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Abstract

In this report we consider the flow in an open channel where
super—critical flow may be induced by the geometry of the channel. The
scheme presented calculates the Riemann invariants along characteristic
curves and hence has no CFL limit. The presence of source terms may
lead to a restriction on the time-step though to ensure the stability of

the ODE solver used. This is not an issue in the results presented

here.



Introduction

The Preissman scheme, Preissman (1961), has long been a favourite

of hydraulic engineers. It is simple, accurate and due to its
implicitness large time—-steps can be taken. However, it does not
perform well at discontinuities in the solution. In Priestley (1989b)

a flux limited scheme was applied to the equations of one-dimensional
river flow. This was a Roe type scheme, Roe (1981), and although it

deals with shocks very well, the source terms did cause a slight under

and overshoot at discontinuities. Roe’s scheme is not cheap. It
relies upon a characteristic decomposition and upwinding. Second-order
forms require even more logical switching. Whilst this expense can be

justified in situations where there are jumps in the solution, it seems
rather inefficient for entirely smooth flows.
In this report we present a method that is efficient when the flow

is smooth and yet can give monotone solutions even at shocks.



2.

The St. Venant Equations and the Quasi-Riemann Scheme

The St. Venant equations for rough-turbulent flow in an open

channel are:-
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scheme we need to

rewrite equation (1).

Equation (1b) is put in terms of the velocity u and equation (la) in

terms of the Froude

number

C.

The St. Venant equations become
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We then write equation (2) in the form
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The eigenvalues of E are
A+ = u-+c
AN = u-c
The associated eigenvectors are then
e = (2 -1)7 and & = (2 1T.

Defining the matrix H to be given by

and the new vector



we get
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Expanded this becomes, putting F+ =u+2 and F =u - 2¢c,
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The equations (1) can now be rewritten as
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Equations (5) are now in a form suitable to apply a Lagrangian type
scheme to. Perhaps, though, we should call this a Riemannian scheme to
avoid confusion with schemes that use the fluid velocity u, as is
normally the case with Lagrangian methods.

The use of the Riemann invariants has been suggested before by
Goussebaile & Lepeintre (1989). However, we believe that our method is
better suited to these problems for a number of reasons, stemming from
the way that the Lagrangian/Riemannian derivatives are treated.

In Goussebaile & Lepeintre a finite element method is used for the

advection step introduced in Berqué et al (1982). See also Morton,



Priestley & Siili (1988) for a discussion of this and related schemes.
Being a least squares fit this Lagrangian method suffers from
oscillations at shocks. Therefore a flux—-limited scheme had to be used
with the predicted values from the Riemannian step to keep monotonicity.
Although the flux-limited scheme undoubtedly benefits from the use of
these predicted upwinded values it seems rather inefficient. Even more
so since the flux-limited step imposes a CFL restriction of 1 on the
method whereas the Riemannian part of the scheme would have no such
limit.

Here we suggest a scheme that is Lagrangian and monotone. In the
meteorological literature it is called the semi- or quasi-Lagrangian
method. See Robert (1981, 1982), Bates (1985), Staniforth & Temperton

(1986), Ritchie (1987) and Temperton & Ritchie (1987) for a flavour of

this work.
n+1
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n+1 X X X b4 X
n x X X X
i-1 i i+l i+2 i+3
Figure 1
] n+1 .
Suppose we require the value of Fi+2' The trajectory,

characteristic curve, or whatever, is traced back to the old time-level.

We now know that F?:; = Fn(x) and so we compute Fn(x) by inter-
polation from the neighbouring points o F, etc. A cubic

i-1° 1 i+1



interpolation is chosen to provide accuracy but we also require the
cubic polynomial to be monotone to avoid problems at large gradients.
This question has been addressed by Fritsch & Carlson (1980) but since
it is a fundamental part of the method we repeat their results for
clarity.

Consider a cubic polynomial function p(x) on the interval

[xi, xi+1] such that p(x) is monotone and

1l
S

p(x;) i

P(x5,1) = Fiyq -

We can write p(x) on each sub-interval in terms of the cubic

Hermite basis functions to obtain

p(x) = FiHl(x) + Fi+1H2(x) + diHB(x) + di+1H4(x)
where
dj = p'(xj) j = i,i+1
Hy(x) = $((x;,;=)/h,) .
Hy(0) = 8((ex)/h)
Hy(x) = - hyv((x4,17%)/h;) .
H4(X) = hi‘p((x_xi)/hi) ’
with
hy = Xy %
o(t) = 3t% - 2t° ,
and Y(t) = t% -2
Letting A, = (F, ,-F.)/h, we can rewrite the Hermite cubic
i i+1 "1 i

polynomial as
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+ di(x—xi) + Fi . (6)
As it stands (6) will not be monotone in general. Monotonicity is

ensured by limiting the values of di and di+1’ c.f. Sweby (1985).

An obvious necessary condition for monotonicity is that

sign(di) = sign(di+1) - sign(Ai) . (7)

Writing a = di/Ai and B = di+1/Ai’ Ai # 0, Fritsch & Carlson
(1980) were able to prove that (6) is always monotone if and only if (7)
holds in conjection with one or both of the following conditions on

(e, B):-

0<acfs3, 0<p<3 (8a)
and
¢(a.B) <O (8b)
where
$(a.B) = (a-1)% + (a-1)(B-1) + (B-1)*
- 3(a+p-2) .
For obvious reasons (8a) is the more usually applied constraint.
This still leaves us with the question of how to choose the
estimates of the derivatives. Rasch & Williamson (1989) have performed

an excellent series of tests on the choices of derivative and on the

type of polynomial. In their tests the Hyman derivative
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consistently performed well in relation to the monotonic cubic
polynomial.

The derivative that we will use here was first described by
Priestley (1989) and is given by

- 3Ai—2 + 19Ai—1

i 32

+ 19Ai = 3Ai+1

Needless to say I believe this to be superior, although others may

well feel inclined to disagree.

The Problem and the Results

We consider, only, flow in a rectangular channel. This is not a
restriction on the scheme which can equally well be applied to
non-rectangular channels or pipes. Three flow regimes are considered.
Entirely sub-critical, entirely super—critical and sub-critical —
super-critical — sub-critical. At the left-hand end we fix the
massflow, Q, in the super—-critical case we also fix the depth, d,
here by extrapolation from the interior. In the sub-critical case the
Riemann invariant F is fixed at the right-hand boundary by
extrapolation from the interior.

The parameters available to us in choosing the channel are its
breadth and slope. The channel is 10,000 metres long and has a smooth
constriction that goes from a breadth of 10 metres — 5 metres —

10 metres, see Figure 2.
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The bed-slope was taken to be a constant value except between 4500
and 5500 metres where twice this value was taken. See Figure 3 for a
typical cross-section.

Depth, massflow and Froude number have been plotted out for the

following slopes:-—

10,000 Figures 4-6
; Figures 7-9
1,000 gu

-1— Figures 10-12
500 gu

=l Figures 13-15
100 g

1— Figures 16-18
50 gu :

These results show that this Riemannian scheme copes well with both
the smooth and discontinuous flows. Solutions obtained with much
larger time-steps were just as good.

It is worth noting that the solution method always solved the
steady-state problem to machine zero, not only for the results presented
here but with other time-steps and grids as well. Slight aberrations
in some of the results are therefore entirely due to discretization
errors and the ODE solution technique. As grids were refined these
errors dissipated so perhaps the discretization error is the dominant

one.

Conclusion
We have introduced, or perhaps more accurately, brought together

various ideas that result in a very accurate scheme that is explicit and
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yet can use large time-steps and is monotonic. The scheme cannot only
be used for river flow but also pipe—-flow and in gas dynamics.

Here we just solved the ODE’s for the Riemann invariants,
equation (5), using Euler’s method. This was perfectly adequate for
what we wanted to demonstrate here but may prove to be too inaccurate
with very large time-steps. In the future, then, we hope to use more

sophisticated ODE solvers and to attack other problem areas.
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