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ABSTRACT

The method in Chu [1885], for the solution of the pole assignment problem
of separable 2-D linear discrete systems with state feedback, is improved
and extended to (ii) g-D 1linear discrete systems, and

(iii) systems with output feedback.



1. INTRODUCTION.

The 2-D 1linear discrete system, the work of Roesser [1875],
has been investigated by various authors recently. (See the references
and the literature therein.) For separable systems, solutions of the
pole assignment problem were given in Kaczorek (1983, 1985], Kaczorek
and Kurek [1984], and Mertzios [1984]. A solution was given by the
author in Chu [1986]1 involving the selection of eigenvectors from
various subspaces, and the problem will be solvable if such subspaces
are non-trivial. The philosophy was in line with that in Kautsky et al
[1985] for 1-D systems. Some results for g-D (g > 2) systems can be

found in Kaczorek (1985] and Kaczorek and Kurek [1984].

In this note, the result in Chu [1986] is improved and extended to

g-D systems. The possibility of solving the output feedback pole assignment

problem is also discussed.



q-D  SYSTEMS

Consider the gq-D 1linear discrete system

(1)

Ex = Ax + Bu
where X = [x(1][v)T, i x[q)(v]T]T , V= (i1, .o, i)
n
with Mwer®, xe R, uer™,
and n==2n
K k
Here E denotes the increment operator, with
Ex = [x(1](v + 91)T G Ed . x(q](v + eq)T]T
and C is the k-th row of the identity matrix Iq
The matrices A and B are partitioned and
B T T.T
A=Ay s 4,3=1, o, @), B (B, , By)

The submatrices Aij and Bi are n, x nj and n, xm respectively.

1

Apply the state or output feedback control law

u = F x
or u =K_Cx ,
with F=(F, , .. ,F) and Cc=1(C, , ... , C),
1 o} 1 q

yields the close-loop system matrix

AC = (Aij + BiFj s i, =1, ..., gl

or A

L [Aij +B; K Cys 1,3 =1, ... ,q)

Denote the partitioning in Ac conformally to that of A by

A, = (Aij 3 1,3 = 1, wew 5 q)

(2a}

(2b)

(3a)

(3b)

For separable systems (c.f. Kaczorek [1983, 1985}, Kaczorek and Kurek

[1984], Mertzios (19841, Chu [1986] one has

Aij =0, 1> j

(4)



The pole assignment problem is then reduced to finding F or

K such that the close-loop system matrix AC satisfying the separability

condition similar to (4), i.e.

=0 , i>3, (5)

4
with Aii assigning the desired poles .

An equivalent theory can also be developed with i > j in (4) and (5)

replaced by i < j

STATE FEEDBACK PROBLEM.

For state feedback problems, similar to Chu [1986], condition (5)

will be satisfied if one chooses Fi in the following manner:

m
L[]

Bl (X, A, X.' - A,,) + (I -B.B) Z, (6)
SRR T A | ii ny i i7 %i
denoting the (1.2.3.4) - or Penrose-

+
for i =1, ..., g; with (.)

pseudo-inverse,

Ai = diag (Ai1’ i Al n.J .
1
xl ) (xi1' ' xi,n.] . and Zi = [z 17 ! Zi, n )
gl i
The eigenvectors X, are chosen from
Xik € Sik n Tik " (7)
3 —_ -— + -
with Sy = Null {[Ini By B;) (A, A0t
= ( M - =
Vik Null Bi+1 Bi (Aik Aii] Span Pik (8)
Yik
B
n. o (Aik A11J
i
"
Bi+1 (I = Bi Bi]
i
B (I B, B.)
n. i
i i




_ _ k
and Tik = span (Pikl . (Vnk =R .)
If Sik NT, * {0} and  x;, = Pik Eik
then 4 is chosen to be
ik

= t
Zik = ik “ik 63p

In Chu [1986], Zi in (6) is chosen to be zero and

+
and S, =V, = Null (B By Ay - Ayy)

not incorrectly but unnecessarily restrictively failing to exploit the
column null spaces of Bi . In the modified version in this section,

the subspaces Tik are larger and thus Sik n Tik have more chances

to be nontrivial.
Theorem 1 in Chu [1986] can then be rewritten as follows for g-dimensional

systems:-

THEOREM 1. For separable g-D systems,

if
(a) (Akk i BKJ k=1, ... ,q; are completely controllable,
(b) S:k n Tik z {0} ;
(c) Xi , with Xik € Sik n Ty » ore non singular;

then F = (F, , ... , Fq] ,  with Fi chosen as in (6)-(9), will

solve the pole assignment problem with poles {Aik}

OUTPUT FEEDBACK PROBLEMS

Let us assume that q = 2 for simplicity, and assume that

(Aii ; Bi R Ci] , i=1, 2; are completely controllable and



observable, with rank (Bi] + rank (Ci] 2 n; - (c.f. Chu and Nichols [19851],)

-1 . H _ H
Let Xi in (6) be denoted by Yi = [yi1, cer 5 Y )

with [.)H denoting the Hermitian.

From Chu and Nichols [1985], Kautsky et al [1885] and the references

therein, it is easy to prove that the eigenvectors Yig can be chosen from

€W,

+ ——
ik Null {(In. & Ci Ci] i [Aik - Aii]} ’ (10)

Yik

i

similar to the definition of S, for x, in (7)
ik ik

The feedback gain matrix K in (3b) can then be chosen to be

_ ot H_ + _+ _ +
K, =B (X, A Y, - AJCy + (I -8B B)Z +27,(I-¢C, c;)
«(I-B'B)2Z,(I-c¢C,C)) (11a)
4 B’ ‘3 1 1 a
+ H + + +
or K, = By (XA, Yo - Ayy) €y + (I - B;B,) 7, + 25 (I-Cp c;)
+(I-B'B)zZ (I-¢C,cCh) (11b)
2 B Sp 2 %2
with the assumption that
+ +
Z,(I-C Cj) =0 and (I-8,8)72 =0, (12)

otherwise part of 22 or Z5 can go into 23 or Z8 respectively

Condition (5) is then equivalent to, for 2-D systems, from (11) ,

B,KC, =0
+ +

= B, By (X, A, = A X)) + B(I -8B B)2Z,Cp% =0, (13a)
H  H + H o

or (A, Yo - Y5 A,) €, Cp + Y5 B, Zg €1 - C, C)C =0 (13b)

using the fact that

+
(1 82 82] [X2 A2 = A22 X2] =0



H  H + .

which are the definitions of wik . |

From (13), further restriction on X4k and Yii can then be deduced,

and we have to have

+ +
82 B1 (Aik = A11] . BZ(I = B1 B1] xik =0 (14a)
Eik
and
T T + _
(y2k 5 h2k] (AZK = A22] C2 C1 =0 . (14b)
+
(I - C2 C2] 01
Matrices 22 and Z5 can then be chosen to be
N H +
Z2 (g11 s eee s g1'n1] ) Y1 . C1 {15a)
and
_nt H
Z5 = 82 . X2 § [h11, Acat i h1,n2] (15b)

because of (12) and (13).
The other Zi's (apart from i = 2,5) can then be chosen in (11)

to make sure that

K, = K, - (16)

Summarizing the above discussion, we can then solve the output feedback
pole assignment problem for 2-D separable systems, if

(a) (A Ci] are completely controllable and observable,

ii ’ Bii
with rank (B.) + rank (C,) 2 n,
i i i

(b) Sik and the subspace defined in (13a) for Xik has a non-trivial

intersection.



(c)

(d)

(e)

Wik and the subspace defined in (13b]) for Yik has a non-trivial

intersection.

Xi i Yi are non-singular and

Z, , 2., 2, , Z6 can be chosen such that K1 and K2 in (11)

are equal.

Note that the output feedback problem is a difficult one, even for 1-D

systems.

Appromixate assignment techniques in Chu and Nichols [1985]

may have to be used, so that the above restrictions (a) - (e) do not have

to be satisfied exactly, with poles {Aik} only assigned appromixately.

Similar techniques may be applicable to gq-D systems, and a lot more work

has to be done on output feedback problems.



REFERENCES

Chu, K.-w.E., 1885, Int. J. Control, 43, 857.

Chu, K.-w.E., and Nichols, N.K., 1985, in Fowtth IMA International
Conference on Controf Theory, P.A. Cook ed., pp.137-146.
(London : Academic Press.)

Eising, R., 1978, IEEE Trans. Autom, Control, 23, 783.
1879, IEEE Trans. Autom. Control, 24, 133.
1980, 2-D Systems, An Algebraic Approach. (Amsterdam : Mathematisch
Centrum).

Kaczorek, T., 1983, Int. J. Control, 37, 183.
1985, Two-Dimensional Linear Systems, (Springer-Verlag).

Kaczorek, 'T., and Kurek, J., 1984, Int. J. Control, 39, 1375.
Kautsky, J., Nichols, N.K., and Van Dooren, P., 1985, Int. J. Control, 41, 1128.

Kung, S.Y., Levy, B.C., Morf, M., and Kailath, T., 1977, Proc. Inst. Elect.
Electron. Engrs., 65, 945.

Mertzios, B.G., 1984, Int. J. Control, 39, 878.

Morf, M., Levy, B.C., and Kung, S.Y., 1977, Proc. Inst. Elect. Electron.
Engrs., 65, 961.

Paraskevopoulos, P.N., 1979, Proc. Inst. Elect. Engrs., 126, 1204.
1980. IEEE Trans. Autom. Control, 25, 321.

Paraskevopoulos, P.N., and Kosmidou, 0.I., 1980, Int. J. Systems Sci., 11, 1163.

Roesser, R.P., 1975, IEEE Trans. Autom. Control, 20, 1.



