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Abstract

The use of parameter estimation in the fields of meteorology and food processing has

been investigated. A methodology has been built and tested against the parameters in

the Lorenz system of equations from the field of meteorology. With suitable adaptations,

the same algorithm has been used to retrieve small numbers of parameters in simple en-

zyme reactions. Using the analysis from these two independent problems, parameters

have also been retrieved for two different models of a chemical reaction from a food pro-

cessing problem. These parameter values have been obtained for two different modelling

procedures - with and without observational data incorporated. Together with optimal

parameter values, possible areas for improvement have also been offered.
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Chapter 1

Introduction

The process of using dynamic, experimental data in the formulation of mathematical

models has developed alongside the demand for dynamic system models. The production

of high speed computers has fed the demand for such models. This field relies on optimi-

sation theory, simulation knowledge and data handling techniques.

In many models the values of some parameters are often determined by trial and error.

They may contain information about the flow properties and characteristics or numerical

stability conditions. The values of the parameters impact upon the predictive perfor-

mance of the model, and can make a huge difference in matching observations.

This dissertation reviews the parameter estimation techniques used in the field of me-

teorology, and applies them to the Lorenz equations. The Lorenz system is particularly

sensitive to parameter values. For certain choices of parameters, the system is unstable.

We have attempted to retrieve the same choice of parameters in such a chaotic case.

Flavour chemists working in the Food Industry have carried out significant study and

analysis of the final colours and flavours in steady state at the end of batch testing. Ide-

ally the data collected could be used to extract the various rate constants associated with

the reaction network, thus enabling quantitative numerical experiments to replace costly

practicals and laboratory studies.

We have investigated the ways in which the values of parameters involved in flavour

and colour batch testing in the Food Industry could be estimated. The chemical ex-

periments we wish to simulate involve mixing a sugar with an amino acid at a specified

6



CHAPTER 1. INTRODUCTION 7

temperature, and can take several hours. The temperature is usually at a number of

steady states.

In fitting data to experiments in the Food Industry, the aim is to recover the forcing

parameters from the experimental observations to improve the model’s prediction, using

parameter estimation. Currently two techniques are employed by the Food Biosciences

Department at the University of Reading to do this. The first uses ASPEN, a commercial

modelling package from the chemical industry. It is treated as a black box and a sig-

nificant amount of human intervention takes place in order to retrieve admissible values.

The second uses MathCAD, and involves sequential curve-fitting. Both techniques suffer

from the limited nature of the data, so a better testing strategy is sought.

This dissertation is organised as follows: some of the possible minimisation techniques

used in parameter estimation, and the reasons for our choice of method, are described in

Chapter 2. The chosen minimisation algorithm is then applied to the Lorenz system and

a simple chemical reaction in Chapters 3 and 4 respectively. Chapter 5 analyses the food

problem and provides parameter values for certain models of the reactions involved. Fi-

nally, further improvements to the parameter estimation process are presented in Chapter

6.



Chapter 2

Parameter Estimation Methods

2.1 Introduction

All parameter estimation problems involve minimisation. The choice of algorithm is

problem-dependent. We will now discuss some of the possible choices of minimisation

techniques, and their typical applications.

2.2 Downhill Simplex Method

The downhill simplex method is due to Nelder and Mead [9]. It is a direct search method

for multidimensional unconstrained minimisation. According to [3], the Nelder-Mead

algorithm is especially popular in the field of chemistry, and this is why it is chosen and

discussed here.

The algorithm is based on minimising a scalar-valued nonlinear function of n real

variables by evaluating it at the n + 1 vertices of a simplex. A simplex is the geometrical

figure consisting, in n dimensions, of n + 1 vertices and all their interconnecting line

segments and polygonal faces. No derivative information is required (explicit or implicit),

so this simplifies the modelling process.

For a general minimisation procedure, the simplex adapts to the local landscape by

elongating to move down long gentle slopes, or by contracting around the final minimum.

The method can be considered geometrically. We assume the simplex is nondegenerate,

and encloses a finite inner n-dimensional nonzero volume (so it is a convex hull of n + 1

8



CHAPTER 2. PARAMETER ESTIMATION METHODS 9

vertices). We take one point on the figure to be the origin.

The algorithm in more than one dimension needs a starting guess, namely an n-vector

of independent variables as the first point to try. One or more test points are computed,

along with their function values. A simplex is then set up near the initial guess, and the

input guess is placed in the simplex. The algorithm then attempts to make its own way

downhill until it finds a (at least local) minimum. According to [11] we take a starting

point P0 and take the other n points to be

Pi = P0 + λei (2.1)

where the ei’s are n unit vectors, and where λ is a constant guess of the characteristic

length scale.

The downhill simplex method now takes a series of steps or reflections, moving the

point of the simplex where the function is largest (highest point) through the opposite face

of the simplex to a lower point. The reflections must conserve the volume of the simplex.

Wherever possible the method expands the simplex in one or another direction to take

larger steps. When it reaches a valley floor, the method contracts itself in the transverse

direction and tries to flow down the valley. If the valley is too tight, the simplex contracts

itself in all directions, pulling itself around its lowest (best) point.

2.2.1 The Algorithm

We now describe the downhill simplex method algorithm presented in [11], with mathe-

matical details in the case of strictly convex functions in 1-D and 2-D from [3]. Four scalar

parameters must be specified to define a complete Nelder-Mead method: coefficients of

reflection (ρ), expansion (χ), contraction (γ) and shrinkage (σ) with

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1. (2.2)

At the start of the kth iteration, k ≥ 0, a nondegenerate simplex is given, along with

its n + 1 vertices, each of which is a point in the n-space. Iteration k begins by ordering
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and labelling these vertices as x
(k)
1 , . . . ,x

(k)
n+1, such that for the function f ,

f
(k)
1 ≤ f

(k)
2 ≤ . . . ≤ f

(k)
n+1, (2.3)

where f
(k)
i denotes f(x

(k)
i ). The kth iteration generates a set of n + 1 vertices that define

a different simplex for the next iteration. Because we seek to minimise f , we refer to x
(k)
1

as the best point or vertex, and to x
(k)
n+1 as the worst point. Similarly, we refer to f

(k)
n+1 as

the worst function value, and so on.

The result of each iteration is either (1) a single new vertex - the accepted point - which

replaces xn+1 in the set of vertices for the next iteration, or (2) if a shrink is performed,

a set of n new points that, together with x1, form the simplex at the next iteration. Here

is the algorithm for one iteration (we drop the k superscript for simplicity).

Step One - Order

Order the n+1 vertices to determine which point is the highest (worst), next-highest,

and lowest (best). Use a vector whose components are pre-initialised to the values of the

function evaluated at the n + 1 vertices. Algebraically, order the vertices to satisfy

f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1). (2.4)

Step Two - Reflect

Compute the reflection point xr by extrapolating by a factor of ρ through the face,

that is, reflect the simplex from the high point with

xr = xb + ρ(xb − xn+1) = (1 + ρ)xb − ρxn+1. (2.5)

The term xb =
∑n

i=1 xi/n is the centroid of the n best points (all vertices except for xn+1),

that is, the vector average or centre of the face of the simplex across from the high point.

Evaluate the function at the reflected point, so fr = f(xr). If f1 ≤ fr < fn, then accept

the reflected point xr and terminate the iteration.

Step Three - Expand

If the result is better than the best point, so fr < f1, try an additional extrapolation
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by a factor χ and calculate the expansion point xe

xe = xb + χ(xr − xb) = xb + ρχ(xb − xn+1) = (1 + ρχ)xb − ρχxn+1 (2.6)

using (2.5), and evaluate the function there, so fe = f(xe).

If fe < fr, then the additional extrapolation succeeded, and xe replaces the high point

so the iteration terminates. Otherwise (if fe ≥ fr), the additional extrapolation failed but

the reflected point xr can still be used and the iteration terminated.

Step Four - Contract

If the reflected point xr is worse than the second-highest, so that fr ≥ fn+1, perform

a contraction between xb and the better of xn+1 and xr.

(a) Outside

If the point is strictly better than the highest, so fn ≤ fr < fn+1, then replace the

highest but look for an intermediate lower point. That is, perform an outside contraction

of the simplex along one dimension. Calculate

xoc = xb + γ(xr − xb) = xb + γρ(xb − xn+1) = (1 + ργ)xb − ργxn+1, (2.7)

using (2.5) again, and evaluate foc = f(xoc). If the contraction gives an improvement, so

foc ≤ fr, then accept xoc and terminate the iteration; otherwise, perform a shrink (Step

Five).

(b) Inside

If fr ≥ fn+1, then perform an inside contraction by calculating

xic = xb − γ(xb − xn+1) = (1− γ)xb + γxn+1, (2.8)

and evaluate fic = f(xic). If fic < fn+1, then accept xic and terminate the iteration;

otherwise go to Step Five.

Step Five - Perform a shrink step

If the high point cannot be improved upon, then contract around the lowest (best)

point. Evaluate f at the n points vi = x1 + σ(xi− x1), i = 2, . . . , n + 1. The (unordered)

vertices of the simplex at the next iteration consist of x1,v2, . . . ,vn+1.
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Figure 2.1 shows the effects of reflection, expansion, contraction, and shrinkage for a

simplex in two dimensions (a triangle).

(a) (b) (c) 

(d) (e) 

x
n+1

 x
n+1

 x
n+1

 

x
n+1

 

x
b
 x

b
 x

b
 

x
b
 

x
r
 

x
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x
1
 

x
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x
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x
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Figure 2.1: Possible outcomes for a step in the downhill simplex method in 2-D. The
Nelder-Mead simplex at the beginning of the step, here a triangle, is shown with a dashed
line. The simplex at the end of the step (shown with a solid line) can be either (a) a
reflection away from the high point xn+1, (b) a reflection and expansion away from the
high point, (c) an outside contraction along one dimension from the high point, (d) an
inside contraction along one dimension from the high point, or (e) a shrink - a contraction
along all dimensions toward the low point. An appropriate sequence of such steps will
always converge to a minimum of the function.

It is important to note that except in a shrink, the one new vertex always lies on the

(extended) line joining xb and xn+1. Additionally the simplex shape undergoes a notice-

able change during an expansion or contraction with the standard coefficients. Possible

problems occur if the reflection gives a middling point. Tie-breaking rules are needed to

order points in the case of equal function values. This is discussed in [3].

As stated in [3] and [11], the standard coefficients are ρ = 1, χ = 2, γ = 1/2 and

σ = 1/2. The maximum number of iterations depends on the number of variables. We it-

erate until the diameter of the simplex is less than a certain tolerance τ1, and the function

values differ from the minimum by less than another tolerance τ2. These criteria might
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be fooled by a single anomalous step that failed to get anywhere. Therefore, it is often a

good idea to restart a multidimensional minimisation routine at a point where it claims

to have found a minimum. Therefore n of the n + 1 vertices of the simplex should be

reinitialised by (2.1), with P0 being one of the vertices of the claimed minimum.

In [9] the method is shown to be effective and computationally compact. The prob-

lems we will consider are multidimensional, and the downhill simplex method is suitable

in such a situation. It is not very efficient in terms of the number of function evaluations

that it requires so it may be slower than other more complex methods. Nevertheless the

method requires only function evaluations, not derivatives or gradients. It is suitable for

nonlinear, locally linear problems, and is therefore suitable for the scope of this work.

2.3 A Brief Overview of Other Methods

There are many possible minimisation methods in multidimensions. Direction set (Pow-

ell’s) methods use multiple one-dimensional line minimisations in n-space. The function’s

gradient need not be calculated. Directional vectors are used to find the minimum. The

method cycles through the whole set of prescribed directions as many times as necessary,

until the function stops decreasing. The aim is to find conjugate directions, that is, a set of

n linearly independent, “non-interfering” directions. The two most famous examples are

Powell’s quadratically convergent method, and Powell’s method discarding the direction

of largest decrease. Powell’s method is usually faster than the downhill simplex method

in most applications.

Conjugate gradient methods in multidimensions calculate the gradient (vector of first

partial derivatives) of a function. It is advantageous to use gradient information because

a factor of n improvement in computational speed can be made. The steepest descent

method is an example of conjugate gradients. The problem with it is that right-angle

turns must be made, and this does not in general lead down to a minimum. The con-

vergence is therefore slower than other methods. The Fletcher-Reeves and Polak-Ribiere

methods are further examples, and both construct a sequence of directions.
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Variable metric methods in multidimensions are sometimes called quasi-Newton meth-

ods - they are similar to conjugate gradient methods. In [8], the limited-memory quasi-

Newton technique is preferred. They accumulate information from successive line min-

imisations to get the exact minimum of a quadratic form. The function’s gradient must

be computed, and an n × n Hessian matrix stored (conjugate gradient methods require

storage of order n). Two examples are the Davidon-Fletcher-Powell (DFP) algorithm,

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. All of these methods are

discussed further in [11], and we now discuss gradient methods in more detail.

2.3.1 Gradient Methods

A numerical weather forecast model involves a number of parameters that are determined

empirically. The model is based on the integration of a dynamic system of partial dif-

ferential equations modelling the behaviour of the atmosphere, in order to get a dataset.

Parameter estimation is frequently carried out in data assimilation to find the solution

to a constrained numerical weather prediction forecast model. Data assimilation is the

process of recovering both the initial state and a set of forcing parameters from a real

set of observations by fitting the model to observed data over an interval of time. The

parameter set which gives the optimal solution is determined.

If we have some experimental data x(ti) and we want to fit a curve y(t) to it, then

it is relatively straightforward to minimise the difference between the two values at each

time step in the case that y(t) can be approximated by a polynomial. The gradients are

also straightforward to compute. However, if y is a solution of an ODE, then it is more

difficult to obtain the gradient of the difference function. One way this can be carried out

is by using an adjoint method.

There are several examples of the use of adjoint parameter identification in the field

of meteorology. According to [16], Chavant was amongst the first to propose parameter

estimation using the adjoint method. He recognised that this inverse problem is often

ill-posed, in that it is characterised by nonuniqueness and instability of the identified

parameters.
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2.3.2 An Example

To assess the impact of parameter estimation on a numerical model, Zou and Navon [16]

present the continuous, forward forecast model

∂X

∂t
= f(X,α, t) X0 = X(0) (2.9)

with its full-physics adjoint, where X are the forecast variables and α the parameter set.

Three constant parameters as well as the initial condition are recovered.

Variational parameter identification involves minimising a cost function. A cost func-

tion measures the discrepancy between the observations and the corresponding model

variables over time. Given constrained parameters αi, the cost function in [16] is written

as

J (X,α) =
1

2

∫ tR

t0

〈W(X−Xexp), (X−Xexp)〉dt + λT g(α), (2.10)

where t0 and tR denote the assimilation window, 〈〉 denotes spatial integration (an inner

product), W is a diagonal weighting matrix, X represents the state variable vector, Xexp

the observation vector, λ is the penalty coefficient vector and g(α) is a function only

of the violated constraints. The second term on the right-hand-side ensures that the re-

trieved parameters lie within prescribed bounds.

The adjoint of a model reduces the expense of the variational assimilation by calcu-

lating all of the components of the gradient of the cost function with respect to the initial

conditions and X by one time integration. The decrease in the magnitude of the gradient

of the cost function gives a better indication of how close the solution is to a minimum.

In [16] the adjoint model is presented in the form

∂P

∂t
= −

(
∂f(X,α, t)

∂X

)T

P−W(X−Xexp), P(tR) = 0, (2.11)

where P represents the adjoint variables. Together with (2.9), (2.11) forms the simultane-

ous system of Euler Lagrange equations. Griffith and Nichols [2] provide a good analysis

of the calculus of variations, and the derivation of the Euler Lagrange equations.

As carried out in [8], (2.11) is integrated backwards in time. The gradients of the cost
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function with respect to the initial conditions and parameters are calculated using

∇X0J = P(0)

∇�J =

∫ tR

t0

[(
∂f

∂α

)T

P

]
dt + λT ∂g

∂α
. (2.12)

Finally, a minimisation algorithm is used with the cost function and gradient values to

find the optimal solution. Full details of how this is carried out can be found in [16].

The impact of an adjoint model was assessed by Navon in [7] and [16] by testing the

impact of the model for a sufficiently long period, thus ensuring that no degradation of

the forecast is caused by the optimally estimated parameter. The best forecasts were ob-

tained by experiments in which all of the optimal values were used simultaneously. With

a different model tested in [8], there was a significant reduction in both the cost function

and the norm of its gradient during the minimisation process.

From [16], if a parameter is found to be very close to the estimated value, then it

means either the initial guess is good, or the model is not very sensitive to the parameter.

The returned value in parameter estimation therefore does not represent the true physical

value. Rather, it represents the optimal value for the particular model.

The adjoint model can be difficult to derive. Variables can have eight orders of mag-

nitude difference in such a meteorological problem, and it is hard to specify the weighting

matrix W. Much more work is needed in this area. The creation of such an adjoint model

is beyond the scope of this dissertation.

Within the scope of the project and the expected size of the problems considered, the

gradient-free simplex method is preferable. Whilst gradient methods are faster, involve

fewer function evaluations and are used for problems involving hundreds of parameters,

they have to be defined separately for each problem. However, a general simplex method

can be used for a variety of problems.



Chapter 3

Solving the Lorenz Equations Taking
a Parameter Estimation Approach

3.1 A Model of the Atmosphere

In 1961 the scientist E.N. Lorenz was modelling the atmosphere, and investigating the

predictability of the weather. His results disappointed weather forecasters, in that the

solutions of the equations had a “sensitive dependence on initial conditions”. Small dif-

ferences in initial conditions led to large differences in outcome - the much talked about

‘butterfly effect’. Lorenz noted from his findings that “precise very-long-range forecasting

would seem to be non-existent” ([1], p223).

With certain parameters the Lorenz system is chaotic with no steady state. For the

Lorenz system we retrieve parameters for a certain time, and carry out a longer forecast

with the information obtained from the first forecast.

3.2 Lorenz Equations

From [4], the nonlinear Lorenz system is represented by three ODEs involving three

parameters,

dx

dt
= −σ(x− y),

dy

dt
= ρx− y − xz,

dz

dt
= xy − βz, (3.1)

17
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where x = x(t), y = y(t) and z = z(t). According to Sparrow [14], they represent a

2-D fluid cell being warmed from below and cooled from above. The resultant convec-

tive motion is modelled by a partial differential equation. The quantity x measures the

rate of convective overturning, y the horizontal temperature variation, and z the vertical

temperature variation.

3.3 A Method to Retrieve Parameter Values

The method sets out to solve the differential equation

x′ = f(x, t) = Kx (3.2)

by minimising the absolute difference between the numerical solution and experimental

observations. However if experimental observations are not available, then suitable data

must be generated. To do this we select the values of the parameter set P to be estimated.

We then integrate the model forwards in time and minimise the approximation

J =
1

γ

( ∫ (
x(t)− xexp(t)

)2

dt

)
≈

Ntime∑
j=1

1

γj

(
Ntime∑
i=1

(
xj(ti)− xexp

j (ti)

)2
)

(3.3)

where x represents the j components or species (x1, . . . , xN), xexp is the experimental

data, and each species xj is evaluated at time ti. The values γj are chosen such that each

component of the sum is of equal magnitude.

As discussed in Chapter 2 we use the downhill simplex Nelder-Mead method. The

method starts at the initial guess of the vector of parameters P0 and finds a local minimiser

P of the supplied function. The function accepts input P and returns a scalar function

value evaluated at P . The method iterates until a certain relative error tolerance in

successive function evaluations is met. We hope that the final outputted value is as close

as possible to the value of the experimental parameter set P exp. The idea behind this

method is that if instead we have ‘true’, observed values of the variables rather than the

known parameter values, the algorithm can be easily adapted so that the ‘true’ parameters

are retrieved rather than a numerical solution of the governing equations. We now present

the algorithm, written in MATLAB, which is implemented throughout this dissertation.
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3.3.1 The Parameter Estimation Algorithm

Step One

Solve the system of ODEs using observed data and/or experimental values and known

initial conditions. MATLAB’s medium-order ode45 solver can be used for non-stiff differ-

ential equations, otherwise ode15s works well for stiff systems.

Step Two

Input an initial estimate of the parameters and use the same ODE solver to calculate

the new numerical solution values.

Step Three

Calculate the function value of the sum of the difference between the solution from

the observed data and that from the estimated parameter values (see (3.3)).

Step Four

Use the MATLAB downhill simplex method fminsearch to iterate and find the param-

eter values which minimise the difference in Step Three. At the end of each iteration go

back to Step Two and repeat Steps Three and Four until either (a) the difference falls

below some tolerance band or (b) the maximum number of iterations is completed.

We solve the function in (3.1) using an ODE solver. It is a medium order method for

non-stiff differential equations. It is an implementation of the explicit Runge-Kutta (4, 5)

pair of Dormand and Prince for approximating

x′ = f(x, t), x(0) = x0 (3.4)

by integrating the system from time t0 to tfinal.

The function argument to the method is a column vector corresponding to f(x, t) so

from (3.1) we have in the Lorenz case

dx

dt
≡ x′ =




x′1
x′2
x′3


 = f(x, t) =




−σ(x1 − x2)
ρx1 − x2 − x1x3

x1x2 − βx3

(3.5)

where x1 = x, x2 = y and x3 = z.

Each row in the solution array of x corresponds to a time returned in the time column
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vector. Parameter values can also be passed to the ODE function. Thus, the ODE solver

can be used to solve the system for both experimental data and repeating iterations with

initial guesses of the parameters.

3.4 Results

For the experimental parameter values, numerical solutions oscillate apparently forever

in a ‘chaotic’ manner. The ODEs determine a unique flow valid for all t. However, the

Lorenz model is very sensitive to small changes in the parameters. Only slightly perturbed

initial conditions in x and y with small enough step size lead to the numerical solutions

for x and z becoming stable and decaying. There is no transient behaviour in the ‘true’

solution, where the trajectory continues to wind around, never settling down to periodic

or stationary behaviour.

In the Data Assimilation Research Centre test case described in [4], the parameter

set [σ, ρ, β] is chosen to have the value [10, 28, 8/3]. These are taken to be the ‘true’

values. For the first run we make a ‘guess’ of the parameter values of [x, y, z]=[9, 30, 3]

with an assimilation period of 20 seconds. The initial values of x, y and z are set to 2,

as in [5]. The retrieved parameter values are [10.0163, 27.0641, 2.8356]. Clearly these

are close to the ‘true’ values of [10,28,8/3]. The final value of the minimised function is

0.0910. Figure 3.1 shows these plots. The spikes in the plots of the difference between

the solutions occur over very short times, so this means that the discrepancies are not

significantly contributing to the sum.

The assimilation window is then doubled to 40 seconds. This process mirrors the

system of data assimilation carried out in [15]. The final estimated parameter values are

[9.8879, 27.7067, 2.9310]. The results of this run are shown in Figure 3.3.

From these tests it can be seen that the minimisation algorithm is reasonably accu-

rate in reproducing the ‘true’ solution from the ODE solver. However as the assimilation

period is increased, the retrieved parameter values lead to less accurate predictions. We

see this by the fact that the function value after the same number of iterations for the
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doubled window is 0.3388, compared with 0.0910 for the shorter window. The solutions

for the extended window are reasonably accurate for the first quarter (half of the original

window), but the differences from the ‘true’ solutions increase with time. This is because

the ODE method delivers less accuracy for problems integrated over longer intervals.

To conclude, we have a method which requires an initial guess of some ‘known’ pa-

rameter values. For the Lorenz system, the method produces more accurate estimates of

the chaotic solutions which remain valid for the duration of the assimilation period. If

the assimilation period is increased, the convergence becomes slower.
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Figure 3.1: Plots of ‘true’ and estimated solutions of x, y and z, and the differences
between the ‘true’ and estimated solutions, versus time.
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Figure 3.3: Plots of ‘true’ and estimated solutions of x, y and z, and the differences
between the ‘true’ and estimated solutions, versus time, after doubling the assimilation
window.



Chapter 4

Chemical Reactions

4.1 Introduction

At the end of Chapter 3 we made simple meteorological forecasts using a parameter

estimation minimisation method. We will now turn to parameter estimation in another

process which is relevant to the Food Industry. In this chapter we will consider a simple

chemical reaction in order to be better able to deal with a larger batch test in the next

chapter.

Chemical reactions are always occurring in the real world. Most of them involve

proteins called enzymes. Enzymes are important in regulating any chemical processes,

for example as catalysts or inhibitors in a reaction. Enzymes react selectively on definite

compounds called substrates.

To understand the role of an enzyme in a food experiment, we need to consider enzyme

kinetics. This is the study of rates of reactions, the temporal behaviour of the various

reactants and the conditions which influence them. A biological example is given by

Murray in [6]. The difficulty comes from the fact that the catalytic effectiveness of enzymes

is reflected in the small concentrations needed in their reactions as compared with the

concentrations of the substrates involved.

In order to qualitatively understand the processes involved in a chemical reaction, the

development of a simplifying model is worthwhile. For such a model we should nevertheless

use reaction mechanisms which are as realistic as possible. In this chapter we discuss a

25
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model reaction mechanism which will form the base of a more complicated process to be

investigated in a later chapter.

4.2 Basic Enzyme Reaction

One of the most basic enzymatic reactions, first proposed by Michaelis and Menten and

cited by Murray [6], involves a substrate S reacting with an enzyme E to form a complex

SE which in turn is converted into a product P and the enzyme. We represent this

schematically by

S + E ⇀↽ SE, SE → P + E.
k1

k−1

k2

(4.1)

Here k1, k−1 and k2 are constant parameters associated with the rates of reaction.

The symbol ⇀↽ states that the reaction is reversible while the single arrow → indicates

that the reaction can go only one way. Such one-way reactions often allow us to write the

system as a relatively straightforward mathematical matrix system of equations.

The overall mechanism is a conversion of the substrate S, via the enzyme catalyst E,

into a product P . The Law of Mass Action says that the rate of a reaction is proportional

to the product of the concentration of the reactants. Applied to (4.1), it leads to one

equation for each reactant and hence the system of nonlinear equations

ds

dt
= −k1es + k−1c,

de

dt
= −k1es + (k−1 + k2)c

dc

dt
= k1es− (k−1 + k2)c,

dp

dt
= k2c (4.2)

where the concentrations of the reactants S, E, SE and P are denoted by s, e, c and p

respectively. The k′s, called rate constants, are constants of proportionality. We also

require initial conditions which we take here as those at the start of the process which

converts S to P , so

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0. (4.3)
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The solutions of (4.2) with (4.3) then give the concentrations, and hence the rates of

the reactions, as functions of time. Equations (4.2) are not all independent. The last

equation can be decoupled from the first three, in that p can be determined once c(t) is

known. In the mechanism (4.1) the enzyme E is a catalyst, which only facilitates the

reaction, so its total concentration, free plus combined, is a constant. As in [6], this

conservation law for the enzyme leads to the system of ordinary differential equations

reducing to only two for s and c,

ds

dt
= −k1e0s + (k1s + k−1)c

dc

dt
= k1e0s− (k1s + k−1 + k2)c, (4.4)

with initial conditions s(0) = s0, c(0) = 0.

In [6], Murray goes further to nondimensionalise the system (4.4) with the initial

conditions. This is a very common technique but it is not used in this work. Unlike the

meteorological example discussed in Chapter 2, we already have the initial conditions so

these do not have to be retrieved.

4.3 Method to Retrieve Parameter Values

We adapt the method used to approximate the Lorenz system numerically with the right-

hand-side of the equations obviously changed. The same algorithm as that in Section

3.3.1 is used.

From the original reaction (4.1), which converts S into a product P , we have that the

final steady state is both the substrate and the substrate-enzyme complex concentrations

are zero. We are interested here in the time evolution of the reaction so we need the

solutions of the nonlinear system (4.4), which we cannot solve analytically in a simple

closed form. However we can see what the numerical solutions of s and c look like

qualitatively using our method’s ODE solver.
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The function argument to the method must return a column vector corresponding to

f(x, t) so from (4.4) we have in this case

dx

dt
= x′ =

(
x′1
x′2

)
= f(t, x) =

{ −k1e0x1 + (k1x1 + k−1)x2

k1e0x1 − (k1x1 + k−1 + k2)x2
(4.5)

where x1 = s and x2 = c. We try to fit parameters to get the model to match the

observations. We minimise a similar norm function as that in (3.3).

4.4 Results

The initial values of s and c are chosen to be 1 and 0 respectively. The ‘true’ value of the

parameter set [k1, k2, k−1, e0] is taken to be [2, 0.8, 0.7, 0.4]. There is no reason why such

figures should be chosen over numbers of a greater order of magnitude. Nor is it known

whether these values are realistic. However the aim of the exercise is to retrieve values as

close to these as possible using the simplex method.

As a perturbation to the selected values, the initial guess of the parameters is set

to [3, 0.7, 0.8, 0.6] in the method so that they are all of the same order of magnitude.

After iterating, the method returns the initial ‘true’ parameter values [2, 0.8, 0.7, 0.4].

Therefore the ‘true’ and retrieved solutions are the same to a certain degree of accuracy,

as shown in Figure 4.1. Referring to the solution obtained for c in Figure 4.1, many time

steps have been taken between the ‘×’ marks. However, we have chosen to plot a low

number of points representing the experimental data points.

The differences between the ‘true’ and estimated solutions increase with time, as is

to be expected. Nevertheless, the magnitude of the differences for both s and c is small.

Comparing these solutions qualitatively with the equivalent dimensionless quantities in

Figure 5.1 of [6], we see that they are very similar. The final value of the minimised

norm function is 5.7643 × 10−7. Therefore we conclude that our minimisation technique

is sufficient to provide good approximations to a system of ODEs.

Further tests were carried out, with guesses further away from the picked ‘true’ param-

eter values. For a parameter set an order of magnitude greater than the true values, such

as [20, 14, 10, 12], the method is unable to meet integration tolerances without reducing
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Figure 4.1: Plots of ‘true’ and estimated solutions for concentrations s of substrate S and
c of complex SE, and the differences between the ‘true’ and estimated solutions, over a
period of 5 seconds.

the step size below the smallest value allowed at time t. Therefore, as we would expect,

the closer the initial guess to the ‘true’ values, the more accurate the retrieved parameters

are.

As stated in Chapter 3, if we had no information on the true parameters [k1, k2, k−1, e0]

but instead only the observed concentration values s and c at certain times, then we could

use an initial selection of the concentrations and obtain the optimal parameter values.
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Enzymes are very effective in small concentrations compared with concentrations of

substrates. This makes the system less straightforward to solve. It is possible to obtain a

very accurate asymptotic solution by looking for regular Taylor expansion solutions to s

and c. As shown in [6], a small parameter relating to the initial conditions of the enzyme

and substrate multiplies the nondimensionalised form of (4.5). Therefore it is a singu-

lar perturbation problem. If the parameter is very small then the order of the system is

reduced and it cannot in general satisfy all the initial conditions. Singular perturbation

techniques can determine asymptotic solutions of such systems for small parameters.

Since the solution does not satisfy the initial conditions for small parameters, at least

one of the solutions for s or c is not an analytic function of the parameter as it tends to

zero. More appropriate timescales are needed around t = 0. The effect is to magnify the

neighbourhood of t = 0. The thin layer near t = 0 is sometimes called the boundary layer

and is the domain where there are very rapid changes in the solution. It arises because

of the mixture of slow and fast length scales.

Murray describes the singular perturbation method. There are two parts to the re-

sulting solution - the singular or inner solution for s and c and is valid for small t, and the

nonsingular or outer solution valid for all t not in the immediate neighbourhood of t = 0.

Whilst in the case presented in [6] the singular solutions are determined completely, this

is not generally the case in singular perturbation problems.

The rapid change in the substrate-enzyme complex takes place in a very short time.

As all the action is at the start, matching does not get any more difficult for the remain-

der of the period. For many experimental purposes it is not measurable. Thus in many

experiments the singular solutions are never observed. The reaction for the complex is

essentially in a steady state. That is, the reaction is so fast it is more or less in equilibrium

at all times. This is Michaelis and Menten’s pseudo-steady state hypothesis. Therefore, it

is important to note that something is lost in applying experimental results to a theory

which cannot satisfy all the initial conditions.



Chapter 5

The Food Problem

5.1 Introduction

The motivation for this section is work carried out by Professor Leo Pyle et al. of the

University of Reading’s Food Biosciences Department. His paper [12] summarises a sim-

plified approach to quantitative modelling of the so-called Maillard reaction. It is for

this reaction which we wish to retrieve parameter values. Whilst the boundaries of the

reaction network are the same as those reported by Desclaux (cited in [12]), the reaction

scheme initially posed is a simplification. In the full version 14 reagents and intermediates

are included in the model, with 19 independent parameters to be estimated and fitted in

the equations.

After private communications with Leo Pyle [13], it was decided to further simplify

the reaction scheme to consider only the five main reagents and intermediates. This ap-

proach was taken for two reasons. The first was to avoid problems with non-measurable

state variables. Secondly it allowed for quicker solutions to be obtained, so that the

method itself could be tested thoroughly, rather than its completeness. As will be seen

later, including more parameters in a minimisation algorithm reduces the accuracy of the

method.

31
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5.1.1 Definitions

An amino acid is an organic compound containing an amino group (NH2), a carboxylic

acid group (COOH), and any of various side groups, especially any of the twenty com-

pounds that have the basic formula NH2CHRCOOH. The groups are linked together by

bonds to form proteins, or that function as chemical messengers and as intermediates in

metabolism.

In this context, a stoichiometric relationship is assumed between reactants and prod-

ucts in a chemical reaction. Arthromyces ramosus peroxidase (ARP) is an enzyme involved

in the chemical reaction which has a crystal structure. The experiments are pH-dependent.

Therefore iso-pH refers to a uniform numerical value of the pH level.

Molar mass is a unit that enables the weight of any chemical substance to be calcu-

lated, be it an element or a compound. Molar mass is the sum of all of the atomic masses

in a formula. If a substance is pertaining to, or formed from, two molecules, then it is

said to be bimolecular. For example a bimolecular reaction is a reaction between two

molecules.

5.2 Limitations and Assumptions in the Model

The main assumptions made in developing this model are outlined below.

1. The amino acid is assumed to play no direct role as a reagent in the first stages of the

Maillard reactions.

2. All reactions are assumed to follow first order kinetics with stoichiometric coefficients

equal to one.

3. The rate of reaction of the ARP intermediates is assumed to be very fast so that the

ARP concentration equals zero. This allows us to simplify the model.

4. The model assumes batch, well-mixed, isothermal, iso-pH conditions (so that rate con-

stants do not change during a particular experiment). These are significant assumptions.

5. The model is written in molar units; species concentrations are thus in kmolem−3; rate

constants have units mins−1.
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6. The model is first order, when in fact a bimolecular, second order model would be

more accurate.

One of the main problems is that the data is limited for the measurable components.

Some of the intermediates have very low concentrations so are hard to capture, and thus

the experimental data which we have tried to fit to predicted measurements to estimate

the parameters will be flawed.

5.3 Current Strategy to Test Models and Estimate

Parameters

It is important to understand the approach currently undertaken by the Food Biosciences

Department to estimate the parameters in a batch reaction, so that possible improvements

can be put forward.

The following models are tested sequentially against the individual concentration-time

profiles. The parameters are currently estimated in two ways. Firstly, using the modelling

package ASPEN, the ODEs are solved simultaneously by assuming mass balance on each

component. If unexpected results are obtained, then the parameters are often forced by

the user. The second method involves minimising the error sequentially, with the use

of curve-fitting to give improved forecasts. The solution is assumed to be parabolic. A

fourth-order Runge-Kutta scheme is used.

Reactions are carried out at certain temperatures with a pH level assumed to be con-

stant, and known initial concentrations up to a maximum temperature. In practice time is

needed to reach a certain temperature so more data is required. Temperature effects will

be included by assuming Arrhenius kinetics (see Section 5.5); estimations of the current

activation energies will be derived from the models and the data at different temperatures.

Experiments are carried out at different final temperatures. The species are contained

in metal test tubes fitted into an electrically-heated block, alongside a dummy experiment.

Synchronous time measurements are then made. When the temperature reaches 120oC,

the power is turned on to full. The block cannot be preheated. At 100oC, the automatic
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controller is switched on, which holds the temperature steady without any heating effects.

5.4 The Simplified Chemical Reaction

We start with a reagents pair, A being the sugar xyclose and B an amino acid. We assume

no other species are initially present. The start of the batch reaction network is taken to

be of the form shown in Figure 5.1.
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Figure 5.1: A first (simplified) version of the Maillard reaction.

The species C to N are some of the intermediates in the Maillard reaction, with prod-

ucts P1 to P4. The sugar and amino acid have initial concentrations xA(0) and xB(0)

respectively and all other initial concentrations of the intermediates are zero in all of the

modelling.

We assume that all the components are measurable, so that the balance on each com-
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ponent gives n ODEs for the concentrations x of the various species of the form

dxA

dt
= −r1

dxB

dt
= −r9

dxC

dt
= r1 − r2 − r3

...

where

r1 = k1xAxB

and all other r’s are first order

rj = kjxj (5.1)

with xj being the concentration of the j-th reagent/intermediate, and kj the corresponding

rate constant.

What is of interest chemically is the rate of reaction, or the rate of uptake; that is

dx/dt when x(t) has been found. It is usually determined experimentally by measuring

the dimensional substrate concentration at various times, then extrapolating back to t = 0

and the magnitude of the initial rate calculated.

5.5 Theory of Reaction Rates and Activation Ener-

gies

The theory for the food problem has been developed using work carried out on the dis-

tributed activation energy model (DAEM), with reference to [10]. It is applicable because,

as with the sugar and amino acid in Figure 5.1, the behaviour of the numerous reactants

in the DAEM is described by a distribution of activation energies. Methods are there-

fore needed to evaluate solutions quickly and efficiently. The solution method provides a

rapid and highly effective method appropriate to parameter estimation and distribution

function estimation.
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In [10], the model describes the pyrolysis of various coals under differing temperature

histories. The calculation of solutions to this model creates significant numerical difficul-

ties.

The problem involves a single block of coal and the time evolution of its constituent

parts, averaged over the whole block. Similar to the reagents and intermediates in Figure

5.1, the coal constituents are numbered j = 1...n, and for a first order rate of change of

mass (pyrolysis), the reaction rate kj (or rate constant as used in (5.1)) is taken to be

Arrhenius in form,

kj(t) = k0j
e−∆Ej/RT (t), (5.2)

where k0j
is the pre-exponential or frequency factor (mins−1), ∆Ej is the apparent activa-

tion energy for constituent j (kJ/mol), R = 8.3 is the universal gas constant (J/mol/K),

and T (t) is the time-dependent absolute temperature of the coal (K). We therefore take

kj in (5.1) to be of the form in (5.2) throughout this paper.

If j = 1 then the model is referred to as the single first-order reaction model (SFOR).

In contrast the DAEM allows for a more complicated set of reactions by considering a

continuous distribution of reactants.

Applying this model to the food problem where the volatiles are now food chemicals,

we model the activation energies ∆Ej to only depend on the j-th species itself, and not

on the temperature. The same is true of the values of the pre-exponential factors k0j
. In

practice these quantities do depend on temperature. The rates at which species disappear

are the main time-dependent quantities. We aim to estimate the (constant) parameters

k0j
and ∆Ej so that the rate constant kj can be found for each species j. We aim to do

this over a range of input concentrations xA and xB, and temperatures T .

To do this, we can firstly assume the initial distribution of chemicals and the pre-

exponential factors k0(E) and then find the resulting time dependence of the chemicals.

Alternatively we can solve the inverse problem, where the reaction rates dx/dt are mea-

sured and the distribution of chemicals must be determined. This second problem is one

of parameter estimation and as discussed in [10] there are significant difficulties in deter-

mining accurately both k0(E) and E as they are highly correlated. The important point
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is that we are not measuring the often coupled k0 or ∆E values. Rather, we get the data

from the experiments and infer the reaction rates.

5.6 The Models and Their Solutions

5.6.1 Model 1

The first step to estimate the parameters involved in the batch reaction in Figure 5.1, is

to make the simplification of considering only the reagents A and B and intermediates C

to E, as shown in Figure 5.2.
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Figure 5.2: Chemical reaction for Model 1.
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Using the notation used in Section 5.4 and with the assumptions of Section 5.2, the

rates of change of these five species concentrations are given by

dxA

dt
:=

dx1

dt
= −r1 = −k1xAxB = −k01e

−∆E1/RT xAxB

dxB

dt
:=

dx2

dt
= −r9 = −k9xB = −k09e

−∆E9/RT xB

dxC

dt
:=

dx3

dt
= r1 − r2 − r3 = k1xAxB − k2xC − k3xC

= k01e
−∆E1/RT xAxB −

(
k02e

−∆E2/RT + k03e
−∆E3/RT

)
xC

dxD

dt
:=

dx4

dt
= r2xC − r4xD − r5xD = k2xC − k4xD − k5xD

= k02e
−∆E2/RT xC −

(
k04e

−∆E4/RT + k05e
−∆E5/RT

)
xD

dxE

dt
:=

dx5

dt
= r3xC − r6xE − r7xE − r8xE = k3xC − k6xE − k7xE − k8xE

= k03e
−∆E3/RT xC −

(
k06e

−∆E6/RT + k07e
−∆E7/RT + k08e

−∆E8/RT
)
xD. (5.3)

It must be noted that the final products or final transient intermediates are not needed

in this simplified set of equations. They do not appear in the ODEs, but ideally the rates

at which they form should be measured by changing the temperature or initial substances.

In total there are 18 parameters included in this first model - 9 pre-exponential factors,

and 9 activation energies.

5.6.2 Testing of Model 1

We use a similar algorithm to that used for the simple chemical reaction (4.4) and detailed

in Section 3.3.1. Estimates of the 18 parameter values are made and the method solves

the system of ODEs numerically to obtain the ‘correct’ values of the parameters. Then

the simplex method minimises the sum of the squares between the guessed and ‘true’

concentration solutions.

In order to motivate the systematic simplifications of the equations, it is useful to

consider the typical values of the parameters and functions on which it depends. From [10],

for the coal pyrolysis problem, the pre-exponential factors are typically in the range k0 ∼
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1010− 1013 s−1, while the activation energies of interest are in the region 1× 105− 3× 105

J/mol. However the temperatures for the coal are much greater than for those for the

sugar and amino acid. Concentrations are in molar masses, to which an order of 10−4

mol/litre can be detected.

At this point in the investigation no ‘correct’ parameter values were known. Therefore

estimates had to be made, and then perturbations away from these estimates inputted.

As stated in [10], a common assumption to solve the equations is to take all the pre-

exponential factors, k0j
to have the same value k0. This simplifies much of the later

analysis and is reasonable given much of the uncertainty over the reactant distributions.

Therefore, to model the behaviour of the solutions qualitatively, the values of k0 and ∆E

were taken to give rate constant k values equal to the order of unity. The picked values

are displayed in Table 5.1, together with the retrieved values.

From [13] it was found that the initial concentrations of the sugar and amino acid are

0.24 mol/l. Testing is carried out from typical temperatures of T0 ≈ 50oC to an absolute

maximum T1 ≈ 140oC. The tests run for up to two hours. The temperature T in (5.3) is

ramped up in the code with time using the first order (exponential) rise

T (t) = T1 − (T1 − T0)e
t/τ (5.4)

with constant time constant τ . The experiment usually reaches T1 after between 5 and

10 minutes, so a small value of τ of 3 minutes was set for a small rise time and a quickly-

isothermal test. Such an exponential rise over two hours is shown in Figure 5.3. In this

case and for all of our tests, the start temperature T0 is taken to be 323K (≈ 50oC), and

the final temperature T1 to be 393K (≈ 120oC).

The value of R, the universal gas constant, is taken to be 8.3 J/mol/K, with each

value of k0j
= 1× 10−2mins−1, and ∆Ej = 2.5× 105 kJ/mol. All of our models for food

testing experiments are integrated forwards in minutes.



CHAPTER 5. THE FOOD PROBLEM 40

0 20 40 60 80 100 120
320

330

340

350

360

370

380

390

400

time t (mins)

te
m

p
e

ra
tu

re
 p

ro
fi
le

 T
(t

) 
(K

)

Plot of the exponential rise in temperature over 2 hours.

Figure 5.3: Plot of the exponential rise in temperature over time incorporated in the
model.

The method minimises in a least squares sense the approximation

J =
1

(xmax)2

∫
(x− xexp)2.

≈ 1

N

∑
i

(
x1(i)− xexp

1 (i)

xmax
1 (i)

)2

+ . . . +
1

N

∑
i

(
x5(i)− xexp

5 (i)

xmax
5 (i)

)2

, (5.5)

where N is the size of the vectors holding the concentrations of each species (the number

of times the concentrations are measured), and xexp is the experimental data. There are

five species x1 to x5 where x is the iterated solution. The maximum refers to the picked

parameters (the experimental data). This weights the sum depending on its maximum

value.

5.6.3 Interpretation of Results of Model 1

The picked ‘true’, initial guess and retrieved parameter values (to five significant figures)

for the model in Figure 5.2 are displayed in Table 5.1.



CHAPTER 5. THE FOOD PROBLEM 41

Parameter ‘True’ value Guess Retrieved value
k01 1× 10−2 2× 10−2 4.5663× 10−3

k02 1× 10−2 3× 10−2 1.8809× 10−2

k03 1× 10−2 2× 10−2 2.1136× 10−2

k04 1× 10−2 1.3× 10−2 3.0249× 10−3

k05 1× 10−2 1.1× 10−2 1.8792× 10−2

k06 1× 10−2 2× 10−2 1.0531× 10−2

k07 1× 10−2 3× 10−2 1.8394× 10−2

k08 1× 10−2 2× 10−2 1.9823× 10−2

k09 1× 10−2 1.3× 10−2 2.0455× 10−4

E1 2.5× 105 3× 105 1.3593× 105

E2 2.5× 105 1.5× 105 9.7770× 104

E3 2.5× 105 1× 105 1.8939× 104

E4 2.5× 105 2.8× 105 1.1881× 105

E5 2.5× 105 2× 105 4.1831× 105

E6 2.5× 105 2.7× 105 1.5530× 105

E7 2.5× 105 2.2× 105 2.4164× 105

E8 2.5× 105 3.2× 105 1.9256× 105

E9 2.5× 105 2.8× 105 2.1456× 105

Table 5.1: Parameter input and output values for Model 1.

The smaller the value of k0 and therefore the rate constant kj, the faster the reaction is.

A low value of ∆E means a non-varying system. With the exception of k01 , k04 , k09 , E2

and E3, all the retrieved parameters are of the same order of magnitude as those taken to

be the ‘true’ values. This means either our initial guess was realistic, or the parameters do

not have a large impact on the model, or the values are compensating for errors elsewhere

in the solutions.

The results obtained are presented in Figure 5.4. The model reaches a steady state

after a certain time period. Whilst the issues of identifiability and uniqueness are ever

present, and there is variability between the ‘actual’ and retrieved numerical solutions,

even with noisy observations the parameters are recovered to an acceptable degree of

accuracy.

According to Navon [7], if an optimally estimated parameter attains unphysical values,

one can deduce that either an overfitting of the data took place, or that this parameter

is not identifiable with the data available.
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Figure 5.4: Plots of estimated and ‘true’ solutions for species A(x1), B(x2), C(x2), D(x4)
and E(x5), and the differences between the ‘true’ and estimated solutions, versus time.

5.6.4 Model 2

After additional private communications [13], a further simplification to the model in

Figure 5.2 was made, as depicted in Figure 5.5.
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Figure 5.5: Chemical reaction for Model 2

The parameters corresponding to k7 and k8 have been made redundant. With the

same assumptions, the rates of change of the species concentrations are given by the set

of linear equations

dxA

dt
= −r1 = −k1xA = −k01e

−∆E1/RT xA

dxB

dt
= −r9 = −k9xB = −k09e

−∆E9/RT xB

dxC

dt
= r1 − r2 − r3 = k1xA − k2xC − k3xC

= k01e
−∆E1/RT xA −

(
k02e

−∆E2/RT + k03e
−∆E3/RT

)
xC

dxD

dt
= r2xC − r4xD − r5xD = k2xC − k4xD − k5xD

= k02e
−∆E2/RT xC −

(
k04e

−∆E4/RT + k05e
−∆E5/RT

)
xD

dxE

dt
= r3xC − r6xE = k3xC − k6xE

= k03e
−∆E3/RT xC −

(
k06e

−∆E6/RT
)
xE. (5.6)

The set of equations (5.6) can be written more compactly in vector-matrix form as

dx

dt
= Ax. (5.7)
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The system matrix A is given by

A =




−k1 0 0 0 0
0 −k9 0 0 0
k1 0 −(k2 + k3) 0 0
0 0 k2 −(k4 + k5) 0
0 0 k3 0 −k6




. (5.8)

With initial conditions x = x(0) this has solution

x(t) = x(0)eAt

where eAt is the state transition matrix. Therefore x is defined in terms of a double

exponential, as the terms in the matrix A (the rate constants) are also in terms of expo-

nentials.

In this case the structure of the equation set, from the structure of A, is such that the

analytic solution for each of the state variables can be easily (if laboriously) found.

5.6.5 Testing of Model 2

More realistic parameter values were sought for this particular model. From tests carried

out by the University of Reading’s Food Biosciences Department, the rate constants were

found to vary from an order of 10−8, through to 400. The values of the individual pre-

exponential factors and activation energies provided by Leo Pyle [13] are listed in Table

5.2. They were provided with a considerable amount of uncertainty in their accuracy.

For example, there was concern with E2 actually being 0 (we changed this to 1000) as

it is unrealistic to have no temperature dependence. No data on the parameters for the

amino acid were available, so the associated parameters were assumed to be half the

values of those for the sugar. However, as the aim is to provide a methodology to retrieve

parameters, the accuracy of the ‘true’ values was not a major issue.



CHAPTER 5. THE FOOD PROBLEM 46

k0j
Value ∆Ej Value

k01 7× 107 E1 9.9× 104

k02 2× 10−7 E2 ∼ 1× 103

k03 2.5× 10−6 E3 1.2× 104

k04 1× 107 E4 8× 104

k05 2.4× 107 E5 8× 104

k06 400 E6 ∼ 100
k09 3.5× 107 E9 9.9× 104

Table 5.2: Observed k0j
and ∆Ej values at a temperature of 120oC.

As a result of these experimental values, the rate constants kj vary by fourteen orders

of magnitude, which leads to a stiff problem. It is very difficult to capture both very fast

and very slow reactions. The algorithm used previously in Section 3.3.1 therefore needed

to include a stiff ODE solver.

In order to check the reliability of the method for this stiff (linear) problem, the

analytic solutions are found as a comparison. Using the values of the 14 parameters

provided by [13] and a constant temperature value of 400K, the seven rate constants kj

can be calculated using

kj = k0j
e−∆Ej/8.3×400. (5.9)

The kj values are then entered into the state transition matrix A in (5.8). The

eigenvalues and corresponding eigenvectors can be easily calculated. The eigenvalues are

λ =
( −1.1× 10−3 −388.1 2× 10−7 −7.8× 10−6 −3.9× 10−6

)
. (5.10)

As expected the eigenvalues are very different, which means we have a stiff problem (due

to the larger order of magnitude differences between the values of the pre-exponential

factors and activation energies). The problem associated with stiff systems is that extreme

timescales require small time steps, and this limits the stability of the approximation.

Therefore the ODE solver in the method uses a quasi-constant step size.
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With x′ = Ax we look for a solution of the form



x1

x2

x3

x4

x5




=
∑

j

αj




x1

x2

x3

x4

x5




λj

e(λjt), (5.11)

a linear combination of solutions where the αj’s are constants determined by the initial

conditions, λj’s the eigenvalues of A and (x)λj
the corresponding eigenvectors.

The analytic solution of the linear problem in Figure 5.5 is therefore approximated to

three significant figures as




x1

x2

x3

x4

x5




= 2.34× 10−7




0
0
0
1
0




e−1.1×10−3t + 4.24× 10−17




0
0
0
0
1




e−388t

+ 0.246




0
0
1

1.36× 10−4

1.73× 10−10




e−2×10−7t + 0.344




0.698
0

−0.716
−9.84× 10−5

−1.24× 10−10




e−7.8×10−6t

+0.24




0
1
0
0
0




e−3.9×10−6t. (5.12)

From this, the order of magnitude of action is only O(e−1×10−6 or−7
). Comparing the

magnitudes of these analytic solutions after, say, 30 minutes, it can be seen that species

A(x1) and B(x2) have the highest concentrations and have changed little since the start

time. Therefore, they are slow species. Species D(x4) has the next smallest concentra-

tion, whilst species C(x3) and E(x5) have concentrations order of magnitude O(10−10).

Therefore species C and E are fast species.
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5.6.6 Interpretation of Results of Model 2

Table 5.3 shows the ‘true’, guessed and retrieved parameter values for Model 2 in Figure

5.5 at the termination point of the method.

Parameter ‘True’ value Guess Retrieved value
k01 7× 107 6× 107 8.4666× 107

k02 2× 10−7 1× 10−7 2.1789× 10−7

k03 2.5× 10−6 2.3× 10−6 4.1588× 10−6

k04 1× 107 2× 107 1.0192× 106

k05 2.4× 107 2.2× 107 9.4160× 106

k06 400 300 185.03
k09 3.5× 107 3× 107 2.3803× 107

E1 9.9× 104 9× 104 9.9614× 104

E2 1× 103 800 812.16
E3 1.2× 104 1.5× 104 1.6287× 104

E4 8× 104 8.5× 104 6.8152× 104

E5 8× 104 7.5× 104 8.7404× 104

E6 100 200 192.01
E9 9.9× 104 9.6× 104 9.7727× 104

Table 5.3: Parameter input and output values for Model 2.

Comparing the retrieved parameters with those from the nonlinear model (which did

not use observed parameter values), we note that the orders of magnitude are more

consistent in this linear case. This would be expected, as the number of parameters has

decreased. The retrieved values are closer to the ‘true’ values than in the 18-parameter

case. The results are plotted in Figure 5.6.

As can be seen from the plots, the blue and green lines representing the ‘true’ and

iterated numerical solutions are on top of each other. They are much closer than in the

nonlinear case. Additionally the analytic solutions are similar in form to those using the

minimisation scheme for ramped temperature. The deviation is due to the fact that the

analytic solution was calculated assuming a constant temperature whereas the numerical

solution uses an exponential increase in temperature.

An important consequence of the original model annotated in [12] is that the model

parameters can in theory be found sequentially from the concentration profiles for the
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Figure 5.6: Plots of estimated, ‘true’ and analytic solutions for species A(x1), B(x2),
C(x2), D(x4) and E(x5), and the differences between the ‘true’ and estimated solutions,
versus time.

individual components; this also means that the individual models can be tested (more

or less) independently.
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5.7 Solutions Using Observed Concentration Data

Observed concentration values were obtained from [13] for the five species under con-

sideration in Model 2 (Figure 5.5). Due to species C being very reactive and quickly

transforming into intermediates D and E, no data for C was obtained. It is therefore

taken out of the sum and assumed to be zero throughout the method. For our model the

concentration measurements at a temperature of 120oC and pH 8 are used as this set of

results is complete and we wish to test our model for the highest temperatures used in

the laboratory. The values obtained from Leo Pyle are listed in Table 5.4.

Time A(x1) B(x2) D(x4) E(x5)
0 min. 0.24 0.24 0 0
30 min. 0.1678 0.1066 5.5153× 10−4 1.2182× 10−3

60 min. 0.0666 0.0640 4.2729× 10−4 4.9396× 10−4

90 min. 0.0266 0.0480 3.7274× 10−4 3.5456× 10−4

120 min. 0.0213 0.0427 2.8486× 10−4 2.2516× 10−4

Table 5.4: Observed concentrations of species A, B, C and D in mol/litre at a temperature
of 120oC and pH 8.

Concentration recordings of the five species were taken at five times each, including

the initial concentrations. To gain a complete profile of these observations at all times,

and to estimate a curve through the five points for each species, cubic spline interpolation

is used in the method. The values of the underlying function (in this case the set of

observed concentrations) are found at the time points required, and a plot of the spline

is then taken as the ‘true’ data in the algorithm in Section 3.3.1. Usually five points give

a reasonably smooth spline with the possibility of an inflection.

A cubic spline is a spline constructed of piecewise third-order polynomials which pass

through a set of m control points. The first and second derivatives are smooth, but the

third are not. The second derivative of each polynomial is commonly set to zero at the

endpoints, since this provides a boundary condition that completes the system of m − 2

equations. This produces a so-called ‘natural’ cubic spline and leads to a simple tridiago-

nal system which can be solved easily to give the coefficients of the polynomials. However,
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this choice is not the only one possible, and other boundary conditions can be used in-

stead.

With the real data, the model has to handle many orders of magnitude. The splines

assume continuity. The parameters’ ‘true’ values are no longer needed. Rather, selec-

tions are made in combination with the real observed data. Nevertheless, the initial guess

of the parameter values is taken to be the same as those listed in Table 5.2 with two

amendments. The values of ∆E2 and ∆E6 are set to one, in order to get some form of

retrieved solutions for species D and E. The initial guess and retrieved parameter values

are displayed in Table 5.5. The results are plotted in Figure 5.7.

Parameter ‘Guessed’ value Retrieved value
k01 7× 107 1.2238× 109

k02 2× 10−7 4.6533× 10−7

k03 2.5× 10−6 −1.0385× 10−4

k04 1× 107 5.2329× 107

k05 2.4× 107 6.5298× 108

k06 400 −4.5705× 103

k09 3.5× 107 7.7587× 107

E1 9.9× 103 8.0518× 104

E2 1 -9.2124
E3 1.2× 104 −2.0735× 104

E4 8× 104 1.7403× 105

E5 8× 104 1.6858× 106

E6 1 13.371
E9 9.9× 104 7.0823× 104

Table 5.5: Parameter input and output values for Model 2 using observed concentration
data.

From combustion theory it is known that activation energies are relatively straight-

forward to measure. This is supported by these results, where the retrieved activation

energies are closer to the initial guesses than those for the k0 values. In practice k0 values

are impossible to measure. The retrieved values for k02 , k04 , k09 , E1 and E9 in particular

are close to those that were observed in the Food Biosciences Department and formed our

initial guess. They are of the same order of magnitude. With the parameters involved
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in the transition of species C to E and beyond being up to two orders of magnitude

larger than the observed values, further observations are needed. It must be noted that

these parameter values are valid for only one maximum temperature T1 and may not be

consistent for different temperatures.

Compared with the other tests, there is more variety in the orders of magnitude be-

tween the guessed and retrieved parameter values. Many of the retrieved values are larger

by up to two orders of magnitude, suggesting our guesses (based on observations origi-

nally) are under-estimates. For the first time negative parameters are also obtained. This

can be interpreted in a number of ways. Either our initial guesses are not very realistic,

or the retrieved values have been affected by dataset uncertainty. There are two sources

of dataset uncertainty: structured uncertainty (from the method - the main source), and

the residual uncertainty (the method’s finiteness of data). It is a sequential and highly

sensitive method, so the errors cascade down. The method struggles to work with con-

centration data containing points of inflection as is the case for species D and E. This is

because the inflections may not be part of the ODE’s solution set.

5.8 Summary and Further Work

One of the main problems the Food Biosciences Department faces is the fact that all

concentration data is limited. Parameter values are very sensitive to initial values, so

a great deal of human intervention and forcing is required in order to obtain reasonable

values. The algorithm used here has required no forcing and produces reasonably accurate

solutions using limited data and splines. Little or no human intervention was necessary

to obtain the plots for the different models.

If more data was obtained then fitting would be more accurate. However, another lim-

itation is that the same test cannot be carried out twice. For example, modelling the effect

of pH has not yet been successful. The Food Biosciences Department has recently started

to continuously feed the reagents into the experiment, rather than carry out batch tests.

They found that very stable steady states in colouring are eventually reached. Therefore
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Figure 5.7: Species A, B, D and E’s concentration profiles from cubic splines of observed
data and iterated solutions using estimated parameters.
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time derivatives could be replaced by algebraic equations in the future, which would be

much easier to fit. Tests are ongoing in the department to investigate these balances.

Whether the schemes in the methods to solve the ODEs conserve mass and therefore

satisfy the theory of conservation of mass implicit in the reaction models is a source of

debate. There are many different minimisation techniques to choose from, but only one

has been tested here.

Other issues for study include the number of observations required for a given mesh

resolution in order to achieve satisfactory parameter identification. Ill-posedness of the

problem of parameter estimation together with the problems of identifiability and unique-

ness also need to be investigated. We do not claim that the solutions produced are unique.

From the anomalies with the observed data it would suggest that we cannot defer the con-

ditions on the k0j
and ∆Ej values uniquely from the data. Nevertheless, even with noisy

observations, the parameters have been recovered to an acceptable degree of accuracy for

cases where only non-observational data is used.

The issues of ramping of the temperature and how often measurements of the concen-

trations of the different species are taken have not been addressed yet. The maximum

concentrations x are required, but the kj’s can only be estimated from a limited number of

points for three temperature experiments. An optimum experimental strategy to estimate

the k0 and ∆E values is still sought by the Food Biosciences Department.

The current approach is to keep the temperature at a fixed value such as 120oC. It

has to be assumed that the pH level remains constant, as the real-life situation is hard to

model. However, the actual tests can never be fully isothermal, because the equipment is

always starting from cold.

In a similar approach to that taken by Niksa and Lau (cited in [10]), we have found

analytic solutions with linear ramping and numerical solutions with exponential ramping

temperature histories. The question to be posed is whether it would be better to carry

out non-isothermal tests. This gives rise to a second minimisation problem - the first was

to estimate the parameters, the second an optimal temperature function T (t) to recover

maximum information from the model.
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Parameter Estimation: Further
Work and Possible Improvements

6.1 Ill-posedness

The key difficulty in developing successful numerical techniques for identifying spatially

dependent parameters resides in the fact that such problems are ill-posed. Ill-posedness

follows from the fact that the differentiation operator is not continuous with respect to

any physically meaningful observations. For example the problem of identifying spatially-

dependent coefficients appearing in the differential operator of a partial differential equa-

tion is in general both nonlinear and ill-posed. We do not know the covariance in this

case, but we do know the order of magnitude if it is ill-posed in order to make it more

well-posed.

6.2 Identifiability

The uniqueness problem in parameter estimation is related to the issue of parameter

identifiability. Even if curves are successfully matched, it does not imply that the choice

of parameters is unique. The model in Chapter 4 with only two parameters provided

the best fit, but even in this case we cannot claim that the retrieved values are unique.

Further work is needed to determine whether each unknown parameter in the batch test

is ‘identifiable’, that is, whether it can be determined uniquely in all points of its domain

by using the input-output relation of the system and the input-output data (Kitamura
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and Nakarigi, cited in [7]).

6.3 Scaling

For complicated functions, difficulties may be encountered in choosing suitable scaling

factors. There is no general rule to determine the best scaling factors for all minimisation

problems. According to [8], good scaling is problem-dependent. A basic rule is that the

variables of the scaled problem should be of similar magnitude and of order unity. This

is because, within optimisation routines, convergence tolerances are based on an implicit

definition of ‘small’ and ‘large’. Thus, variables with widely varying orders of magnitude

may cause difficulties for some minimisation algorithms (Gill et al. cited in [16]). One

simple direct way to determine the scaling factor is to use the typical values for different

fields (for instance, 1 can be used as the scaling factor of concentration in Chapter 5).

6.4 Sensitivity Analysis

Sensitivity analysis is an efficient tool in parameter estimation in meteorology and oceanog-

raphy. Whether it can be used in such a problem in the Food Industry as presented here

is a source of further work. The relative sensitivity demonstrates the measure of the im-

portance of the input parameter. The higher the relative sensitivity, the more important

the input parameter in question. Thus, one of the crucial aspects of sensitivity analysis is

to identify the most important input parameters whose changes impact the most chosen

response.

The magnitudes of relative sensitivities can serve as a guide to ranking the importance

of model parameters for use in choosing candidates for optimal parameter estimation. For

models such as that in the food problem that involve a large number of parameters and

comparatively few responses, sensitivity analysis can be performed very efficiently by

using deterministic methods based on adjoint functions.
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Conclusion

We have tested a minimisation algorithm against a number of different models. For the

Lorenz system in Chapter 3, the method found it difficult to match all of the chaotic

detail. For the simple chemical reaction in Chapter 4, all of the action is at the start, and

there is not as much detail to match, so the parameter iterations converge much more

quickly. Over the shorter timescales the singular solutions are never observed.

In the food problem of Chapter 5, unlike the Lorenz case, the model reaches a steady

state after a certain time. For the nonlinear food model, the profiles of the solutions pro-

duced by our minimising method closely resemble the form of the ‘true’ solutions found

numerically. When the model is linearised by assuming the amino acid B does not trans-

form into intermediate C, the iterated solutions using the optimal parameters are even

closer to the ‘true’ solutions. Further, the form of the iterated solutions closely resembles

the form of the analytic solutions found in the linear case. This validates the code itself,

as well as the optimal parameters that are retrieved in both the linear and nonlinear case.

Combining the linear Model 2 with observed concentration data complicates the re-

sults. Some of the species are present in such small quantities that they are hard to

capture. The solutions for the sugar and amino acid reagents are close to the observed

profiles (with splines used to complete the profile of the ‘true’ data). However, the small-

scale solutions of intermediates D and E do not resemble the observed concentrations.

This would suggest that either the proposed linear model is an over-simplification of re-

ality, or our minimising method cannot handle the large variety in orders of magnitude.
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A better strategy is therefore required to determine when measurements should be taken.
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