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Abstract Data assimilation is a sophisticated mathemati-1 Introduction

cal technique for combining observational data with model

predictions to produce state and parameter estimates th@hanges to weather patterns, with increasing incidence of
most accurately approximate the current and future statasastal flooding in recent years, have led to growing con-
of the true system. The technique is commonly used in ateern over the effects of climate change on flooding and high-
mospheric and oceanic modelling, combining empirical obiighted the importance of accurate knowledge of coastat mor
servations with model predictions to produce more accuratphology in natural disaster prediction and managemers. Iti
and well-calibrated forecasts. Here we consider a novel agessential that we improve our ability to predict floods; lpein
plication within a coastal environment and describe how theble to better identify and anticipate flood risk would facil
method can also be used to deliver improved estimates of ufitate the development of suitable strategies for the manage
certain morphodynamic model parameters. This is achieveghent of coastal areas and help to limit the damage and dis-
using a technique known as state augmentation. Earlier ajress caused by flooding. Key to this aim is better knowledge
plications of state augmentation have typically employed t and understanding of how the morphology of the coastal
4D-Var, Kalman filter or ensemble Kalman filter assimila- zone is evolving over time (Nicholls et al. (2007), Stelling
tion schemes. Our new method is based on a computatiof2000)). Accurate bathymetry immediately prior to a storm
ally inexpensive 3D-Var scheme, where the specification oévent would allow improved flood forecasting using coastal
the error covariance matrices is crucial for success. Al®mp inundation models.

1D model of bed-form propagation is used to demonstrate Coastal morphodynamics presents a Cha"enge to mod-
the method. The scheme is capable of recovering near pestiers. Modelling is difficult because longer term morpho-
fect parameter values and therefore improves the capabilijogical changes are driven by shorter term processes such
of our model to predict future bathymetry. Such positive re-g5 waves and tides (Masselink and Hughes (2003)). State
sults suggest the potential for application to more compleXf the art models are growing more sophisticated in an at-
morphodynamic models. tempt to accurately model coastal morphology (e.g. Lesser
et al. (2004)). However, in practice, models suffer from un-
Keywords Data assimilation Morphodynamic modelling ~ certainty in their parameters, for example those that arise
Parameter estimatiorState augmentation from parameterization of the sediment transport flux. Inac-
curate representation of model parameters will lead to the
growth of model error and therefore affect the ability of
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Data assimilation is a technique for combining observa- In this study we combine the technique with a three di-
tional data with model predictions to 1) produce a modelmensional variational assimilation (3D Var) scheme. To the
state that most accurately approximates the current and filest of the authors’ knowledge, state augmentation has not
ture states of the true system and 2) provide estimates d@een used with 3D Var before. The crucial difference be-
the model parameters. Whilst it is routinely used in atmotween standard 3D Var and the other schemes mentioned is
spheric and oceanic prediction, the possibility of transfe that the covariance matrices are not evolved (implicitly or
ring data assimilation techniques to coastal morphodyaamiexplicitly) by the 3D Var algorithm. It is therefore vitaldh
modelling and prediction has only recently been investigat the cross-covariances between the parameters and the state
In a precursor to the current work, Scott and Mason (2007are given a good a priori specification. 3D Var has other ad-
explored the use of data assimilation for state estimation ivantages, such as ease of implementation (no model adjoints
estuarine morphodynamic modelling using Morecambe Bayequired); computational robustness (given reasonalglg-sp
as a study site. A 2DH decoupled morphodynamic model offied covariances) and computational efficiency.
the bay was enhanced by integrating waterline observations The aim of this paper is to demonstrate parameter es-
derived from SAR satellite images (Mason et al. (2001)) ustimation using 3D Var data assimilation for a simple 1D
ing a simple optimal interpolation (OI) assimilation sckem model of bed-form propagation. The long term objective is
Despite the known deficiencies of the Ol algorithm (see e.gto implement a parameter estimation scheme in a full mor-
Lorenc (1981)), the method was shown to improve the abilphodynamic assimilation-forecast system. However, tiee us
ity of the model to predict large scale changes in bathymetrpf a simple model in the current work allows ideas to be
over athree year period. In an unrelated study, van Dongereateveloped, tested and understood without the obfuscating
et al. (2008) used a least squares estimator to assimildte mdeatures of a more complex system. Our results show that
tiple, remotely-sensed information sources into the C3ift 3D Var can be used successfully for parameter estimation.
modelling system. This system did not take account of spafhe scheme is capable of recovering near perfect parame-
tial correlations between model variables and thus only upter values and therefore improves our models capability to
dated model variables where there were co-located obsepredict future bathymetry. Such positive results sugdest t
vations. Nevertheless, the system showed good skill in epotential for application to more complex morphodynamic
timating the nearshore subtidal bathymetry when applied tanodels.
two data-rich test sites at Duck, NC, USA and Egmond, The This paper is organized as follows. In section 2 we ex-
Netherlands. plain state augmentation and formulate the data assionilati

problem for the augmented system. Our simple 1D model is

The current work is focused on developing a method fofnroduced in section 3. In section 4 we discuss the roles of
using data assimilation to deliver improved morphodynamiGne ohservation and background error covariance matrices
model parameter estimates. This can be achieved througﬁ\,ing particular attention to the cross correlations kestw
state augmentation. State augmentation is a conceptually the packground errors in the state and parameter estimates.
straightforward technique that allows us to estimate ard Uprhe experimental design is described in section 5 followed
date uncertain model parameters jointly with the modeéstatby the main results. Finally, in section 6 we summarise the
variables (Jazwinski (1970)) as part of the assimilatian pr -gnclusions from this work.
cess. The same approach can be used in the context of model
error or bias estimation. See e.g. Bell et al. (2004), Grif-
fith and Nichols (1996), Griffith and Nichols (2000) , Martin 2 Data assimilation

et al. (2002), Dee (2005).
In this paper we shall consider the discrete, linear, time-

In theory state augmentation can be applied to any of thinvariant system model
standard data assimilation methods. The model state vector
is augmented with a vector containing the parameters w1 = M(p)z k=0,...,N-1, 1
wish to estimate, the equations governing the evolution oivhere the vectozy € R™ represents the model state at time
the model state are combined with the equations descrilly andM € R™ ™M is a constant, non-singular matrix describ-
ing the evolution of these parameters and the chosen assitimg the dynamic evolution of the state from tiryeto time
ilation algorithm is simply applied to this new augmentedty_ 1.
system in the usual way. Navon (1997) and Evensen et al. Although data assimilation techniques can be applied to
(1998) review the use of the technique in the context ofiny general system model, the model (1) offers a simple
4D Var. Yang and Hamrick (2003) use a related scheme téramework within which we can explain/ present the theory
recover parameters for cohesive sediment modelling. State the approach.
augmentation has also been applied with the Kalman filter The model (1) depends on parameters whose values are
(see e.g. Martin et al. (1999)). imprecisely known. We use the vectore RY to represent
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these parameters, wharés the number of unknown param- We also suppose that we havéackground stateWB €
eters. We assume thptis constant, that is, the parametersR™"9, that includesa priori estimates of the initial system
are not altered by the forecast model from one time step tetatezg and parametensp. This is a best guess estimate ob-
the next. The evolution model for the parameters can therdained (for example) from a previous assimilation run or a
fore be written as recent bathymetric survey.

The aim of data assimilation is to combine the measured
Per=Pe  k=0....N-1 (2) observationsy with the model predictionsv® in order to
derive a model state/® € R™9 that most accurately de-
2.1 State augmentation scribes the true state of the systesn This optimal estimate

is called theanalysis.
In this section we formulate the data assimilation problemi A wide variety of data assimilation schemes exist (e.qg.
terms of an augmented system. The procedure for basic staf@lnay (2003), Lewis et al. (2006)). In this study we ap-
estimation is identical and can be derived by simply omit-ply a standard method based on statistical estimationyheor
ting the parameter vector from what follows (Smith et al.known asthree dimensional variational data assimilation
(2008)). (3D Var).
We augment the state vectowith a vectormp containing

h rameters we wish im ivin . . ..
the parameters we wish to estimate, giving égmented 2.2 Three Dimensional Variational assimilation

State vector
W <Z> (3 The 3D Var method (e.g. Courtier et al. (1998)) is based
p)’ on a maximum a posteriori estimate approach and derives

the analysis by seeking a state that minimises a cost func-

wherez € R, p € R, andw € R, tion measuring the misfit between the model statend the
This allows us to write equations (1) and (2) as the equiv-I unng ISt W

b .
alent augmented system model backgroundv and~observat|on§3,
Jw) = (W—wP)TB~L(w—wP)

=M 4 . -
Ve = MW @ (y—Rw) Ry —R(w). (@)
where The matrice8 € RMA*(MA) andR € R™" are the co-
N — M(p) O € R(MQ)x(miq) variance matrices of the background and observation errors
0 | ' They represent the errors associated with the background

We suppose that we have a setrafbservations to as- and ol_aservatlons and de_te_rmlne the relative weightirgPof
. andy in the analysis. If it is assumed that the background
similate and that these are related to the model state by the : .
. errors are small relative to the observation errors then the
equations o .
analysis will be close to the background state. Convergely,
yk = h(z) + &, k=0,...,N—1, (5) itis assumed that the background errors are relativelelarg
the analysis will lie closer to the observations.
The minimising state can be found using the gradient of
cost function with respect to. The 3D Var method does

this numerically using a gradient descent algorithm. Fisr th

whereyy € R is a vector ofr observations at timg, h :
R™ — R is a nonlinear observation operator that maps, .
from model to observation space, agiglc R" is a random

vector re.prese'ntln'g the obs.;ervatlon ?rrors. Ifwe hav.ectjwe work we employ a quasi-Newton method (Gill et al. (1981)).
observationsh is simply an interpolation operator for inter-

. : . . Although the technique of state augmentation is straight-
polating variables from the model grid to observation loca- g d J d

forward in theory, practical implementation of the appitvac

tions. Often, the model variables we wish to analyse cannort?"es strongly on the relationships between the parameter

be observed directly and !nstead we haye obs_e rvations %nd state components being well defined and assumes that
another megsurable quantity. Iq this chgmll al§o include we have sufficient knowledge to reliably describe them. &inc
transformatlohs based on physical relat|onsh|ps thateronv it is not possible to observe the parameters themselves, the
the model vangbles t_o the observations. arameter updates are only influenced by the observations
We can write (5) in terms of the augmented state vecto hrough the cross covariances that describe the cornetatio
as between the error of the model state estimate and the error
Yk = ﬁ(wk) + £p, (6) ofthe model parameter estimate (Martin (2000)). Succéssfu
- parameter estimation will therefore only be possible itthe
whereh : R™" — R, and cross correlations are adequately specified. We will cemsid
- . [z ways of defining the error covariance matrices in section 4
h(w) =h <p> =h(. but first we introduce our model.



3 The model provide an exact representation of the dynamical system.
Obviously, this assumption is unrealistic. In practice itn-
For the purpose of demonstrating the data assimilation teclpossible to describe the true system behaviour completely
nique we consider the simple case of a model with a sinand model predictions will also contain errors as a result
gle unknown parameter. For this we use the one-dimensionaf uncertain parameters and inaccurate initial and boyndar
linear advection model described in Smith et al. (2007)  conditions. In addition, the observations we wish to assim-
P ilate are likely to incorporate some kind of error, however
z 0z S
—+A—=0, (8) small. Our assimilation scheme needs to take account of the
ot 7} ) ) )
errors that arise as a result of these imperfections. The pre
wherez(x,t) is the bathymetry or bed heigt,is the (con-  cision of the analysis is dependent on the precision of the
stant) advection velocity artds the time. background and observations: correct specification ofithe e
As discussed in Smith et al. (2007) we can use the methedr covariance matriceB andR is therefore crucial to the
of characteristics to derive an analytic solution to this@&q success of the scheme. If we can ensure that these matrices
tion valid at discrete point&, ty). Given initial data are an appropriate representation of the true error statist

our data assimilation algorithm will produce optimal resul
z(x,0) = f(x), —00 < X < 00, 9)

the solution at timé > 0 is simpl . .
- Py 4.1 Observation error covariance

zZ(x,t) = f(x—At). (10)
The observation error covariance matRgives a statistical

We assume that the true valueffs unknown. Sincéd  description of the errors ip. These errors originate from in-
is constant, the parameter evolution equation is given by strument error, errors in the forward motlednd representa-
dA tiveness errors (observing scales that cannot be repessent
—=0. (11) inthe model) (Daley (1991)). For simplicity we assume that
ot the observation errors are spatially and temporally uecorr
Equation (11) together with the model equation (8) consti{ated and tak& to be a constant diagonal matrix with error
tute our augmented state system model (4). varianceg?.

The purpose of this study is to explore the application of
the state augmentation technique within the framework of
this simplistic model before moving on to a more complex4.2 Background error covariance
morphodynamic model. The advantage of the linear advec- .
tion equation (8) is that it can be solved analytically andThe matrixB € R(™@>(M™+d) is the background error co-
therefore provides a reference solution against which we cavariance matrix for the augmented system, and can be writ-
assess the performance of our scheme. ten as

We use Gaussian initial data for (9) to give a smooth, B. B
isolated bell-shaped bedform. The solution (10) is such thaB = ((B ZZ)T sz) .
as time increases the bed propagates undistorted across the 2 PP
model domain with constant speed. We wish to investigatgjere B,, € R™™ is the state background error covariance
whether, given an uncertain initial bathymetry and unknowmmatrix. This matrix represents our uncertainty in the back-
advection velocity, and using observations taken from thgyround state estimat®. Bpp € R%9 is the covariance ma-
true solution, we are able to construct an augmented datgx of the errors in the parametervecmfrandep € RMx4
assimilation scheme that will produce a more accurate e$s the covariance matrix for the cross correlations between
timate of the true velocity, thereby improving the ability 0 the background errors in the state and parameter vectors. If
our model to predict the true system state. we assume that these errors are unbiased, we can define

(12)

. Bz, =E (€n€p). Bpp=E (£p€}). Bop=E (p)) (13)
4 Error covariances
whereg, = 2° — 7t ande, = p°? —p'.

Error covariances play an important role in variationabdat Specification of the background error covariance matrix
assimilation. Before we can implement our 3D Var algo-is one of the key parts of the assimilation problem. The cor-
rithm we need to specify the error covariance matriBes relations inB govern the spreading and smoothing of obser-
andR. vational information and are therefore fundamental inidete

We are assuming that our model structure is perfect, i.eanining the nature of the resulting analysis. Background er-
with the correct choice of parameter the model equationsors arise from errors in both the initial conditions and mlod



errors. Since, by the nature of the problem, these errors athese matrices to be of a functional form similar to that used

not known exactly they have to be approximated in somdor the state background error covariance matrix (14). Suc-

manner. cessful parameter estimation relies upon these corrafatio
Formulation of the background error covariance can bdeing suitably specified, so it is important to ensure that th

made considerably easier by specifying the error correlachoice of function is appropriate to the particular model ap

tions as analytic functions. A number of correlation mod-plication.

els have been proposed (see Daley (1991) for further dis- Sinceex is scalar, the cross covariance matix, will

cussion on this). An approach commonly used by the nube a vector of lengtim. From (13) we have

merical weather prediction (NWP) community is the NMC

method (Parrish and Derber (1992)) which uses the differ- E(eagp(x1,1))

ence between forecasts that verify at the same time. The lit- T E(eagn(X2,t))

erature gives various other methods, including using innov Bz» = E (en€p) = E (eagh) = : - (18)

tion (observation minus background) statistics and stuglyi

differences in background fields using ensemble techniques

Fisher (2003) provides a useful review of current NWP techpygre g (1) is theith component of the vectay, repre-

E(Enb(Xm )

niques. senting the background error associated aittat the grid
pointx; at timet. Elemento (i) = E(eagp(Xi,t)) defines the
State covariance A standard approach used in state estimacovariance betweegn and &n(Xi,1).
tion is to assume that the background error covariances are To determine a suitable form fd,p we first seek an
homogeneous and isotropi;; is then equal to the prod- approximation to the background errey. We assume that
uct of the estimated error variance and a correlation matrigur model is perfect and begin by considering a single real-
defined using a pre-specified correlation function. AIthDug isation. The background errg's(x’t), ata particu|ar pomx
this method is somewhat crude it makes the data assimilnd timet, will be a combination of error in the initial condi-
tion problem far more tractable. tion and error in the parameter estimate. There are four pos-
To characterise the background errors in the state vegibilities: (i) known initial bathymetry and known advemnti
tor B;; = {bij} we use the correlation function (Rodgers velocity; (ii) unknown initial bathymetry and known advec-
(2000)) tion velocity; (iii) known initial bathymetry and unknown
advection velocity; (iv) unknown initial bathymetry and-un
known advection velocity. Here we consider case (iv) but
note that solutions for the other three cases can be derived i
a similar manner (Smith et al. (2008)).
We define

bij=ozp I, ij=1,....m (14)

Elementb;; defines the covariance between componénts

and j of the error vectok,. Herep = exp(—Ax/L) where

Ax is the model grid spacing andis a correlation length

scale ands? is the state background error variance. -
Z(x,t) = z(X,t) + &(x,1) 17)

Parameter covariance For our simple model (8) we only 4

have a single unknown parameter, the parameter vpBiier

therefore scalar. We approximate the true advection W§10Ci {(x) — f (x) + g,(x, 0) (18)

Awith AwhereA = A+ ga. Settinge, = £x in (13) we have

whereZ{x;t) is our approximation to the true bathymetry

z(x,t) andf(x) is our estimate of the true initial staféx) =

Z(x,0).

From (10) we have the solution

Bpp = E(£2) = 0%, (15)

whereg? is the parameter error variance.

Cross covariances In order to define the matriiszp fgr the_ (x,t) = f(x—,&t), >0, (19)
augmented system we need to consider the relationship be-
tween the errors in the parameter estimatgand the errors Using (17)
in the state backgrourgl,. As they depend on the same data,
we expect them to be correlated. &(X,1) = Z(x,t) — z(xt)
One possible method for calculating these covariance - f(X_At) — f(x—At)
matrices |s_by averaging the statistics over the assiroilati (X— At — £at) — F(x— Ab). (20)
window, using our knowledge of the truth and background
states. However, since in reality the true solution is notkm, ~ Assuming thateat is small and thatf (x) is a continuous,

this is difficult to do in practice. For simplicity we wouldki  differentiable function we can expand (20) in a Taylor serie

Il
-
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aboutf(x— At), yielding 5 Results

go(x,t) = f(x— At —gat) — f(x—At) _
We assume that the evolution of the true bathymetry can be

2
= | f(x—At) — et f’(x—At)+%t2f~”(x—At) —...| described by the linear advection model (8). Given an ap-
‘ proximate velocityA and starting from a perturbed initial
—f(x—At) state we wish to examine whether our augmented data as-
= g(x—At,0) —eatf'(x— At) + O ((eAt)Z) . (21) similation scheme is able to deliver both an accurate model
If we further assume that the erragg(x, 0) are smooth we bathy_metry and an accurate estimate of the true advection
can use (18) to rewrite (21) as velocity A. The analytic solution (10) is used to evaluate the

performance of the method.

ep(X,t) = &p(X— AL, 0) — &t f'(Xx—At) +... (22) For the purpose of these experiments, we assume that the
As time increases the higher order terms dominate. For suftue bathymetry is Gaussian shaped and set the true advec-
ficiently smallt the background error at the poinat time tion velocity at a physically realistic value &f= 0.002ms 1.
t will be linearly related to the value of the derivative of the In the example illustrated, the initial model bathymetry is
initial state at the starting poin = x— At. also taken to be a Gaussian but is rescaled so that it islglight

Conventional 3D Var schemes assume that the backgro@h@rter and wider than the true initial state. We over-estitm
error covariances are stationary so that the structufeief ~the advection velocity, setting= 0.02ms™.
fixed for all time. Initial experiments with the augmented ~ The assimilation process was carried out sequentially, as
system concluded that whilst this approach is sufficient foglescribed in Smith et al. (2008), with a new set of observa-
estimation of the state background error covariance matrifons being assimilated every hour. The model was sampled
B,,, it does not provide an adequate representation of then a regular grid with a spacing dfx = 1.0m. Observations
state-parameter cross covariances (Smith et al. (2008)). were generated from the true solution at intervals af25

The approximation (22) derived above is based on a scefhey are assumed to be perfect and without any noise. We
nario where there is no data assimilation, and therefore agherefore weight in their favour, setting the observatiod a
sumes that the form of the background stéite) and es- background error variances to bg = 0.1 ando? = 1.0 re-
timated advection velocitA remain the same for all time. Spectively. At the end of each assimilation cycle the anslys
With data assimilation both the background and parameteras integrated forward using the model to obtain the back-
estimates will change as the model bathymetry is updated ground state for the next analysis time.
each new analysis time. Thus we will have a differéfx) The benefits of data assimilation are illustrated by com-
andA at the start of each new model integration.f?(s) and paring model runs performed with and without the parame-
A change so too will the erro andea and the correlation  ter estimation scheme. Figures 1 and 2 show the results pro-
between them. duced when the model is run both with and without data

We take account of the fact that the background-paramesassimilation over a 24 hour period. With no data assimila-
error cross covariances will change by making the matrixion (figure 1), the model bathymetry (dashed blue line) di-
Bzp time dependent. Motivated by our practical experiments/erges away from the true bathymetry (solid red line). The
we use the following approximation shape of the initial bathymetry remains unaltered and the
inaccurate advection velocity produces a phase error that
grows with time. After 24 hours the predicted model state
Using definition (13), we multiply byea and take the ex- is far from the true model state. Running the model with
pected value over many realisations, to give the augmented data assimilation scheme produces the re-
byp(i) = E (—Sﬁf’(xi —At)) sults shown in figure 2. The red dotjdash line represents the

N e true bathymetry; observations are given by circles, th&bac

= —E (&) f'(x —AD) ground state by the dashed blue line and the analysis by the
= G2 (x — At). (24)  solid green line. The difference in the results is obviolee T
model is able to produce an accurate representation of the
true bathymetry after just 4 assimilation cycles. At 24 tsour
unknown, we cannot evaluatié(x — At). Instead we sub- it is almost impossible to distinguish between the predicte
stitute £/ with ' and replacgx — At) with (x— 7)), where model bathymetry and the truth bathymetry.
i is a time dependent value chosen such that the the covari- Figures 3(a) and 3(b) show the updating of the advection

ances are centred on the maximum value of the current backelocity for the above example and for a second test case in

) a2 g R ) the parameter estimate increases with time as the assimila-
bzp(i) = —Gat (% — V), i=1...m (25)  tion cycle is repeated and more observations are processed.

& (Xi,t) = —eaf’(x — At), i=1...,m (23)

whered? is the estimated parameter error variance.
Since by the nature of the problem bditl{x) andA are
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Fig. 2 Model run with data assimilation: the red dot-dash line represents the true bathyn#@trpbservations are given by circles, the
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Fig. 3 Updating of paramete for initial estimates (af = 0.0 m/sand (b)A=0.02 m/s

In both cases, the scheme converges after around 6 houl&e do not show results here but refer the reader to Smith
managing to successfully recover the true valud @fith a et al. (2008) where results from a similar set of experiments
final value of 0002ms ! to 3 d.p. As a result the model be- can be found. Generally, we found that the lower the spa-
comes a much better approximation and thus produces motial and temporal frequency of the observations the longer
accurate estimates of the true bathymetry. the scheme takes to reach the cormatalue. The quality
The experiments were repeated for a range of both ovedf the analysis is also affected. If the observations become
and under estimate&lvalues, with varying background guess&® infrequent the parameter estimates fail to convergs. Th
and observation combinations. Unsurprisingly, the spded daises the issue of observability; whether the available ob
convergence varies depending on the quality of the backgervations contain sufficient information for us to be able t
ground state, the location and spatial frequency of the ob€construct the model state (Barnett and Cameron (1990)).
servations and the time between successive assimilation&/e Will not discuss the concept any further here but note



that it is a question that will need to be addressed in futureniqueness of solutions, i.e. the parameters do not coaverg
work. to a single deterministic set of values, but rather there ex-
ists a range of complementary combinations that produce

. the same model behaviour.
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