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Abstract

The numerical scheme proposed by Bott to simulate the growth of cloud

droplets is used to investigate the aspects to which the collision and coales-

cence growth mechanism is sensitive. Perturbations to the initial size and

concentration of the cloud droplets are considered, as well as modifications

to the shape of the initial droplet distribution. The impact of these changes

on the time taken for the model to produce drops of rain size is determined.

The collision kernel governing the chance of cloud droplets colliding and co-

alescing is also studied to gauge an understanding of the likelihood of this

process happening for certain size drops.

It is demonstrated that the relationship between the time taken to pro-

duce rain t and the total water content w, (the droplet concentration) for

drops of constant size is t ∝ w−1. The relationship between the size of the

droplets and the time taken to produce rain is shown to vary depending on the

droplet size, with three different regimes existing. For large droplets of radius

r > 300µm the relation t ∝ r2 approximately holds, which disagrees with

theoretical derivations that point to a cubic relationship. Through analysing

the collision kernel it is revealed that the chance of two droplets colliding

and coalescing is extremely sensitive to the size of the colliding drops.



Chapter 1

Introduction

A fundamental problem with existing models that simulate the growth of

cloud water droplets into raindrops, is that they do not predict the process

to happen fast enough in convective clouds. Even though these models are

not used to produce weather forecasts, and are purely for research purposes,

they are very important for furthering our understanding of the processes to

which cloud droplet growth is sensitive. There are two mechanisms by which

this droplet growth occurs; diffusion of excess moisture in the cloud onto the

cloud droplets, and through collision and coalescence of the cloud droplets.

Out of these two growth mechanisms, the latter is the dominant for drops of

radius larger than about 10 µm (Davis and Sartor 1967), whereas for drops

smaller than this the moisture diffusion mechanism is more important.

The collision and coalescence process refers to two cloud droplets of dif-

ferent sizes (and hence masses) coming into contact because there terminal

velocities are different. If when they collide, they then stick together to form
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a new drop of mass equal to the sum of the two original droplet masses,

then we say the drops have coalesced. The following schematic highlights a

situation when collision and coalescence may occur.

Figure 1.1: schematic of how two drops can collide

In this schematic (figure 1.1) a drop of mass m2 falling at terminal velocity v2

is on course to collide with a smaller drop of mass m1 falling at its terminal

velocity v1, since v2 > v1. If the two drops combine (coalesce) when they

collide then we obtain the situation shown in figure 1.2.
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Figure 1.2: schematic of coalesced drops

The new drop that forms has mass that is simply the sum of the two colliding

droplet masses, and terminal velocity equal to the sum of the velocities of

the colliding drops. The larger of the two colliding drops is referred to as

the collector drop and is considered to be drop that gains the mass at the

expense of the smaller drop in the collision. This smaller drop is usually

called the collected drop.

The collision and coalescence of cloud droplets is quite a complicated process,

and one reason for this is the fact that an initial droplet size spectrum must
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be known in great detail. More importantly though, we need to correctly cal-

culate the chance of droplets colliding and coalescing, because this is known

to be sensitive to the droplet radii. Previous work on this particular aspect

of the problem by Hocking (1959) had shown that collision was impossible

unless the collector drop had a radius larger than 18 µm. The reason why

the collector drops must be greater than a certain size for the collision and

coalescence process to occur, is the fact that small cloud droplets have al-

most insignificant mass and hence little inertia. This lack of inertia results

in droplets changing their trajectories to avoid collisions (if they are suffi-

ciently small), through following the flow of the air around each other. Davis

and Sartor (1967) were able to improve the estimate of the minimum size of

the collector drops, and showed that they can in fact be as small as 10 µm,

though at this size the collection efficiency (described next) is low.

Even if two droplets collide, they do not necessarily coalesce, and it is this

principle that leads to the so called collection efficiency. This term can be

thought of as the product of the collision efficiency and the coalescence effi-

ciency. The collision efficiency represents the probability of two given drops

colliding, and the coalescence efficiency refers to the chance of two collided

drops combining to form one single drop. Beard and Ochs (1984) were able

to show that the coalescence efficiency decreases with increasing drop sizes,

from near 100 percent for collector drop radii R < 25 µm and collected

droplet radii r < 10 µm, to 50 percent or less for R > 800 µm and r > 40

µm. This therefore suggests that the low collection efficiency obtained by

Davis and Sartor for R = 10 µm is due to the very low collision efficiency for
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collector drops this small (associated with the drops following the air flow

around eachother and avoiding collision).

When two droplets collide it can result in the break up of the collector drop,

or simply the two drops moving apart fairly unchanged. Davis and Sartor

(1967) illustrated that overall the collection efficiency is dominated by the

collision efficiency, with the coalescence efficiency playing a less significant

role. For this reason the collection efficiency largely follows the variation of

the collision efficiency with droplet radius, and so it is lower for collisions

between small drops than it is for collisions between larger drops.

Analytically the collision and coalescence growth mechanism is treated as

a stochastic (random) process due to the fact that whether two drops collide

and coalesce or not is based on chance. The equation governing the process is

called the stochastic collection equation (SCE) and is as follows (Pruppacher

and Klett 1997).

∂n(x, t)

∂t
=

∫ x1

x0

n(xc, t)K(xc, x
′)n(x′, t)dx′ −

∫ ∞
x0

n(x, t)K(x, x′)n(x′, t)dx′

(1.1)

In equation 1.1, n(x, t) is the drop number distribution function at a given

time t, and K(xc, x
′) is the collection kernel which describes the rate at which

drops of mass xc = x − x′ are collected by drops of mass x′, to form a new

drop of mass x. x0 corresponds to the smallest drop being involved in the

collection process and x1 = x/2. As in Berry (1967), instead of writing the
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SCE in terms of the change in the drop number distribution function with

time, we can write it in terms of the change in the mass distribution function

g(y, t), where

g(y, t)dy = xn(x, t)dx, n(x, t) =
1

3x2
g(y, t). (1.2)

Here y = ln r with r being the radius of the drops with mass x. The mass dis-

tribution function basically describes how the total water mass is distributed

in drops of different sizes. If we substitute (1.2) into (1.1) we obtain the SCE

describing the change in the mass distribution function with time,

∂g(y, t)

∂t
=

∫ y1

y0

x2

x2cx
′ g(yc, t)K(yc, y

′)g(y′, t)dy′ −
∫ ∞
y0

g(y, t)
K(y, y′)

x′
g(y′, t)dy′

(1.3)

where yc = ln rc and y′ = ln r′ with rc and r′ being the radius of drops of

mass xc and x′ respectively. The first integral on the right hand side of (1.3)

represents the rate at which drops of mass x are gained by collision and coa-

lescence of two smaller drops. The second integral describes the loss of drops

of mass x due to collection by other drops.

In this paper we will explore the aspects to which the collision and coa-

lescence growth mechanism is sensitive, with the aim of trying to explain

how the rapid formation of rain seen in convective clouds is possible. To do

this we use a numerical method devised by Bott (1998), which solves the

SCE in the form of equation (1.3) using a finite volume approach. Details of
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the scheme Bott used are given in the following section.

1.1 Numerical methods for solving the SCE

A popular numerical method to approximate the SCE was devised by Berry

and Reindhart (1974). They solved (1.1) at discrete points of the drop spec-

trum giving very accurate results. However the problem with the scheme

they used was that due to the number of calculations that must be made,

the method was not very computationally efficient and so it was slow to yield

results.

A new flux (finite volume) method was proposed in 1998 by Bott. The

instant advantage of this method over the scheme devised by Berry and

Reindhart is that it is very computationally efficient. The method Bott de-

vised is now briefly described, but greater detail can be found in Bott (1998).

To solve (1.3) numerically a logarithmically equidistant mass grid was in-

troduced,

xk+1 = αxk, k = 1, ...,m, (1.4)

where xk+1 corresponds to the mass in grid box k + 1 and xk to the mass

in grid box k. From 1.4 we yield the y grid mesh equally spaced with

∆yk = ∆y = lnα/3. It should be noted that m is the total number of grid

points, and α = 2
1
2 , which results in a doubling of the drop mass after two
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grid boxes. ∆yk = lnα/3 from the fact that y = ln r and x ∝ r3 (which we

know from the relation Mass = Density×V olume, where V olume = 4
3
πr3).

Since α can be thought of as a change in mass, we can write y ∝ lnα
1
3 . It

therefore follows that because we are considering the grid spacing (change in

y over a grid box), we can write ∆yk = lnα
1
3 which is just expressed more

simply as ∆yk = lnα/3.

The collision of drops with mass xi with drops of mass xj yields a change

in the mass distributions gi,gj. In discretized form the change in the mass

distributions may be expressed as,

gi(i, j) = gi − gi
K(i, j)

xj
gj∆y∆t (1.5)

gj(j, i) = gj − gj
K(j, i)

xi
gi∆y∆t (1.6)

In these discretizations, gi and gj represent the mass distribution functions

at grid point i and j respectively before the collision, while gi(i, j) and gj(j, i)

are the new distributions after the collision. K(i, j) is the collection Kernel

for collisions between these drops (described later in this section), and ∆t is

the time step being considered. These discretizations have this form because

in both (1.5) and (1.6) we are considering the mass distribution functions to

reduce (because less drops exist with mass xi and xj after the collision) and

so we are considering the second integral (the rate of mass loss) in equation

(1.3). So (1.5) and (1.6) are just discretizations of the second integral in (1.3).
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Collisions between drops in grid box i with drops in grid box j produce

new drops of mass x′(i, j) = xi + xj, and so we obtain the mass distribu-

tion function g′(i, j) for the new drops formed, which is can be discretized as:

g′(i, j) =
x′(i, j)

xixj
giK(i, j)gj∆y∆t (1.7)

Discretization (1.7) has this form because g′(i, j) has increased as a result

of the collisions leading to drops of mass x′(i, j). This means that we are

therefore considering the first integral in (1.3), representing the rate of mass

gain, and hence (1.7) is just a discretization of the first integral.

A problem exists that x′(i, j) usually differs from the discretized mass points

xk, meaning

xk ≤ x′(i, j) ≤ xk+1, (1.8)

and so the mass density g′(i, j) must be split up in the grid boxed k and

k+ 1. Bott (1998) did this partitioning by the following two-step procedure.

Firstly the entirety of g′(i, j) is added to grid box k so that,

g′k(i, j) = gk + g′(i, j). (1.9)

Secondly a certain fraction of g′k(i, j) is transported into grid box k+ 1. The

calculations made treat this mass transport as an advection process through

the boundary k + 1
2

between the grid boxes k and k + 1. The procedure is
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shown in the following schematic by Bott.

Figure 1.3: Schematic illustration of the flux method (Bott 1988)

In figure 1.3, the dashed lines represent the initial mass distributions in grid

boxes i, j, k, and k+1, and the full lines indicate the mass distributions after

the collision process. The stippled area in grid box k corresponds to the mass

that will be transported into grid box k + 1, and the dark shaded areas are

the final mass increase in grid boxes k and k + 1.

This mass advection may be written as,

gk(i, j) = g′k(i, j)− fk+1/2(i, j) (1.10)

gk+1(i, j) = gk+1 + fk+1/2(i, j), (1.11)
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where

fk+1/2(i, j)∆y

∆t

represents the mass flux through the boundary k + 1
2
. To obtain the results

in this paper we will calculate fk+1/2(i, j) using the upstream formula Bott

proposed, although it should be noted he tried two additional approaches to

determine the flux. The upstream formula gives,

fk+1/2(i, j) = ckg
′
k(i, j)w(i, j). (1.12)

In this formula we should interpret ck as a Courant number, and should cal-

culate it as a function of the position x′(i, j) between xk and xk+1 as below.

ck =
x′(i, j)− xk
xk+1 − xk

(1.13)

A weighting function w(i, j) has been introduced in (1.12) because the ad-

vective flux through the boundary k+ 1
2

is given by g′(i, j) instead of g′k(i, j),

unlike for the normal advection process with ck = 1 (for x′(i, j) = xk+1). As

a result,

w(i, j) =
g′(i, j)

g′k(i, j)
, (1.14)
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and hence it is clear that the upstream scheme is simply,

fk+1/2(i, j) = ckg
′(i, j). (1.15)

This results in the same partitioning of g′(i, j) as that in the method of

Kovetz and Olund (1969), except they solved the SCE in terms of number

distribution, as in (1.1). Bott found that this upstream formula produces

drop spectra that are seemingly too broad, and he knew this to be due to the

large numerical diffusion that results from such an advection scheme. The

two other approaches he tried determined the flux according to higher order

advection schemes of Bott (1989a,b), and through using these the numerical

diffusion was reduced.

An iterative procedure is needed in order to treat all the collisions of drops

during the time step ∆t. If the grid box of the smallest and largest drops

being involved in the collision process are denoted by i = i0 and i = i1,

then firstly collision of the smallest drops with drops of grid box j = i0 + 1

is calculated giving new mass distribution functions according to equations

(1.5),(1.6),(1.10) and (1.11). Next the collision of the drops remaining in

i = i0 having the new mass distribution function gi0(i0, i0 + 1) with the

drops in grid box j = i0 + 2 is determined. This process is continued un-

til all the collisions of drops in grid box i = i0 with drops of grid boxes

j = i0 + 1, i0 + 2, ..., i1 have been considered. Next collisions of drops in grid

box i = i0 + 1 with all larger drops j = i0 + 2, i0 + 3, ..., i1 are treated in the

same way, and this is repeated for all drops i = i0 + 2, ..., until in the last
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step the collision of drops i = i1 − 1 with drops j = i1 has been determined.

It is clear from equations (1.5) and (1.6) that gi(i, j) or gj(j, i) could become

negative which is obviously a problem because negative mass concentrations

are unphysical. It is therefore required that the flux method is positive def-

inite, and this can be insured by applying the following restrictions to the

numerical time step:

∆t ≤ xj
gj(i, j − 1)∆yK(i, j)

(1.16)

∆t ≤ xi
gi(i, j − 1)∆yK(i, j)

(1.17)

where inequality (1.17) is valid for j 6= k. The first inequality (1.16) ensures

that gi(i, j) ≥ 0 after each collision. The reason why (1.17) does not apply

if j = k is that for j = k the mass subtracted from gj(j, i) in (1.6) will be

added again in (1.9).

Earlier in this section the collection kernel K(i, j) was mentioned, and this

quantity is related to the probability that in a given time interval there will

be a collection event involving two droplets. In Bott’s model three differ-

ent calculation methods are considered for the kernel, these including the

Golovin kernel (taken from Golovin 1963), and the hydrodynamic kernels.

The Golovin kernel will not be described or used at any point to obtain re-

sults in this paper, however results are presented for the other two kernels,
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and so these are now briefly described.

The hydrodynamic kernel is given (from Pruppacher and Klett 1997) by

the following:

k(i, j) = π(ri + rj)
2E |w(ri)− w(rj)| (1.18)

In (1.18) ri and rj represent the radii of the two colliding drops respectively,

and w(ri), w(rj) correspond to the terminal velocities of the two drops, ob-

tained following Beard (1976). E is the collision efficiency and in this report

we will consider two different methods for determining its value, one of which

is taken from Long (1974), and is calculated as:

E = k1r
2
1

(
1− k2
r2

)
. (1.19)

In (1.19) r1 refers to the radius of the collector drop, and r2 to the drop being

collected and k1, k2 are constants of value 4.5 × 104cm−2 and 3 × 10−4cm

respectively. Here we see the large dependence on the colliding droplet radii,

as all 3 contributions to (1.18) consider drop size. It is this kernel with the

collection efficiency calculated as (1.19) that we will use to produce most of

the results that are described in this paper.

The second approach that Bott used to obtain values of E in (1.18) in-

volved using a data table of colliding drop radii and collision efficiencies from

Hall (1980). The table consists of results derived by various authors, as for
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collector drops of radius < 30µm Hall chose the theoretical results of Davis

(1972) and Jonas (1972). For collecting droplets of radii between 40 and 300

µm, which are collecting smaller drops with radius < 60% the size of the

collector drop radius the results of Schlamp et al. (1976), Lin and Lee (1975)

and Shafrir and Gal-Chen (1971) were chosen. If the radii ratio was greater

than 0.6 (for the same radius range) Hall chose to use the results of Klett

and Davis (1973).
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Chapter 2

Methodology

From the previous work on this field it appears that the growth process is

sensitive to both the size and the initial concentration of droplets within the

cloud. In order to quantify the growth rate of these model simulated drops,

we introduce a function that calculates the time taken to produce rain drops

in the cloud. Since raindrops can be a large range of sizes, a fixed radius

value had to be chosen in the model, so as to be consistent for comparisons.

This radius was chosen to be 1mm, which is a typical radius for a raindrop

in a convective cloud. The model from Bott (1998) was adapted so as to

indicate that rain was being produced when more than 50 percent of the

total water in the cloud was in drops of radius greater than 1mm, this way

avoiding the issue that chance collisions might produce a few drops of this

size very quickly, which would lead to the model suggesting a growth rate

that may be unrealistically fast.

As stated earlier, in Bott’s simulations the initial mode radius of the cloud
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drops was chosen to be 10 µm, with the size distribution in the form of a

single peak, for which the total water content was fixed at 1 gm−3. An ideal

first set of perturbations to try would therefore be to investigate the effect of

changing both the initial mode radius and the total water content. In doing

this we are effectively changing both the initial size and concentration of the

cloud drops, since if we just increase the radius, and keep the total water

fixed at 1 gm−3, the droplet field we obtain will have larger but fewer drops

compared to the field considered by Bott. If we were however to increase the

initial radii and total water by the same factor, we would obtain larger drops

than Bott considered, but the concentration of drops would be the same.

Through investigating the effect of making these perturbations, it should be

possible to determine a relationship between these parameters and the time

taken to produce drops that are sufficiently large to be rain. It should be

noted that for these perturbations we will be using the hydrodynamic colli-

sion kernel with the collision efficiency calculated according to Long.

The effect of having two peaks in the initial droplet size distribution will

also be investigated, as this will allow us to clearly observe how the two dif-

ferent sizes of droplets interact and form larger drops. A series of additional

perturbations will be made to the model for an initial two peak distribution,

including changing the method for calculating the collision efficiency to that

of Hall. This will allow us to examine whether the droplet evolution differs

substantially or not for the two different collision efficiencies. To examine the

kernels further we will determine the magnitudes of the three components

that make them up, from which we should be able to see how the contribu-
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tion from the collision efficiency differs for the different calculation methods

(as the contribution from (ri + rj)
2 and w(ri) − w(rj) will be the same in

each case). This breaking up of the kernel will also allow us to observe the

relative importance of the three componence under different collision scenar-

ios (different sizes of droplets colliding).
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Chapter 3

Results

We first examine the growth rate of the cloud droplets for the initial distri-

bution considered by Bott, with an initial mode radius of 10 µm and a total

water content of 1 gm−3, just to see if we can replicate the results he obtained.
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Figure 3.1: Droplet size evolution for an initial mode radius of 10 µm and a

total water content of 1 gm−3

From figure 3.1 we can observe that the average size of the droplets clearly

increases with time as over the course of an hour the mean radius has become

larger by about two orders of magnitude. For the first 30 minutes there does

not appear to be a great amount of change in the distribution, with much of

the mass still centred in a peak close to 10 µm. The amount of mass in this

peak can however be seen to be slowly decreasing in this period, and after 30

minutes there is clear evidence of larger drops having been formed as quite a

broad hump, centred close to 200 µm has appeared. The mass in the initial

peak is decreasing because drops are colliding and coalescing forming larger

drops. If we refer to equation (1.3) we can explain this loss of mass in the

initial peak by the first integral, as this represents the increase in the number
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of larger drops due to collisions between the smaller (initial) drops.

The most substantial change in the distribution occurs in the 10 minute

interval following the distribution described after 30 minutes, as after 40

minutes most of the mass is in a peak centred close to 1 mm (1000 µm),

which is quite a shift from the situation seen 10 minutes earlier where most

of the mass was still in drops of radius close to 10 µm. An explanation for

this sudden shift comes from the fact that we would expect the larger drops

that have clearly formed after 30 minutes to rapidly collect the smaller drops.

This is thought because if we refer to equation (1.18) it is obvious that the

collection kernel will be larger for these type of collisions (compared to that

for collisions between the smaller initial drops with other small drops). This

is due to the (ri + rj)
2 component being larger, and also the difference in

terminal velocity component (w(ri) − w(rj)) being larger. Further to this,

from equation (1.19) it also clear that the collection efficiency E will be larger

since the collector drop r1 is larger in this collision scenario. So we see this

rapid shift in the figure because of the higher collision and coalescence rate

for collisions between the larger and smaller drops, compared to that for col-

lisions of small drops with other small drops. For the remaining 20 minutes

of the simulation, the peak formed close to 1000 µm can be observed to gain

mass and also move to the right in the figure, suggesting the drops are con-

tinuing to grow in size. As a result, after 60 minutes the vast majority of the

mass is in a peak centred close to 2 mm.

From this we have revealed that the rate of droplet growth is very much
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dictated by the collision kernel, which is dependent on the size of the collid-

ing droplets (the kernel value increases with colliding droplet size). We will

further investigate this sensitivity to the collision kernel later in the report.

Figure 3.2: Time taken to produce rain for varying total water contents but

with the initial mode radius of droplets fixed to 10 µm

We next explore the time taken for the model to produce rain (50% of the

mass in drops of radius greater than 1mm), through perturbing the total wa-

ter content from the default 1 gm−3 (figure 3.2). The initial mode radius has

not been changed here, so simply increasing the water content gives more

drops, and likewise reducing it gives fewer drops. As we might expect, it

would appear from the plot that increasing the total water content reduces
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the amount of time taken to produce rain. The figure also suggests that there

is a minimum water content below which the model does not produce rain,

and we can observe that this minimum value is about (0.1 gm−3). It makes

sense in practice for such a minimum to exist, because if the total water mass

is less than the mass of a 1mm drop, then even if every drop collided and

coalesced to eventually form just 1 drop, it would still be too small to be

classed as a rain. From the figure it is obvious that in logarithmic axis the

gradient of the line is constant, and we find it to be precisely equal to -1. It is

therefore clear from the equation for a straight line that we have the relation:

log10t ∝ −log10w = log10w
−1,

where w is the total water content and t the time taken to produce rain. We

can therefore conclude from this that the relation t ∝ w−1 is valid.
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Figure 3.3: Time taken to produce rain for varied initial mode radii but with

the total water content fixed at 1 gm−3

We now again investigate the time taken for the model to produce rain,

but this time through modifying the initial mode radius as shown in figure

3.3. The total water content is kept constant at 1 gm−3 in this analysis, so

through increasing the initial mode radius we get fewer, but larger drops.

Clearly if we decrease this initial radius we will get smaller drops, but of a

greater concentration.

First of all from figure 3.3 we can see that for an initial mode radius of

10µm the time taken to produce rain is close to 40 minutes, which is con-

sistent with figure 3.1. If this initial radius is increased the time taken to

produce rain can be observed to reduce, and likewise reducing the initial radii
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results in an increasingly longer time taken to achieve rain. It seems from

the figure that if the mode radius too small, rain is never produced, which

we would expect from the previous work in this field. Figure 3.3 suggests

that the initial mode radius must be greater than about 5µm for the collision

and coalescence mechanism to produce rain. Through examining the starting

distributions for initial mode radii of 4 and 5 µm (figure 3.4), we can observe

that for the larger of the two sizes, there are substantially more drops close

to and above 10 µm. The fact that an initial mode radius of 5 µm produces

rain, but one of 4 µm does not, is actually very much in line with the findings

of Davis and Sartor, as they suggested that the collector drops must be larger

than 10 µm for growth to occur by collision and coalescence.
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Figure 3.4: Initial droplet size distributions for mode radii of 4 and 5 µm

Figure 3.3 indicates that the relationship is more complex compared to that

between the time to produce rain and the total water content. The first as-

pect to note is that there appears a region on the graph between initial mode

radii of 20 and 300 µm where the gradient is almost constant. The gradient

in this region is about -1.1, and so the relation t ∝ r−1.1 approximately holds

between the radii specified. To the left of this region, the gradient gradually

becomes steeper as the radius decreases, until the minimum initial mode ra-

dius required to produce rain is reached. To the right of the straight region,

a comparatively rapid steepening of the gradient occurs. It is this region we

now investigate to find a best fit to the curve.

From a theoretical perspective if we have initial cloud drops of uniform mass,
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then

m =
w

n
(3.1)

where w is again the total water content and n is the droplet number con-

centration. Although we know from equation (1.18) that the collision kernel

(droplet interaction rate) increases with droplet size (mass), for simplicity

here we consider it to be a constant (λ). For constant λ we have the relation,

dn

dt
= −λn2 (3.2)

which has the obvious solution,

n =
n0

1 + λn0t
(3.3)

where n0 is the initial droplet number concentration, and n is the number

concentration at time t. The droplet mass then evolves like,

m =
w

n
= m0(1 + λn0t). (3.4)

where m0 is the initial mass of the cloud drops, and m is the mass at time t.

The time taken to produce rain drops tr can also be easily determined as:

λn0tr =
mr

m0

− 1 (3.5)
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where mr is the mass of raindrops. Since we have been considering the growth

of the cloud droplets in terms of radius increase, as opposed to mass increase,

we can use the relation described earlier that m ∝ r3 to write,

λn0tr =
r3r
r30
− 1 (3.6)

where rr is the radius of raindrops and r0 is the initial droplet radius. From

this analysis we would therefore expect cubic behaviour between t and r.

Traditionally cloud droplets are thought to grow as the square root of time

if we just consider the diffusion of moisture onto them, this being due to the

relation:

r21 − r20
2

= v(t1 − t0) (3.7)

where r1 and r0 are the droplet radii at times t0 and t1 respectively. Here v

effectively represents the rate of diffusion onto the droplets. Although this

growth rate does not explain the rapid formation of rain seen in convective

clouds, we can use the idea that t ∝ r2, or even more broadly that t ∝ ra

(where a may be perturbed) as a starting point to investigate the region of

rapidly steepening gradient. We therefore consider the following:

t =
(ra1 − ra0)

av
(3.8)
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Here v we may perturb to achieve the best fit, r1 in the context of the prob-

lem we are considering corresponds to the critical radius at which the time

taken to produce rain (t) becomes zero (which we can approximately read

off figure 3.3 as 0.08 cm), r0 represents the initial mode radius of the drops,

and a we can perturb to make the relationship between t and r either linear,

quadratic, cubic or higher order. It should be noted that r1 may also be

perturbed slightly to improve the fit of the curve to the actual solution.

Equation (3.6) suggested that cubic behaviour should give the best fit to

the actual data, however this result was derived at constant collision kernel,

which we know not be the case in the model, and so we will investigate a

range of values for a.

29



Figure 3.5: Comparing the time taken to produce rain from a fitting curve

with a=1, v = 0.00005 and r1 = 0.0800cm to the actual data

If we first try a linear fit (a = 1), we can achieve a solution (figure 3.5)

that is somewhat comparable to the actual data with v = 0.00005 and r1 =

0.0800 cm. The fitting curve generally however has too steeper gradient in

the region of interest, as the values of the time taken to produce rain go from

being overestimates (in the region between r0 = 0.002 and 0.07 cm) to being

underestimates for r0 > 0.07 cm. From this analysis it would appear that

the relationship between t and r is not linear, so we now try greater values

of a.
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Figure 3.6: Comparing the time taken to produce rain from a fitting curve

with a=2, v = 0.0000045 and r1 = 0.0821cm to the actual data

Figure 3.6 illustrates that a quadratic relation (a = 2) with v = 0.0000045

and r1 = 0.0821 cm gives a very good representation of the actual data in the

region we are concentrating on. The rate of negative increase of the gradient

is simulated much better than it was with the linear fit, and also the time

to rain values match much better to those of the actual data. If we examine

the figure close enough it can be seen however that the rate of change of the

gradient is still slightly overestimated, and so we now investigate the solution

for a = 3.
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Figure 3.7: Comparing the time taken to produce rain from a fitting curve

with a=3, v = 0.0000003 and r1 = 0.0820cm to the actual data

From figure 3.7 we can observe that for v = 0.0000003 and r1 = 0.0820

cm (which gives the best fit for this value of a), the solution is more accurate

than the linear one, but less so compared to the quadratic. This analysis is

therefore not consistent with equation (3.6) which suggested cubic behaviour

should give the best fit. The solution is however not substantially less accu-

rate compared to that for a = 2, particularly in the region of r0 > 0.04 cm.

It is clear that the change in gradient appears once again to be somewhat

too rapid close to r1.

The results we have examined suggest that as we increase the value of a,

the radius at which the gradient of the solution begins to change is becoming
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larger, and certainly it would seem from figure 3.7 that the change in gradi-

ent starts at too large a radius. We therefore will not consider larger values

of a.

Figure 3.8: Variation of the time taken to produce rain with the square of

the initial radius for a=2 as in figure 3.6

We can shown the quality of fit more accurately for the quadratic relation

(a = 2) as illustrated in figure 3.8 by plotting the time to rain against the

square of the initial mode radius. From this it is clear that the fit is not

quite perfect as the gradient of the fitting curve is slightly steeper than the

curve corresponding to the actual data, which is what we were able to de-

termine from figure 3.6. However the differences are very minor and to good
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approximation we can say that in the region of rapidly steepening gradient in

figure 3.3, t ∝ r2. So this analysis is not consistent with equation (3.6), and

the most plausible reason for this is the fact that the collision kernel is taken

to be constant in the theory, but in the model it increases with droplet radius.

We next investigate the nature of the droplet growth when there are two

peaks in the initial droplet size distribution. We do this so as to examine

how the droplets in the two peaks interact, from which we should be able

to determine the relative importance (for the formation of rain) of collisions

between drops in different peaks and drops in the same peak.

Figure 3.9: Initial distribution with two peaks, shown in terms of droplet

mass and radius
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We consider the initial distribution shown in figure 3.9 where both peaks are

gaussian and identical. The peaks are centred at radii of approximately 5µm

and 30 µm respectively. The mass of the drops in the peaks is also shown in

the right hand plot, as the results that follow will consider the evolution of

the droplet masses rather than radii.

Figure 3.10: Droplet mass evolution from the intial distribution shown in

figure 3.9

If we first just examine the evolution of the droplet masses with time for

the initial distribution with two peaks shown in figure 3.9, we observe that

after 6 minutes (figure 3.10), both the initial peaks have lost mass (but are

still evident), and a third peak has formed centred close to 2× 10−3 g. This
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third peak can be seen to gain mass at the expense of the initial two for the

remainder of the evolution, and also it can be seen to move to the right in

the figure (indicating that larger drops are being formed with time).

Theoretically we would expect the droplet number concentrations in the

smaller radii peak (n1) and larger radii peak (n2) to decrease at the fol-

lowing rates:

dn1

dt
= −λn1n2 (3.9)

dn2

dt
= −λn1n2 (3.10)

forming new drops of mass m3 = m1 +m2 at a rate

dn3

dt
= λn1n2. (3.11)

In 3.9 and 3.10 λ represents the interaction rate of the droplets (the colli-

sion kernel), which as in the previous theoretical derivation is taken to be

constant. In this theoretical example we are just considering drops of mass

m1 and m2, meaning that the initial distribution is in the form of two spikes

at these droplet masses rather than a gaussian curve. Also collisions are not

considered to occur between drops of the same mass, which is in fact a true

statement if we refer back to equation (1.18) since w(ri)−w(rj) will be zero.

Since m1 is small, m2 and m3 are close together, and so we can replace the

two spikes at m2 and m3 with a single spike of mass:
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ml =
n2m2 + n3m3

n2 + n3

(3.12)

and drop number concentration,

nl = n2 + n3. (3.13)

Since n3 will increase at the expense of n2, we see that ml increases at the

following rate:

ml = m2 +
n3

n2 + n3

m1, (3.14)

so that,
dml

dt
=

dn3/dt

n2 + n3

m1 =
λn1n2

n2 + n3

m1. (3.15)

After the first timestep (for which n3 = 0) we associate the new peak at ml

with m2 (and nl with n2) and set n3 = 0 again. We therefore find that:

dn1

dt
= −λn1n2 (3.16)

dn2

dt
= 0 (3.17)

dml

dt
= λn1m1 (3.18)

We would expect this simplification of the initial distribution (from gaussian

37



curves to single spikes) in figure 3.9 to give a mass evolution that has rea-

sonable similarity to that shown in figure 3.10. It is however immediately

obvious that the third peak that forms in figure 3.10 has a mass at all time

intervals that is substantially larger than m1 + m2, and so it would appear

that critical detail is missing from the theoretical calculations.

We can examine using the collision efficiency calculated according to Hall,

rather than that by Long, to see if this results in any substantial differences

in the evolution of the droplet masses.

Figure 3.11: Droplet mass evolution from the intial distribution shown in

figure 3.9 but with the collision efficiency calculated according to Hall
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It is apparent from figure 3.11 that the formation of the larger drops is

slightly slower when this different collision efficiency is considered (compared

to figure 3.10), however the results still disagree with the evolution we would

expect from the theoretical approach. To try to explain this we must remem-

ber that we have not considered a gaussian distribution in the theory, and

so we are missing some larger (and indeed smaller) drops compared to the

distribution in figure 3.9. Also the collision kernel is taken to be constant

which we know not to be the case from equation (1.18). It seems unlikely

that the extra smaller drops are of critical importance (since no combination

of them can really produce the mass evolutions shown in figures 3.10 and

3.11). It is however possible that the few very largest drops in the larger

radii gaussian peak that are not considered by the theoretical calculations

could be of critical importance in explaining the evolutions that the figures

show.

So we are proposing that it is the very largest drops that dominate the growth

process and that they are necessary for rain to be formed. The problem is

however that the number concentration of drops of this size is comparatively

very low to those of smaller size, and so it seems that for these drops to

be important, they must have a substantially higher chance of colliding and

coalescing with each other compared to the smaller drops. As previously

stated, we know from equation (1.18) that this chance does increase with

colliding droplet size, but it seems that this increase is actually very rapid

indeed from figures 3.10 and 3.11. We can explore this by calculating the

magnitude of the kernel for different size drop collisions. We can even com-
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pute the components that contribute to the kernel, to try to find the main

reason or reasons for the changes in value.

Figure 3.12: Table showing the components of the Kernel with the collision

efficiency calculated according to Long (1974) and Hall (1980)

In figure 3.12 we have compared the components that make up the kernel,

and the kernel itself for different possible colliding scenarios for the initial
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two peak distribution we have been considering. If we first just consider the

value of the kernel when the collision efficiency from Long is used, we can

see that for collisions between drops not in the same peak it has value of

order 10−5. This value is a factor of 100 smaller than the kernel for collisions

between the very largest drops in the initial distribution (radii of 60 µm) and

averaged sized drops in the larger radii peak (30 µm radius). Also if we con-

sider collisions between averaged sized drops in the smaller radii peak (5 µm

radius) with the very smallest drops in this same peak (2.5 µm radius) the

kernel has value of order 10−11, which suggests that very few, if any drops of

this size collide and coalesce (which we would expect from Davis and Sartor

1967). These results tell us that the kernel is indeed very sensitive to the

radii of the colliding drops, as its value increases very rapidly as the colliding

drop radii increase.

If we now examine the individual components of the kernel, we should be

able to determine the main contributing factor (or factors) that lead to the

great sensitivity to the drop radii. Looking first at the difference in terminal

velocity component, we can see that this varies between 2×101 and 2×10−1

for the most extreme comparison (between scenario 2 and 5), corresponding

to a factor difference of 100. The component from the colliding drop radii

((ri+rj)
2) for these two scenarios has value 8×10−5 and 6×10−7 respectively,

and so this component differs by a factor of about 135. For these same two

scenarios, the contribution from the collision efficiency (from Long 1974) is 1

and 4×10−5 respectively and so this component has the largest factor differ-

ence of 2.5× 104. It therefore seems that certainly when Long’s efficiency is
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used, the dominant component that causes the rapid change in kernel value

with drop size is the collision efficiency. It should be noted however that all

the components make a positive contribution to the change in kernel value

with increasing colliding drop radii.

We now turn our attention to the collision efficiency determined according to

Hall. Since the colliding droplet radii and terminal velocity difference contri-

butions are the same, we will simply examine the collision efficiency values

for the different scenarios. First if we look at the collision of the smallest

drops (scenario 5), we have a collision efficiency of 4.0× 10−2, which is over

1000 times larger than for the same scenario with the collision efficiency cal-

culated according to Long. This highlights that the collisions of these small

drops are much more likely (important) when the collision efficiency is de-

termined as in Hall. For collisions between the biggest drops (scenario 2),

the collision efficiencies are much more comparable, although this time the

Long efficiency is the larger, however this is only by about 10 %. Considering

collisions between drops not in the same peak (scenario 1), we find that the

Hall efficiency is actually slightly smaller compared to in scenario 5. This is

in great contrast to the Long efficiency which is about 3 times larger than

the Hall efficiency in scenario 1, but obviously the difference between the

Long efficiencies for scenarios 1 and 5 is very large. From this analysis it

appears that whilst both efficiencies show the few larger drops to be of the

most importance, they disagree substantially on the likelihood of collisions

between very small drops and also to a lesser extent on collisions of drops

that are not in the same peak.
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We can relate these findings to figures 3.10 and 3.11 to see if we can now

better explain the differences in the evolution of the droplet masses. Firstly

figure 3.12 showed that the Long efficiency is about 3 times greater than that

of Hall for collisions between drops, not in the same peak. We would therefore

expect the smaller radii peak to lose mass quicker with the kernel calculated

using the Long efficiency, and it is clear that this is the case through simply

comparing the figures. The fact that Hall’s efficiency is slightly lower than

Long’s for collisions between the largest drops means we may expect the for-

mation of larger drops to be slowed in figure 3.11 compared to figure 3.10

which is indeed what we do observe. The substantially higher Hall efficiency

for collisions between drops in the smaller radii peak appears to have little

effect from the figures, but we should expect this because the overall kernel

value for collisions of drops this small is still very low. It can therefore be

said that the findings in figure 3.12 do agree with the droplet mass evolutions

obtained.

As a final investigation we now fix the kernel to examine as to whether

or not we observe the kind of growth pattern shown in figures 3.10 and 3.11.

The results in figure 3.12 suggest we should not expect the rapid formation

of very large drops if we fix the kernel to a value much lower than it would

be if we allowed it to vary.
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Figure 3.13: Evolution of the droplet masses for a fixed collision kernel of

0.00001

The effect of fixing the kernel to 0.00001 is clearly quite profound (figure

3.13) as large drops of rain size do not form, and the larger peak that does

form has mass that is simply the progressive sum of the smaller and larger

initial drops. From this evidence it is clear that the rapid increase in the

kernel with droplet size is of great importance for the formation of rain, as

is the presence of a few larger drops (that we have from a gaussian distribu-

tion).
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Chapter 4

Conclusion

In conclusion we have been able to obtain useful results for the perturbations

considered to the initial cloud droplet distribution. Through examining the

droplet size evolution with time for the initial conditions considered by Bott,

we were able to show that once a few larger droplets have formed, the small

initial drops are very rapidly collected by these large drops, and all the wa-

ter mass in the cloud quickly shifts to be just in large droplets. This could

be explained by the theory and equations in the model, which showed that

larger drops collide and coalesce with other drops more readily than smaller

drops.

We then investigated changing the total water content within the cloud,

and were able to show that if we increase the amount of water, the model

produces drops of rain size more quickly. It was hence possible to confirm

that the relationship t ∝ w−1 is valid for all water contents. The relationship

between the initial mode radius of the cloud drops and the time taken to
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produce rain was more complex, although it was obvious that if the initial

radius was increased for a fixed total water content, drops of rain size were

produced more rapidly. For an initial mode radius 20µm ≤ r ≤ 300µm the

relationship t ∝ r−1.1 approximately holds. For r > 300µm we investigated

a relationship of the form

t =
(ra1 − ra0)

av

and tried to achieve the best fit to the actual data with a = 1, 2, 3 corre-

sponding to a linear, quadratic and cubic relationship. The best match was

achieved with a = 2 (a quadratic fit), v = 0.0000045 and r1 = 0.0821 cm.

Therefore for r > 300µm it seemed that to good approximation t ∝ r2. This

result disagreed with the cubic behaviour that was expected from a theoreti-

cal result derived at constant kernel, with the best explanation for this being

that the variation of the kernel with colliding drop radii is very important

and cannot be neglected (which we later showed to be the case).

It appeared that to produce rain drops the initial mode radius had to be

at least 5µm, and through analysing the initial droplet size distribution that

this corresponds to we were able to support the claims of Davis and Sartor

that collector drop radii must be at least 10µm for droplets to grow by col-

lision and coalescence. The conclusion here is that drops of radius less than

10 µm will not collide and coalesce with similar size drops. The reason for

this is that drops of this size have little difference in terminal velocity. The

combination of this and the fact that such drops have little inertia to motion,
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means they will follow the air flow around each other rather than colliding.

Through considering an initial droplet distribution with two peaks we were

able to show that the model shifts much of the initial mass into substantially

larger drops very quickly. This rate of larger drop formation could not be ex-

plained by simple theoretical calculations derived at constant kernel, which

considered collisions between drops of size equal to the mean size in each

peak. This was also true when the collision kernel was adapted in the model

to include the collision efficiency from Hall as opposed to that from Long.

It seemed likely therefore that not accounting for the few larger drops with

higher collision kernel in this initial distribution, was causing the theoretical

calculations to disagree. However since the number concentration of such

drops was so low, it appeared likely that the chance of these drops colliding

and coalescing was not just gradually increasing with colliding drop radii,

but actually rapidly increasing.

Through investigating the values of the collision kernel we were able to show

that regardless of which method (Long or Hall) was used to obtain the colli-

sion efficiency, a very large difference (108 for Long and 105 for Hall) existed

between the kernel values for the two most extreme collision scenarios in the

initial distribution. By most extreme we mean at the one extreme, collisions

of the very largest drops present with other large drops (giving the highest

kernel values), and at the other extreme, collisions of the very smallest drops

with other small drops (giving the lowest kernel values). This showed that

the chance of the larger drops colliding and coalescing is indeed substantially
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higher, compared to the chance for smaller drops.

It was shown that out of the three components that make up the kernel,

the dominant one that causes much of the increase in kernel value with col-

liding drop radii was the collision efficiency, when it was calculated according

to Long. This was not however the case when the collision efficiency was de-

termined according to Hall, as the three components were comparable in size

and so equally responsible for the kernel increase. The effect of the differ-

ent collision efficiencies could be seen to cause slightly different droplet mass

evolutions. When the Long efficiency was used the drops in the smaller radii

peak collided and coalesced with drops from the other peak faster compared

to when the Hall efficiency was used. Also the formation of a third peak

(larger drops) was slightly delayed when the Hall efficiency was used instead

of that of Long.

Finally through fixing the kernel to a value close to what we would expect for

collisions of drops of average size in the initial distribution, it was illustrated

that fast production of large (rain) drops does not occur (at least not in the

time periods we were considering). This proved that the few large drops in

the initial distribution (which collide and coalesce readily due to there large

kernel values) are essential for the fast production of rain in convective clouds.

It would seem from the results we have obtained, that we can replicate the

rapid droplet growth rates that must occur in convective clouds to produce

rain in such short time periods. It is however the case that we have obtained
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seemingly realistic growth rates from cloud droplet distributions that may or

may not be realistic. For this reason it would be ideal to test this model on

a known real distribution in a cloud (although it would be difficult to ever

measure this accurately). If this were possible, we could then be confident

that we are simulating the growth process correctly (provided the model pro-

duces rain in a time comparable to reality).

A future aspect that could be incorporated into the model is turbulence,

especially when convective clouds have substantial updraughts and down-

draughts. These are likely to lead to collisions between drops, and as a result

the time taken to produce rain may be quicker. On the other hand account-

ing for turbulence may prevent collisions occurring between certain drops,

due to its effects lessening the importance of terminal velocity differences.
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