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Abstract

This report is a comparison of two two-equation models of traffic
flow which are based on the ideas of fluid dynamics. It discretises both
models using Roe decomposition and a second order scheme. The
results are then compared with real data.

1 Introduction

This is an addition to a previous report [11] on the one-equation Lighthill-
Whitham-Richards model [10], [14]. In this report we consider two-equation
models, first the Payne-Whitham model [13], [17] and secondly the Aw-
Rascle model [1]. We discuss the application of a number of schemes and
compare the numerical results to real averaged data from the M25 motorway.
Section 2 describes the two two-equation models. In Section 3 we discuss
the schemes used. Results are presented in Section 4 using the data from
the M25 motorway as initial conditions and boundary data where required.
Conclusions are made in Section 5 and Section 6 proposes further work.

2 The Models

In this paper we are considering two different models, the Payne-Whitham
model and the Aw-Rascle Model. Both consist of systems of two equations.

2.1 Payne-Whitham Model

A two-equation model was proposed in the 1970’s independently by Payne
(13] and by Whitham [17], we shall refer to this as the PW model. The first
equation is the conservation of mass equation as discussed in [11], i.e.



%, 20e) .
ot oz
with p representing the density of vehicles and the flux function f (p) = pv
where v is the velocity. In the one-equation model a particular form of
v(p) is assumed. In the two-equation models v and p are assumed to be
independent and a second equation formed connecting them, as in a fluid
model.
The second equation is derived from the Navier-Stokes equation of mo-
tion for a one-dimensional compressible flow, but with a pressure p = C2p
and a relaxation term. This gives

v ) -
where C, and T are constants, and the velocity V (p) is the ‘maximal and
out of danger’ velocity meant to mimic drivers’ behaviour. Kerner and
Konhsuser [6], henceforth described as KK, describe V(p) as being ‘deter-
mined by the average balance between safety requirements and risk readiness
of the driver as well as legal traffic regulations and road conditions’. As in
the first report [11] there are many possible choices for the velocity function
V(p). In this report we consider a simplified version of the equations with
no viscosity or relaxation terms (see later).

In order to rewrite the left hand side of (2) in conservative form, first we
use the product rule

(pv), = por + vpy
and, substituting in for vp; after multiplying (1) by v, we have that

v (pv), + (pv), = pv: = 0. (3)
Substituting (3) into (2) multiplied by p gives
: T
pv; + povg = —Clpg + p%—vl + WUy

while substituting for pv; from (3) gives

Vip) —
v(p0), + (o) + pove = —Cloo 4 pL O o, ()
Again using the product rule on (pvv)g, i.e.

(pov)z = (pv)ov + (p0)vz



and substituting in (4) for (pv)gv + (pv)v, we obtain

2
v Vip)—v
(’(IO’%> + (Pv)t = _COZIO:L‘ + P(—(py + HVzz-
Hence we obtain the second equation (2) with the left hand side in conser-

vative form

2
pv Vip)—v
(pv), + (% ¥ c::’p) SPALEL . (5)
a

The source terms on the right hand side consist of a relaxation term and a
viscosity term.

The two equation conservative model, (1) and (5), can conveniently be
written in the vector form

u +f(u), =R (6)

where

Po

_ p - )
u—(pv),f(u)— O ™

‘o

and

0
R= (P(V(p?_—v)'i',u”m )

Here we shall consider the situation where there is no viscosity or re-
laxation, i.e. R = 0, hence the problem reduces to that of isothermal flow

[9]-

Referring to (6), with u, f(u) given by (7), we can write the system as

Ou Oou
T A(“)% =0, (8)
where the matrix A(u) is given by
0 1
of
Am=z0=| c2_ (;ovz)2 2pv (9)
p p



We can then find the eigenvalues A and corresponding eigenvectors e of A

in order to diagonalise it. From
|[A=AI|=0
(- @v -2 (C2-v?) =0

22— 20X — (C’g—vQ):O

giving

(10)

To obtain the corresponding eigenvectors e; and e; we seek a vector x

that satisfies
(A-A)x=0.

—v—-C, 1
C2—v? v-C, x =0

Choosing z1 to be 1, we get 3 = v 4+ C,, giving the eigenvector

. 1
e = ’U+Co .

So for Ay we have

Similarly for A, we get

2.2 Aw-Rascle Model

(11)

(12)

A model by Aw and Rascle [1] that claims to be an improvement on the
PW model has recently been proposed. They argue that other researchers
have stuck too closely to fluid flow models and not allowed for significant
differences between traffic and fluids, e.g. traffic is more concerned with the

flow in front, rather than behind.

The model proposed by Aw and Rascle, henceforth known as AR, is

Op | 0(pv) _
ot T 0w 0

as in (1), together with a Lagrangian equation



a(v+plp)) dv+p(p))
; + v ;
i dx

=0 (13)

where p(p) is a smooth increasing pressure function. They suggest

p(p) = Csp” (14)

for the pressure where v > 0, and Cp = 1.
Multiplying (1) by p and using the product rule

(p(v+P)), = p(v+ P)+ (v + Ppey

(pv (v + P))y = pv(v+ P), + (v + P) (pv),
we get
(p(v+P))y = (w+P)pt+ (pv(v+ P)), = (v+ P)(pv), = 0. (15)
Now, using (1), we can reduce the left hand side of (15) to
(p(v+ P)), + (pv(v+ P)), = 0. (16)

This is now in conservative form, where the conserved variable is p (v + P) =
y, say. Hence, rewriting the AR system using the conserved variables p and
Y, equations (1) and (15) become

(p);+ (y—pP)s =0,

y?
(¥): + (— - yP) =0, (17)
p T
In the vector notation of (6) this is
p y-el
u= ,f(u) = ,R=0, 18
( y ) i y;— yP (18)

which can then be written in the form of (8), with

—(y+1)P 1
A(u)=(_£_ﬂ 2_1/_P) (19)

2 p p



whose eigenvalues and corresponding eigenvectors are

/\121}, )\2:’0-—’)’P (20)

1 1
e1:<v+(7+1)P)’ ez:(v+P>' (21)

3 The Schemes

and

In this report we shall consider the first order Lax-Friedrichs scheme as well
as decomposing the models and applying a second order TVD scheme with
flux limiters.

3.1 The Lax-Friedrichs Scheme

For systems such as (18), Lax-Friedrichs scheme is given by

ujtl = % (“?+1 + “;‘1—1) a Q_AA% (fJnH - fan—l) ’ (22)

where j, n are the space and time step indices respectively.

The scheme is first order accurate. It is known to smooth out solutions
excessively and have a step feature, but it is nonetheless useful for getting
a rough idea of the behaviour of the system very cheaply. It is conservative
and easy to apply.

3.2 Roe’s Scheme

The idea behind Roe’s scheme is to take a non-linear system of the form
(8) and to linearise it by approximating the Jacobian matrix A(u) using
Roe averages. The resulting system can then be decomposed into its two
component waves travelling at approximate speeds given by the eigenvalues
of the averaged Jacobian matrix A(i).

3.2.1 Roe Decomposition

Given any data u we can form differences Au. We can then find values for
o; and ag such that

2
Au = Z arer, (23)
k=1



i.e. project it onto the eigenvectors.
For an infinitesimally small difference Au and a corresponding small Af,

using (19),
2

Af = A(u)Au = Z ALQL€L. (24)
k=1
Equation (24) relates to A (u) and to small differences Au and Af. We
now consider finite differences over discrete intervals (cells) and construct
average values, &, A, &, p and ¥, which satisfy discrete versions of (9) to
(24), at least to first order.

3.2.2 The Payne-Whitham Model
For the PW model, (23) gives

n 1 1
(2)-n(zhe)m(5ke) @

Solving for oy and ag, we get

22‘0 (A (pv) — %Ap> (26)

and

1, ] e
ay = 2Ap 2C. (A (pv) ; Ap) . (27)

The discrete averages are therefore

.. I 1 -
&k = 5Ap £ 2Co (A (pv) — 5Ap), (29)
and .
s 1 (30)
=1s+c, |

Roe [15] showed that one way of satisfying

Af = AAu (31)
for the PW model, is to define p as

p= \/:—or_pl’ (32)
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pr being p at the right end of the cell, and p; being p at the left end of the
cell.  is then found from (24), requiring

Af, = A ((—”Z—)i) +4(C2p) (8% + C2) (a1 + &) + 20C, (& — &)

= (5 +C2) Ap+ 26 (A (pv) — 5Ap)

to hold. This leads to
(\/ﬁ;’v'r + \/ﬁ[vl) (33)
(vVPr +/P1)

V=
(see [4] for details).

3.2.3 The Aw-Rascle Model
We use (23) to find ay 2, where

Ap \ _ 1 1
Ay |9 wiye)p ) T2 wrp |0

and hence the Roe averages @ 2, for the Aw-Rascle model are found in the

same way as before. This gives us

_Ay—(5+ P)ap
P

&1 ’

(5+ (v +1)P) ap— Ay
7P '
Now we need to find the Roe averages % and P. Using (31) we have that

Qg =

A(y—-pP)=—(v+1)PAp+ Ay, (34)

and

A (i’)—z - Py) =— (P +(r+2)Po+ (v+ 1)P?) Ap + (25 + P)Ay. (35)

It is easily seen from (34) that

ApP

pP=—"__
(v+1Ap

(36)
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satisfies (31). Finding Roe averages for & from (35) involves rewriting (35)
as

at?? + b9+ c¢=0 (37)
where
a=Ap,
b=(y+2)PAp - 24y,
and

2 ~ ~
c=A (% - Py) + (y+ 1)P*Ap — PAy.

? can then be found using the quatratic formula

5= 2 (38)
 —bF Vb2 dac

The Roe averages in each cell must lie between the values at the nodes at
either end of the cell. This decides which root to take for (38).

We are now ready to apply Roe’s scheme.

3.3 Roe Decomposition with First Order Upwind

Once we have found the Roe averages we can implement the scheme com-
ponent by component, in the same way as the First Order Upwind scheme
(see [11]). The values at the new time step are equal to the old ones plus
the addition of

At - {to uj4y of §k>0, or (39)

Vi = _K;Akakek to uj if A <0,
for k =1, 2.
3.4 Roe Decomposition with Second Order

A second step may be applied after First Order Upwind to give the scheme
second order accuracy.

A, >0

(40)



else if Ay < 0

n
l.l‘7 u’t

il :\;._) b

Where u?* is the solution u} after First Order Upwmd has been apphed
For each separate k this is equivalent to the Lax-Wendroff scheme.

ru]’—‘
—

(41)

3.5 Use of Flux Limiters

One of the drawbacks of second order schemes is the appearance of oscilla-
tions. The second order step of a scheme overcompensates for the diffusive
nature of a first order step. We therefore add an extra feature which is de-
signed to prevent these oscillations, namely a Flux Limiter ¢;. The Minmod

Flux Limiter replaces P ¢ in the second step above. If the first components
of

(1 — )‘kA ) ’lbk, (1 N )‘k ) ")bupwznd

are of opposite signs, then ¢, = 0. If not, consider the absolute values. If

the first components of
1 ~ At
‘ <1 . }\kA ) ¢upw1'n.d

e

then ‘}k = {bk, otherwise J)k = {bupwind'
The second stage is then applied as with (40) and (41), but with &
replacing ).

So if Ay > 0

g - ared(-ni)a
n T 1 3 At g

uwip o wh—gil- )‘k‘gg. brs

elsc if A, < 0
< AN -
uw - u™ (1 — Ak —l(*) by,
J J 2 A:f? (43)

. 1 5 At -

wiyy = wiiy g (1= ) e
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A <0 A1 >0

b)

/\2<0

SO ONNY

Figure 1: When to use boundary data.

3.6 Boundary Conditions and Riemann Invariants

The question remains of what to do at the boundaries. If both wave speeds
A1,2 are of the same sign at the boundary, then the waves are either both
going into, or both coming out of the boundary. If they are both going into
the boundary then there is no need for boundary data (Fig.la). Indeed,
if boundary data was supplied the problem would be over prescribed. If
both of the waves are coming out of the boundary, then we must impose
both density and velocity from the M25 data supplied (Fig.1b). If the wave
speeds are of opposite signs, however, then we only need to supply the data
for the wave coming out of the boundary (see Fig.1c). This can be done by
splitting the system up into its component waves.

Taking the system in the form of (8), having found the eigenvalues A2,
and eigenvectors e; 2, we construct a matrix X whose columns are the eigen-
vectors of A together with a diagonal matrix A whose entries are the corre-
sponding eigenvalues. Premultiplying (8) by X! and using XX ! = I, we
get

X lu+ X TAXX Mu, = 0.
Substituting for X "'AX = A and equating

i‘t = X_lllt, f‘z = X‘lum, (44)

).

where

-
{f
N
9

11

)\1<0

)\2>0



we are able to integrate (44) and hence express 7 and 3 explicitly in terms
of the conserved variables u. Using this transformation, the system can
therefore be expressed as

f+ Afy =0 (45)

which has separated the system into two non-linear scalar advection equa-
tions in # and 8. These are called the Riemann Invariants as they are
constant along the characteristics dz/dt = A 2 respectively.

t

N
s
P
n A <0
A2 >0
7
n l >:L'

] 2

Figure 2: Deciding what data to use to calculate Riemann Invariants, de-
pending on direction of flow of the two component waves.

Consider the case when A; < 0 and Ay > 0 (Fig.(2)) at the left hand
boundary, where the direction of flow is from left to right. # is coming into
the boundary at P so is found by tracing back the characteristic to time n,
into the cell between nodes 1 and 2. § is coming out of the boundary at
P so is calculated from the collected M25 data. Once # and 8 are known
we can calculate u™t! at the point P by rearranging the solution found by
integrating (44).

3.6.1 Riemann Invariants for the Payne-Whitham Model
Applying (44) and (45) to the Payne-Whitham model, we have that

_ 1 1 a1 v-C -1
X_(’U-l-Co ’U—Co)’ X _2CO<—(T)+C()) 1 )1
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and

A= /\1 0 — v+ Co 0
N 0 X/ 0 v—Co |~
From (44) we have that

o L 1
o= 5o Colpi+ 5o (ol

il
= 2. (Copt + por)
= 2 (v + Collnp)y), (46)
2Co
and similarly for #;. The partial differential equation for § is found to be
G = — =2 (v, — Collnp),). (47)
Equations (46) and (47) cannot be solved explicitly. However we are

looking for Riemann Invariants that satisfy (45). If we rewrite (46) and (47)
as

#; = Mr, (48)
P 1 0

M=—
2Co ( 0 -1 )

[\ _ [ v+ Coln(p)
r_(s)—(v—Coln(p))’ (49)

then substituting (48) into (45) we have that

where

and

M (ri+ Arg) =0,
and provided p # 0 M is invertible, hence
ri 4+ Ar; =0,
and the components of r in (49) are the Riemann Invariants with wavespeeds

A1,2 respectively.
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Considering the case when A\; < 0 and Ay > 0 (Fig.2) we calculate 7 by
tracing back the characteristic to the previous time step into the cell between
nodes 1 and 2, and take a linear interpolation between u; and uy to find
the corresponding uj. r is then calculated using us and s is calculated from
the M25 data at time n + 1, u"M+215, using (49). u™*! is then calculated by
rearranging (49), i.e.

v = 2(r+9)
(%)
p = exp 2Co /.,

3.6.2 Riemann Invariants for the Aw-Rascle Model

For the Aw-Rascle model we have

X — il il X_l__—i v+ P -1
“\ov+(y+1) v+P )’ T 4P\ —v—(y+ 1P 1

and
v 0
A_<O v—’yP)'

constructed from the eigenvalues and eigenvectors of A.
From (44), we have that

~

-1
g = —77((0+P)pt—yt)
-1
N 7—15(—/’%—’71’00
= et P, (50)

and similarly for #;. The partial differential equation for § is found to be

ih = 7’—}(<—v—(7+1>P)pt+yt),

= 7—;’%. (51)

Again, (50) and (51) cannot be solved explicitly, so we rewrite them as
(48) where

14



and

() v+ P
then substituting (48) into (45) we have that

M (ry + Arg) =0,

and provided _,0? # 0, and hence p # 0, M is invertible, therefore
Y

I +AI‘$ = 0,

and the components of r in (52) are the Riemann Invariants with wavespeeds
A1,2 Tespectively.

Again, if we consider the case when Ay < 0 and Ay > 0 (Fig.2) we
calculate r by tracing back the characteristic to the previous time step into
the cell between nodes 1 and 2, and take a linear interpolation between u;
and us to find the corresponding uj. 7 is then calculated using uy and s is
calculated from the M25 data at time n + 1, uxj'zls, using (52). Again, u™t!
is calculated by rearranging (52) to get

,— o)

v = %(r+ s).

4 Results

The Lax-Friedrichs scheme was compared to the first and second order up-
wind schemes. They all gave similar behaviour, but as expected the Lax-
Friedrichs was the most diffusive. The second order scheme with flux limiters
gave the least diffusive results, hence it is this scheme that is plotted in Fig.
3.

The solid line is the representation of the collected data from the M25
motorway. To make the comparison as fair as possible the M25 has no on/off

15
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Figure 3: Comparison of the PW, AR and LWR models using second order
scheme with flux limiters. Co = 90 for the PW model, ¥ = 1.4 for the
AR model and f, is the flux function used for the LWR model. Time is in
minutes.
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ramps along the section we are considering, since the model in its present
form doesn’t allow for them. The data is collected at one-minute intervals,
and Fig. 3 is taken from the data at 15/07/99 at 09:30. See [11] for details
of how the data was averaged over the four lanes. The averaged data has
waves of variations in density moving at constant speed, both in the positive
direction and in the negative direction against the flow. Fig. 3 shows the
larger peak of density approximately 27 veh/km moving slowly with the flow
of traffic and decreasing gradually in height. There is a stationary trough
at approximately 6 km from the first post, and some smaller peaks moving
in the positive direction starting from approximately 1 and 2 km from the
first post, moving with faster speed than the larger peak. These are some
of the features we would like to mimic.

For the PW model the constant value Cy was taken to be 90. This seemed
to produce the most realistic results for this set of data. The model preserved
the larger peak and trough, but not quite at the correct speeds, and the
shapes were distorted. The smaller peaks were not modelled particularly
well though.

The constant value of 4 for the AR model was taken to be 1.4. This
model also preserved the larger peak at roughly the correct speed, but again
the shape was distorted. The trough however had too large a wavespeed
and was soon lost out of the boundary. The smaller peaks were modelled
with more accuracy, although the waves were a little slow.

The Lighthill- Whitham-Richards model discussed in [11} has also been
included to show how it compares to the two-equation models discussed in
this paper. The flux function chosen for this comparison was f2 = pVa(p)
where

Va(p) = Upagexp 2P Pmas,

Upez is some maximum speed of the road and pmer is some maximum
density. Again, it preserves the larger peak and shows the least distortion
of the shape and has the closest wave speed to the real data. It fares less
well however with smaller density flow.

5 Conclusions

Both the PW and AR models were able to capture the movement of certain
features but were unable to preserve the shape of the larger peak. They were
also unable to capture the movement of both the trough and the smaller
peaks. Neither model gave satisfactory results overall, so more work is
needed to try to make them more realistic.
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6 Further Work

6.1 Reduction of the Payne-Whitham Model

Here we obtain a first order approximation to V(p) from the second equa-
tion of the PW model and substitute it back into the first equation. This
reduces the system down to a one equation model with features from the two
equation model. We intend to apply numerical schemes to this and compare
the results to other models and the M25 data.

6.2 Use of relaxation terms in both models

Relaxation terms can be added to both models to incorporate the driver’s
behaviour. The use of these terms makes the application of conservative
schemes more of a challenge, but could make the models more realistic.

6.3 Linear Combination of the Payne-Whitham and Aw-
Rascle models

In order to try to capture some of the best features of both the PW and AR
models, a linear combination of them could be considered. The first equation
(1) is common to both, so that is kept as it is. The second equation is (5)
(with zero ths) multiplied by 8 added to (16) multiplied by (1 — @), where
0 < 6 < 1. This gives the system

(p); + (pv), = 0,

(6p0 + (1 - 6) p(v+ P)), + (9 (@?wgp) +(1—0>pv(v+P)) 0

T

This can then be discretised and the results compared to the real data.

6.4 TUse of Dafermos Method

It has been suggested that the characteristic-based numerical scheme of
Dafermos [3] would be very suitable for this type of problem. This will
be investigated further.
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