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Summary

A finite difference strategy is presented to solve equations of the
Navier-Stokes type when coupled with a stress equation. Steady planar
two-dimensional flows of an incompressible non-Newtonian fluid are
considered. The variables chosen to describe the flow are stream
function, stress and vorticity. The system of nonlinear differential
equations involved is linearised introducing a Picard-type iteration.
The discretised Tinear equations that result are solved by a
combination of secondary iterations and marching. The convergence of
the iteration and the stability of the difference scheme are analysed
for the forward-facing step problem. Particular attention is paid to
the dependence of the Picard iteration upon the relevant material
parameters. Results are presented for the second-order non-Newtonian

fluid model.



1 Introduction

1.1 Scope of paper

In this paper, we consider a simple model problem which typifies the
numerical difficulties that arise in non-Newtonian flow analysis.
We propose a numerical scheme which solves equations of a Navier-
Stokes type when coupled with a stress equation. The flow is steady,
planar, two-dimensional and incompressible and the flow variables

adopted are stream function Y and vorticity w.

The model problem corresponds to the so-called second-order fluid
mode1(SOE). The SOE exhibits a constant viscosity p and its extra-
stress components have an explicit dependence upon the velocity field.
This model has the attraction that the vorticity equation may be
expressed solely in terms of the velocity and the vorticity. Our
analysis takes particular advantage of this feature to investigate the
numerical effects that arise. The SOE is, however, only physically

realistic for slow flows or for slightly elastic fluids.

The equation system to be solved may be stated in the following

non-dimensional form:

Wu.v(v?w) + RU.Vw - V?w = 0 , (1a)

o+ w=0, (1b)

us=yxyk = [dy,-d (1c)
oy ox

The two non-dimensional parameters that appear are the Reynolds
number R and the Weissenberg number W (an elasticity parameter)
defined as

R=pUL and W =M, (2)

o L



where U is a characteristic (mean) velocity, L is a characteristic
length, p is the fluid density, uy is the dynamic fluid viscosity,
and A is a relaxation time: characteristic values are selected from

a fully-developed downstream flow station.

The techniques developed here are applicable in a general flow
situation that may be described by a coupled system of the
incompressible flow equations and a stress equation system. This
naturally leads to the consideration of more realistic non-Newtonian
stress mode1s(cf.Wa1tersi), buoyancy driven flows and some models for

turbulent flows.

The present approach introduces a further auxiliary "stress-like"
variable Z. This scalar variable (henceforth referred to as the
stress) is defined through the identity

Z= %o . (3)
The full system of equations (1) and (3) is then considered in a
form with (la) replaced by

Wu.vZ - € = -Ru.Vw , (4)

representing two elliptic equations and a hyperbolic equation.

This system of equations is discretised by finite difference methods
on a uniform grid: the usual five-point operator is used for (1b) and
(3), with {4) replaced by a Crank-Nicolson scheme. The resulting
system of nonlinear algebraic equations is solved iteratively by
successive substitutions. This introduces a sequence of Picard-type
iterations at the nonlinear (outer) level. The order of computation
within one such iteration is to first compute Z, then w and finally v,
from which the next velocity field iterate is evaluated. At the linear

equation (inner) level a combination of inner iterations for the



elliptic equations and direct marching for the hyperbolic equation is

used.

The convergence of the outer iteration and the stability of the
marching scheme are analysed for the forward-facing step problem over
a range of values of the two-parameter family (R,W). We are
particularly interested in covering the full range of W values for

R<0(10).

1.2 Historical background

This paper concentrates on a traditional iterative approach:
decoupling by linearisation, reducing the nonlinear equation system
into a set of linear equations and introducing an outer Picard
iteration. The present iterative scheme is compared to two similar
iteration schemes proposed by Crochet and Pilate® and Davies’.
Using a non-negative outer iteration number n these schemes may be

summarised as follows:

W v(v?a?) + RUM. 90T - VPP = 0, (5a)
Vawn+1 p wn+1 = 0 , (5b)
TR A S (5¢)

where for Scheme 1(Crochet) g=r=s=n+1; for Scheme 2(Davies) q=n,

s=n+1, R=0; and for Scheme 3(Present) g=s=n+1, r=n.

Scheme 1 yields a third-order differential equation for w leading to
convergence difficulties in the corresponding inner iteration.
Solutions were reported for the (R,W) values of {(1,0.1),(10,0.2),
(100,0.4),(500,0.8),(1000,1.4)}. A critical upper 1imit on W was
observed for each selected R value, though this 1imit increased with
increase in R. This phenomenon of a restrictive upper limit on W is

common throughout non-Newtonian computational flow analysis and



remains a crucial issue to resolve. The present study addresses this
problem and provides insight into the nature of this phenomenon.
Scheme 2, with R=0, gives an efficient inner w iteration but W is
effectively 1imited by the numerical smoothing of the source term
Wu".v(v®a"). Solutions were reported for (R,W) of {(0,0.1), without
filtering; (0,W),W<10 with filtering}. The present scheme differs from
Schemes 1 and 2 by the inclusion of a three-step outer iteration, and
a direct marching scheme for v?w at the 1inear level. No upper limit
on W is found for converged solutions with R<10, though Scheme 3

exhibits a restriction on R.

The acceptibility of converged solutions for small R values is based
on the Tanner/Geisekus theorem({see, for examp1e,4) for creeping flow
i.e.R=0. At W=0 the solution for C is trivial, C = v?w = 0, so that by
Tanner's theorem the velocity field {g}w=0 also satisfies the problem

for all W»0.

2 Analysis of outer iterations

In order to obtain some feel for the dependence of the outer
iteration on the parameters R and W, a linearised perturbation
analysis using a single Fourier mode is considered. We introduce the

following notation:

w=Q+ &exp(t5.§) ) (6a)
=W+ ¢exp(L5.§) ; (6b)
u=U+ Qexp(LE.ﬁ) ' (6¢)

where 1=/-1 and Q, W and U satisfy the original differential problem
U.v(RQ + WV?Q) - v’Q = 0 , (7a)
VU+Q=0, (7b)

Us=9x Uk . (7¢)



For Scheme 1 the outer iteration for the linearised equations yields

g (8)

K=

WU (R - W et = -6,
where

g.é" = (G x 5)&“ = 1K 2 (G 5)&“ , (9)
and G = V(RQ + Wv°Q). Thus convergence of the iteration requires

G * k|
<1 . (10)

K |k® + LU.K) (R - kW) |
Clearly, for a given flow and specified U, G, R and W, it is the
Towest frequencies(i.e.longest wavelengths |k|) which will give most
trouble. Also in a reasonably narrow channel the longest wavelength
modes that can occur in the system are likely to be roughly along the
streamlines so that U.k . #0. Thus for a fixed Reynolds number R, as W
is increased from zero, not only the numerator in (10) increases but

also the denominator attains a minimum when WRR/Kiin. Thus a Timit on
W might be expected for which convergence can be achieved, and that

this will increase with R.

Similarly, the outer iteration for the linearised equations in Scheme

3 gives

K|l - W (U. k) ot o= —g.g" - LR(Q.E)w" (11)

which for convergence requires

|6 % k + R (U.k) |

<1, (12)
K* |1 - W(U.k) |

In this case, increasing W increases the denominator, provided U.k#0,
and an extra term in R appears in the numerator. Clearly, the left
hand side of (12) is smaller than that of (10) unless Rk*{(U.k)
dominates G x k or R dominates k°W. In particular, if |G x k| < k* so

that (10) is satisfied, then {12) is also satisfied if



Rk? |U.k| + |G x k| < k*. Hence Scheme 3 will exhibit a less severe
restriction on W for small R but this situation will deteriorate more

rapidly with increasing R.

In contrast to the above, Scheme 2 leads to

et -g.é“ + LWKZ(Q.E)&n (13)
where G = WY(v?Q) and again convergence requires

Wik * 9(v2Q) + k*(U.k)| < k* . (14)
Here both high and low frequencies give trouble - hence the need for
filtering. The bound on |k| due to high frequencies is roughly

proportional to W ' (see Tanner®) so that again it is increasing W that

leads to non-convergence.

For a rigorous convergence analysis of the iteration between w and V¥
we refer to Smith6‘7, Ehrlich® and McLaurin®. The need for introducing
such an iteration arises partly because w is unspecified on the rigid

6:7:8:9 study the coupled equation approach to

boundaries. References
solving the biharmonic equation for | in a rectangular domain. The
biharmonic boundary value problem is reduced to a coupled system of
Poisson equations, which depend on an arbitrary coupling parameter c.
This system may be solved by iteration. Maclaurin proved that the
iteration converges for all sufficiently small values of c¢: namely if
0<c<2v1, where v, is the smallest eigenvalue of the corresponding
Dirichlet eigenvalue prob]emg. In the finite difference approximations
of the coupled system the coupling constant is no longer arbitrary.
Indeed, c=2h'1, where h is the step size. Unfortunately, this
iteration is divergent unless averaging is used, as shown by Smith®.
Given one of the averaging parameters, there is an optimal choice of

the other(cf.Ehrh‘ch8 and McLauring). Although this analysis is only

valid for Stokesian flow in a rectangular region with rigid
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boundaries, it provides us with some indication about the appropriate

choices of the averaging parameters in our iteration procedure.

3 Full statement of the model problem

We consider the forward-facing step problem for the model equations

discussed earlijer and written in the following form:

TR o S TR (15a)
ottt = gttt (15b)
V2¢n+1 - _mn+1 , (15¢)
TR R (15d)
where u = (u,v). The region of solution is shown in Fig.1: ABCD is a

rigid boundary, FE is a symmetry boundary, AF is the inlet boundary
and DE is the outlet boundary. The flow is assumed to be fully-
developed at inlet and outlet. Denoting the outward normal to the
boundary by N, the appropriate boundary conditions are as follows:

Rigid boundary ABCD

u=v=20 = P=0, w=+3 YN, =0 ; (16a)

Inflow boundary AF

u given, v = 9v =0 => |, wgiven ; (16b)
ox

Outflow boundary DE

v=0,0=3=0 = 3=23w=0,2C=0; (16¢)

X X X X

Symmetry boundary EF

ou=0,v=0 = = wF, w=2,=0. (16d)

Since DE and AF are effectively assumed to be at x=+« there is a
superfluity of boundary conditions available at inflow and outflow.
The conditions actually used are given in {16) after the "implies"

symbol: the minimum assumptions required appear before the symbol. The
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boundary conditions for T are particularly significant and will be
referred to again below. As a result of these choices, AB and CD can
be reasonably small for accurate results to be achieved. The inlet
velocity profile does, however, incorporate a further assumption that
3°w/dy*=0. The non-dimensionalised form of (15) yields the inlet
conditions

Y = 0.5b(3a% - 4y*)y + y, u = 1.5(a® - 4y°), w = 12by, (17)

with a=4, b=a">

, wF=—0.5 and a flow rate of 1/2 unit over the 1/2 unit
channel width DE. Apart from R and W the only other parameter in the

problem is the contraction ratio AF:DE which is taken to be 4:1.

The objective is to compute flows for a range of values of R and W in
the domain of Fig.l. For R=W=0 the flow is Stokesian. For W=0 the
equations reduce to the Navier-Stokes equations {(combining (15a) with
(15b) and ignoring the boundary conditions for ) and again the flow
is well documented(cf.Dennis and Smith*°). In particutar, for R20 a
recirculating region develops in the corner ABC. This is a weak vortex
which initially decreases in size and strenght as R is increased up to
Rx~50. After Rx~50 this primary eddy increases monotonically with R
giving rise to secondary eddies and, eventually, the flow becomes
turbulent for 2000<R<3000. Additionaliy, above Ra500 a second
separation region is anticipated to occur beyond C on cd't %, The

present study is confined to the range 0<R<10.

When W>0 the flow patterns that arise at fixed R vary greatly with the
physical properties of the non-Newtonian fluid. For example, for
R<0{10) as W increases from zero, some elastic fluids with a
reasonably constant viscosity (e.g.Boger fluids'?) show no significant
vortex behaviour beyond that exhibited by the equivalent Newtonian

fluid*®. Alternatively, certain elastic fluids with a shear-thinning
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15,16
. Here we focus

viscosity can render a substantial corner vortex
our attention on a constant viscosity fluid described by the SOE

model.

Introducing a small positive value of W leads to the consideration of
a singular perturbation problem. In general, a boundary layer for C

is expected, depending on the boundary conditions imposed for the
solution of (15a). The symmetry boundary condition Z=0 holds as W - 0O
as does that on the fixed boundary: thus the only difficulty that may
occur is at inflow or outflow. The condition £=0 is imposed at outflow
because, considered as an ordinary differential equation along the
streamlines, (15a) has an exponentially decreasing complementary
solution in the upstream direction. If CD is reasonabliy large (so that
there is no forcing term in (15a) near DE), no boundary layer
difficulties arise. In particular, for R=0 it follows that & is

identically zero for any value of W as it should be.

There remains the problem of the singularity at C and the calculation
of £ in the recirculating flow region when R#0. These issues are

discussed in the next section.

4 Numerical approximation

4.1 Finite difference equations

The region Q of Fig.l is covered by a regular square grid of step size
h and nodal values of the variables ¥, w, £ at x=ih, y=jh are denoted
by wi‘j etc. Values of h of 1/8 and 1/16 are used, requiring some 1400
mesh points and 16 mesh lengths at inflow for the former choice. The

following standard notation is used for the difference operators:
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5 v v - v ,

x i+1/2,j i+1,) 1,3 (18)

bob (W +9 )2,

X i+1/2,j i+, i,

with similar meaning for 6 and p . The difference approximations to
y y

the Poisson equations for w and Y are then the standard five-point

schemes:
2 2, , n+1 _ 2.,n+1
(5x+5y)‘*’1,3 = hc:‘J .
(52 + 62 )¢n+1 - _thn+1 (19)
x y 1,3 1,3 7

Here the superscript n+l denotes the stage of the outer iteration

1 1 1
process, "' - "t Syt

Two different schemes are used for the stress equation: the box scheme
in the recirculating flow region Q: and the Crank-Nicolson type scheme
in Qi where the flow is predominantly in the x-direction. For the
former, velocities are required at each cell-centre (i+1/2,j+1/2) and

are given by the four-point formulae

n -1 n
ui+1/2,j+1l2 = h ux6y¢1+112.j+112 ’
) (20a)
n b n
i+172,3+112 -h “yéxwi+1l2,3+112
Then the box scheme approximation to (15a) is
n n n+1
W (U uyéx v uxéy)c i+1/2,j+112
n+1
= e“xuyci+112,3+112 * (l_e)ci,j+1
- _ n n n
= -R|(u uyéx + Vv pxéy)m 8 1 B2 (20b)

where the parameter 6 permits pointwise weighting and ensures
stability for all possible velocity fields. The Crank-Nicolson scheme

covers two neighbouring cells with the same x-coordinate and is
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therefore centred at (i+1/2,j). Thus the velocities are given by the

unsymmetric formulae

n _ -1 n
ui+112,j = h uxuyéywi+1l2,j '
(21a)
V" = -h's Y ,
i+112,] x i+11/2,3
and the approximation to (15a) is
n n n+1 . +1
W(U 6x M leMy(Sy)C - hcn li+1/2,j
. n n n
= -R|(u § + v pxuyéy)m ]i+112.j (21b)
where
i+1/2,j = Bci+1,j + (l_B)Ci.j ’ (21C)

The weighting parameter (3 is introduced to ensure the stability of the

scheme and its choice will be discussed later.

Let us focus our attention on the treatment of the boundary conditions
for these schemes. For ¢" in (19), Dirichlet conditions are supplied
from (16a,b,d) for all boundaries but DE. From {16c), the Neumann
condition for both ¥° and w" on DE is satisfied through

n . n n - n
whj-%_Lj S (22)

Dirichlet conditions are imposed on w" on AF and EF from (16b,d). It
remains to specify w” on the wall ABCD. This is achieved by a Taylor
series expansion of the Tocal wall velocity conditions. With reference

to Fig.2, we use the following derived formulae:

n _ _op~2 3 n-1

wi,J = -eh (wi,J—i wi.J) ’ (23a)
n - -2 - n-1 _ r

wi’J = -3h (lj)i.J_1 wi,J) 1/2(1)1“]_1 , (23b)
= -2h" %y + I (23c)
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where I and J are wall coordinates, (I,J) is the re-entrant corner C,
and r in (23b) may be chosen as outer iteration level n-1 or n.
Formula (23a) is formally first-order accurate(see Thom'” ) ; formula
(23b) is second-order accurate(see Woods'®), and is used with r=n

at all wall points bar C; formula (23c) is attributed to Kawaguti19
and provides a finite estimate of wg based on (23a). It is well known
that for the Navier-Stokes equations w is unbounded at C
(cf.Moffatt®®): however, formula (23c) generates an estimate closely
approximating that provided by the finite difference strategy of

Holstein and Paddon®! which matches an asymptotic expansion in the

corner neighbourhood.

1 N
"*1 are integrated from

For stability reasons the equations for C
outflow to inflow, and from (16a,c,d) C“+1 is set to zero on all
boundaries except at inflow AF. The fully-developed flow conditions at
inflow provide a compatability check on the numerical solution and,

n+1

for consistency, C should decay in the entry region and vanish at
the inflow boundary. Thus if the Crank-Nicolson scheme were to be used
over the whole region Qh sufficient data would now be available, with
{u),ou}’i“J specified at all interior and boundary points: the same is

true if the box scheme (20) is incorporated in a limited zone Q; based

onh ABC but not extending across to the symmetry boundary EF.

4.2 Solution procedure

At the beginning of the stage n -+ n+l, a set of w:,; will be known
from which the streamlines can be drawn and the extent of the
recirculating region defined(i.e.where ¥*>0). Z**' is then calculated
as follows. First, the box scheme (20) is introduced for the

recirculation zone Qh proceeding in a point-wise manner. Commencing
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n+1

at the cell in the corner B, T at the corner diagonally opposite to
B is calculated provided " at that point is within Q;: this is
continued for cells along BC until the corresponding y" falls outside
Q;. This process is repeated for the next j-column of cells moving

out into the flow, and hence covering the whole of the recirculating

n+1

region. The resulting values of C then constitute a lower boundary
condition for sweeping the Crank-Nicolson scheme (21) from outflow to
inflow in the non-recirculating region Qi. It is vital to restrict the
application of the box scheme to Q; alone. Otherwise Targe numerical

n+1

oscillations in G may occur cross-stream which will subsequently be
swept upstream by the marching scheme. This is due to the sign switch
that occurs in the box scheme when v" dominates u". The weighting
factor 6 in the box scheme varies between 0 and 1 pointwise. Its

choice guarantees the stability of the scheme for all possible

variations in the velocity field.

Second, the Crank-Nicolson scheme is used in Qi which involves a

direct line-by-line marching procedure in the upstream direction. At

each vatue i=I+1,I,... a tridiagonal system emerges which relates
n+1 n+1 .
(Cj+1,cj,cj_1)I to (Cj+1,cj,cj_1)1+1, for cross-stream j-values,
through
n+1

-1 ]I

Ve, - (Ush(1-B))E - VL,

n+1 . n
o VCJ+1 * (U—ﬁh)c_] - ch-l I+1 - fI+1IZ,j (24)
where V = 0.25Wv" and U = Wu" . A fast tridiagonal solver

I+112,3 I+1/2,]

is used to solve the system of equations (24). The Crank-Nicolson
scheme 1is only applicable for the region Q: where the fliow is

predominantly in the streamwise direction. If it is extended to cover
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Q; a large cross-stream oscillation in C“+1 is observed due to
relatively small local velocity field values there; this then leads to

a failure to converge in the Picard iteration.

nt+1 n+1

Next the Poisson equations {19) for w followed by that for Y ,

are solved by secondary inner iterations: SOR is used for this
purpose, but clearly other methods may also be applicable. We have
utilised the empirically estimated optimal relaxation factors of

1.6 ¢ <1.8 and 0 = 1.0(see Davies et al.%?).

®y
The smoothing factors on the outer iterates are xw = 0.1 and

Xo = XC = 0.3 where, for example,

n+1

v

~
n+1

and ¢ represents the current unsmoothed jterate. These choices are

= XV + (1—><lp)tﬁb"+1 (25)

6,7,8,9 . , .
discussed in Section 2.

consistent with the work of others
Additionally, in order to guarantee the stability of the outer
iteration, we restrict ourselves to a single w iteration per outer
iteration cycle. Utilising graded iterative convergence tolerances
with less stringent restrictions on w than Y produces a similar effect
(see Websterza). The essential nature of such practices becomes
apparent when the residuals of the equations are monitored as the

Picard iteration proceeds.

4.3 Stability of the marching scheme

First, the tridiagonal matrix for each I-line is considered. Clearly,
the associated matrix for (24) will be diagonally dominant for an
upstream march direction provided

U+ h(1-8)] 2 2|V] (26)
for j-values spanning the cross-stream section of Q:. Within Q:,

n

remains non-negative and is expected to dominate v"
I+1/2, 3 1+112,3
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almost everywhere. The inequality (26) will be satisfied with least
restriction on the relevant velocity conditions when 3 vanishes. This
then provides a sufficiency condition which guarantees the numerical
stability of the tridiagonal matrix solver(cf.Golub and van Loan®*).
Furthermore, from a 1-D analysis for a simple channel flow, the

condition B<U/h must be satisfied to avoid streamwise oscillations on

the grid scale when implementating the Crank-Nicolson scheme.

Next, the sensitivity to perturbations of the marching sweep is
Fourier analysed, in a manner akin to an iteration process in

decreasing I-values. Consider the perturbation 651+1 ~on CI+1 5 which
1 J 2]

gives rise to the corresponding perturbation of 6CI ~on CI i These
' ] "’

perturbations satisfy (24) and may be expressed as

GCI g I Mexp(ijE ) , v = V-1, (27)
, m m m

with Fourier coefficients A' where m is the mode number. Substitution
m

of (27) into (24) gives for the m-th component,

x; (U+h-Bh) - 12Vsing | = xi*i (28)

(U-Bh) + L2Vs1'nE§,m

The Fourier stability criterion for a stable marching sweep in the
upstream direction is the amplification factor condition |x;/x;*1|s1
for all modes m. This criterion is satisfied if

(U - Bh)® < (U+h-ph)? (29)
for all cross-stream j-values in Qi: that is if B<0.5 + U/h. Clearly
for the choice (=0 stability is affirmed and oscillations on the grid
scale are avoided provided u:+1,2‘J20 over the region in question.

Hence the necessity to restrict the marching scheme to flow zones

where the flow is predominantly in the streamwise direction.
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5 Results

2.1077] are used to

Relative tolerances in [Z, w, W] of [107%, 10°
monitor the convergence of the jteration procedure. It is generally
observed that, as R is increased, the convergence criteria become
increasingly more difficult to satisfy. The convergence of the Picard
iteration is directly related to R: for small R convergence may be
obtained for any W, whilst for larger R (greater than 10) convergence

of the Picard iteration deteriorates for larger W. These findings are

in agreement with the arguments of Section 2.

A selection of results is presented in Figs.3 - 6. For creeping flow
{(R=0) T vanishes for all W20. For R=10"% solutions are found for

2

10™* < W < 10%: C behaves Tike Ru.Vw for W<U™' and 1like wR/W for

WUt

, where U is a characteristic velocity value. The same relative
behaviour for ¢ is observed for R<1. The solutions for ¢ for

0.1 ¢ W < 10° at R=1 and R=10 are shown for comparison in Figs.3 and
4. For completeness the solutions for | and w are also given at W=1
for R=1 and R=10 in Fig.5. The diminished size of the vortex for \,
between R=1 and R=10 for the comparable value of W=1, characterises
the behaviour of V over a wide range of W at fixed R values: solutions
for Y and w do not change significantly with W, only with R. Hence no
vortex enhancement is observed for R£10, in agreement with
experimental results for some constant viscosity fluids that also

manifest memory effects'® 1,

Fig.6 illustrates the tensor stress components P** (cf.Crochet
et a1.2%) for the SOE model in the flow situations investigated. These
components have a functional dependence upon derivatives of u up to

the second order, whilst ¢ depends on derivatives up to the third
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order. In Fig.6 the first normal-stress difference P** - PYY and the
shear stress P*Y are displayed at R=1 for W=1 and W=10, where
normalisation is performed with respect to the corresponding

downstream fully-developed wall value.

6 Conclusions

A finite difference scheme has been developed to study incompressible
flows of various types: a non-Newtonian fluid is considered here. The
new features involved are the direct marching scheme for the stress
equation and the particular choice of the outer iteration scheme. The
study of this and similar iteration schemes has led to a broader
understanding of their behaviour with respect to the material
parameters involved. Indeed, for the second-order model the
convergence of the present scheme is directly related to R, and for
R<0(10) solutions may be obtained for a wide range of W. Hence, for
this benchmark problem proceeding in the manner prescribed, no

restrictive upper 1imit on W is encountered for R<10.

These techiques can be applied to Maxwel1/01droyd mode]s(cf.O]droydzs)
and a Newton-type iteration scheme may then be appropriate.
Furthermore, the multi-grid method may be used in either a nonlinear
or a linear fashion, to account for the sensitivity of the iteration
schemes to long wavelength error modes. These issues will be studied

elsewhere.
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Figure legend

Fig. 1. Schematic flow diagram.

Fig. 2. Mesh near boundary.

Fig. 3. Stress ¢ contours.
R=1; (a) W=0.1, (b) W=1, (c) W=10, (d) W= 100.
Contour key.

Fig. 4. Stress { contours.
R=10; (a) W=0.1, (b) W=1, (c) W=10, {(d) W= 100.
Contour key.

Fig. 5. Stream function and vorticity contours.

W=1; (a) v, (b) w, R

1;

(c) v, (d) w, R=10.
Contour key.
Fig. 6. First normal-stress difference and shear stress.
R=1; (a) P** - P*Y [ (b) PV , W=1;
(c) P = PYY , (d) P*Y , W = 10.

Contour key.
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