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Abstract Data assimilation is a sophisticated mathemati-
cal technique for combining observational data with model
predictions to produce state and parameter estimates that
most accurately approximate the current and future states
of the true system. The technique is commonly used in at-
mospheric and oceanic modelling, combining empirical ob-
servations with model predictions to produce more accurate
and well-calibrated forecasts. Here we consider a novel ap-
plication within a coastal environment and describe how the
method can also be used to deliver improved estimates of un-
certain morphodynamic model parameters. This is achieved
using a technique known as state augmentation. Earlier ap-
plications of state augmentation have typically employed the
4D-Var, Kalman filter or ensemble Kalman filter assimila-
tion schemes. Our new method is based on a computation-
ally inexpensive 3D-Var scheme, where the specification of
the error covariance matrices is crucial for success. A simple
1D model of bed-form propagation is used to demonstrate
the method. The scheme is capable of recovering near per-
fect parameter values and therefore improves the capability
of our model to predict future bathymetry. Such positive re-
sults suggest the potential for application to more complex
morphodynamic models.
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1 Introduction

Changes to weather patterns, with increasing incidence of
coastal flooding in recent years, have led to growing con-
cern over the effects of climate change on flooding and high-
lighted the importance of accurate knowledge of coastal mor-
phology in natural disaster prediction and management. It is
essential that we improve our ability to predict floods; being
able to better identify and anticipate flood risk would facil-
itate the development of suitable strategies for the manage-
ment of coastal areas and help to limit the damage and dis-
tress caused by flooding. Key to this aim is better knowledge
and understanding of how the morphology of the coastal
zone is evolving over time (Nicholls et al. (2007), Stelling
(2000)). Accurate bathymetry immediately prior to a storm
event would allow improved flood forecasting using coastal
inundation models.

Coastal morphodynamics presents a challenge to mod-
ellers. Modelling is difficult because longer term morpho-
logical changes are driven by shorter term processes such
as waves and tides (Masselink and Hughes (2003)). State
of the art models are growing more sophisticated in an at-
tempt to accurately model coastal morphology (e.g. Lesser
et al. (2004)). However, in practice, models suffer from un-
certainty in their parameters, for example those that arise
from parameterization of the sediment transport flux. Inac-
curate representation of model parameters will lead to the
growth of model error and therefore affect the ability of
our model to accurately predict the true system state. A key
question in model development is how to estimate these pa-
rameters a priori. Generally, parameters are determined the-
oretically or by calibration of the model against observa-
tions, although there are other approaches (e.g. Hill et al.
(2003), Knaapen and Hulscher (2003), Vrugt et al. (2005),
Wüst (2004)). Here we present a novel approach using a
variational data assimilation scheme.
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Data assimilation is a technique for combining observa-
tional data with model predictions to 1) produce a model
state that most accurately approximates the current and fu-
ture states of the true system and 2) provide estimates of
the model parameters. Whilst it is routinely used in atmo-
spheric and oceanic prediction, the possibility of transfer-
ring data assimilation techniques to coastal morphodynamic
modelling and prediction has only recently been investigated.
In a precursor to the current work, Scott and Mason (2007)
explored the use of data assimilation for state estimation in
estuarine morphodynamic modelling using Morecambe Bay
as a study site. A 2DH decoupled morphodynamic model of
the bay was enhanced by integrating waterline observations
derived from SAR satellite images (Mason et al. (2001)) us-
ing a simple optimal interpolation (OI) assimilation scheme.
Despite the known deficiencies of the OI algorithm (see e.g.
Lorenc (1981)), the method was shown to improve the abil-
ity of the model to predict large scale changes in bathymetry
over a three year period. In an unrelated study, van Dongeren
et al. (2008) used a least squares estimator to assimilate mul-
tiple, remotely-sensed information sources into the Delft3D
modelling system. This system did not take account of spa-
tial correlations between model variables and thus only up-
dated model variables where there were co-located obser-
vations. Nevertheless, the system showed good skill in es-
timating the nearshore subtidal bathymetry when applied to
two data-rich test sites at Duck, NC, USA and Egmond, The
Netherlands.

The current work is focused on developing a method for
using data assimilation to deliver improved morphodynamic
model parameter estimates. This can be achieved through
state augmentation. State augmentation is a conceptually
straightforward technique that allows us to estimate and up-
date uncertain model parameters jointly with the model state
variables (Jazwinski (1970)) as part of the assimilation pro-
cess. The same approach can be used in the context of model
error or bias estimation. See e.g. Bell et al. (2004), Grif-
fith and Nichols (1996), Griffith and Nichols (2000) , Martin
et al. (2002), Dee (2005).

In theory state augmentation can be applied to any of the
standard data assimilation methods. The model state vector
is augmented with a vector containing the parameters we
wish to estimate, the equations governing the evolution of
the model state are combined with the equations describ-
ing the evolution of these parameters and the chosen assim-
ilation algorithm is simply applied to this new augmented
system in the usual way. Navon (1997) and Evensen et al.
(1998) review the use of the technique in the context of
4D Var. Yang and Hamrick (2003) use a related scheme to
recover parameters for cohesive sediment modelling. State
augmentation has also been applied with the Kalman filter
(see e.g. Martin et al. (1999)).

In this study we combine the technique with a three di-
mensional variational assimilation (3D Var) scheme. To the
best of the authors’ knowledge, state augmentation has not
been used with 3D Var before. The crucial difference be-
tween standard 3D Var and the other schemes mentioned is
that the covariance matrices are not evolved (implicitly or
explicitly) by the 3D Var algorithm. It is therefore vital that
the cross-covariances between the parameters and the state
are given a good a priori specification. 3D Var has other ad-
vantages, such as ease of implementation (no model adjoints
required); computational robustness (given reasonably spec-
ified covariances) and computational efficiency.

The aim of this paper is to demonstrate parameter es-
timation using 3D Var data assimilation for a simple 1D
model of bed-form propagation. The long term objective is
to implement a parameter estimation scheme in a full mor-
phodynamic assimilation-forecast system. However, the use
of a simple model in the current work allows ideas to be
developed, tested and understood without the obfuscating
features of a more complex system. Our results show that
3D Var can be used successfully for parameter estimation.
The scheme is capable of recovering near perfect parame-
ter values and therefore improves our models capability to
predict future bathymetry. Such positive results suggest the
potential for application to more complex morphodynamic
models.

This paper is organized as follows. In section 2 we ex-
plain state augmentation and formulate the data assimilation
problem for the augmented system. Our simple 1D model is
introduced in section 3. In section 4 we discuss the roles of
the observation and background error covariance matrices
giving particular attention to the cross correlations between
the background errors in the state and parameter estimates.
The experimental design is described in section 5 followed
by the main results. Finally, in section 6 we summarise the
conclusions from this work.

2 Data assimilation

In this paper we shall consider the discrete, linear, time-
invariant system model

zk+1 = M(p)zk, k = 0, . . . ,N −1, (1)

where the vectorzk ∈ R
m represents the model state at time

tk andM ∈R
m×m is a constant, non-singular matrix describ-

ing the dynamic evolution of the state from timetk to time
tk+1.

Although data assimilation techniques can be applied to
any general system model, the model (1) offers a simple
framework within which we can explain/ present the theory
of the approach.

The model (1) depends on parameters whose values are
imprecisely known. We use the vectorp ∈ R

q to represent
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these parameters, whereq is the number of unknown param-
eters. We assume thatp is constant, that is, the parameters
are not altered by the forecast model from one time step to
the next. The evolution model for the parameters can there-
fore be written as

pk+1 = pk, k = 0, . . . ,N −1. (2)

2.1 State augmentation

In this section we formulate the data assimilation problem in
terms of an augmented system. The procedure for basic state
estimation is identical and can be derived by simply omit-
ting the parameter vector from what follows (Smith et al.
(2008)).

We augment the state vectorz with a vectorp containing
the parameters we wish to estimate, giving theaugmented
state vector

w =

(

z
p

)

, (3)

wherez∈ R
m, p ∈ R

q, andw ∈ R
m+q.

This allows us to write equations (1) and (2) as the equiv-
alent augmented system model

wk+1 = M̃w k, (4)

where

M̃ =

(

M(p) 0
0 I

)

∈ R
(m+q)×(m+q).

We suppose that we have a set ofr observations to as-
similate and that these are related to the model state by the
equations

yk = h(zk)+ εεεo
k , k = 0, . . . ,N −1, (5)

whereyk ∈ R
r is a vector ofr observations at timetk, h :

R
m −→ R

r is a nonlinear observation operator that maps
from model to observation space, andεεεo

k ∈ R
r is a random

vector representing the observation errors. If we have direct
observations,h is simply an interpolation operator for inter-
polating variables from the model grid to observation loca-
tions. Often, the model variables we wish to analyse cannot
be observed directly and instead we have observations of
another measurable quantity. In this caseh will also include
transformations based on physical relationships that convert
the model variables to the observations.

We can write (5) in terms of the augmented state vector
as

yk = h̃(wk)+ εεεo
k , (6)

whereh̃ : R
m+q −→ R

r, and

h̃(w) = h̃
(

z
p

)

= h(z).

We also suppose that we have abackground statewb
0 ∈

R
m+q, that includesa priori estimates of the initial system

statez0 and parametersp0. This is a best guess estimate ob-
tained (for example) from a previous assimilation run or a
recent bathymetric survey.

The aim of data assimilation is to combine the measured
observationsy with the model predictionswb in order to
derive a model statewa ∈ R

m+q that most accurately de-
scribes the true state of the systemwt . This optimal estimate
is called theanalysis.

A wide variety of data assimilation schemes exist (e.g.
Kalnay (2003), Lewis et al. (2006)). In this study we ap-
ply a standard method based on statistical estimation theory
known asthree dimensional variational data assimilation
(3D Var).

2.2 Three Dimensional Variational assimilation

The 3D Var method (e.g. Courtier et al. (1998)) is based
on a maximum a posteriori estimate approach and derives
the analysis by seeking a state that minimises a cost func-
tion measuring the misfit between the model statew and the
backgroundwb and observationsy,

J(w) = (w−wb)TB̃−1(w−wb)

+(y− h̃(w))TR−1(y− h̃(w)). (7)

The matricesB̃ ∈ R
(m+q)×(m+q) andR ∈ R

r×r are the co-
variance matrices of the background and observation errors.
They represent the errors associated with the background
and observations and determine the relative weighting ofwb

andy in the analysis. If it is assumed that the background
errors are small relative to the observation errors then the
analysis will be close to the background state. Conversely,if
it is assumed that the background errors are relatively large
the analysis will lie closer to the observations.

The minimising state can be found using the gradient of
the cost function with respect tow. The 3D Var method does
this numerically using a gradient descent algorithm. For this
work we employ a quasi-Newton method (Gill et al. (1981)).

Although the technique of state augmentation is straight-
forward in theory, practical implementation of the approach
relies strongly on the relationships between the parameters
and state components being well defined and assumes that
we have sufficient knowledge to reliably describe them. Since
it is not possible to observe the parameters themselves, the
parameter updates are only influenced by the observations
through the cross covariances that describe the correlations
between the error of the model state estimate and the error
of the model parameter estimate (Martin (2000)). Successful
parameter estimation will therefore only be possible if these
cross correlations are adequately specified. We will consider
ways of defining the error covariance matrices in section 4
but first we introduce our model.
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3 The model

For the purpose of demonstrating the data assimilation tech-
nique we consider the simple case of a model with a sin-
gle unknown parameter. For this we use the one-dimensional
linear advection model described in Smith et al. (2007)

∂ z
∂ t

+A
∂ z
∂x

= 0, (8)

wherez(x, t) is the bathymetry or bed height,A is the (con-
stant) advection velocity andt is the time.

As discussed in Smith et al. (2007) we can use the method
of characteristics to derive an analytic solution to this equa-
tion valid at discrete points(xi, tk). Given initial data

z(x,0) = f (x), −∞ < x < ∞, (9)

the solution at timet ≥ 0 is simply

z(x, t) = f (x−At). (10)

We assume that the true value ofA is unknown. SinceA
is constant, the parameter evolution equation is given by

dA
dt

= 0. (11)

Equation (11) together with the model equation (8) consti-
tute our augmented state system model (4).

The purpose of this study is to explore the application of
the state augmentation technique within the framework of
this simplistic model before moving on to a more complex
morphodynamic model. The advantage of the linear advec-
tion equation (8) is that it can be solved analytically and
therefore provides a reference solution against which we can
assess the performance of our scheme.

We use Gaussian initial data for (9) to give a smooth,
isolated bell-shaped bedform. The solution (10) is such that
as time increases the bed propagates undistorted across the
model domain with constant speed. We wish to investigate
whether, given an uncertain initial bathymetry and unknown
advection velocity, and using observations taken from the
true solution, we are able to construct an augmented data
assimilation scheme that will produce a more accurate es-
timate of the true velocity, thereby improving the ability of
our model to predict the true system state.

4 Error covariances

Error covariances play an important role in variational data
assimilation. Before we can implement our 3D Var algo-
rithm we need to specify the error covariance matricesB̃
andR.

We are assuming that our model structure is perfect, i.e.
with the correct choice of parameter the model equations

provide an exact representation of the dynamical system.
Obviously, this assumption is unrealistic. In practice it is im-
possible to describe the true system behaviour completely
and model predictions will also contain errors as a result
of uncertain parameters and inaccurate initial and boundary
conditions. In addition, the observations we wish to assim-
ilate are likely to incorporate some kind of error, however
small. Our assimilation scheme needs to take account of the
errors that arise as a result of these imperfections. The pre-
cision of the analysis is dependent on the precision of the
background and observations: correct specification of the er-
ror covariance matrices̃B andR is therefore crucial to the
success of the scheme. If we can ensure that these matrices
are an appropriate representation of the true error statistics,
our data assimilation algorithm will produce optimal results.

4.1 Observation error covariance

The observation error covariance matrixR gives a statistical
description of the errors iny. These errors originate from in-
strument error, errors in the forward modelh and representa-
tiveness errors (observing scales that cannot be represented
in the model) (Daley (1991)). For simplicity we assume that
the observation errors are spatially and temporally uncorre-
lated and takeR to be a constant diagonal matrix with error
varianceσ2

o .

4.2 Background error covariance

The matrixB̃ ∈ R
(m+q)×(m+q) is the background error co-

variance matrix for the augmented system, and can be writ-
ten as

B̃ =

(

Bzz Bzp

(Bzp)
T Bpp

)

. (12)

HereBzz ∈ R
m×m is the state background error covariance

matrix. This matrix represents our uncertainty in the back-
ground state estimatezb. Bpp ∈ R

q×q is the covariance ma-
trix of the errors in the parameter vectorpb andBzp ∈ R

m×q

is the covariance matrix for the cross correlations between
the background errors in the state and parameter vectors. If
we assume that these errors are unbiased, we can define

Bzz = E
(

εεεb εεεT
b

)

, Bpp = E
(

εεε p εεεT
p

)

, Bzp = E
(

εεεb εεεT
p

)

(13)

whereεεεb = zb −zt andεεε p = pb −pt .
Specification of the background error covariance matrix

is one of the key parts of the assimilation problem. The cor-
relations inB̃ govern the spreading and smoothing of obser-
vational information and are therefore fundamental in deter-
mining the nature of the resulting analysis. Background er-
rors arise from errors in both the initial conditions and model
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errors. Since, by the nature of the problem, these errors are
not known exactly they have to be approximated in some
manner.

Formulation of the background error covariance can be
made considerably easier by specifying the error correla-
tions as analytic functions. A number of correlation mod-
els have been proposed (see Daley (1991) for further dis-
cussion on this). An approach commonly used by the nu-
merical weather prediction (NWP) community is the NMC
method (Parrish and Derber (1992)) which uses the differ-
ence between forecasts that verify at the same time. The lit-
erature gives various other methods, including using innova-
tion (observation minus background) statistics and studying
differences in background fields using ensemble techniques.
Fisher (2003) provides a useful review of current NWP tech-
niques.

State covariance A standard approach used in state estima-
tion is to assume that the background error covariances are
homogeneous and isotropic.Bzz is then equal to the prod-
uct of the estimated error variance and a correlation matrix
defined using a pre-specified correlation function. Although
this method is somewhat crude it makes the data assimila-
tion problem far more tractable.

To characterise the background errors in the state vec-
tor Bzz = {bi j} we use the correlation function (Rodgers
(2000))

bi j = σ2
b ρ |i− j|, i, j = 1, . . . ,m. (14)

Elementbi j defines the covariance between componentsi
and j of the error vectorεεεb. Hereρ = exp(−∆x/L) where
∆x is the model grid spacing andL is a correlation length
scale andσ2

b is the state background error variance.

Parameter covariance For our simple model (8) we only
have a single unknown parameter, the parameter vectorpb is
therefore scalar. We approximate the true advection velocity
A with Ã whereÃ = A+εA. Settingεεε p = εA in (13) we have

Bpp = E(ε2
A) = σ2

A, (15)

whereσ2
A is the parameter error variance.

Cross covariances In order to define the matrixBzp for the
augmented system we need to consider the relationship be-
tween the errors in the parameter estimatesεεε p and the errors
in the state backgroundεεεb. As they depend on the same data,
we expect them to be correlated.

One possible method for calculating these covariance
matrices is by averaging the statistics over the assimilation
window, using our knowledge of the truth and background
states. However, since in reality the true solution is not known,
this is difficult to do in practice. For simplicity we would like

these matrices to be of a functional form similar to that used
for the state background error covariance matrix (14). Suc-
cessful parameter estimation relies upon these correlations
being suitably specified, so it is important to ensure that the
choice of function is appropriate to the particular model ap-
plication.

SinceεA is scalar, the cross covariance matrixBzp will
be a vector of lengthm. From (13) we have

Bzp = E
(

εεεbεεεT
p

)

= E (εAεεεb) =











E(εAεb(x1, t))
E(εAεb(x2, t))

...
E(εAεb(xm, t))











. (16)

Hereεb(xi, t) is the ith component of the vectorεεεb, repre-
senting the background error associated withzbbb at the grid
pointxi at timet. Elementbzp(i) = E(εAεb(xi, t)) defines the
covariance betweenεA andεb(xi, t).

To determine a suitable form forBzp we first seek an
approximation to the background errorεεεb. We assume that
our model is perfect and begin by considering a single real-
isation. The background errorεb(x, t), at a particular pointx
and timet, will be a combination of error in the initial condi-
tion and error in the parameter estimate. There are four pos-
sibilities: (i) known initial bathymetry and known advection
velocity; (ii) unknown initial bathymetry and known advec-
tion velocity; (iii) known initial bathymetry and unknown
advection velocity; (iv) unknown initial bathymetry and un-
known advection velocity. Here we consider case (iv) but
note that solutions for the other three cases can be derived in
a similar manner (Smith et al. (2008)).

We define

z̃(x, t) = z(x, t)+ εb(x, t) (17)

and

f̃ (x) = f (x)+ εb(x,0) (18)

where ˜z(x, t) is our approximation to the true bathymetry
z(x, t) and f̃ (x) is our estimate of the true initial statef (x) =

z(x,0).
From (10) we have the solution

z̃(x, t) = f̃ (x− Ãt), t ≥ 0. (19)

Using (17)

εb(x, t) = z̃(x, t)− z(x, t)

= f̃ (x− Ãt)− f (x−At)

= f̃ (x−At − εAt)− f (x−At). (20)

Assuming thatεAt is small and thatf (x) is a continuous,
differentiable function we can expand (20) in a Taylor series
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about f̃ (x−At), yielding

εb(x, t) = f̃ (x−At − εAt)− f (x−At)

=

[

f̃ (x−At)− εAt f̃ ′(x−At)+
ε2

A

2!
t2 f̃ ′′(x−At)− . . .

]

− f (x−At)

= εb(x−At,0)− εAt f̃ ′(x−At)+O
(

(εAt)2) . (21)

If we further assume that the errorsεb(x,0) are smooth we
can use (18) to rewrite (21) as

εb(x, t) = εb(x−At,0)− εAt f ′(x−At)+ . . . (22)

As time increases the higher order terms dominate. For suf-
ficiently smallt the background error at the pointx at time
t will be linearly related to the value of the derivative of the
initial state at the starting pointx0 = x−At.

Conventional 3D Var schemes assume that the background
error covariances are stationary so that the structure ofB̃ is
fixed for all time. Initial experiments with the augmented
system concluded that whilst this approach is sufficient for
estimation of the state background error covariance matrix
Bzz, it does not provide an adequate representation of the
state-parameter cross covariances (Smith et al. (2008)).

The approximation (22) derived above is based on a sce-
nario where there is no data assimilation, and therefore as-
sumes that the form of the background statef̃ (x) and es-
timated advection velocitỹA remain the same for all time.
With data assimilation both the background and parameter
estimates will change as the model bathymetry is updated at
each new analysis time. Thus we will have a differentf̃ (x)
andÃ at the start of each new model integration. Asf̃ (x) and
Ã change so too will the errorsεb andεA and the correlation
between them.

We take account of the fact that the background-parameter
error cross covariances will change by making the matrix
Bzp time dependent. Motivated by our practical experiments
we use the following approximation

εb(xi, t) = −εA f ′(xi −At), i = 1, . . . ,m. (23)

Using definition (13), we multiply byεA and take the ex-
pected value over many realisations, to give

bzp(i) = E
(

−ε2
A f ′(xi −At)

)

= −E
(

ε2
A

)

f ′(xi −At)

= −σ̃2
A f ′(xi −At). (24)

whereσ̃2
A is the estimated parameter error variance.

Since by the nature of the problem bothf ′(x) andA are
unknown, we cannot evaluatef ′(x − At). Instead we sub-
stitute f ′ with f̃ ′ and replace(x−At) with (x− γ̂), where
γ̂ is a time dependent value chosen such that the the covari-
ances are centred on the maximum value of the current back-
ground state. The matrixBzp entries then become

bzp(i) = −σ̃2
A f̃ ′(xi − γ̂), i = 1, . . . ,m. (25)

5 Results

We assume that the evolution of the true bathymetry can be
described by the linear advection model (8). Given an ap-
proximate velocityÃ and starting from a perturbed initial
state we wish to examine whether our augmented data as-
similation scheme is able to deliver both an accurate model
bathymetry and an accurate estimate of the true advection
velocity A. The analytic solution (10) is used to evaluate the
performance of the method.

For the purpose of these experiments, we assume that the
true bathymetry is Gaussian shaped and set the true advec-
tion velocity at a physically realistic value ofA = 0.002ms−1.
In the example illustrated, the initial model bathymetry is
also taken to be a Gaussian but is rescaled so that it is slightly
shorter and wider than the true initial state. We over-estimate
the advection velocity, setting̃A = 0.02ms−1.

The assimilation process was carried out sequentially, as
described in Smith et al. (2008), with a new set of observa-
tions being assimilated every hour. The model was sampled
on a regular grid with a spacing of∆x = 1.0m. Observations
were generated from the true solution at intervals of 25∆x.
They are assumed to be perfect and without any noise. We
therefore weight in their favour, setting the observation and
background error variances to beσ2

o = 0.1 andσ2
b = 1.0 re-

spectively. At the end of each assimilation cycle the analysis
was integrated forward using the model to obtain the back-
ground state for the next analysis time.

The benefits of data assimilation are illustrated by com-
paring model runs performed with and without the parame-
ter estimation scheme. Figures 1 and 2 show the results pro-
duced when the model is run both with and without data
assimilation over a 24 hour period. With no data assimila-
tion (figure 1), the model bathymetry (dashed blue line) di-
verges away from the true bathymetry (solid red line). The
shape of the initial bathymetry remains unaltered and the
inaccurate advection velocity produces a phase error that
grows with time. After 24 hours the predicted model state
is far from the true model state. Running the model with
the augmented data assimilation scheme produces the re-
sults shown in figure 2. The red dot-dash line represents the
true bathymetry; observations are given by circles, the back-
ground state by the dashed blue line and the analysis by the
solid green line. The difference in the results is obvious. The
model is able to produce an accurate representation of the
true bathymetry after just 4 assimilation cycles. At 24 hours
it is almost impossible to distinguish between the predicted
model bathymetry and the truth bathymetry.

Figures 3(a) and 3(b) show the updating of the advection
velocity for the above example and for a second test case in
which we use an initial guess ofÃ = 0ms−1. The accuracy of
the parameter estimate increases with time as the assimila-
tion cycle is repeated and more observations are processed.
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Fig. 1 Model run without data assimilation: the solid red line represents the true bathymetryzt and the dashed blue line represents the predicted
model bathymetryzb
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backgroundzb by the dashed blue line and the analysisza by the solid green line. Note the change in spatial scale from figure 1 above.
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Fig. 3 Updating of parameterA for initial estimates (a)̃A = 0.0 m/s and (b)Ã = 0.02m/s

In both cases, the scheme converges after around 6 hours,
managing to successfully recover the true value ofA with a
final value of 0.002ms−1 to 3 d.p. As a result the model be-
comes a much better approximation and thus produces more
accurate estimates of the true bathymetry.

The experiments were repeated for a range of both over
and under estimatedA values, with varying background guesses
and observation combinations. Unsurprisingly, the speed of
convergence varies depending on the quality of the back-
ground state, the location and spatial frequency of the ob-
servations and the time between successive assimilations.

We do not show results here but refer the reader to Smith
et al. (2008) where results from a similar set of experiments
can be found. Generally, we found that the lower the spa-
tial and temporal frequency of the observations the longer
the scheme takes to reach the correctA value. The quality
of the analysis is also affected. If the observations become
too infrequent the parameter estimates fail to converge. This
raises the issue of observability; whether the available ob-
servations contain sufficient information for us to be able to
reconstruct the model state (Barnett and Cameron (1990)).
We will not discuss the concept any further here but note
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that it is a question that will need to be addressed in future
work.

6 Conclusions

This work is motivated by the problem of parameter estima-
tion in morphodynamic modelling. In this paper, we have
presented a novel approach using data assimilation. To our
knowledge, the technique of state augmentation has not been
used with 3D Var before. Here we have successfully com-
bined the two methods and constructed a scheme that is
capable of recovering near-perfect parameter values, there-
fore improving the ability of our model to predict future
bathymetry. To date the technique has only been developed
and tested using simplified 1D models but the results of this
study indicate that there is great potential for the use of data
assimilation based morphodynamic parameter estimation.

The quality of the analysis is highly dependent on the
accuracy of the information fed into the assimilation algo-
rithm. In the above experiments we assumed perfect obser-
vations drawn from the true solution. We weighted heavily
in their favour because we were confident of their accuracy.
In reality, observational data are noisy and distributed un-
evenly in space and time. One way of simulating such errors
is to add random noise to the observations. This would then
allow us to examine the extent to which over/ under estima-
tion of observation error affects the accuracy of our results.

A key issue that this study has highlighted is the impor-
tance of the correct specification of the covariances between
the background and parameter errors. In order to yield accu-
rate approximations of both the bathymetry and the model
parameters, we must ensure that these correlations are well
defined. In this work we have relied heavily on our a pri-
ori knowledge of the parameter and of the behaviour of the
solution, but in practice we may not have this type of in-
formation. Future studies should give more consideration to
this and examine alternate methods for estimating these co-
variances.

The long term aim of this work is to implement the scheme
in a full morphodynamic assimilation-forecast system. The
results of this study are extremely positive and demonstrate
that the state augmentation technique could be a useful tool
in identifying uncertain morphodynamic model parameters.
Here we have used a very idealized model; further inves-
tigation using more realistic models is required in order to
assess the practical utility of the method. We are now test-
ing the approach in a 1D non-linear advection model that
has two uncertain parameters that need to be set. This has
presented further challenges. In addition to the difficulties
arising from the non-linearity of the model equations and
defining the correlations between the state and model pa-
rameter errors, consideration also has to be given to the rela-
tionship between the parameters and the possibility of non-

uniqueness of solutions, i.e. the parameters do not converge
to a single deterministic set of values, but rather there ex-
ists a range of complementary combinations that produce
the same model behaviour.
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