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ABSTRACT

The Moving Finite Element Method for evolutionary partial differential
equations leads to a coupled non-linear system of ordinary differential equations
in fime, with a coefficient matrix A, say, for the time derivatives. We show that
for linear elements in any number of dimensions, A can be written in the
form MTCM, where the matrix C depends solely on the mesh geometry and the
matrix M on the gradient of the solution. As a simple consequence we show that
A 1is singular only in the cases (1) element degeneracy [|C| = 0) and
{(ii) collinearity of nodes (M not of full rank). We give constructions for
the inversion of A 1in all cases.

In one dimension, if A 1is non-singular. it has a simple explicit invserse.
If A is singular we replace it by a reduced matrix A*. We show that in
every case the spectral radius of the Jacobl iteration matrix is % and that A
or A* can be efficiently inverted by conjugate gradient methods.

Finally, we discuss the applicability of these arguments to systems of

equations in any number of dimensions.



are degenerate (in the case |C| = 0). We describe in Section 5 procedures in the
one-dimensional case.for dealing with these situations. If the nodes are collinear
the system is replaced by a reduced system with a matrix of similar type
The inversion of the zeduced matrix may still be readily obtained by iteration,
since the spectral radius of the Jacobi iteration matrix for the reduced system
remains equal to 3, a result also proved in the Appendix. Fer a degenerate element
the system decouples into two separate systems which however need an "internal
boundary conditien” in order to be solvable. In hyperbolic problems this can be
provided by associating element degeneracy with the formation of shocks and
adding a form of jump condition at the interface. As nodes run into a shock it
is always possible to reduce the number of shocked nodes to two, each with the
same nodal position but with different amplitudes.

In Section 6 the questions of degeneracy 6f the MFE system and the
inversion of the MFE matrix are discussed for higher dimensional problems,
with a detailed description given in the two-dimensional case. Although the
situation is more complicated here the principles are broadly the same. In
higher dimensions, however, it is ne longer easy to provide an explicit inverse of
the @atrix A since M is rectangular in general and in these cases iterative
methods, which remain available, are required. Furthermore, there is in the
hyperbolic case now no reduction in the number of elements invelved in the
vicinity of a shock as nodes run into the shock.

For systems of equations, provided that each component is given its own
moving finite element mesh, the structure of the MFE equations is unaltered
and the results and procedures of the single componhent system are applicable.

A discussion (for the one-dimensional case only) is given in Section 7.

Finally, the content of the paper is reviewed in Section 8, together

with a discussion of the effectiveness of the procedures on a number of one-

dimensional problems, and a summary of the procedures is given in Section 9.



7. INTRODUCTION

The Moving Finite Element (MFE)] method, introduced by Miller & Miller
(1881) and Miller (1981), has been used with considerable success for the solution
of time dependent partial differential equations in one space dimension.
For parabolic problems see, for example, Gelinas Doss & Miller (1981) and
Herbst (1982), and for hyperbolic problems, Wathen (1982). Despite this success
there is a limited amount of analysis of the method to date, due no doubt to
the inherent non-linearity of the method which stems from treating the mesh
locations as unknown as well as the nodal parameters (see however Dupont (1982)).
In the present paper we study the‘coupled system of ordinary differential

equations

Alyly = gly) (1.1

'

which arises from the MFE approcach and study questions concerning the structure,
degeneracy and solution of the system. The matrix Aly) ef (1.1) is positive
definite except in particular circumstances, and the strategy in the papers mentione
above is to avoid such situations by special devices. The approach in the present
paper is rather to analyse the singularities of A 1n these situations and to
previde special inversion procedures in such cases.

After a section recalling the features of the Moving Finite Element methodf
which we need, we discuss in Section 3 the structure of A in the case of linear
elements in any number of dimensions, showlng in particular that A may be
decomposed into the form MTCM, where the matrices M and C are block diagonal
(although with different erderings). From this decomposition we see clearly
the sources of:singularity of A. In the one-dimensional case with A non-
singular, we can write down the explicit inverse of A and this is shown in
Section 4. Moreover we can show that the spectrum of the Jacobi matrix is
particularly simple,with a spectral radius of . This result, which is proved
in the Appendix, is useful when considering various iterative procedurss for
inverting A.

If A is singular there are two sources of singularity: ®ither the nodes

are collinear (in which case M is not offull column rank) or the elements



2. THE MOVING FINITE ELEMENT METHOD

We begin by describing the essentials of the MFE method in one space
dimension, using mainly the notation of Gelinas, Doss & Miller (1981). Given

the scalar evolutlonary problem

Uy - L(u) = 0, (2.1)

where L is a differential operator in space+, together with boundary conditions,

we seek a semi-discrete approximate solution of the form

N+1

vix,t) =}

Lo aJ(t]aj{x.gﬁt]} ) (2.2)

where a = (ao,a¢,...,aN+1] is a vector of fipite element nodal amplitudes,

g = (30'51""’SN+1] is a vector of (time-dependent) nodal positions and uj

is any standard finite element basis function on the grid defined by s.

If s were a fixed vector, independent of time, (2.2) would be the usual finite
element approximation but in the MFE method s 1is allowed to vary with time and
is determined along with a. A Dirichlet-type boundary condition at the left hand

end point s is modelled by fixing 89 and ag: Similarly, a Neumann-type

0

condition is modelled by fixing 5y but allowing ag to vary. For definiteness

we shall assume Dirichlet-type conditions at both ends g and SN+ throughout

this section. The function v(x,t) in (2.2) thus has 2N degrees of freedom.

Partial differentiation of (2.2) with respect to time yields
N

vy (x,t) = §=1 8500 %J_ + 3,08) %‘Sij
N[
= §=1 _éjaj[x,_e_»(t]) + éjejfx,gttl,gftn] , (2.3)
where By (x,alt),s(t)) = %j (2.4)

and the dot denotes time differentiation.

The function B8 may be regarded as a second type of basis function,

J
auxiliary to aj. In fact both have the same support, and indeed for linear elements

it can be shown by direct differentiation o by.arguments similar to those of Lynch

(1982), that By = - v,oy (2.5)

In the case of

+ The class of operators to which L must belong is limited only by the operations
subsequently performed on L(u).



4.

linear elements, there is an advantage i1n regarding each as combinations of

base functions having support on a single elsment (see below).

Equations determining the 2N unknown parameters aj,sj (3=1,2,...,N)
are obtained by minimising the L2 norm of the residual, namely
||vt - L(v]||L2 , (2.6)

with respect to the time derivatives of the parameters éJ,éj (J=1,2,...,N}.

This gives the set of 2N equations

[}
o

v, - Lv), o, >
t J (2.7)

<vt - L(v), Bj >

n
o

(3=1,2,...,N), where <., > is the L. inner product. Substituting for Vi

2
from (2.3) we obtain the set of MFE equations

Alyly = gly) , (2.8)

where , T
= {61,51;a2,52;...;aN,5N} s (2.9)

<

Aly) is the MFE matrix, which is square and symmetric and consisting of

inner products of the basis functions o and B in 2 x 2 blocks,

. <a,,0.> <a.,B.>
i’ i’73
(2.10)

<Bi.uj> <8, Bj>
and g (y) is a vector arising from the terms involving L(v) in (2.7).

Inversion (where possible) of the matrix A in the non-linear system of

differential equations (2.8) yields explicit expragssions for éj and éj (i.e. y)
in terms of y and g (y). We shall here be concerned with two main issues:
first, the guestion of the existence of the inverse of Aly) and, second,

the construction of that inverse.

Note that, from (2.3) and (2.10),

= _
" Vt" L2=i Ai . (2.113



It follows that the matrix A is positive semi-definite and singular
only when y # 0 exists such that vy = 0. To see

this, let A be the eigenvalues and eigenvectors of the symmetric matrix A,

184

for which e, can be taken as a complete orthonormal set. Then, for any

i

y # 0 there exist coefficients v,, not all zero such that

2N
i=1
then, from (2.11],
2 .T 2N
""t |* = y'ay = ] 1 ¥, (2.13)
i=

L2
vanishes only if Ai = 0 for at least one i. In that case A must be singular.

In Section 5 we shall characterise the situations when A is singular and give
procedures for determining i_ in such cases.

For higher dimensions we take r to be the position vector of a point and

seek an approximate solution of equation (2.1) in the form
N +B

vir,t) =) a,(tla, {r,s(t)} . (2.14)
: I R I

where T

g = {8455, 058y,p! (2.15)

contains the nodal position vectors gj, aj is a nodal parameter and aj

is a finite element basis function. ' Here N is the number of internal nodes and

—_—

B the number of boundary nodes. Any of these nodes may have any of the variables

of §j and/or aj constrained to be held fixed, and modelling of boundary conditions
is achieved by applying such constraints appropriately. In the following we assume
that all of the boundary nodes are held fixed as are the amplitudes at these nodes -
this models Dirichlet conditions over a fixed domain. (Note that it may be
appropriate, for example with Dirichlet conditions on a square in two-dimensions,

to allow boundary nodes to move along the sides of the square, but not into the
interior - this is easily achieved). The function v(r,t) thus has N(1+d)

degrees of freedom, where d 1is the dimension of the physical space.



Partial differentiation of (2.414) gives

N

0 9V )
vilr,t) =} [a,(¢) 3_5J+ §J(t)-ygjv]

J=1
N d
= a0 {r,s(t)} + s, (t) r,a(t].s(t]‘\
§=1[ja3{~= A
(2.18)
where éjm[t] is the m'th component of §j[t) and
_ v
Bjm "~ s, gkl
Jm
is one of d second type basis functions (see (2.4)). As in the
one-dimensional case the support of each Bjm is the same as that of aj
The arguments of Lynch (1882) can again be used to show that
oV
B, = - =0, (2.18)
jm me 3
where we have taken the r of (2.14) as
r= (x1 s Xy s wen s xd] : (2.19)
Minimisation of the L2 norm (2.6) gives rise to the N(1+d)
equations
<Vt N L[v].aJ> =0
(2.20)

<Vt . L(V],Bjm> B D
(m=1,2,...,d),(3J = 1,2,...,N). Substituting for v, from (2.18) £hen gives

the set of MFE equations

Alydy = gly) (2.21)

where (2.22)

= { . , i s i
y = a1,§1,a2,§2,...,aN.~N}
and gly) arises from the terms containing L(v) in (2.2D). The matrix
A 1s still square and symmetric consisting of inner products of the a's

and B's in blocks. Note that the form (2.11) is preserved.




3. LINEAR ELEMENTS

We now specialise to linear elements in any number of dimensions with
nodes at the vertices, e.g. triangles in two dimensions, tetrahedra in
three. Thus we choose the function aj to be a local basis function with
the value 1 at node j, zero at its neighbours, being linear in between:
gelsewhere it is zero. The components of the corresponding ﬁj are given
by (2.17) or (2.18) where v 1is piecewise linear. Hence each component of
B, is also linear on each element and has the same support as aj but it is
discontinuous, being a different multiple of’ aj on each element of its
support.

In one dimension a, is the hat function shown in Fig. 3.2, the
approximate solution v 1is piecewise linear as shown in Fig. 3.1 and the

second type basis function Bi is as shown in Fig. 3.3. The actual

definitions are given in §4.
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Now the matrix A consists of blocks (2.90), which in the present case will
vanish except when i=j or i 1is a neighbour of j. If -1 1is a neighbour of ]
the integration in (2.10) is over the elements common to the support of oy and

aj. and the corresponding block is

<ai,aj> <o, .8
A, = (3.1)
1] <. <
Byay” “ByBj



which is singular of rank 1 in one dimension and of rank 1 or 2 in lLwn
dimensions. If i=j the integration is over a patch of elements surrounding the

node i . Also as in the usual finite element assembly, there exists a number §

such that N
) Apy = 8Ayy (3.2)
j=1
(except possibly when i is a boundary node): for example, 6 = 3 1in the
one-dimensional case
When the inverse of Akk exists for each k we can define a matrix with
(k,2)'th block
A—1 A (3.3)
kk kg )

and prove some remarkable results concerning its eigenvalues. We shall in fact
prove these results (in the Appendix) for the related block Jacobi iteration matrix

C -1
] -AL A k # %
Ig = {_ kk “'ke

0 k=2

(3.4)

In one dimension, for A non-singular, we show that the eigenvalues of J are

precisely *} and o'. Moreover, if A is singular, the result p(J*) = 3 can

be proved for the spectral radius p of the modified matrix A* and the
corresponding J* introduced in §5. These results may be used directly to ensure
rapid convergence of an iterative method such as SOR iteration with the optimal

relaxation parameter

w - 2 =8 - 4/3 (3.5)
Opt 1
(1+01-{p(J)}2132] *

(see Varga, 1962) with a convergence factor better than 0.072. Alternatively, the
clustering of the eigenvalues suggests a conjugate gradient method: in particular
we may use the generalised con*”agte gradient method of Concus, Solub & O'lLeary (177
In nigher dimensions Jacobl iteratlon may not converge since, from (3.7), J may
possess an eigenvalue -¢& (depending on the boundary conditions) with |8} 2 1.
However, since A 1is symmetric, positive-definiteness is sufficient to guarantee
convergence of the SOR iteration. In two dimensions (when &=1) there is numerical

evidence that the eigenvalue spectrum of J 1is contained in the interval

+ There may be 0,1 or 2 zero eigenvalues, depending on the end conditions.
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r-1, & 1 {3.6)

80 that the generalised conjugate gradient method applied to the matrix A may

remain appropriate.

The fomof B suggests another formulation of the MFE system and a
slightly different approach. Re-parameterise the function th;,t) of (2.18)
in the form N die

v.t) = )Y W (t)e, @,8(t) (3.7)
t k=1 v§1 kv kv =’k

where each ¢kv is a discontinuous basis function with support on a single

element k defined as follows : for each element k take ¢kv to be 1

at a vertex v of the element and zero at the other vertices and to be linear
in between; elsewhere it is zero. Thus for each element there are the
same number Of ¢kv'8 as there are vertices and the total number of

¢kv's is the product of the number of elements; 'n, and the number of vertices, d+1,

where d is the dimension of the physical space. In order to be consistent with

the boundary condition that we have assumed in the sequel to (2.14) and (2.15)

we set ka = 0 whenever the vth node of element k is one of the boundary

nodes with position 51 ;s J =N+

.

¥
, .+« » N+ B . We can thus make thé comparison

with the number of aj's (or B.'s), which is equal to the number N of internal

halN

nodes s as follows.

From (2.16) and (3.7) we may relate the nodal parameters 4&,§ to the

ka' Writing

w = (w11’w12’""w1d+1;W21'W22""’W2d+1;'";WnZ""'Wnd+1] (3.8)
(any terms corresponding to boundary nodes being omitted) and using the i_ which
is the derivative of (2.22) yields

W o= Ng . (3.9)

where M 1s the matrix obtained by writing the aj,Bj in terms of the
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kv To see this we use the approach of Lynch (1982). Equation (2.16) can be

written as

¢

N -

vy =j§1(ajaj - TIRI T (3.10)
where Bj = -Wy aj ,(see (2.18)), (3.11)

' T _ T T
and a = (a1,§1 ""‘aN’gN ) . (3.12)
N o |
= 5. - : = 31,

Thus Vt j§1[aj Y\/. fj) aj y_?_ (3.13)

where ¢T = {¢kv} is the vector of element base functions.

So we have

T oT
Yo =w

) T
Vi 9 =y g

from which it follows
o = MT¢ i (3.14)

Since % (or %j] is defined on the support of a local patch of

elements around the node j, M has a relatively simple structure (see below).
Moreover the coefficlents of M will only involve the (constant) slope of the
solution in the various elements.

The quadratic form (2.11) now becomes

2
vl -a cw (3.15)
2

where the matrix C = {Ckz} , with entries c o = <é, »¢,> (3.16)

is an alternative MFE matrix, also symmetric and positive semi-definite, but
glement-based as compared to the node-based MFE matrix A. Comparing (3.93,
(3.15) and (2.11) we see that
T
A= MCM . (3.17)

From (3.15),(3.16) and the definition of ¢Kv it follows that the matrix C

is square and block diagonal with the elementwise ordering in the vector @_ of
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12.
th ¥
(3.8). The entries in the k block are a simple scalar multiple of the measure
of element k. Also, by the same argument as for the matrix A in §2, C is

positive semi-definite and singular only when ﬂ # 0 exists such that “vt = 0;

i.e. when an element becomes null. The matrix M, on the other hand, is in
general rectangular and represents the mapping from the node-based representation

to the element-based representation.

4. ONE DIMENSION - POSITIVE DEFINITE A

We now study in detail the case of linéar elements in one dimension.

A consequence of each node possessing just two neighbours in one dimension is
that, numbering the nodes 1 to N sequentially along the axis, the matrix A

of (2.8} is 2x2 block tri-diagonal (see (3.1)). Provided that the diagonal
blocks are positive definite, A 1is invertible. 1In this section we shall assume
this property, leaving to Section 5 the case of singular A.

To invert the matrix A in the present case we could use the iterative
methods mentioned in Section 3. Since the eigenvalues of the Jacobi iteration
matrix are+ i and 0 (the latter depending on boundary conditions), the exact
solution may be obtained from the generalised conjugate gradient method after
precisely 2 (or, if there is a zero eigenvalue, 3) iterations. However, in this
one-dimensional case, with each element associated with just two nodes, the
approach using the ¢kv's of (3.7) leads to a matrix M in (3.9) which is
square, block 2x2 diagonal (except that possibly the extreme diagonal blocks
may be 1x1 - see below) and therefore easily invertible. Since the matrix
C of (3.16) is in this case also block 2x2 diagonal (although with blocks
staggered with respect to the blocks of M - see below)and neither C nor M
is singular (since A is non-singular) we have immediately that

N [ B (4.1
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At the end-points of the region there are two distinct cases. If there

is a fixed end-point 55 and fixed end value 2y the matrix C {which is element-

based) will contain a 1x1 diagonal entry at one corner, while M is block 2x2
throughout. Alternatively, if either aO or SD is free, the matrix M
will contain @ 1 x 1 diagonal entry at a corner, while C remains block 2x2

throughout. The choice will depend on boundary conditions. The boundary

behaviour of A will vary accordingly.

For the calculation of the éleménts of the matrices we have

(see e.g. Gelinas Doss & Miller (1981))

X-8
1-1
—_— <
5, -5, <;i-1 ShEE 9¥>
i-1 .

i
a; = ﬁ 814q7% .
= 8y < X S 8.4 (4.2)
i+1 i
L- 0 otherwise
) - <
B M1 % <%1-1 SO 5;>
Bi My ™ <Si< S Si-'l) (4.3)
0 etherwise ,
814979
where m1+§ = ;—“5
i+1 ~1

is the slope of the solution in the element (i,i+1). Note that the support of

o, and Bi is the same, and that

i
Bi = TV, 0y (4.4)

over the whole of that

e et e Yy e e =

support (loc. cit.).

Introducing the element numbering Kk = i—%,(k—a,...,N+%],the basis function

is that part of a in s, , <x < 54 {see (4.2)) and ¢k2 is that part

1 i-1 1-1

of ui in the same interval.



T

The diagonal blocks of M are.therafo;;4

1 -mi_%
) (4.8
LY
and M non-singular corresponds to m i # m, .1 for any 1.
The diagonal blocks of C are
_ 1 1
(8149784 3 B
1 ] (4.8)
6 <
and C # 0 corres d = =
ponds to 84 41 { Sy - If either mi_% = mi+% or si+1 =8,

for any i, Mor C is singular, A 1is singular and inversion of A using

(4.1) 1is not possible.

S ONE DIMENSION - SINGULAR A

We consider now the case of linear elements in one dimension when A
is singular. We know that there are just two situations in which this can arise.

for some i, M is singular and we see from (4.2) and (4.3)

When m, = m

1 .
3 i+3’

4 -
that Bi is proportional to 0y - Not only are the off-diagonal blocks of A
singular but so is the diagonal block Aii (see (3.1) and (3.2)). This type

of degeneracy corresponds to two adjacent slopes in the solution being equal,
i.e. a node and its two neighbours collinear. We shall refer to such degeneracy

as "parallelism" (at a nodel.

If Si+1 = s5,, then C 1is singular as a result of a complete bloeck vanishing and
Aii is again singular. This kind of degeneracy, which corresponds to node
overtaking (as in shock formation), we shall term "shock” type degeneracy.

Consider parallelism first. Let mi_% = mi+% = m;, say, for some particular

i. From the fact (4.3) that Bi(x]=-miai[x) it follows that the two MFE equations

(2. 7) are linearly dependent for this particular i. Hence Aly) 1is singular

with a null space spanned by the single vector
i'th block

u, = {0.0;0,0;...!mi,J;...;o.o}T. (5.1)

We may still obtain y from (2.8) as follows: delete the equation which
arises from the inner product (2.7) involving Bi and replace it by the

equation



éi =0 . (5.2)

Without loss of generality we may now delete ths corresponding column of

A giving {(together with (5.2)) the new system
Ary* = g*(y*) (5.3)

corresponding to the MFE method with (from (5.2)) one fixed node. The
solution of the system (5.3) will be a particular solution of the system (2.8),

since the introduction of (5.2) maintains the consistency of the system.

A* is the matrix {A%_} where except in a single row and column

3K Ak = Pk
corresponding to éi, where all entries are zero except the diagonal entry |
which is 1. If there is parallelism at only one node, so that A* 1is non-
singular, then by solving (5.3) for y* we may obtain
the general solution of (2.8) by adding a multiple of the vector Yy of (5.1)

spanning the null space, gilving

AT (5.4)

and choosing c¢ to satisfy some external criterion, for example that 8 lies

midway between s and 8449 Whatever ¢ is chosen the residual (2.6)

i-1
will be unchanged.
Another strategy is to remove the" "persllel” node i altogether.

Again the residual (2.6) is unaffected but the capacity of the method to follow
developing features may be impaired. We have not followed up this strategy.
If there is parallelism at p nodes ik (k=1,2,...,p), not necessarily

consecutive, and if we replace the corresponding equations involving Bi 's by
k

éi = 0 1in each case, the remaining 2N-p equations will be linearly independent,
K
since the rank of A is reduced by just one for each node which is parallel.

Moreover, the null space is the union of p, disjoint, one-dimensional subspaces

of the form

(5.5)

. ]
lF th block
{cg tug = [0,0:0,05..05m, ,1;...;0,0]_7]
k k k
and if, as before, y* 1s the solution of the system (5.3), augmented to

include the solutions éi = 0, then the general solution is
k
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4 ___i* + EC E_ (5-6]
= k=1 ® Tk

In this approach we cannot exploit the decomposition (3.17) in solving (5.3)

since the inclusion of the equation $=0 as part of the system means that no such

decemposition fer A* can be feund. The replacement of (5.2) by amn equation which does

admit such a decomposition 1s possible but the relatienship with

the source problem is then less clear. In the present approach we can still use

the powerful iteration procedure mentioned before to invert A* since the spectral

radius of the corresponding Jacobi iteration matrix is still i.(see Appendix].
Turning now to the other source of singularity of A, namely, Sieq = S, wWe make

use of the procedure for hyperbolic equatiens introduced in Wathen (1982f. Supposing

that the differemtial equatioen is hyperbelic and taking nmode evertaking to be indica-

tive of the fermatien of a sheck, we replace two of the egquatioms with a shock

condition jsz
i . L(uldx
849 %84 7 1im S, (5.7)
9 7 3
as 8, > a4, 8, > 8; = 8;,, from the left, @, > 84,4 Sp ¥ 8y = 84,4 from the right,
allowing ay and a to take on different values even though 8i41 = S84

i+1

Since one of the diagonal submatrices of C now vanishes (see(4.6)),
the MFE matrix decouples into two disjoint submatrices, each of which may
be inverted provided that an internal boundary condition is imposed on the

two points. This condition may be taken to be (5.7). If, after a time step, sS4

exceeds si+1various procedures can be adopted to ensure that Si+1 = 55, for example

crude averaging or going back and taking a smaller time step.
When a second node attempts to overtake a pair of shocked nodes, such

as s., s in the above, the same procedure can be used and a node deleted.

i i+1

Thus, for example, if the node 844 overtook the shocked pair Sys 8449

we would impose the condition

i1 T Sg-q T HM 75
a, - a,
as 8, > a3 4, S, T 854 T 8444 from the left, 8, > 85,492 S5 > 8i.4 T 844

from the right, and delete the node Sy entirely. The deletion of the node 1
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is consistent with the concept of a loss of information in the presence of a

shock: in the present MFE description a one-dimensional shock is always represented

by precisely two nodes with the same nodal position (see figures 8.1, 8.2 and 8.3).
In non-hyperbolic problems where a shock is not expected, the above 1s not a

feasible procedure: this case will be discussed in a laterpublication.

6. HIGHER DIMENSIONS

Considering now the.MFE matrix A of (2.29 in a space of more than
one dimension, we note first that A may still be written in the form
(3.{7) but that, although the matrix C 1is still square, the matrix M
is now rectangular and does not possess an inverse. However, we can show
that the sources of singularity A are still (i) column rank deficiency of M
and (ii) singularity of C. For, suppose A is singular, i.e. there exists

i_# 0 such that Ay = 0. Then

y Ay = 0. (6.1)

=> QTMTGMy = 0
_ _\EI_TC\L\'I_ =0 (6.2)
where Mi = ﬁ_. (6.3)

It follows that either E -'Mi = 0, in which case M 1s column rank deficient
or, since C is positive semi-definite, C 1is singular (see §3). These results
are consistent with the one-dimensional behaviour in the previous two sections.

If A is non-singular, the system (2.21) may be solved by iteration, since A
is symmetric aﬁd positive definite and the SOR iteration method, for exa&ple,
converges. Moreover, if the conjecture in (3.6) is correct, the generalised
conjugate gradient will work well: this has been seen in an exploratory example.

Now suppose that A 1is singular as a result of the matrix M being
column rank deficient. We illustrate the form of M in the two-dimensional

case; other cases are similar. In two dimensions we may write
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N ’ .
' - , .;(t]i](s.4)
v (1. =JZ1 30y (ps(E)) + X484 (palt), s(E)) + Yyvylosarst

o.f. (2.18) where © = (xy)s 8 = (X, ¥qa¥gu¥pueeeaXyYyts and ek 'H

are the co-ordinates of node J. Also (Bj'Yj] = B,,» where from (3.11)

By = 7 Vyoye \ vy . (6.5)
/
To find the form of M from
k2
W= My ' (6.6)

consider a single element &. At the vertex u of the element, which is

node i, say, we compare v, in the two bases represented in the equations

t
) Gyay + igpy + vyr)- 1
v, = .0, + X B, *+ Y.Y:)= W, ¢ (6.7)
t j=\ 39 373 'Y 2 =1 kv Tky
to obtain
Wow Con T %1% T XeBy T YaYy
= (&4, - meX; - nzYi]a , (6.8)

using (6.5), where (m,,n ) = (Vx,vy) on element &. (For a boundary node both sidss

of (6.8) will be zero for assumed Dirichlet conditiBns). Thus, since ¢£“ =a;

on element &£, we have

Wou = 83 7 mR'Xi - ani (6.9)
so that in the row of M corresponding to Wlu there is just one 3-vector entry
(1, -m, -n,) =p : (6.10)
’ 9’ 2 -E.Q, s

say, in the ith blocked column: note that the vector i_ is ordered as 1in

(2.22), namely
y = (a1,X1,Y1;a2,X2,Y2;...;aN,XN,YN)
For each element k surrounding node i there will be a similar 3-vector

entry in the ith column; thus there will be the same number of El's in column

i as there are elements around node i. Indeed if we order the vector ﬂ not
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in the elementwise manner of (3.8)(which is shown in Fig. 6.1), but

in a nodewise manner (as in Fig. 6.2), then the columns of the matrix M will

be interchanged in such a way that the result, N say, is block diagonal.

That 1s, there exists a permutation matrix Q such that

N=gMn= [] 5

(6.11)
0 e
C
with rectangular blocks.
8
2 v G ;
5 2
3 1
1
| — —anash
Fig. 6.1 Fig. 6.2
Elementwise numbering Nodewise numbering

Each block consists of three eslumns of scalars (corresponding to the components

El) and the same number of rows as there are elements surrounding a node.




p
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Column rank deficiency of M or N cerresponds to row rank deficiency of the

T
Ek' Thus M will be column rank deficient 1f, egither for all pairs of elements k

and ¢ adj)acent to the node J,

m = m and n = ng] R [8-12]

or if there exist numbers A ,u , not both zero, such that Am .+ oung = Aﬁb + P

To deal with this type of degeneracy we return to the MFE matrix A whose

elements Aij are now given by (3.1), i.e.

<ai,aj>' <hi.BJ> <ai,yj>

Aij - <Blaaj> <Bi'8j> <Bi:Yj> [6.'13)
1
and (3.2) A, =—1 A (6.14)
ii g 341 ij »

where 6=1 1in the two dimensional case.

When M = Mps 2 Bj and Y4 are parallel to “j in all

elements k and & surrounding the node j. In this case there is a unique

and nk =n

m and n for all k,% and the solution in the whole patch of elements surrounding
the node j 1is coplanar. The MFE equations <Mt-L(v],Bj> = <vt—L[v),Yj> =0

are redundant and we omit them, striking out also the corresponding columns of
the matrix A. The resulting matrix is non-singular (if this is the only

parallelism) and is consistent with the equations (c.f. (5.2)).

X, =0, Y, = 0. (6.13)
The solution of the reduced system
A*[I“]i*= g*(y*) (6.16)

(c.f. (5.3)), augmented to include (6.15),leads to a complete solution

y = 9% + §4¢ (6.17)
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where gd = (2512 252)

components .of the form

] is the null vector of the full system, which has

U(1J . {DJUFO;OJO’O;'.';mj'1’0;..-;0’0'0}T
Yy (6.18)
E';Z] . {UIOIO;OIOIO;III;nj‘UJ1;"';O’0'0}T 4

and ¢ = (01,02]T can be chosen to satisfy some external criterion, for

example that X lies at the centroid of the patch of elements surrounding node

Y3
j (c.f. the argument in Section 5).
When there exist A, u, not both zera, such that
Amg +un = Amg +oun, (6.19)
then KBj + qu is parallel to aj in all elements k and & surrounding
the node Jj. The vectors Pk = (1, M -nk]T. for all k surrounding the node J,

span a two-dimensional space and the null space is the orthogonal space. The

null space may be spanned by

v, = 70,0,0:0,0,05...301...10,0,01 (5.20)

where n = Mmine-npd + (me-mJn., ne =np,m ~» m,, ] (6.24)

and k, & are chosen such that Px # Pz' This can always be done, for.if not,
the Stronger parallelism above applies. Geometrically, this latter type of
parallelism corresponds-to the solution on a patch of elements surrounding a

node consisting of just two planes, where two element edges coincide with the line
of intersection.

As in the earlier case the solution for i_ can be written

o=yt rovy (6.22)

where ¥* is the solution of the modified system, the equation

<vt-L(vJ,8j> = 0 being replaced by kj = 0 or <vt-L[v],yj> by Qj =

The constant ¢ 1is again chosen to satisfy some external criterion.
Turning now to singularity of A as a result of singularity of C,

we refer back to the form of C given by (3.16). Again we illustrate in the

two-dimensional case.
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Suppose that S, 1is the area of the triangular element Kk and that we employ

Kk

the elementwise numbering as in Fig. 6.1. Then performing the integrations in (3.16)

we find that the k'th 3x3 block of C has the form

2 1 1
S
c o= _K 1 2 1 (6.23)
K 12
1 1 2

and singularity of Ck occurs when the area Sk of the element k vanishes.
In one dimension this corresponded to node overtaking: in the present case the
situation can best be described by saying that a plane section of the solution has
become "vertical”, i.e. parallel to the v-axis.

In hyperbolic problems we again take the situation as indicative of the formation
of a shock. As in one dimension the piecewise linear solution has developed an
infinitely large slope and the function v has become double valued. Our underlying
procedure is to preserve this situation by introducing a shock condition as part of
the algebraic system, deleting those equations superseded by such a condition.

In two dimensions, assuming that the node 1 is attempting to cross the line j1,j2

{(see Fig. 6.3), we impose the internal boundary conditions (shock conditions)

32 \
i s " ] . " ISL[UJ dn
= (X,,Y.)*A = (X, ,Y ]'ﬁ = (XJ ’Yj Jefi = 1lim /71 (6.24)
i 317 34 2 3 ST
2 1
as a, *a,, 8§, s, =S from the front, a, a8, , 8, * 5 = s from the back
1 i 1 =1 ~in o 2 in 2 in i
where ﬁ is 1n the direction of éi , (c.f. (5.7)). If node i runs into nods

, tha one-dimensional procedure of section 5 is applied in the direction of ﬁ:

34

There is one significant difference in the geometrical behaviour of elements
which shock in two dimensions as compared with one dimension. In one dimension
an element is lost but the character of the solution in adjacent elements is unaffected
In two dimensions, when node i meets the line joining nodes j,I and j2 {causing

Jq the vertical triangle (i] J) an element is lost

142
. and in the process the piecewise linear solution in
the triangles (ijquJ. (ij2j3] becomes adjacent

to that in the triangle (j1j2j4]. The triangulation

of the plane is corrupted but it is easily restored
Fig. 6.3 J5



_23_

by the device of renumbering the triangle (j1j2j4) as [j1inj4] and the (lost)
triangle [ij1j2] as [inj4j2]. Thus, in two dimensions, in the formation of a
shock the number of triangles is preserved in general, as opposed to the situation
in one dimension where the number of elements is reduced by one.

These ideas go over into three dimensions. The matrix C becomes singular when
a node runs into a face, a side, or another node of the mesh tetrahedra. In all cases
the system of equations may be modified by the introduction of a shock condition
similar to (5.7) or (6.24) which supersedes that part of the algebraic system
which is causing the singularity. In the case of a node running into a face of a
tetrahedron one element is lost but three are created as a result of the. application
of an argument analogous to that for two dimensions above. The number of nodes
however remains unchanged.

Questions concerning the introduction and deletion of nodes have not been
discussed, since we believe that they constitute a separate issue. We merely
note that there is no problem from an algebraic point of view in the insertion of a
new node now that parallelism is no longer a problem. Criteria for altering
the number of nodes or elements need a separate study.

We turn now to the application of the ideas in the paper to systems of

equations.

7. SYSTEMS OF EQUATIONS

We confine the discussion to one dimension, although the extension to higher
dimensions is straightforward.

The question arises as to whether to choose a common grid or individual grids
for the different components of the system. :Gelinas et al (loc. cit.) include
examples which use a common grid, but since the use of individual grids preserves
the advantageous structure of the matrices, we have preferred this option in what

follows and in the associated example.
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For the system of evelutionary equations

u% - Lz(u1,u2,..,uMJ =0 (2= 1,2,....M, (7.1)

we may generalise the procedure in Section 2, seeking semi-discrete solutions
of the form

3

Jeraitos e (7.2)

Vix,t) = J a ;

(in one dimension), where a§ is the nodal amplitude at s for each

L
i

%
J
component of v. Note that we use a separate mesh {s : i=1,2,...,N£} for
each component &£. The argument proceeds as in Section 1 with the addition
of superfixes £.

In place of (2.6) we minimise the L, norm

M 2
N KA S ARV Iy (7.3)
=1 2

and this leads to the set of MFE eguations

N N
et <tat> . 22 R v TR el ATLATCHNORTL B
a1 4 371 “, 3 T3 1
J=1 J=1
(7.4)
Vo o2 o0 . N g R, 1 2 M, g
Y& <LalLBl> ] & <8 o> = <, d?, L, B >
Z, 3 T34 2. 4 U1 il
J=1 J=1
for i=1.2,...,N2 and £2=1,2,...,M.
If we now write
PR A NN T SR T )
l = {31181;a25521-|-JaN ,SN ]' [7-5]
L L
the equations(7.4) can be written as M ordinary differential equation
systems linked only by their right hand sides, namely,
M (7.6)

At igt = yt? ey

for 2 =91,2,...,M.

The structure of the 2Nz X 2N£ matrix A of (7.6) 1s precisely

the same as for the scalar case, with elements calculated using the nodal

amplitudes and positions of the &'th component only. The 2N2 - vector

gz has elements given by
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ggi_1 = <L2(u1.u2,.;.,uM], ai>
(7.7)

L L. 1 2 M
£y ° L*(u',u, a0 ), B§>
for 1 = 1,2,...,N2.
The important feature of this approach to systems is that all the results

of the previous sections apply. 1In particular, each MFE matrix

v A[yzl can be decomposed in the form

A
At = Tt (7.8)

(1in any number of dimensions) and, although parallelism can occur within
each component £, the same procedures as in previcus sections are always
applicable.

The integrations in (7.7), which involve evaluation of components other
than & over elements corresponding to the &- component, can be carried out
using, for example, Gaussian quadrature, picking up values of all components
at the Gauss points of each f&-element.

An example of a system is given in the next section.
8. DISCUSSION

In this paper.we have shown that the Moving Finite Element Method,
although intrinsically non-linear, leads to a matrix system which is
relatively simple to analyse and easy to adapt in the two degenerate
cases, namely, parallelism, where our technique is completely general and applieé
to all evolutionary equations, and element folding, or node-overtaking, where we

propose a technique for hyperbolic problems.

As a result the MFE solution comes down to the solution, in time only,

of the system of ordinary differential equations
’ -1 :
y=A (ylgly) (8.1)

(c.f. (2.7) (or (5.3))), which can be solved numerically by some time-stepping
scheme. Note that the degeneracy of A (which causes a modification of
(8.1)) is dependent on y, SO that any ETE&EEEP scheme will need to know the
updated value of y before any degeneracy of A can be recognised and
special action can be taken. For this reason explicit or Runge-Kutta schemes

are to be preferred in the solution of (B.1). This is not a serious disadvantage
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since the movement of the nodes to some extent pre-empts the necessity of the
use of implicit schemes to prevent instability (see below).

To discuss the implications of the results we mention four examples, all
in one-dimension where the theory is most developed. They are :-

(i) the inviscid Burger's equation

ut + uux =0
which has special significance for the MFE method discussed here in that
the MFE solution is exact for piecewise linear data (see Wathen (1982): (ii)
exactly the same as (i) but with some extra 'parallel nodes” added into the
initial data. (This example shows the effect of the parallelism algorithm of
section 5.)

(iii} the Buckley-Leverett equation in the form given by Concus and Proskurowski

(1979)

2
U+ gL [ = ] =0
) W2 vy (1-m)2

with the solution held fixed at the left hand boundary, where, although we do
not expect an exact solution, we note a tendency for the nodes to follow the
characteristics approximately, illustrating how explicit methods may be adequate
when™time-stepping is used to solve (8.1)

(iv) the wave equation, written as a system, where (avoiding characteristics)
we solve the non-diagonalised system to illustrate how separate meshes can be
used to provide an approximation to the exact solution.

The results for (i}, (ii) and (iii) (the latter reproduced from Wathen (1982))
are given in Figs. 8.2, 8.2 and 8.3 respectively. In all three examples an
arbitrarily large time step is possible subject only to the presence or development
of shocks, i.e. the limitation on a time step is simply up to the instant where
a node runs into a shock or a shock is formed. In example (i) the exact solution
is reproduced for piecewise linear data but in example (iii) accuracy is lost because
the "wave speed” is not piecewise linear and the piecewise linear character of the

data is not preserved; accuracy can be improved by taking a number of smaller time
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steps. In cases where the characteristics are not straight further accuracy
will be lost. In addition accuracy 1s, of course, dependent on the number of

nodes used.

Finally, we consider in more detail the wave equation, example (iv), written
as a system in the form

=0 (8.2)

(c.f. (7.1)). The corresponding set of MFE equations is

i 1
AyhY = gliy?)
dt
(8.3)
. 2
Ay - g2y
dt
where x}. X? are given by (7.5) for & = 1,2, and
1 = 2 1 1 - 2 qpl i =
521_1 <Ux‘ai> s G21 = <ux,8£> (i 1,2,...,N1]
2 = <Gl a2 = =
o <ux,ai>- G54 <ux,e§> (1=1,2, ¢ .0,Ny)
The MFE matrices can be decomposed into the form
Alyly = MC,M ACy2) = MIcM (8.5)
L 1711 X 222 :
so that (8.3) becomes
1 ‘ 2
mem, e ety mem, M s2iyh) (8.8)
dt dt
and, provided that there is no degeneracy,
d o1 1T e1eg2y 292 2w le T g2t
A M1 C1 M1 G (y%), - ¥ M2 C2 MZ;G (y'). (8.7)

The solution is then found by explicit Euler time-stepping (as are-the solutions
in (1), (i4i) and (iii). The results are shown in Fig. 8.4, the first two frames
showing the initial data. Note that for component u1, all the nodes 1n the

initial data are parallel and the algorithm of section 5 is automatically used.
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As the solution evolves, curvature is introduced, and the parallelism disappears.

The true solution of this problem is the superposition of right and left

moving triangular pulses: both are positive in the case of the second component

(see Fig.(8.4)) while for the first component they are of opposite sign.
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= SUMMARY

In conclusion we make a number of recommendations based on the work of the
present paper which we hope may clarify aspects of the Moving Finlte Element
Method. Firstly we note the well conditioned nature of the matrix of (3.3) which
is simply derived from A(y). Because of the power and simplicity of the inversion
procedures and for reasons given below, we advocate explicit (or Runge-Kutta)
methods for the numerical integration of the differential equations (9.4) for
hyperbolic systems. In this connection we note that for the case of the scalar
inviscid Burger's equation, the movement of the nodes precisely follows the
characteristics and that the Moving Finite Element method with Euler explicit
time stepping gives the exact solution for piecewise linear initial data with
an unlimited time step (Wathen, 1982). 1In general this will not be the case but
we may nevertheless expect the nodes to move in such a way as to follow the
characteristics approximately where possible. Hence we do not expect an explicit
solver for the MFE equations to be subject to the usual limitations on explicit
solvers on fixed meshes.

Secondly, where systems of eguations are involved we recommend separate
meshes for each component rather than a common mesh. This is because with this
appro;ch the stucture of the MFE equations is maintained together with the
consequent advantages in solution procedure.

Finally we summarise the procedures described in this paper, taking the
one-dimensional scalar problem as example. Form the set of eguations

Cw = b , (9.1)
where w is the vector (3.8) which provides the coefficients in the expansion
(3.7) for vt(x,t), C 1is the matrix given by (3.16) which is square block
2x2 diagonal and depends on the nodal positions s, and

by =<L(v],¢k> (9.2)
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which depends on the vector of fundamental variables y (see (2.8)}).
Provided that no element is degenerate, C 1is non-singular and

W =c b, (9.3)

To obtain § from W we use (3.9). In one dimension M 1is square
block 2x2 diagonal depending on y. Provided that there is no parallelism
M 1s non-singular and

g =M= m e, (9.4)

From (4.4) and (4.5) we have easy explicit inverses for C and M although
the dependence of b on y (through L(v) 1in (8.2)) involves quadrature.

If there is element degeneracy or parallelism (readily indicated by the
singularity of C or M, respectively) proceed as follows. In the case of
element degeneracy (C singular) the system degenerates into two disjoint systems;
this necessitates an internal boundary condition which, in the case of shocks,
can be taken to be the jump condition (5.7). In the case of parallelism
(M singular) work with y alone, solving (2.8) directly by temporarily fixing
any parallel node(s), solving the new system and adding multiple(s) of tge
vector(s) (5.5) spanning the null space of A. The latter can be done in such
a way as to locate the parallel nodes in any convenient way, e.g. equally spaced.
In solving the new system it is convenient to turn to iterative methods, the
spectral radius of the Jacobi iteration matrix being 1 and the SOR method
with optimised parameter (3.5) or the generalised conjugate gradient method
converging very rapidly.

In higher dimensions the procedure is very similar although some of the
steps are more intricate, :iparticularly those avoiding singularities. For

details see the text.
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Figure 8.2 (3rd frame)




(dwels Yyay) z*8 8IN3Td




