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Abstract

A transformation of the dependent variable of the non-linear diffusion
equation

ct = v.(D{C})VC)

for a conentration C, is presented which allows straightforward
numerical calculations in cases where D(C) has pathological behaviour
such as discontinuities or changes by orders of magnitude.

The transformation consists of introducing a velocity potential, ¢,
related to the diffusing substance via

¢ = - fD(C)sCdC
yielding the transformed eguation
¢, = DIC)VPp - Vp. Vo
The use of this transformed equation , with its hyperbolic behaviour
for small D(C) explicitly represented, avoids the numerical problems

associated with a rapidly varying diffusion coefficient.

Numerical examples are given as well as methods of avoiding explicitly
inverting ¢(C) when D(C) is non-trivial.
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1 Introduction

The non-linear diffusion equation

(:t = v.(D(C)vC) {1.1)

or more generally

aC = v.(D(C,x,t)VC) (1.2)
ot

arises in many physically interesting problems. These typically come
from situations where the flux of a substance with concentration C is
-D(C)V¥C and where C is a conserved quantity.

Examﬁ1es are treacle spreading on a flat surface, for which D{C) = ¢,
shallow flows in porous media, for which D(C) = C, and the diffusion

of arsenic in silicon, for which

DIC) =  1+B(C+/(C%+4)) /2 . (1.3)
[ 1+B ]

Equations (1.2} is of parabolic type if D(C,x,t) » O for all C,x,t and
is of degenerate parabolic type if D{(C,x,t) = O for some values of its
arguements. In all cases, including those where D is discontinuous, a
solution 1is sought where both C and the flux -D(C,x,t)VvC are
continuous functions. Much analysis exists for such problems and some

can be found in [1],[4],[6].
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The numerical solution of the degenerate problem has been examined in
detail by Tomoeda [9] for the one-dimensional case with D(C)=C" when
an additional source term is present. The solution requires highly
accurate tracking of the point where degeneracy first occurs. For the
more general parabolic problem a number of methods, such as that of
Meek & Norbury [8], are available if D(C,x,t) is sufficiently well
behaved . In this paper we propose a method to accommodate less well

behaved functions D.

The paper starts by introducing some of the properties of such
equations and methods used in their solution. A section describing the
proposed transformation and the reasons for its use then follows.
Numerical examples are then given to show how the transformation can
be implemented. In particular we give an approximate technique for
cases  where the functional form of D(C) makes inverting the

transformation computationally time consuming.

2 Equation Properties and Existing Solution Techniques

An elegant method of solving a non-linear diffusion equation with
D=D(C) is the use of the Kirchhoff transformation [5],
C
w=1{ Dly) dy (2.1)

which implies
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€ = vw (2.2a)
at

or
w = D(C)Vw (2.2b)
3t

The transformation ensures that if both w and W are continuous then C
has the required continuity. The problem is typically solved
numerically using the partial differential equation (2.2a) to step C
in time and then the integral definition (2.1) to evaluate w. The
method works well for moderate changes in D(C) including discontinuous

changes. See for example Crank [4] or Buonomo & Di Bello [3].

The major benefit of this transformation is that if the problem tends
towards a steady state then v°w — 0 and hence the solution is well
represented by low order polynomials and numerical methods based on
such representations will work well. However, when considering highly
tranéient problems, for example if D{(C) gets very small for some value
of C, then v°w can become large. For instance consider the one-
dimensional similarity solution for D(C})=C, (see Barenblatt &

Zeldovich [2])

% (A%~ (x/t)?) Ix| < At
c { (2.3)
0 [x| > At
so that
A Ix| < At
t{A - (x/t)°)7"°
Rw = (2.4)
ow
ox
0 |x| > At

The righthand side of (2.4) becomes unbounded as |x| t At and good
representation of such behaviour 1is 1impossible wusing 1low order

polynomials.
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From the work of Tomoeda and others it is known that as D(C) tends to
zero the equations behave in a hyperbolic fashion and at points where
D(C)=0 the equation is in fact hyperbolic. To examine this behaviour
consider finding steep travelling wave solutions to the one-
dimensional parabolic equation with very high speeds of propogation so
that the hyperbolic nature is emphasized. Transforming from variabies

x,t to n,t where
n = x/Ve - t/e (2.5)

with 0 < € £ 1 to provide a high wave velocity, gives

€dC + o€ = 9 DI(C)aC (2.6)
ot an on arJ

Taking the 1imit e-0 the solution to this equation can be written as
C
n = § D(y)/(y+a) dy + 0(e) (2.7)
b
where a is the concentration in front of the wave and b is determined
by the forces acting to propogate the wave. We now note that if the
dependent variable being sought 1in a numerical solution was the

integral on the right hand side of (2.7) then the solution would be

very close to a straight line travelling at speed 1/g .
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3 Proposed Transformation

Following on from the comments of the last section it is proposed that
a new dependant variable should be introduced to favour numerical
representation of transient behaviour. We consider the case where D(C)
is small for small C so that the concentration a in (2.7) can be
chosen as zero. The new dependent variable, ¢, is taken as:
C
o = - Sb D(y)/y dy (3.1)

for some constant b. Putting this into the equation gives

3p = D(C)Vyp - V. Vo (3.2)
ot

As with the Kirchhoff transformation, the continuity of ¢ and W
ensures that C has the necessary continuity. It can now be seen that
as D(C) - 0, D(C)¥?p - 0 and a non-linear hyperbolic equation occurs
for . Any other transformation of the form:

£ a

v = { Dlyly  dy a# -1 (3.3)

b

results in an equation where as D(C) - 0 either the coefficients of

. g oS 2 .
the equation become infinite and W and V'v go to zero or vice versa,

as was seen with the Kirchhoff transformation a = 0.

This change of dependent variable is not unknown; e.g. Tomoeda [9]
uses
n > n
v=C =nf (y)/ydy (3.4)
0
in his papers. It does not however seem to have been recognized as a

general tool for treating more complex problems where D{(C) may vary

considerably but remain bounded away from zero.
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A physical explanation for ¢, which may assist understanding, can be

given for situations where the flux is given by

FLUX = - D(C)WwC (3.5)

It is noted that 1locally the flux of material is its 1local

concentration , C , times its average velocity, u, j.e.

FLUX = Cu. (3.6)

Hence the velocity is a scalar times a divergence and can therefore be

represented by a velocity potential, ¢, where

us=vyp . (3.7)

Using the definitions (3.5), (3.6) and (3.7) it follows that
C
® = - § Dly)/y dy (3.8)
b

where b is some arbitrary constant to presicely define the potential.

One final point concerning the variable p i1s worth noting. For the

degenerate parabolic eguation when D(C)=0 the equation becomes

3 = - Vp.Vy
ot
and this can be interpreted as stating that the front where D(C) = 0O

travels at the average velocity of the diffusing material at the

front.
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4 Solution Technique

To solve this problem numerically the coupled system

C
= - § Dlylzy dy
b
(4.1)
3p = D(C)V:e - Vp.Vy

at
must be integrated in time. Appropriate methods to deal with the
seperate diffusive and hyperbolic terms of the equation can be
employed. For the examples given here the method of moving finite
elements has been adopted (see for example Miller & Miller [7] or
Wathen and Baines [10]). The system (4.1) is far more complicated than
(2.1) and (2.2a) associated with the Kirchhoff transformation since at
each,time step the concentration C must be computed from ¢ and this
may not be easy for any reasonably complex D(C). A method for avoiding
this problem is to transform the original C eguation using a variable
¢ which closely approximates ¢ but is easily inverted. Such a function
might be smooth but defined in a piecewise manner or be some algebraic
expression which can be quickly inverted. Using this approximate

transformation the equation (1.1) becomes

- 2 -1 2
g% = D{C)Vv'y + E%h gE[P(C)g%jlvwl (4.2)

The price of avoiding the inversion of the more complex integral
definition (3.7) is the calculation of the coefficient of |pr|2 which,
because U is close to ¢, will be a very slowly varying function of .
At any points where D(C) has infinite gradient or is discontinuous
both dy/dC and dztp/dC2 must be exactly equal to the corresponding

terms in ¢. This ensures that the problem solved with ¢ and W
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continuous will give the correct continuity for C.

To extend this transformation to D(C,t) is straightforward just by
introducing @{C,t), as can be done with the Kirtchoff transformation,
assuming that Dt(C,t) is bounded. This introduces the necessity of

calculating a source term

§D.(C.t)/C de (4.3)

which may easily be done. Extensions to allow for a general D(C,t,x)
can be performed analytically: however this requires D to be at least
twice differentiable in x and results in an awkward set of integrals
to  evaluate. It remains to be seen whether the additional
computational effortlrequired in both these cases is justified and in
any event these should not be employed if D is only a slowly varying

function of its arguments.

5 Numerical Examples

As an example of how the transformation assists the numerical solution
of a diffusion problem we consider arsenic diffusion in silicon, which
is governed by a diffusion coefficient of the form (1.3) with g = 100,
solved using the Moving Finite Element method. The problem is solved
on the interval x € [0,1] with Neumann boundary conitions at both
ends. As the initial distribution we take a Gaussian profile centred
at x = 0.25 and with a standard deviation of 0.05. The height of the

Gaussian is approximately 1021, although the problem is solved in non-
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dimensional form {giving an effective diffusion coefficient which

varies over two orders of magnitude).

The solution to this problem consists of steep moving fronts which
propagate outwards from the centre of the Gaussian, whilst the
magnitude of the profile is attenuated. The left-moving front hits the
x = 0 boundary and the concentration on this boundary rises, while the

right-moving front propagates unhindered.

If we proceed to solve the problem in the original (but normalised)
variables Figure 1 illustrates what happens at large times (t= 4000,
8000, 12000, 16000 and 20000). Although the top of the profile is well
represented by the piecewise linear solution obtained from MFE, the
tail is very badly modelled indeed. (Note that all plots shown have a
JTograithmic vertical axes and hence the piecewise linear
representation appears as a curve.) All results shown use 21 moving

nodes but an increase in this number reaps no significant benefit.

Figure 2 shows the vresults using an approximate transformation as
described 1in Section 4. The diffusion coefficient for the problem
behaves 1ike (1 + ¢) over much of the region, where the normallised
concentration ¢ . C/(5x1018). An approximation to the true velocity

potential (3.8) is therefore
v = §(l+c)/c dc = ¢ + Inlc).
As can be seen, using this transformation, a very good representation

of the entire solution is obtained. The solution in the transformed

variable is shown in Figure 3.
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Other possible transformations of dependent variable are 1In{c) and the
Kirchhoff transformation (2.1) (but based on l+c ). Unfortunately the
MFE method breaks down when using these transformations when the left-
moving front hits the x = 0 boundary. This appears to be due to the
close proximity of neighbouring nodes resulting in either
impractically small timesteps or nodal collisions. However we do

present results using these transformations prior to these problems.

Figures 4 to 7 illustrate output at t = 500 and 1000, using the
velocity potential ( ¢ + In{c) ), the primitive variable ( ¢ ), the
variable 1n(c), and the Kirchhoff transformation ( c + c°/2 )
respectively. As can clearly be seen, the results obtained by solving
for the transformed variable of Section 4 are far superior to those

using the other transformations.

6 Observation

The authours are indebted to Stan Osher for pointing out the following

observation. Consider the 1-D case with D(C) = €,

C, = (eC ), = ¢€C

and apply the transformation. We have
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¢ = -§e/CdC = -€lInC

and the equation becomes

Pp = By T %

If we now differentiate and make a further change of variables to u =

wa we obtain

2
u + {u /2)x = eu
i.e. the viscous Burgers' equation. This  combination  of

transformations is equivalent to
u = (—2€1n(C))x = -ZECX/C

whicﬁ is precisely the Cole-Hopf transformation [11] used to allow
analytic investigation of the viscous Burgers' equation by
transforming it to a 1linear parabolic equation. We note therefore,
that for this special D(C), the advocated transform is a partial

inverse of the classical Cole-Hopf transformation.
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7 Conclusions

A transformation has been proposed for the diffusion equation (1.1)
which allows good numerical representation of the solution when it
pocesses a highly transient nature. The transformation consists of
using the velocity potential of the diffusing material. Numerical
examples have been shown to demonstrate how the transformation

improves the solutions obtained when solving a practical problem.
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Figure 1: Calculations using the primitive varijable.
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Figure 3:

Solution plotted

in the transformed variable.
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Figure 5: Calculations using the primitive variable
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Figure 7: Calculations using the Kirchhoff transformation.




