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Abstract

The problem of robust pole assignment by feedback in a linear,
multivariable, time-invariant system which is subject to structured
perturbations is investigated. A measure of robustness, or
sensitivity, of the poles to a given class of perturbations is derived,
and a reliable and efficient computational algorithm is presented for

constructing a feedback which assigns the prescribed poles and

optimizes the robustness measure.
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1. Introduction

For robust pole placement by feedback in a linear, multivariable,
time-invariant system, the prescribed poles, or eigenvalues, of the
closed loop system are required to be as insensitive as possible to
perturbations. It is known [9] that the sensitivities of the
eigenvalues of a matrix are dependent on the corresponding
eigenvectors. It has also been established [7] that the freedom to
assign the eigenvectors of a system corresponds directly to the degrees
of freedom available in the feedback gain matrix. In effect,
therefore, the feedback can be parameterized directly in terms of the
eigenstructure of the closed loop system, which can then be selected to
ensure robustness.

By a worst case analysis, it can be shown [9] that if arbitrary,

unstructured perturbations are allowed in all components of the closed

loop system matrix, then the maximum perturbation to an eigenvalue A

of the matrix is directly proportional to
T
c(A) = y x/lyilxi

where x, y are the right and left eigenvectors corresponding to A,
and ll+ll denotes the 92—vector norm. A bound on the variation &A

in an eigenvalue A due to a general arbitrary perturbation E 1in the

system matrix is given by

8N < «(X)UEN

where k(X) = HXHHX_IH, X is the modal matrix having the system



eigenvectors as its columns and Il*ll denotes a matrix norm consistent
with the 82—vector norm. The condition number «k(X) of X then
gives a global measure of the sensitivity of the eigenvalues of the
system matrix. Methods for minimizing «k(X) are described in [5] [4]
[2].

In many practical systems, the worst case analysis 1is not
applicable, however, since all elements of the system matrix may not be

subject to arbitrary perturbations. For example, the state-space form

of the second order system

z - Alg - Azg = Blg

is generally given by the equations

X = Ax+Bu (1)
where
Z 0o I 0
’—‘=[é]' A=[A2 AI]'Bz[Bl]' (2)
The zero block in A is structural and is not subject to
perturbations. Similarly, decentralized systems contain many blocks

of structural zeros not subject to disturbances, parameter variations,
or other uncertainties. For such systems it is necessary to select
feedback gains to ensure that the prescribed closed loop poles are
insensitive to restricted, or structured, perturbations.

In this paper we give a measure of pole sensitivity to certain
classes of structured perturbations, and describe reliable numerical

methods for finding feedback gains which assign prescribed poles with



minimum sensitivity. The computational algorithms are based on
methods developed in [5] for minimizing the pole sensitivity to
unstructured perturbations. The measure of sensitivity is similar to
that used in [8], but the numerical methods presented here are expected

to be more efficient and reliable.

2. Formulation of the Problem

The problem of pole placement by state feedback can be stated as

follows:

Given the linear, time-invariant system

X
1l

19
+
[oe)
IS

(3)

where A € R™®, B¢ R>™, rank[B] = m, and given a self-conjugate
set of (distinct) complex scalars Aj’ J=1,2,...n, find feedback
gain matrix K € mmxn‘ such that the closed loop system matrix A + BK
has eigenvalues equal to Aj' J=12,...n.

For robustness the prescribed eigenvalues, or poles, must bhe

insensitive to a given class of perturbations. We assume, that the

perturbed system has the form
. T
X = (A + BK + FEG )x . (4)

where A + BK is the nominal closed loop system matrix with the
prescribed poles, E 1is an unknown disturbance matrix, and F, G are
real scaling matrices which define the structure of the perturbations

(see also [3]). For example, in the second-order system (1)-(2), if



we assume Al’ A2 are uncertain, then we take FT = [0, I] and

GT = I, with E = [El‘ E2]; if only A2 is subject to perturbation,

we take FT = [0, I] and GT = [I, 0], with E = [E2].

The robust pole assignment problem then becomes:

X « nXm,, nxm
Given A€R™, BeR™™, FeR °, GER and a
self-conjugate set of (distinct) complex conjugate scalars AL,

j=12,...n, find K€ R™™ such that

(i) the eigenvalues of A + BK are equal to Aj. j=1,2,...n;

(ii) the eigenvalues of A+ BK + FEGT are ’'close’ to A

J

meXm
j=12,...n, for any matrix E€R of (small)

perturbations.

In order to formalize the definition of ’closeness’ used in the
statement of the problem, it is necessary to establish a global measure
of the sensitivity, or robustness, of the poles to perturbations having
the given structure. A measure of this robustness is derived in the

next section.

We remark that not all perturbations to the nominal system can be

represented by the form FEGT. More possibilities can be covered by
4

considering perturbations of the form z FsEsG:' An upper bound on
s=1

the pole sensitivity to perturbations of this type is given, however,
by the robustness measure for perturbations of the form FEdT where
F = [Fl’ F2""F€] and G = [Gl' G2""GB]' The algorithm for
optimizing robustness described here can thus be applied to quite

general systems.



3. Measure of Robustness

To establish a global measure of the sensitivity of the
eigenvalues Aj of the matrix A + BK to structured perturbations
FEGT, we begin by observing from [9] that the first order change GAJ
to Aj due to the perturbation E 1is given by

T

T
ON., = JEG x. |,
; ¥ FE X, (5)

where Ej’ zj are, respectively, the right and left eigenvectors of

the nominal system associated with Aj. Consequently, we may estimate
ON.| <€ c.lEN , 6
o1 < e (6)

where we have denoted

T T
c. = Iy .FIHIG x. Il 7
J XJ -J (7)
as the coefficient of sensitivity.
We now take v = ci + c; + ...+ cz as the global measure of
robustness. If we let X = [xl, 52""§n] be the matrix of right

eigenvectors of A + BK, and let Y = (X—l)T = [zl, X2""Xn] be the

matrix of left eigenvectors, normalized such that ngj =1,
J=1,2,...n, and assume that the right eigenvectors are scaled such
that HGngH =1, j=1,2,...n, then the robustness measure can be

written



n
b= ) ungu2 - ayTFi2 = ax!

F FlIZ . (8)

F
j=1

Here H-HF denotes the Frobenius matrix norm.

The problem of robustness with respect to structured perturbations

can now be stated precisely as:

nxn nxm nXmp
Problem 1 Given matrices A €ER . B E€ER . FER
n xme
GER and a self-conjugate set of (distinct) complex scalars A_,
j=1,2,...n, find a matrix K € mmxn and a non-singular matrix X
such that

(1) (A+BK)X = XA where A = diag{kl. A2,...An} :

(ii) HGTXejﬂ

]
—
[
Il
p—t
N
=}

(111) v = IX'FUZ is minimized.

We remark that multiple eigenvalues can be assigned, with a minor
restriction that ensures the existence of a non-singular matrix X.
If a non-singular matrix X does not exist satisfying (i) of
Problem 1, then the nominal closed loop system must be defective and
hence is necessarily less robust than a non-defective system (see [9]
and [5]).

In the next section we describe a computational method for
selecting the matrix X of eigenvectors of the closed loop system to

optimize the robustness measure.



4. Numerical Method

We now derive a computational technique for minimizing the global
measure of pole sensitivity v to the given class of perturbations.
The method is a generalization of Method 1 of [5] and is iterative in
nature. Initially an arbitrary set of eigenvectors is selected, and
then each eigenvector is up-dated in turn, so as to minimize v over
all possible choices for that vector, whilst the remaining eigenvectors
are kept fixed. This procedure is repeated iteratively until the
measure v ceases to decrease significantly. Each eigenvector is
required to belong to a specified subspace, (see [7] and [5]) and, as
in Method 1 of [5], the minimization of v in the update step can be
performed explicitly using numerically stable QR decompositions to find

the required least square solutions.

4.1 Basic steps of the algorithm

We begin by describing the subspace yj to which an eigenvector
Ej corresponding to a prescribed pole Aj of the nominal closed loop
system A + BK must belong for j =1,2,...n. The following Lemma

gives the required result.

Lemma 1 The eigenvector Ej of A + BK corresponding to the

assigned eigenvalue Aj must belong to the space

T
g, = MU(A - 7\j1)} , (9)
where
B = [U, Ul][(z)] . (10)

U=[U,, U1] is orthogonal, Z 1is non-singular, and «#{-} denotes

null space.
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The proof is given in [5], and the subspace is equivalent to that
derived in [7]. The decomposition (10) of B exists by the
assumption that B 1is of full column rank and can be found by the QR
or SVD (singular value decomposition) methods. An orthonormal basis
for yj’ comprised by the columns of matrix Sj’ can also be found by
QR or SVD decompositions [5].

The basic steps of the algorithm for minimizing the sensitivity

measure v are then given as follows.

Algorithm 1

]

Step 1 Find decomposition (10) of B and a basis Sj for QJ

j=12,...n.

Step 2 Select an initial matrix X = [51, §2,...§n] such that

X, € yj’ j=12,...n, and X 1is non-singular.

Step 3 For j=1,2,...n do

Step 3.1 Find §j to solve

E-ményj 0X~ P
subject to HGT§jH =1 and X, fixed, i=1,2,...j-1,
j+1, n
Step 3.2 Form updated matrix
X = [51, Xo» - X5 g gj' §j+1""§n] and OONTINUE.

Step 4 Repeat Step 3 until v = HX—IFHF is ’converged’.

Step 5 Construct feedback matrix K from

1

K = Z_lUg(XAX— - 4) ,

where A = diag {Al. A2....kn}.
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In the next section we derive in detail the procedure required to
carry out Step 3.1 of the algorithm.

We remark that the steps of Algorithm 1 are numerically stable
provided that the computed matrix of eigenvectors X is
well-conditioned (for inversion). Since the aim of the procedure is
to minimize the pole sensitivity, X is expected to be reasonably
well-conditioned. For better stability, the method proposed by (1]
for constructing the feedback K from the eigenvectors of the closed
loop system could be used in place of the direct method of Step 5. In
any case, if the constructed matrix X is very badly conditioned, it
is an indication that the closed loop system will necessarily be
sensitive, and that an alternative selection of poles should be

prescribed, allowing a robust feedback to be found.

4.2 Updating the eigenvectors

The key step of the algorithm is Step 3.1, the computation of the
update to the eigenvector Ej' This step is accomplished explicitly,
as in Method 1 of [5], but the computation is more complicated than in
the case of unstructured perturbations. To facilitate the derivation

of the procedure, the following result is needed.

Lemma 2 Let A, B, C, v and w be matrices and vectors of suitable

sizes. Let

z, = | 7| 1z, = (sz)[]é]Lv— [33] (11)
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If lICwll =1, then
) T, T.,,T
Nz g = uz2u§/g v + trace(A(I-vv /v'Vv)A') . (12)

Proof: We observe first that HZIH§ may be written

T T
0ZW2 = ) liel(A - Buy' )I% + Iiyh® . (13)

1

Expanding each term in the series and adding and subtracting the term

g?AYYTATgi/!TY gives

le; (A-Bwy )I? = i (Avy'AT/(v'y) - 2Avw'B' + Bu(y'v)w'B e, + a
% (zTy)|§§(B! - A/ [P+ a . (14)
where
a; = g?A(I - Y!T/!TV)ATgi ; (15)

Summing the terms (14) and using IICgH2 = 1, then gives

IZ N2 = (v'v)IBy - Av/v vI® + (v V)ICKI® + ) a

1]

"(sz)[ ;s ]! - [ 3 ]z"z/(sz) +)ay (16)

i

which establishes the result.

The result of Lemma 2 was originally applied in [2] to derive a

method for robust pole assignment by output feedback. It should be
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noted that the matrices used in the statement of the lemma are generic
and are not related to similarly denoted matrices in the rest of the
paper.

In essence the update step, Step 3.1 of Algorithm 1, aims to
orthogonalize the eigenvectors X, i=1,2,...n, with respect to the
matrix F, subject to the constraints. To update vector Ej' the
first stage of the procedure is thus to find orthogonal bases Q and
q for the space spanned by the fixed eigenvectors {gi, i # j} and
its orthogonal complement, respectively, and to express the measure v
in terms of these bases. Next, the required eigenvector is scaled to
have a fixed normalization, and the direction of the minimizing vector
in the required subspace is found. The optimal normalization is then
determined which satisfies the constraint. The technical details are

as follows.

We denote Xj = [§1, §2""§j—1' §j+1""§n] and let S

J
represent an orthonormal basis for Qj. Then Ej = Sj! € yj for any
W. The QR decomposition of Xj is written

R
XJ. = [Q. q] . (17)
0
where [Q, q] 1is orthogonal and R 1is invertible. It follows that
we may write v = HX_IFHF = HZHF, where
» R - pR—lQTSJ.E Q'F
Z = [X.. SV_V] F =
e of p q'F

R_IQTF = R—IQTS.y(pgTF)
- T J , (18)
pq F
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and p = (gTSj!).

Applying Lemma 2 with HGTSj!H =1 we obtain

raTs, R1QTFFg/62
nzng = &l o lcew) - |+ (19)
G'S, 0 F
‘] —_—
where &2 = gTFFTg and
c = trace(R—ldTF(I - FngTF/éz)(R_ldTF)T)
are constant with respect to w. In order to fix the scaling of the

vector pw we find the orthogonal Householder transformation P such

that

and define w such that

| = oem .

The minimization problem then becomes:

A

ming |R~1QT W oh
AN R

where h = R—IQTFFTg/ﬁz. This is a standard least

(20)

(21)

(22)

squares problem

that can be solved by a QR (or SVD) method. To reconstruct the

scaling we observe that
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IGTs wil = HGTS.P[
J- J

- '

]Hz/azpz S (23)

using (21), and hence the required update is

W [
Xj = SyP| || /UGS Pl (i, (24)

where w solves the least square problem (22).

We may summarize the update step of the algorithm as follows:

Algorithm 1: Step 3.1

Step 3.1.1 Form matrix Xj and find its QR decomposition (17)
to obtain R, Q, and q. Form vector gTSj and find the

Householder matrix P satisfying (20).

Step 3.1.2 Form vector h = R_IQTFFTQ/GZ, where 6% = gTFFTq,

and solve the least square problem (22) for w.

Step 3.1.3 Construct the update

x>
i
»n
o
—
£)

w
- ] / HGTS.P[ = ]u
J 1

—

We remark that the QR decomposition of Xj can be found by
inexpensive up-dating techniques from the QR decomposition of Xj—l’
The solution of the least squares problem (22) requires the
decomposition of a matrix of order m-1, which may be small even where

the order n of the system is large, and the procedure can thus be

very efficient.
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In the case Ej corresponds to a real eigenvalue A,, the method
generates a real up-date. In the case Aj is complex, a complex
eigenvector is generated, and in order to ensure that the computed

feedback K is real, it is necessary aso to update the eigenvector

corresponding to Aj, using Ej’ the complex conjugate of the

computed up-date. In practice the real and imaginary parts of §j
can be generated independently, and hence complex arithmetic can be
avoided. The optimization, however, is no longer precise (since both
Ej and gj are not selected simultaneously), and a reduction in v
cannot be guaranteed at every step of the process. Experience
indicates that this is not a drawback, and overall convergence of the

algorithm is obtained in practice. Improved techniques for treating

the complex poles are currently being investigated.

5] Applications

We consider the application of Algorithm 1 to two examples given

in [8].

5.1 Example 1

As a simple example we consider the third-order, linear system

with two inputs where

0 1 0 0 1
A= |0 1 1 B = |1 o . (25)
0 0 0 0 1

The poles to be prescribed are ¢ = {-1, -2, -3}, and it is assumed

that the (1, 2) and (2, 2) components of the closed loop system are
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subject to perturbations of equal magni tude. The matrices describing

the structure of the perturbations are therefore

1 0 0
F = |0 O G = |[1]. (26)
0 0 0

Algorithm 1 is implemented on this example using the software
package MATLAB [6]. The initial set of vectors X generated by the
process has condition number k(X) = 166.0 and the value of the
sensitivity measure is v = 45.71 The feedback K corresponding to

these eigenvectors is

-19.9265 -9.8564 13.6998
K = ;
12.0377 3.1321 -9.1813
to four decimal accuracy. To test the sensitivity of the prescribed

poles, random errors of order 0(0.01) are introduced into the (1, 2)
and (2, 2) components of the corresponding closed loop system matrix.
The maximum variation in the closed loop poles then has magnitude
0.19, about twenty times the size of the system perturbations.

After one iteration of the algorithm, the sensitivity measure is

reduced to v = 2.490, The feedback K 1is given by

-2.6477 -4.7917 2.0846
K =
-0.3507 0.0477 -1.8576
and the conditioning of the eigenvectors X is k(X) = 6.083. Random

perturbations of order 0(0.01) in the (1, 2) and (2, 2)
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components of the closed loop system lead to a maximum perturbation in
the eigenvalues equal to 0.0090. The perturbations in the
eigenvalues are thus of the same order of magnitude as those introduced
into the system matrix, and the solution is robust with respect to the
given class of perturbations.

After three iterations of the procedure, the improvement in the

sensitivity measure is less than 0.01, and the algorithm is stopped.

The sensitivity is then v = 2.4716, and the conditioning of the
eigenvectors is «k(X) = 6.1121. The gain matrix is
-2.6923 -4.7622 2.1695
K =
0.0518 0.2332 ~-2.2896
Random perturbations of order 0(0.01) now lead to a maximum

perturbation of size 0.0041 1in the closed loop poles, which again
demonstrates the robustness of the solution. Of course, a different
set of random perturbations of order 0(0.01) could lead to larger
errors in the poles, but since the sensitivity measure is O0O(1), the
perturbations in the poles would be expected always to be of the same

order of magnitude as the system perturbations.

5.2 Example 2
As a second example we consider a linear—-perturbation model

describing the lateral dynamics of a F8-C aircraft with system matrices
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[ -1.38 0.223 -33.0 0
-0.00371 -0.196 6.71 0
s 0.115 ~0.999 ~0.107  0.0302 |
0.989 0.149 0 0 ]
[ 11.6 4.43
0.209 -1.76
B =
~0.00141 -0.0107
0 0

The state and control components are sideslip, yaw rate, roll rate,
bank angle, and aileron and rudder angle deflections, respectively.
Desirable pole locations are given by ¢ = {-0.01, -2.75, -1.2 + i2.75}.
It is assumed that the (1, 1) and (1, 3) components of the closed

loop system are subject to arbitrary perturbations, and therefore we

take

© = O O

© O O =
© O O =

The sensitivity of the initial closed loop system generated by the
algorithm is v = 110.1 and the condition number of the corresponding

eigenvectors is «k(X) = 98.09. The feedback gain matrix is then

10.0427 -20.4420 39.0198 36.7146

-14.5990 29.3143 -49.4385 -52.1093

Random perturbations introduced into the (1, 1) and (1, 3)
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components of the closed loop system matrix in this case cause
perturbations which are larger by an order of magnitude in the closed
loop poles, and the nominal system is not robust.

After one iteration of Algorithm 1, the sensitivity measure is
reduced to v = 0.7433. The conditioning of the eigenvectors of the

closed loop system is «k(X) = 26.25, and the feedback gain becomes

0.1409 -0.9014 3.5105 -0.3208
K =
-0.5115 1.5504 1.1862 0.3555
to four decimal accuracy. Random perturbations in the (1, 1) and

(1, 3) components of the nominal closed loop system matrix now lead to
perturbations in the eigenvalues of only a fraction the size, at most
one—-third the magni tude.

Further iterations give no significant improvement to the
sensitivity measure and one iteration is sufficient to give a robust
solution. We observe that with the improvement in sensitivity of the
system we obtain an improvement in the conditioning of the eigenvectors
and a reduction in the magnitude of the gains. This is to be expected
in general, but the feedback gain matrix which gives wminimal

sensitivity does not in general coincide with a minimum gain solution.

6. Conclusions

The problem of robust pole assignment by state feedback in systems
which are subject to structured perturbations is examined here. A
measure of robustness, or sensitivity of the poles to a given class of
perturbations is derived and a reliable computational procedure for
constructing a state feedback which assigns the prescribed poles and

optimizes the measure of robustness is presented.
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The numerical algorithm is similar to that derived for robust pole

placement with respect to unstructured perturbations in [5]., [4] and

[2]. It is expected, therefore, that the procedure is readily
extendable to feedback in descriptor (singular) systems and to robust

pole assignment by output feedback. These extensions are currently

under investigation.



- 22 —

References

[1] BYERS, R. Robust pole assignment rescued, presented at SIAM
National Meeting, San Diego, (1989).

[2] CHU, K-w.E., NICHOLS, N.K. and KAUTSKY, J., Robust pole

(3]

[4]

[5]

£6]

[7]

[8]

(9]

assignment by output feedback, Fourth IMA Conference
on Control Theory, (P. Cook, ed.), Academic Press,
(1985) 137-146.

HINRICHSEN, D. and PRITCHARD, A.]J., Stability radius for
structured perturbations and the algebraic Riccati
equation, System & Control Letters, (1986) 105-113.

KAUTSKY, J., NICHOLS, N.K. and CHU, K-w. E., Robust pole
assignment in singular control problems, Linear
Algebra and Its Applications, 121 (1989) 9-37.

KAUTSKY, J., NICHOLS, N.K. and VAN DOOREN, P., Robust pole
assignment in linear state feedback, International
Journal of Control, 41 (1985) 1129-1155.

MOLER, C.B., MATLAB User’s Guide, Department of Computer
Science, University of New Mexico (1981).

MOORE, B.C., On the flexibility offered by state feedback in
multivariable systems beyond closed loop eigenvalue
assignment, IEEE Transactions on Automatic Control,

AC-21 (1979) 689-692.

OWENS, T.J. and O’REILLY, J., Parametric state feedback control
for arbitrary eigenvalue assignment with minimum
sensitivity, Proceedings of the IEE Part D, 136 (1989)
307-313.

WILKINSON, J.H. The Algebraic Eigenvalue Problem, Oxford
University Press (1965).



