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Abstract

The aim of this report is to describe the effects of dynamic surface tension solely induced by the nanoscale

topography of the substrates. The flow induced surface tension effects are examined on the basis of a sharp

interface model. It is demonstrated how nanoscale objects placed at the boundary of the flow domain result

in generation of substantial surface forces acting on the bulk flow.

The distinctive feature of fluid motion at nanoscale

is its strong coupling with the dynamic processes in the

interfacial layers formed at the boundaries between the

phases1−2. For example, we know from recent exper-

iments that slippage of liquids at solid substrates re-

sults in enhanced liquid transport through nanoscale

capillary channels, up to 45-400 times higher in com-

parison to the theoretical predictions based on the no-

slip boundary condition3−4. The slippage of liquids

is only one manifestation of interfacial dynamic prop-

erties. Another effect associated with the formation

of interfacial layers and widely exploited to control

nanoflows is surface tension5−7.

If a moving contact line is present, the dynamic

surface tension effects manifest themselves in the de-

pendence of the contact angle θd(uc) formed between

the moving free surface and the solid substrate on the

velocity of the triple-phase contact line, uc
6−8. This

can be illustrated by the Young equation, cos θdσGL =

−σLS +σGS , where σGL, σLS , σGS are the surface ten-

sions of gas-liquid, liquid-solid and gas-solid interfaces,

evaluated at the contact line. The dependence θd(uc)

implies that at least some of the surface tensions are

not equal to their equilibrium values when the con-

tact line is at rest. The velocity-dependence of the

dynamic contact angle is only one part of its general

dependence; apart from the substrate velocity, the con-

tact angle is a functional of the entire flow field at the

contact line region. This effect is known as the non-

locality of dynamic contact angle or, in macroscopic

context, as the hydrodynamic assist of dynamic wet-

ting, which has been used for decades in the coating

industries9.

Studies of the effects of dynamic wetting on smooth

flat surfaces (in particular the effect of non-locality)

have revealed several characteristic features of the in-

terfacial phase dynamics. That is that slippage of liq-

uids and the dynamic surface tensions are closely inter-

related, the σGL, σLS surface tensions at the contact

line deviate from the equilibrium values and equilibrate

over the distance, away from the contact line region,

defined by the characteristic diffusion time in the in-

terfacial layer, that is by the characteristic time of the

formation of the interfacial layers7,9−15. This scenario

has been further supported by the evidence from inde-

pendent studies of viscous flows over the surfaces with

variable wettability, where the changes of the liquid-

solid interfacial energy σLS(x) have been achieved by

chemical patterning of the substrate16−17.

In this letter, we investigate the effect, especially

relevant to nanofluidic flows, of coupling of the sur-

face topography and the flow induced surface tensions.

The question is, what if we change the flat geometry

of the solid surface by placing a tiny, nanoscale obsta-

cle on the surface? The effect from a particle arrested

on a substrate is well studied for macroscopic incom-

pressible flows18−19. But, if the obstacle is of the size

of the interfacial layer, where incompressibility condi-

tion is relaxed to account for surface tension, then one

would expect to observe completely new effects since

the presence of an obstacle may disturb the surface

phase density equilibrium state and cause variations

in the surface tension, similar to the Marangoni effect,

though in this case solely induced by the surface to-

pography.

The analysis of this problem is based on the sharp
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interface formation theory7, given the length scale of

the interfacial region of a few nanometres20, coupled

with the effect of surface slip21−22. This approach,

first developed using methods of non-equilibrium

thermodynamics23, is based on the standard set of

the Navier-Stokes equations, taken in the context of

nanoflows with negligible inertia, for the flow velocity

u and pressure p in the bulk of an incompressible and,

for simplicity, Newtonian liquid with viscosity µ and

density ρ,

∇ · u = 0, ∇p = µ∇2u, (1)

and an extended set of boundary conditions7, at the

solid substrate, at y = 0, which describes a coupling

between the bulk phase, the surface phase in the inter-

facial layer and the solid substrate, Fig.1. In the sharp

interface limit, the thickness of the interfacial layer is

zero, and the surface phase is solely characterised by

two-dimensional distributions of the surface velocity

vs and surface density ρs, which are integrated val-

ues over the interfacial layer. The solid substrate is

impermeable, so,

vs · n = 0, (2)

where n is the normal vector at the substrate point-

ing into the liquid. The second boundary condition is

the tangential stress balance equation in the interfacial

layer, which is, in fact, a modified Navier condition7,

with the coefficient of surface slip βs
21−22. This condi-

tion also takes into account the Marangoni effect where

the flow is driven by the surface-tension gradient ∇σ

and thus links the effects of slip and surface tension7,17,

µn · [∇u+(∇u)∗] · (I−nn)+∇σ = βsu · (I−nn), (3)

here I is the metric tensor; the tensor (I− nn) singles

out the tangential projection of a vector; an asterisk

marking a second-rank tensor indicates its transposi-

tion. Note, that we have neglected the effect of ap-

parent slip, the full analysis can be found elsewhere24,

so the tangential component of the velocity u on the

liquid-facing side of the interface, Fig.1, is simply equal

to the surface phase velocity,

vs = u. (4)

The set of boundary conditions is completed by two

equations describing the mass exchange between the

bulk and the surface phase that takes place when the

surface density ρs deviates from its equilibrium value

ρs
e,

ρu · n = (ρs − ρs
e)τ

−1, (5)

∂ρs

∂t
+ ∇ · (ρsvs) = −(ρs − ρs

e)τ
−1, (6)

and an equation of state relating the surface tension

and the surface density, which is taken for simplicity

in a linear form,

σ = γ(ρs
0
− ρs), (7)

here parameter τ is the surface density relaxation time,

ρs
0

is the characteristic surface density when the surface

tension is zero and γ is a phenomenological material

constant.

We consider a steady-state solution to (1)–(7), as-

suming that the obstacle blocks the flux in the inter-

facial layer, that is at the boundary Γ of the obstacle,

vs · ns|Γ = 0, (8)

and the flow is driven by a plane-parallel constant

shear S0 in the far field, which is directed, without

loss of generality, along the x-axis, Fig.1. Here, ns is

the external normal vector in the substrate plane to

the boundary Γ(x, z) = 0.

Two-dimensional analysis of the problem, in the

(x, y) plane, in the case of a lattice of one-dimensional

nanothreads lying on the solid substrate normal to the

flow, has been done previously24. It has been shown

that, if we use L = λ = µ/βs, U0 = LS0, p0 = µU0

L

and ρs
e as scales for velocity, length, pressure and

the surface density; λ is the characteristic slip length,

then the problem has three non-dimensional parame-

ters ǫ = U0τ
λ

, Ca = µU0

σ0

, Q =
ρs

e

ρλ
; parameter σ0 = γρs

e

is the characteristic surface tension, γ is inversely pro-

portional to the fluid’s compressibility and is, roughly,

the square of the speed of sound; ρs
e ∼ ρs

0
∼ ρh, h is

the interfacial thickness. Parameter ǫ is the ratio of

the characteristic relaxation length U0τ to the charac-

teristic slip length λ, Ca is the capillary number, pa-

rameter Q ≃ h/λ characterizes the mass flux into/out

of the liquid-solid interface. It is usual that Ca << 1

and Q << 1, and it is common that ǫ << 1, while the

ratio Ca/ǫ = ξ2

0
∼ O(1), see estimates24. Under those
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conditions, an asymptotic analysis of the above simpli-

fied two-dimensional problem has shown that substan-

tial perturbations of the surface tension, sufficient to

affect flow conditions at the substrate, exist over the

distance l0 =
√

λτσ0/µ defined by the surface phase

relaxation time 24.

Now, we consider a general case of two-dimensional

nanoparticles of an arbitrary shape with a smooth

boundary Γk(x, z) = 0 of the domain Ωk occupied by

the nanoparticle on the (x, z) plane. One can show

that, in the same limit24, the problem (1)–(7) can

be reduced to an exterior Neumann boundary value

problem for the modified Helmholtz equation on an

unbounded domain, which is in the non-dimensional

form,

∆ρs
1
− ξ2

0
ρs
1

= 0, x ∈ R
2 \

⋃

k

Ω̄k (9)

lim
r→∞

ρ1 = 0, |x| = r,

ρs = 1 + ǫρs
1
,

with the boundary condition (8), on Γ =
⋃

k Γk in the

form

∂ρs
1

∂ns

∣

∣

∣

∣

Γ

= ξ2

0
ns ·

S0

S0

, ξ2

0
=

Ca

ǫ
=

λ2

l2
0

. (10)

To arrive at (9), it is sufficient to assume that the shear

rate S = ∂u‖/∂n has the same constant value, S0, up

to the liquid-facing side of the interfacial layer - this

is the case, for example, if the length scale of the per-

turbation region is much larger than λ (in the case of

nanothreads, if ξ0 << 1).

The velocity component at the liquid-facing side of

the interfacial layer can be expressed through ρs
1

as,

u · (I − nn) =
S0

S0

− ξ−2

0
∇ρs

1
, (11)

so that even small perturbations of the surface density

(∼ ǫ) will have strong effect on the flow conditions at

the substrate.

In general, a solution to (9)–(10) can be obtained

numerically using a boundary integral method28,

which has superalgebraic or even exponential rate of

convergence. This technique is especially advanta-

geous if one has to deal with many particles distributed

on the surface and is the basis for simulations in this

study.

But, first, we consider just one circular obstacle

of radius R0 when a general analytical solution to (9)–

(10) is available, which is, in a polar coordinate system

with the origin at the centre of the obstacle, Fig.1,

ρs(r, φ) = 1 + ǫA cos(φ)K1(ξ0r),

σ(r, φ) =
ρs

0

ρs

e

− ρs,

A = −ξ0(K0(ξ0R0) + K1(ξ0R0)/ξ0R0)
−1,

(12)

here, K0(z) and K1(z) are the modified Bessel func-

tions of the second kind. If ξ0 << 1,

ρs(r, φ) ≃ 1 − CaR0

R0

r
cos(φ), (13)

σ ≃ ρs
0

ρs
e

− 1 + CaR0

R0

r
cos(φ). (14)

From this simple analytical result, one can learn

that, in general, the surface phase is compressed at the

flow-facing side of the obstacle and is rarefied in the

wake, and, for a circular-like object, (a) the topogra-

phy induced surface tension perturbations vanish with

the size of the obstacle R0, (b) the perturbation region

is defined by the size of nanoparticles R0 in contrast

to the case of nanothreads24, where the characteris-

tic distance is defined by the surface phase relaxation

process (by the parameter ξ0), (c) the strength of the

effect is simply defined by the capillary number Ca,

that is by the applied shear rate and the slip length, in

contrast to the case of nanothreads24, where the effect

is proportional to Ca/ξ0.

Consider for illustration a particular example of

a viscous liquid from the range of PDMS fluids with

µ = 1 Pa s and σGL = 2× 10−2 N/m at characteristic

shear rate S0 ∼ 104 s−1, when the liquid is still Newto-

nian. The characteristic slip length may be chosen in

the range observed for this kind of fluids λ ∼ 100 nm25.

The parameters τ and
ρs

0

ρs

e

(to calculate surface ten-

sion) are taken to scale, according to the estimates

obtained from experiments on dynamic wetting26, as

τ = 10−8
(

µ
1 mPa s

)

s,
ρs

0

ρs

e

≃ (1 + 0.3 cos(θ0))
−1 for a

liquid-solid combination with the static contact angle

θ0. At θ0 = 60◦, parameters σ0 ≃ 7 × 10−2 N/m,

ǫ ∼ 0.1 and Ca ∼ 10−2, resulting in variations of the

surface tension ∆σ/σ ∼ 0.1 at R0 = 1. Obviously,

at higher viscosities, for larger obstacles, R0 > 1, and

at static contact angles closer to θ0 = 90◦, the effect

is much stronger, ∆σ/σ ∼ 1. The distribution of the

generated surface tensions is illustrated in Fig.2.
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Now, we will look at the effect of the obstacle

shape by considering single, but extended structures.

One might expect to have similar, to the case of

nanothreads24, parametric dependence , when the per-

turbation region is defined by the parameter ξ0. In

simulations, we kept Ca = const, but vary ξ0. If the

effect would be similar to the one observed for circular

obstacles, then we would not see any clear dependence

on ξ0. On the other hand, if the effect is similar to

the one observed for nanothreads24, then we should

observe such dependence. The results are shown in

Fig.3 for different values of ξ0. One can clearly see

that the perturbation zone and the amplitude increase

as ξ0 decreases. But, note, that the effect saturates at

ξ−1

0
much larger than the maximal dimension of the

obstacle.

Finally, we consider the effect of clustered circu-

lar nanoobstacles. The results of simulations are pre-

sented in Fig.4. While one can see some collective

effects induced by the obstacles, the phenomenon is

largely similar to the one observed for a single circular

obstacle.

In conclusion, it has been shown that nanoscale

topography of the substrate is a signifacant factor,

which results in generation of noticeable surface ten-

sion stresses, which can not be ignored in simulations

of flows at nanoscale. The generated surface tensions

have the most effect on the velocity field at the sub-

strate and in the case of asymmetric extended struc-

tures or nanothreads. Remarkably, the effect on the

velocity field is independent of the applied shear rate,

but the domain grows, in general, as
√

λ, (11).
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Figure 1: Definition sketch for the problem.
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Figure 2: The distribution of the surface tension induced by a circular obstacle at R0 = 1, θ0 = 60◦, ǫ = 0.1

and Ca = 0.01. The surface tension is normalised by its value in the far field σ∞ at r → ∞ and the length is

normalised by the slip length λ. The dark black area corresponds to the area occupied by the obstacle.
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Figure 3: The distribution of the surface tension induced by a stretched obstacle at Ca = 0.01, θ0 = 60◦ and

(a) ξ2
0

= 0.1, (b) ξ2
0

= 10−3 and (c) ξ2
0

= 10−4. The surface tension is normalised by its value in the far field

σ∞ at r → ∞ and the length is normalised by the slip length λ. The dark black area corresponds to the area

occupied by the obstacle.
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Figure 4: The distribution of the surface tension induced by a group of circular obstacles with R0 = 1 at

Ca = 0.01, θ0 = 60◦ and (a) ξ2
0

= 0.1, (b) ξ2
0

= 10−3. The surface tension is normalised by its value in the far

field σ∞ at r → ∞ and the length is normalised by the slip length λ. The dark black area corresponds to the

area occupied by the obstacles.
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