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Abstract

The effect of source terms on basic philosophies of algorithm
design for hyperbolic conservation laws are investigated. Two
particular philosophies are studied - pointwise data which leads to
interpolation-advection schemes and cell averaged data which produces
the well known Godunov type scheme.

This report does not attempt to provide answers, rather to provide

food for thought.



1. Introduction

Much effort has been devoted to the design of accurate and robust

numerical methods for the solution of hyperbolic conservation laws
u, t f(u)x =0 (1.1)

and many of the techniques developed are now well established and in
common use, at least within the research community. However for
physical processes the modelling equations are often inhomogeneous with

terms on the right hand side, due to friction for example.
u + f(u)x = b(u) (1.2)

To date the treatment of such source terms has been reasonably ad
hoc - especially where high resolution TVD schemes are involved, since
these schemes seek to prevent an increase in variation of the solution
although such an increase may be precisely what the source term
physically does.

It is not just this interaction, however, which is at issue. The
fundamental question of how to treat the souce term still remains.
Should it be pointwise?

i.e. for (1.2) should we simply add, for example, the term
At b(uﬁ) (1.3)

to our scheme? It is certainly an approximation but takes no account of



the characteristics of the equation. Another alternative would be to

calculate an average value

o'l

At (1.4)
in a computational cell and then upwind it. This far more physical in
its approach.

This report does not purport to settle the treatment of source
terms, but rather to take a brief look, at a very basic level, at the
effect source terms have on basic philosophies used in developing
schemes for (1.1). The reader is also referred to other literature,
such as [14],[15].[16].[17] for a sampling of treatments applied so far.

In section 2 two basic viewpoints of the data and the subsequent
construction of schemes are recounted. Then in section 3 the effect of
source terms on the pointwise data interpretation is investigated,
followed in section 4 by the effect on cell average data. In section 5

issues common to both viewpoints are highlighted.



2. The Homogenous Equation — Two Different Viewpoints

We consider first the scalar homogenous conservation law

u, + f(u)x =0 (2.1)

and in particular, as is usual when developing schemes for such

equations, we concentrate on the linear advection equation

u +au = ) (2.2)

where a 1is a constant, usually assumed positive, as is the case here.

In designing schemes for equation (2.2) various assumptions and
interpretations may be taken, many of which are equivalent for this
special linear case. For the purposes of this work we concentrate on
two particular viewpoints, firstly where the data is interpreted as
point values of the underlying function which is represented by some
piecewise polynomial interpolant before being advected according to
(2.2) and sampled at the nodal positions. The alternative viewpoint we
consider is where the data is interpreted as representing cell averages
of the underlying function to which (2.1) is applied and solved, an
averaging process producing the updated solution.

The latter interpretation gives rise to what are known as Godunov
methods, named after the pioneering scheme of this form [1]. The former
interpretaiton has been dubbed interpolation-advection schemes and it is

with these that we start our analysis.

2.1 Interpolation—-Advection Schemes

It is well known [2] that classical constant coefficient schemes
for the solution of (2.2) may be interpreted as advecting a piecewise

polynomial interpolant of point values of u(x,t) and sampling at the



nodal positions to obtain an updated solution.
For example, consider a piecewise linear interpolation of nodal

values at time t as depicted in Figure 2.1.
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Figure 2.1 A Piecewise Linear Interpolation of Nodal Values

In the cell (xk—l’ xk) this interpolant can be written as

= n (uE - uﬁ—l)
Uy () = oy e y)) —————  xe (g0 %) (2:3)
kT k-1

with similar expressions holding in other cells.

If we apply equation (2.2) to this piecewise linear interpolant the
effect is to shift the whole interpolant a distance aAt to the right
in a time At without any distortion of its form, since u is
constant on its characteristics which are parallel straight lines,
dx/dt = a . This process is depicted in Figure 2.2.

We can now obtain updated values u(xi,t+At) by sampling the

advected interpolant U Ek—% at the nodal positions as indicated by the
k

square symbols in Figure 2.2.
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Fipure 2.2 Advection of the Interpolant

If we assume that the distance aAt moved by the interpolant is
less than one cell’'s width Ax , then the updated value is obtained by

evaluating (2.3) at X - aht , i.e.

n+1
u

K G(xk - alAt)

n (uﬁ ~ uﬁ—l)
w_q + (¥ —abt -x 1) ——;;—:—;;:;

_.n (Ax —aAt) ,n _ n

=Wt T ik (o =9 4)

_un__aA_t n_n) (2.4)
=W T Aax Uk T Yk-1 )

which is instantly recognisable as the Cole-Murman first order upwind
scheme [3] for (2.2).

Instead of the linear interpolation (2.3) we could instead have



used a quadratic interpolant, based say on the knots Xp1° xk, xk+1 R

for the interval x e (xk—l' xk) . The interpolant is then given by

s _ (X_xk)(x—xk+1) n _ {x—xk_l)(x—xk+1) n
Uy, (x) = oA Yk-1 2 Yy
X Ax

(ex_ ) (k%)
Tl 2Xk Y+l Lol (Xk+rxk) (2.5)
2Ax

as shown in Figure 2.3 and the advection, sampling illustrated in

Figure 2.4.
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Figure 2.3 Piecewise Quadratic Interpolant

1

[}
I
|
3
I
]
i
|
L)
1

-

-
-

Figure 2.4 Advection and Sampling of Interpolant




Algebraically the sampling gives the updated value as

el e
uﬁ = (xk— alt)
(- aAt) (- Ax—alAt) n (Ax-aht) (- Ax-aAt) n
= u - it
2A%? L Ax? K

7 (Ax-aAt) (alt) u§+1
20>

n aht At n n n
=) T (U map) (u, - 2u vy )

(2.6)
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which is the well-known second order accurate Lax-Wendroff scheme [4].
Using this interpretation of the scheme it is evident from Figure
2.4 why the Lax-Wendroff scheme produces spurious oscillations behind
discontinuities, since any rapid change in adjacent data values will
give an interpolant which is not bounded by its values at the knots, and

so, on sampling the advected data representation, updated values of

un+1
k
associated with (2.2) [5].

may be obtained which violate the local maximum principle

If instead of using knots X g0 X ¥ for the quadratic
interpolant in (Xk—l’ xk) we had used x,_,. ¥ ;. X then the
outcome of the interpolation-advection process would have been to
produce the second order upwind scheme of Warming & Beam [6] which will
also produce oscillations in a similar manner to Lax-Wendroff; however

for this scheme they appear forward of any discontinuity owing to the
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shifted interpolation stencil.

Although not the subject of this report, we disgress here
momentarily to remark that Flux Limiter schemes [7] applied to (2.2) may
be interpreted within this framework by regarding them as specifying a
value G to replace the interpolation knot at Xr1 in (2.5). This
value is chosen so that the quadratic interpolant through
(Xk—l' uk—l) . (xk, uk) . (xk+1, G) has no internal extrema in the
interval (Xk—l’ xk) . A typical situation is shown in Figure 2.5, the
absence of any extrema in the interpolant ensuring the well-known TVD
property [8] of the scheme obtained by advection and sampling the

interpolant.

e data values

Figure 2.5 Limiter Interpolation

Schemes of the interpolant—advection form for the linear advection
equation (2.2) are usually extended to the more general nonlinear
equation (2.1) by replacing the constant wave speed by the approximation
(fk— fk_l)/(uk— uk—l) to f'(u) 1in each cell which serves not only to

introduce the nonlinear wave speed into the scheme but also to maintain
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the conservation form of the scheme which is all-important for shock
capturing schemes.

[A full discussion of conservation form may be found in [4]; however, to
summarise here, a scheme is said to be written in conservation form if

it is expressed as

n+l n
ue = v~ My, - by ) (2.7)
At .
where A= % ° the usual mesh ratio
and by o= by (0 g )

is a consistent numerical flux function such that

h(u,...,u) = £(u) .

The importance of conservation form is summarized by the
Lax-Wendroff theorem which says that if the scheme convex then the
solution is a weak solution of (2.1); this in turn implies that shock
locations and speeds will be correct; hence the term Shock Capturing
Schemes].

We shall now look at a particular class of schemes for (2.1),
commonly known as Godunov Schemes; in particular we shall concentrate on
the definitive scheme of the class. As we will see, such schemes take a

somewhat different interpretation of the data.

2.2 Godunov Schemes

Unlike the point value interpretation given to the data u?

X by the
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interpolation-advection approach, Godunov schemes regard the data as

representing cell averages of the underlying function u(x.t) ., i.e.

w, = %;-J u(x,nAt)dx . (2.8)

Given a set of cell averages then the simplest way to envisage the
underlying function u(x,t) 1is as a set of piecewise constant steps as
shown in Figure 2.6. By (2.8) the area under each step must be equal to

Axuﬁ - for this type of scheme it is this feature which gives rise to

the conservation property.

Figure 2.6 Piecewise constant data representation

Having settled on this data representaiton Godunov's scheme next

treats each interface between cells as a Riemann problem and solves this
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exactly. Hence for the interface at x, , we solve

v ¥ f(V)x =0

(2.9)

n
Lt x <x
with v(x,t) = ﬁ i et

Uy X2 Xy

which defines a classic Riemann Problem - i.e. solving the conservation
law for a single jump in otherwise constant data.
For a scalar conservation law the solution to (2.9) is either

(i) a discontinuity propagating with speed

£y - £(u
e i) () (2.10)
“ﬁ B “E—l

according to the well-known jump condition (see e.g. [9] or [10]),

giving
uEHI x < Xy t ST
v(x, t+T) = (2.11)
uﬂ X > X 0+ ST
or
(ii) an expansion wave given by
n S
e g n n x < f (uk_l)T
v(x, t+r) = qud  + (4 = ¥ied) (/7 = £ ) TE (P ) < x < £ )T
’ ~ k-1 Y k-1 k-1 k
o k k-1 n
k X > f'(uk)T

(2.12)
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The appropriate solution is selected by the Entropy Condition (see
e.g. [9] or [10]), here
X v ve.
case (1) if f (uk—l) 2s2f (uk) .
case (ii) otherwise.
Having calculated the exact solution v(x,t+r) the updated cell

averages are calculated:

X4

n+l 1

LY v v(x,t+At) dx . (2.13)
X4

Using the conservation property of (2.8) we can combine the
solution and averaging stages. We illustrate this here for the case

. Ax
0 <¢f' (< X

neighbouring problems not to interact).

(The second inequality is necessary for the solution of

In the (x.t) plane we have one of the situations shown in

Figure 2.7, for this case both may be treated in the same manner.

|

A N
=N

t+At

(i) Shock (ii) Expansion

Figure 2.7 Riemann Solutions
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If we integrate (2.9) around the box (xk_%,xk+%) x (t,t+At)

we obtain

t+Athk+%

v+ f(v)X dxdt = O
£ K14
therefore

Xieats t+At
J {v(x,t+At) - v(x,t)}dx + J {f(v(xk+%.t)) - f(v(xk_%.t))}dt =0

Xy :

therefore
Xerlh Xerth FS
J v(x,t+At)dx = J v(x,t)dx - J {f(v(xk+%,t)) = f(v(xk_%.t))}dt
X4 ¥k ¢
i.e.
u§+1 = u) - ﬁ—; (£ - £5_) (2.14)

. n .

on observing f(v(xk+%,t)) = f(uk) for this case.

Similar integrations yield expressions for the scheme for the other
cases ' <0, f X <0< f k-1 and f k-1 0K f K

This process leads to a first order accurate scheme. If, however,
instead of piecewise constant the underlying function is envisaged as
piecewise linear, as in Figure 2.8 for example, a similar process can
lead to a second order accurate scheme. Now at cell interfaces a

generalised Riemann problem must be solved for the jump in the linear

representation, in practice this is usually done approximately and this
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approximate solution reaveraged.

4
T

Figure 2.8 Piecewise Linear Representation

For conservation we must have that the area under each linear
segment is equal to Axuﬁ by (2.8); however we are free to choose the
slopes. An arbitrary choice may well lead to spurious oscillations in
the solution, and so care must be taken not to increase the total
variation of the representation - van Leer’'s MUSCL scheme [11]
illustrates how this may be achieved.

By using higher order representations higher order accuracy may be
obtained, such as in Woodward and Colella’s PPM [12], we end this
chapter, however, by mentioning a class of schemes which is in some
sense a cross—breed of the interpolation-advection and the Godunov
viewpoints. These are the ENO schemes of Osher, Chakraworthy, Harrten

and Engquist [13]. We shall not pursue them further in this report but

they should be mentioned briefly for the sake of completeness.
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2.3 ENO Schemes

ENO schemes again view the data points as being cell averages and

uses them to construct an accumulative average

W) = [aly) @ (2.15)
k
whence w(xk+%) = z Ax u? ; (2.16)
from (2.8).

This is then interpolated by high—order continuous piecewise
polynomials, in such a way as to prevent oscillations (see [13]), and
this interpolant differentiated to obtain a piecewise continuous
polynomial interpolant to the underlying function u . This interpolant
will have discontinuities at cell interfaces, Xppig where an
approximate generalised Riemann solution can be made before reaveraging.
The reader is referred to the original papers for full details.

In the next section we investigate possible ways of incorporating a
source term in the interpolation-advection framework whilst in section 4
we return to Godunov type schemes and investigate the inclusion of

source terms in such schemes.
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3. The Non-homogeneous Equation and Interpolation—Advection

In this and the next section we consider the non-homogeneous

equations

u, + f(u)x = b(u) (3.1)
and

u +tau = b(u) . (3.2)

For simplicity we have confined ourselves to the case where the
non-homogeneous, or source, term is a function of u only.

If we look at these equations analytically the first point to note
is that, whereas in the homogeneous case u 1is constant along the
characteristics of the equations, this is no longer the situation.

Indeed, simple calculus gives us that
du
ol b(u) (3.3)

along the characteristics

%% = f'(u) (or a as in the case of (3.2)). (3.4)
One immediate implication is that the characteristics need no
longer be straight lines. Certainly for (3.2) we still have straight,
parallel characteristics due to the linearity of the equation, however
for (3.1) since the characteristic slope is given as a function of u ,

this will no longer be constant for each characteristic.
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In this section we are concerned mainly with (3.2) and so we will
defer the nonlinear aspects of (3.3) until we return to Godunov schemes.
For the moment however, we look again at the interpolation-advection

viewpoint.

3.1 Interpolation—Advection

The interpolation stage is entirely unaffected by the presence of
the source term b(u) in (3.2). The data points are connected by
segments of polynomials as before. However, due to (3.3), the
interpolant is no longer advected without change of form and so we must
take care when sampling to obtain the updated data point.

Consider the piecewise linear interpolant, depicted in Figure 2.1
and given, in each cell, by (2.3). Since the characterisics of (3.2)
are still straight and parallel, we can trace back the characteristic
passing through (xk,t+At) to where it intersects the interpolant at

(x,t) - see Figure 3.1.

t+At

~odx
t dt - 2

Figure 3.1 Tracing back the characteristic

It is easy to see that

X = Xy ~ aht . (3.5)
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For the homogeneous case we would now simply substitute ; into
(2.3) to obtain u§+1 since for that case u 1is constant along the
characteristic. Here however we must integrate (3.3) along the
characteristic to obtain our updated value, i.e. solve

¥ < b(v)

d (3.6)
v(0) = uy_,,(x)

where u is given by (2.3), v(r) is the restriction of u to the

k%

characteristic, i.e.
v(T) = u(xk -a(At - 7), t +1T1) (3.7)
and the updated value is given by

o vy . (3.8)

L =
Note that by the introduction of v 1in terms of u and not U we have
not made the (unreasonable) assumption that the interpolant remains
linear during the advection.

We now write

v{At)

At
v(0) + J; b(v) dr

At
Ty, (5~ abt) + jo b(v) dr . (3.9)
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then by the analysis of section 2.1, equation (2.4), we obtain

At
n+1 n At ., n n
o= - aKE'(uk - k_1) + J; b(v) dr (3.10)
where an ODE scheme or quadrature rule may be used to evaluate the
last term to some given accuracy via (3.6) and (3.9). For example,

using the Euler scheme gives

+1 At i
we =y - B (e - u )+ Ae b (g0, - adt))
_un_aAt(un_un)_'_Atb B o (B0 F o Gl ) (3.11)
=Y T ix Yk T kA1 “k T ix kT k-l '

We can further approximate by expanding the last term, assuming

b'(u) is small (i.e. b approximately linear) producing

n+l n At , n n n At n
W= u - 5= (), - wp_q) *+ At b(w)) - At == (b(w) - b(uﬁ_l))

(3.12)

This is the same result we would have obtained if we had assumed the
interpolant advected as a straight line in each cell.
Note, since At/Ax is a constant the last two terms of (3.12) are

of the same order in At .

3.2 Higher Order Interpolants

All the analysis of the previous section up to and including (3.9),
holds for higher order interpolants, including any TVD devices such as

Flux Limiters applied to them. We note however that (3.2) does not
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imply any such TVD property for its analytic solution (indeed many
choices of b(u) will lead to a solution which should clearly violate
such a property) and so care must be taken to distinguish between
spurious and inherent variation increases.

Application of a limited interpolant as illustrated in Figure 2.5
will remove spurious increases in variation brought about by the
interpolant whilst allowing the integration of (3.6) to introduce any
inherent growth. Viewing (3.9), where we now take U to be a limited
interpolant then shows an essential decoupling of TVD devices and
treatment of source terms. The only effect the limited interpolant has
on the souce treatment is in the initial condition of (3.6) and not on
the technique for its integration.

On the otherhand, we might notice that we can rewrite (3.12) in
terms of u + b(u)At and be tempted to apply higher order TVD schemes
to this quantity. Indeed this is similar to what has been advocated for
some situations (e.g. [14],[15]). However in obtaining (3.12) the
assumption that b(u) was near linear in u was made and so generally
we would not be cetain that inherent growth was not being stunted due to
this approximation which essentially effects the treatment of the source
term and not the interpolation of data.

These heuristic arguments tie in with observations made in [16].

In the following section we investigate the effect of the source

term on the Godunov approach to solving conservation laws.
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4. Godunov Type Methods with Source Terms

We now turn our attention back to Godunov type methods where the
data is considered as cell averages with Riemann solutions at cell
interfaces being reaveraged to obtain updated values.

Inherent in the solution of Riemann problems is the jump condition
(2.10) and so we must investigate its validity when source terms are
present.

Although we omit the details here, if we follow Smoller’s proof [9]
of the jump condition, it is easily seen that the presence of a
non-homogeneous term cancels during the course of the proof verifying
that the jump condition (2.10) holds for both the homogeneous and
inhomogeneous case.

Even with the validity of the jump condition guaranteed, however,
we must be careful with its application. We should remember that it

gives an instantaneous shock speed. Whereas a discontinuity between

constant states propagates with constant speed in the homogeneous case
this will not happen in the inhomogeneous case since generally the value
of u on either side of the discontinuity will no longer remain
constant due to (3.3). The exception to this of course is the linear
equation (3.2) whose discontinuities (not true shocks) always propagate
with speed a .

We shall concentrate here on Godunov's original piecewise constant
representation as depicted in Figure 2.6, the data representation again
being unaffected by the presence of the source term. However, unlike in
section 2.2 we do not start here with the nonlinear equation since it is

informative to study first the linear equation (3.2).
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4.1 The Linear Equation

Assuming, as usual, that the constant a in (3.2) is positive the

situation in the (x.,t) plane is as shown in Figure 4.1.

t+AtT

Figure 4.1 The Linear Equation Problem

Note that the Riemann solution v is no longer constant on either
side of the discontinuity but is now a function of time, since we are

solving

v, +av_ = b(v)
(4.1)
(s ) 2 Wy X < Xy
) x> x

Using either the technique of integrating (4.1) over

(xk_%. xk+%) x (t,t+At) , or, as is easily done for this case, by direct
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averaging gives

Xy
1 1
u£+ = KE-I v(x, t+At) dx
X1
At
= Vg (t+At) - a Kx_(vk+%(t+At) - vk_._%(t+At)) (4.2)
At
At
=up -a s (wp -up )+ J b(v ,, (t+7)) a7
0
At
At
- a K;-J[b(vk+%(t+7)) - b(vy_y(t+7))]dT .
0

(4.3)
If we now use the Euler approximation we obtain
n At , n n n At n n
u - a K;-(uk - uk—l) + At b(uk) - a K;-(b(uk) - b(uk_l))
which is precisely (3.12). Note that this time linearity of b has not
explicitly been assumed.
We now turn to the nonlinear problem (3.1), the Riemann solution

for this equation being far from simple.

4.2 The Non-Linear Equation

For the non-linear equation (3.1) the Riemann problem which must be
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solved is

u x <
v(x,0) = E_l et (4.4)
Yy x> X+

where we have shifted the time origin to time t for notational
convenience and adopted a new time variable T running from
0 to At .

The non-homogeneity of the problem has a number of effects on the
Riemann solution. As has already been mentioned the shock speed will no
longer be constant, leading to a situation depicted in Figure 4.2, where

it is clear that the approximation of

Figure 4.2 A Curved Shock

a constant shock speed calculated at time t (dotted line) may not be

satisfactory.
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We can obtain an indication of how well a constant speed will
approximate the true shock by differentiating the jump condition (2.10),

here suffixes L and R denoting values to the left and right of the

discontinuity.
I\l 0 TR
YR VL RO 'L

(f5- s)GR- (£ - s)&L
V.

R 'L

(£.= s)b,— (f; - s)b
_ R vﬁ_ VLL L (4.5)

For example, if f(v) = %v® - the inviscid Burger’s equation, we have
s = %(bR + bL) (4.6)

which need not be small, and so a small At would be needed for a
constant speed to be a reasonable approximation.

Another, less obvious, consequence of the source term is that since
the characteristics themselves are not straight lines and u not
constant on them it would be possible for a solution starting as an
expansion wave, say, to shock during the course of the solution.

Another possibility is a shock dying out to produce a uniform state
throughout the cell.

It must, by now be obvious that approximations will have to be made

during the solution. Indeed, apart from the difficulty of solution of
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the Riemann problem, the averaging of the solution may not be a trivial
exercise.

The most drastic permissible approximation probably is to model the
solution using only shocks with constant speed, the resulting analysis
being as in section 4.1 with the constant a being replaced cellwise by
the initial shock speed s given by (2.10). As noted above small
timesteps may be required to obtain reasonable results with such an
approximation.

In theory higher order data representation such as MUSCL’s
piecewise linear segments could be used, however the complexities
introduced by the source term would make the problem even more
intractable without gross approximations/small timesteps. Consequently
this aspect is not considered further here.

In the next section we note some other aspects introduced by source
terms which do not owe allegiance to either viewpoint recounted in this

report.
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5. Other Issues: Shock Speed, Stiffness and Chaos

We conclude this report by briefly mentioning other consequences of
source terms which arise independently of the view point being taken.

Firstly, inaccurate shock speeds may arise as a consequence of grid
resolution and/or inaccurate integration of (3.3). Take, for instance,

the equation
u +au = au(1l-u) (6.1)

with step initial data

{1 x < %
u (x) = ; (5.2)
0 X > %

Clearly, if a scheme used to solve this combination introduced no points
in the discontinuity (as should be the case) (5.1) reduces to the linear
homogeneous advection equation and the step moves righwards with speed
a .

However, in general this will not happen, intermediate values of u
being introduced signifying the position of the discontinuity within a

cell. What happens now? Consider, instead of (5.2), initial data

1 x < %
uo(x) =% X =% . (5.3)
0 X > %
Along the characteristics
U wu(1-u) (5.4)

dt
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which has solution

(5.5)

on a particular characteristic. In particular, on the characteristic

passing through (%,0) we have A =1, i.e.

eat
u(t) = =t (5.6)
1+e
hence as at 2 ®, u->1 . To be more precise, u gets within

e of 1, 1i.e. u=1-=¢€e, when
1-e
at = Iln [——J (5.7)

and so, for example, u =~ .99 when at =~ 4.6 . To graphical accuracy
therefore, replacing (5.2) by (5.3) will cause the discontinuity to have
advanced one extra cell by the time at = 4.6 — i.e. the discontinuity
moves too fast for the solution of (5.1) and (5.2) if the scheme
introduces values between O and 1 in the discontinuity. This has
been assuming the ODE solver for (5.4) is exact, which will not be the
case and so the discrepancy may be even more pronounced.

Other source terms may have similar effects. The source term used

by LeVeque & Yee [17],

u tu = au(l-u) (u-%) (5.8)
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will not suffer so badly from this phenomenon since u =0 and u-=1
are stable attractors hence to some degree balancing out this effect.
Conservation can not help us here unfortunately since integration

around a control volume Q will yield the term

”ﬂb o (5.9)

which in general will not be a difference, and will not be exactly
calculable, and so the nice property ensured by conservation form in the
homogeneous case will not follow.

Another complication which may arise due to source terms is
stiffness (see e.g. [17]). This arises when the timestep required for
stability of the pde solver (given by CFL condition, modified to allow
for curved characteristics) is much larger than that required for
accuracy of the ODE solver used for (3.3). Therefore we either take a
small time-step and obtain an overall accurate solution at great CPU
expense or a larger time-step to get an inaccurate, but stable solution.
It is this last point which is the danger — i.e. there are no signs of
instability to show us that we are getting an inaccurate solution. We
must in fact refine At wuntil successive refinements do not alter the
solution values (to reasonable tolerance).

Finally we note that although an equation such as (5.4) have a
well-posed analytic solution, it is well known [18] that numeric
attempts at solutions can lead to chaotic or period doubling behaviour.
This is an extra factor which must be taken into account when solving

inhomogeneous conservation laws by whichever viewpoint.
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