen,

namely fSS = 0.1, 1, 5 and 50. According to Fig. 4.1, it is expected that when

fSS > 4 the slip-spring model should exhibit the same dynamics in late regimes

after adjusting the time mapping factor t0. For comparison, we shifted the curves

of g1,mid(t) horizontally, making them superimposed at N = 25 and then use the

same shifting factors for other chains lengths. As expected, the g1,mid(t) curves for
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fSS = 5 and 50 are superimposed in late regimes, while the curves for fSS = 0.5

cannot overlap with those of other frequencies at the chain length N = 38 and 51.

Therefore, we can define fSS = 5 as a standard parameter of the MC version when

∆t = 0.05τ0. With smaller ∆t, fSS = 5 should be reduced proportionally, e.g.,

fSS = 1 when ∆t = 0.01τ0.

4.3.2 Mapping Parameters

The parameters used to map slip-spring results to KG model data include the length-

sale and time-scale mapping factors. On length scale, one must determine how many

monomers in KG model are represented by one bead in the slip-spring model. This

mapping number N0 has an unique value for a certain pair of NSS
e and NSS

s . On

time scale, the exact solution of the mapping factor t0 due to coarse-graining remains

unknown. But its value must be a constant for a given model, thus can be easily

found by fitting the dynamic observables, such as the end-to-end relaxation function

Φ(t) or the stress relaxation function G(t). In Ref. [82], Wang et al. explored the

parameter sets. When NSS
e = 4 and NSS

s = 0.5, they found the mapping parameters,

t0 = 3370 and N0 = 9.74 for fully flexible KG linear chain model. On length scale,

the mapping factor is non-arbitrary, but determined by N0 and C∞, where C∞ is

the characteristic ratio of the chain. For example, the vertical shifting factor for the

end-to-end vector relaxation function Φ(t) is the product of C∞ and N0. In fully

flexible KG model, C∞ is around 1.82 [51].

It is expected that the length-scale mapping factor is independent of fSS, but

the time mapping factor t0 can be affected by fSS according to our previous discus-

sion. To get the value of t0, we performed a series of MD simulations using fully

flexible KG model of linear chains, whose lengths are M = 256, 320, 384, 448 and

512, respectively. With N0 = 10, the chain lengths used in the slip-spring model

simulations are N = 26, 32, 38, 45 and 51 respectively. As shown in Fig. 4.3(a),

the data of the slip-spring model on Φ(t) agree well with the MD results at all chain
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Figure 4.3: Mapping of the slip-spring model results (lines) obtained with fSS = 5

and ∆t = 0.05τ0 to the data of fully flexible KG model (symbols) for linear chains on

the end-to-end relaxations Φ(t) and the middle monomer mean-square displacements

g1,mid(t).

lengths when using t0 = 3400. This value is very close to the previous work [82].

A further check is carried out on the middle monomer mean-square-displacements,

g1,mid(t), as shown in Fig. 4.3(b). This is a more strict examination, because the

single bead diffusion is very sensitive to the slip-spring parameters, especially after

τe. Again, g1,mid(t) is divided by t1/2 to bring the curves into one decade for better

comparison. The standard parameter setting fits the simulation data very well in

the middle and late regimes. The fitting in early regime, t < τe, could be improved

by finer-graining. In Refs. [115] and [82], the finer-grained slip-spring model simu-

lations were performed with NSS
e = 8 and NSS

e = 1, which gives better resolution in

early regimes.
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4.4 Relaxation of the Branched Polymers

4.4.1 Simulation Systems

Fig. 4.4 presents the schematic plot of the branched polymer architectures inves-

tigated in this work, including symmetric stars, asymmetric stars and H-polymers.

For convenience, several subscripts are added on “N ” and “M ” to denote different

architectures, i.e., “sym” for symmetric star, “asy” for asymmetric star, and “h” for

H-polymer. The superscripts are added on “N ” and “M ” to denote the types of

subchains, i.e. “l” and “s” represent long and short arm in an asymmetric star,

while “t” and “a” respectively represent the cross-bar and the arm in a H-polymer,

respectively.

Figure 4.4: Sketches of branched polymer architectures: (a) Symmetric star, (b)

Asymmetric star, (c) H-polymer.

The MD simulation systems are listed in Table 4.1. Five symmetric stars are

investigated, whose arm lengths vary from 64 to 384. For asymmetric stars, two

long-arm lengths are chosen, i.e., M l
asy = 256 and 384. We only choose one cross-bar

length M t
h = 256 in H-polymers due to extraordinarily long relaxation time. In

all cases, there are 100 molecules in the central simulation box. Thus the biggest

system has 115, 300 particles. The number of molecules is large enough to ensure

the end-to-end distance or radius of gyration is less than 2/3 of the cubic box size,

whereby the finite size effect is negligible. With a time-step ∆t = 0.012τLJ, the total
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Symmetric Star Asymmetric Star H-Polymer

Msym Nsym M l
asy M s

asy N l
asy N s

asy M t
h Ma

h N t
h Na

h

64 6 256 64 25 6 256 64 25 6

128 13 256 128 25 13 256 128 25 13

256 25 384 64 38 6

320 32 384 128 38 13

384 38 384 256 38 25

Table 4.1: Molecular structure parameters used in the KG model (M), and the

corresponding slip-spring model (N).

simulation time reaches 5× 107τLJ, covering a time range of 9 decades.

The simulation systems of slip-spring model are also listed in Table 4.1. In

the slip-spring model, each bead corresponds to 10 monomers in the KG model.

Accordingly, each branch-point bead in the 3-arm stars or H-polymers represents the

corresponding branch-point monomer in the KG model plus 3 monomers from each

subchain connected to it. In all slip-spring model simulations, the total number of

molecules in the ensemble is set to be 30, which is sufficient to obtain good statistics

of the measured observables. Each simulation runs roughly about 2 hours on a single

CPU to achieve more than 10 terminal relaxation times.

4.4.2 MD Simulation Results

In this subsection, we will focus on the monomer mean-square displacements of dif-

ferent branched polymers obtained from MD simulations. Those observables provide

rich microscopic information in microscopic dynamics, and are usually compared

with the relaxation regimes predicted by the tube theory [17].

Fig. 4.5 presents the middle monomer mean-square displacements g1,mid(t) of the

symmetric stars. In Fig. 4.5(a) and (b), the g1,mid(t) data (open symbols) have been
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Figure 4.5: MD results on the mean-square displacements of the middle monomers

of the arms g1,mid(t) (open symbols) and the branch points g1,branch(t) (solid symbols)

for symmetric stars.

divided by t1/2 and t1/4 to reveal different regimes, respectively. At time scales t < τe,

the monomers are not aware of the topological constraints imposed by surrounding

chains, and thus follow the standard Rouse motion, g1,mid(t) ∼ t1/2. As a result,

the first plateau-like regime is found before τe (dashed line) in Fig. 4.5(a). At time

scales τe < t < τR, the monomer diffusion follows “constraint Rouse”, where the star

arm experiences 1D Rouse relaxation in the confining tube, leading to a power law of

g1(t) ∼ t1/4. Thus, in Fig. 4.5(b), a plateau regime can be found in g1,mid(t) curves

after τe, whose width increases with the growing arm length due to the power law

of τR ∼ M2
sym. For Msym = 64, the barely observed plateau implies that τR of the

arm is roughly equal to τe and thus the entanglement segment length is about 64,

which is consistent with the measured Me ≈ 50 − 65 by mean-square displacement

data in Ref. [82]. In tube theory, a scaling law of g1(t) ∼ t1/2 is predicted at time

scales τR < t < τd. However, this region is hard to observe in linear chain melts

[82], because τR and τd are proportional to the square and cubic of the chain length
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respectively, which requires very long chains to distinguish τR and τd in logarithm

scale. The g1 ∼ t1/2 power law is predicted for reptation (1D random walk in the

tube) of linear chains. For stars, the relaxation proceeds by arm retraction, the

behaviour could be somewhat different. But the separation between τR and τd due

to the exponentially slow relaxation leads to a regime where g1(t) grows slowly after

τR. At time scales t > τd, the monomers follow free diffusion, g1,mid(t) ∼ t. It is

important to note that the semi-flexible KG model leads to different power laws in

two regimes, t < τe and τe < t < τR, where g1(t) are proportional to t0.6 and t0.3

respectively [57, 82]. Therefore, the fully flexible model agrees better with the tube

model.

Another interesting observable is the branch point mean-square displacement

g1,branch(t). The g1,branch(t) data for symmetric stars are shown by the solid symbols

in Fig. 4.5. Due to the connections with more than 2 monomers, the Rouse motion

of the branch point is different from other monomers. At time scales τe < t < τR,

g1,branch(t) roughly follows t1/5 scaling for Msym > 256 rather than t1/4, due to the

cage effect. In Fig. 4.5(a), the minimum of the g1,branch(t) curve corresponds to

the terminal relaxation time τd, after which the branch point follows free diffusion,

g1,branch(t) ∼ t.

For asymmetric stars, the g1,branch(t) exhibits a significant speeding-up due to the

shortening of one arm. Fig. 4.6(a) presents a comparison between the g1,branch(t)

data of the symmetric and asymmetric stars. The arm lengths of the symmetric

stars are 256 and 384. Shortening one arm of the symmetric stars into 64, 128, or

256 for Nsym = 384, the mobility of the branch point increases significantly at time

scales τe < t < τd. The earlier terminal relaxation brought by shortening one arm is

reflected in the arm end-to-end relaxation Φ(t). As shown in Fig. 4.6(b), we present

Φ(t) of long arms of the asymmetric stars, which are compared with Φ(t) of the

symmetric stars. The linear chains with the lengths of 512 and 768 are treated as

2-arm symmetric stars, whose arm end-to-end relaxations Φmid(t) are also plotted in
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Figure 4.6: (a) MD results on branch point mean-square displacement g1,branch(t) of

the symmetric and asymmetric stars, and middle monomer mean-square displace-

ment g1,mid(t) of the linear chains. (b) End-to-end relaxation Φ(t) of the arms of

the symmetric stars and the longer arms of the asymmetric stars, and middle-to-end

relaxation Φmid(t) of the linear chains. The same symbols are used in both figures.

Fig. 4.6(b). The terminal arm end-to-end relaxation time τd of the symmetric star

with the arm length Msym = 256 is around 3.8 × 106τLJ. For the asymmetric star

with M l
asy = 256 and M s

asy = 64, τd of the longer arms is around 2.5× 106τLJ, which

is almost equal to τd of the linear chains with a length of 512. In this case, the short

arms seem to have little effect on the terminal relaxation time when attaching them

to the middle monomer of linear chains, but leads to a slower Rouse motion due to

extra connection.

For H-polymers, we present the mean-square displacements of the branch points

g1,branch(t) and the middle monomers of the cross-bars gt
1,mid(t), as shown in Fig.
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Figure 4.7: MD results on mean-square displacement of the branch points g1,branch(t)

and the middle monomers gt1,mid(t) in the H-polymers together with that of middle

monomers of linear chains.

4.7. The normalized g1,branch(t) reaches the minimum earlier than gt
1,mid(t) of cross-

bar by more than a decade, implying that the arm relaxation happens much earlier

than the cross-bar relaxation. According to the “hierarchical” hypothesis [39, 120],

after the relaxation time of the branch arms, the cross-bar do reptation with higher

effective frictions at the two ends arisen from the relaxed arms. Therefore, the shape

of gt
1,mid(t) of cross-bar should be similar to that of linear chains. In Fig. 4.7, one

can find that g1,mid(t) of the linear chain with a length of 512 is almost the same as

gt
1,mid(t) of the H-polymer with M t

h = 256 and M s
h = 64. It could be a coincidence

since the molecular weight of them are equal, but can also imply that the short arm

length Ma
h = 64 has weak entanglement.

4.4.3 Slip-Spring Model for Branched Polymers

In this subsection, we first present the simulation results of the current slip-spring

model with MC moves on the branched polymers discussed above. Fig. 4.8(a)



CHAPTER 4. RELAXATION OF BRANCHED POLYMERS 123

presents the results of symmetric stars, including the arm end-to-end relaxation Φ(t),

the branch point mean-square displacement g1,branch(t) and the middle monomer

mean-square displacement of arms g1,mid(t). The slip-spring model results have

been shifted to map the MD simulation data with the mapping parameters exactly

the same as those used in linear chains, i.e., N0 = 10 and t0 = 3400. It is found

that the agreement is good for all observables. Therefore, current slip-spring model,

which has only CR and arm-retraction as the relaxation mechanisms, is sufficient to

describe the slightly and mildly entangled symmetric stars. We can expect that it

also works for the well-entangled symmetric stars. This is reasonable, because for

such polymers, the terminal relaxation times of the systems are the same as the arm

retraction times.

The simulation results of the asymmetric stars are given in Fig. 4.8(b), including

the arm end-to-end relaxation Φ(t), the middle monomer mean-square displacement

of long arms gl
1,mid(t), and the branch point mean-square displacement g1,branch(t). In

these plots, significant discrepancies can be found in the g1,branch and gl
1,mid(t) data

for most asymmetric stars except the one with M l
asy = 384 and M s

asy = 256. We

presume this is due to the lower asymmetricity, i.e., the short arm length is relatively

closer to the long arm length than other asymmetric stars. The discrepancies of

other asymmetric stars occur at time scales close to τd of long arms, where gl
1,mid(t)

and g1,branch(t) curves predicted by the slip-spring model are both lower than the

MD results. The significantly underestimated mobility of branch points and middle

monomers indicates that CR and arm-retraction are insufficient to describe the

relaxation of asymmetric stars, especially for those with larger asymmetricity. On

Φ(t), however, the slip-spring results agree well with the MD results for both short

arms and long arms, which might be because the shape of Φ(t) is not strongly

affected by the branch point motion.

In H-polymers, the current slip-spring model also does not work. As shown in

Fig. 4.9. Φ(t) of the cross-bar reaches a plateau after the Rouse relaxation, because
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Figure 4.8: Simulation results of the previous slip-spring model and the KG model

on the end-to-end relaxation Φ(t), the branch point mean-square displacement

g1,branch(t), and the middle monomer mean-square displacement g1,mid(t) for (a)

the symmetric stars, and (b) asymmetric stars. In asymmetric stars, we only plot

gl1,mid(t) for long arms. The symbols and lines are the results of the KG model and

the slip-spring model, respectively. In bottom plot of (b), the solid symbol and lines

are for the long arms, while the open symbols and dashed lines are for the short

arms.
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Figure 4.9: The simulation results of the slip-spring (lines) and MD using KG model

(symbols) on Φ(t) of the H-polymers.

the slip-links on the cross-bar are blocked at the two branch points. The results in

Fig. 4.8(b) and 4.9 imply that the failure of slip-spring model on asymmetric stars

and H-polymer may originate from the same problem: the entanglements should be

allowed to cross the branch point in some conditions; or in other words, the branch

point can “hop” along the confining tube of the two long arms of an asymmetric

star, or the confining tube of the cross-bar and one arm in a H-polymer.

In Ref. [63], Shanbhag and Larson proposed a slip-link model for branched

polymers, in which they assume that the branch point hops when the slip-links on

the short arm are all removed, corresponding to a complete arm retraction event.

The advantage of this assumption is that it requires no additional parameters. In this

work, we can introduce a parameter-free slip-link “hopping” mechanism in current

slip-spring model, i.e., the slip-link can cross the branch point and hop onto another

arm when the 3rd arm is fully relaxed. This hopping step is taken using the standard

MC step of slip-spring model, thus requiring no additional parameters. It must be

noted that the slip-link hopping in H-polymers only occurs between cross-bar and

one arm.
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With this slip-link “hopping” mechanism, we plot the results of the slip-spring

model for symmetric stars in Fig. 4.10. The results on arm end-to-end relaxations

Φ(t) and mean-square displacements for both branch points g1,branch(t) and middle

monomers of arms g1,mid(t) show little difference from Fig. 4.8(a). In Fig. 4.10(d),

we also present the average waiting time of one “hopping” event for each subchain,

τhop, which is proportional to the inverse of the hopping rate on each branch point

rhop:

τhop =
q

rhop

, (4.2)

where q is branch point functionality (i.e. the number of subchains connected to one

branch point). In one time-step, a slip-link can cross a branch point many time when

f ss > 1, we consider the frequent crossings due to the algorithm of slip-link diffusion

should only be counted once for each time-step if the hopping succeeds. As shown in

Fig. 4.10(d), τhop is equal to τd of the arm end-to-end relaxation function when the

arm lengthMsym is smaller than 128, after which τhop is even larger than τd. Thus, in

symmetric stars, contribution of slip-link hopping to relaxation is negligible, which

also explains why the original slip-link model can well describe symmetric stars.

For asymmetric stars, the relaxation times of the short arms τ s
d and the long

arms τ l
d are well separated, thus the relaxation can be accelerated by the “hopping”

mechanism. Fig. 4.11(a) shows the mean-square displacements of branch points

g1,branch(t) and middle monomers for both long arms gl1,mid(t) and short arms gs1,mid(t)

in the slip-spring model simulations, which are found to be in good agreement with

the MD results of KG model. Comparing to Fig. 4.8(b), the slip-spring model

with slip-link hopping mechanism not only predicts the separation of gl
1,mid(t) of the

asymmetric stars with different short-arm lengths, but also well predicts the higher

mobility of branch points in the terminal regime. In Fig. 4.11(b), the arm end-to-

end relaxation Φ(t) is similar to Fig. 4.8(b), showing that the hopping mechanism

does not affect the prediction of Φ(t). In Fig. 4.11(c), τhop of the asymmetric stars as

calculated using Eq. 4.2 are compared with the end-to-end terminal relaxation times
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Figure 4.10: Simulation results of the slip-spring model with slip-link “hopping”

mechanism at the branch point in comparison with the MD data using the KG model

for the symmetric stars: (a) the branch point mean-square displacements g1,branch(t),

(b) the middle monomer mean-square displacements g1,mid(t), (c) the arm end-to-

end vector relaxations Φ(t), (d) the average waiting times of one “hopping” event

for each subchain τhop and the end-to-end terminal relaxation times τd.
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Figure 4.11: Simulation results of the slip-spring model with slip-link “hopping”

mechanism at the branch point in comparison with the MD data using the KG model

for the asymmetric stars: (a) the mean-square displacements of the branch points

g1,branch(t), the middle monomers of long arms gl
1,mid(t), and the middle monomers

of short arms gs
1,mid(t), (b) the arm end-to-end relaxations Φ(t) (solid symbols and

lines represent long arms, open symbols and dashed lines represent short arms), (c)

the average waiting time of one “hopping” event for each subchain τhop, and the

end-to-end terminal relaxation times of short arms τ s
d and the long arms τ l

d.
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Figure 4.12: Simulation results of the slip-spring model with slip-link “hopping”

mechanism at the branch point in comparison with the MD data using the KG model

for the H-polymers: (a) the branch point mean-square displacements g1,branch(t), (b)

the mean-square displacements of the middle monomers of the arms ga
1,mid(t) and

the cross-bars gt
1,mid(t), (c) the end-to-end relaxations Φ(t) (solid symbols and lines

represent cross-bars, open symbols and dashed lines represent arms), (d) the average

waiting time of one “hopping” event τhop for each subchain, and the end-to-end

terminal relaxation times of the arms τ a
d and the cross-bars τ t

d.
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of long arms τ l
d and short arms τ s

d. With identical short-arm length, τhop for different

long-arm lengths are equal, indicating that the relaxation of short arms dominates

the “hopping” probability. For most asymmetric stars, τhop is smaller than τ s
d apart

from the asymmetric star with M l
asy = 384 and M s

asy = 256, whose τhop is equal to

τ l
d. Thus we can affirm that the hopping mechanism is trivial in the systems with

low asymmetricity, which also explains why the slip-spring model without “hopping”

mechanism can well describe this asymmetric star (see Fig. 4.8(b)).

In H-polymers, the cross-bar relaxation is dominated by the diffusion of branch

points, thus a significant improvement of the slip-spring model for H-polymers can

be achieved by incorporating such slip-link “hopping” mechanism, as shown in Fig.

4.12. For all observables considered, the agreement with the KG model is reasonably

good. In Fig. 4.12(a), the g1,branch(t) data forMa
h = 64 is higher than the MD results

by roughly 20% at time scales τe < t < τd. Similar disagreement can be found in the

middle monomer mean-square displacements of the arms, as shown in Fig. 4.12(b).

The overestimated branch point mobility for Ma
h = 64 is also reflected in the Φ(t)

plots in Fig. 4.12(c), where the relaxation of the cross-bar is slightly faster than

the MD result. This might result from the fast creation and deletion of the single

slip-link at the free ends of the short arms which on average have less than two

slip-springs. For H-polymer with longer arm length Ma
h = 128, the agreements on

these observables become much better. In Fig. 4.12(d), τhop for both H-polymers

are much shorter than the end-to-end terminal relaxation times of the arms τmd .

τhop for Ma
h = 64 and Ma

h = 128 are roughly half of τhop for asymmetric stars with

M s
asy = 64 and M s

asy = 128, because there are two short arms connected to each

branch point in H-polymers.
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4.5 Conclusions

In this chapter, we presented a detailed description of the slip-spring model using

Monte-Carlo algorithm to govern the motion of the slip-links. This version of the

slip-spring model enables us to employ a larger time-step than the original Brownian

dynamics version without changing the predicted dynamic properties. With a careful

selection of the parameters, we obtained the simulation results of the slip-spring

model on monodisperse linear chains, which are found to be in good agreement with

those of the molecular dynamics simulations using the fully flexible Kremer-Grest

model. In a standard parameter setting, i.e., NSS
e = 4 and NSS

s = 0.5, the mapping

parameters for the fully flexible KG model are found to be t0 = 3400 for time scale

and N0 = 10 for length scale, which are believed to be universal for different polymer

architectures.

After the careful calibration, the slip-spring model was extended to branched

polymers. In order to examine the slip-spring model results, we performed exten-

sive molecular dynamics simulations using the flexible KG model for a variety of

branched polymers, including the 3-arm symmetric and asymmetric stars, and the

H-polymers. The slip-spring model results agree well with MD simulations on sym-

metric stars, but fail on both asymmetric stars and H-polymers. We consider this

problem originating from the absence of some relaxation mechanisms in the model.

One possible mechanism is that the slip-links can hop over a branch point between

two subchains connected to it when the third arm has no slip-links on it. The

modified slip-spring model with the “hopping” mechanism provides results in good

agreement with MD data without requiring extra parameters. Such “hopping” mech-

anism is found to be important for asymmetric stars with significantly different arm

lengths and essential for H-polymers.



Chapter 5

Conclusions

The study of the dynamics of entangled branched polymers is of both fundamental

and practical importance. In the thesis, we focus on investigating the relaxation

behaviours of entangled branched polymer with simple architectures.

Due to the steeply growing quadratic potential, arm retraction is a typical mul-

tidimensional first-passage problem, whose exact solution remains a open question.

In the Milner-McLeish theory [30], this problem is simplified by treating the whole

chain as one bead attached to the branch point via a harmonic spring. This so-

lution, however, overestimated the relaxation time by neglecting the contributions

of multiple Rouse modes. Cao et al. [54] presented an analytical solution to the

multi-dimensional first-passage problem, which predicts an arm relaxation time in

the absence of constraint release 2/N times smaller than that given by the Milner-

McLeish theory, where N is the arm length. In order to examine the two theoretical

models, we employ advanced numerical methods for studying first-passage problems,

such as the forward flux sampling and weighted ensemble methods. These methods

were first implemented to the simplest multi-dimensional first-passage problem: the

escaping time of a Brownian particle in a 2D potential well. Due to its remarkable

performance in all aspects, the FFS method was then chosen to study the exten-

sion problem of a 1D Rouse chain model, which is analogous to the arm-retraction

132
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problem. We found that the first-passage time is getting shorter if the Rouse chain

is represented by more beads, showing good agreement with the prediction of the

asymptotic solution of Cao el al. [54].

Then the FFS method was implemented to solve the arm-retraction problem in

the slip-spring model, which is a coarse-grained bead-spring model for entangled

polymers. With a controllable precision, this method allows direct comparison be-

tween the slip-spring model and the tube theory for well-entangled star polymers

with up to 16 entanglements per arm. Moreover, a study is conducted on the ex-

traction of experimentally measurable observables from FFS simulations, such as

the end-to-end vector and stress relaxation functions. We believe this work will not

only expand the application of FFS method to polymer dynamics by reproducing

full dynamic spectrum rather than just the first-passage time, but also to many

other scientific areas.

After the remarkable success on linear melt systems, the slip-spring model has

been extended to the study of the branched polymers [34, 101]. However, due

to the absence of certain mechanisms, current slip-spring model cannot describe

the relaxation behaviours of some architectures, such as asymmetric stars and H-

polymers. To cope with it, we conducted a series of MD simulations for branched

polymers with different architectures, including 3-arm symmetric and asymmetric

stars, and H-polymers. With the fully flexible Kremer-Grest chain model, these

simulations achieved the terminal relaxation time of the mildly entangled arms with

up to 7 entanglements. The slip-spring model, whose parameters have been carefully

calibrated according to the MD results of linear chains, was implemented to predict

the relaxation behaviours of these branched polymers. Comparing the MD and

slip-spring model simulation results, we found a significant discrepancy due to the

missing mechanism aforementioned. In the tube theory for asymmetric stars, it is

assumed that the branch point can hop a fraction of tube diameter when the short

arm is fully relaxed. For the slip-spring model, we proposed a slip-link “hopping”
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mechanism, which allows the slip-links to cross the branch point when the third

arm is unentangled. Using this mechanism, the slip-spring model is shown to have

a good agreement with the MD results.

In conclusion, many problem of entangled branched polymers dynamics remains

open. Based on the achievements made in this thesis, future studies can be carried

out in many aspects. One of the main challenges of branched polymer dynamics

is the lack of clear microscopic picture of entanglements, which leads to numer-

ous assumptions and fitting parameters in the current tube model. One solution

is mapping a more fine-grained model onto a more coarse-grained one. This could

effectively avoid the dependence on the exact definition of entanglements, while the

missing mechanisms can still be revealed. In fact, this approach has been imple-

mented in the fourth chapter to develop the slip-spring model for branched poly-

mers by comparing its main results with MD simulations. In the second and third

chapters, we have shown that the analytical and numerical solutions of the multi-

dimensional first-passage time problem are effective to obtain the relaxation spectra

of well entangled symmetric stars, which can be either modelled by the one dimen-

sional Rouse model or the slip-spring model. Both models can be mapped onto the

tube model, but further more their results can be compared with experiments and

MD simulations, which could be useful to refine the tube theories, especially with

constraint release. Another solution is to investigate the dynamic behaviours by

analysing the evolution of entanglements in MD simulations. The powerful analysis

tools, such as the “primitive path analysis” [51], and the newly developed “contact

map analysis” [52] and “tube axis” [55] can pave the way to decipher the hidden

mechanisms. For example, the constraint release events can be monitored by trac-

ing the creation and destruction of entanglements in the middle of the chains, and

the possible entanglement hopping mechanism of branched polymers can be detected

by tracing the movements of entanglements close to the branch points. From these

analysis, the distribution of the constraint release rates and the hopping distance
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are available. Moreover, such an approach is very important to the investigation of

entanglements in the nonlinear regime, since the solid evidences are most likely to

come from MD simulations. In particular, one can figure out how does the num-

ber of entanglement change under flow, and thus help to improve the theories and

models for nonlinear dynamics.
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