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Abstract

It is shown that the Moving Finite Element procedure remains valid
for overturning solutions provided that it is written as a two stage
minimisation procedure, the second stage being purely algebraic. Both
global and local methods are described from this point of view, together

with the details of their implementation.



§1. Introduction

The Moving Finite Element (MFE) procedure of Miller [1],[2] for
time-dependent PDE’s, which couples the solver with the grid motion, is
based on a double minimisation of the residual norm [3]. In [4] a
two—-stage form of the basic procedure is presented which consists of an
elementwise projection stage followed by a transfer of element
information to the nodes. A description of this two-stage form in terms
of function norms is given in [5]. The two-stage MFE procedure has been
used in [6] to generate multi-valued solutions of nonlinear PDE's by
permitting node overtaking.

It has been pointed out by Sweby [7] that, in the case of
mul ti-valued solutions, the unweighted residual norm in the basic
single-stage form of the procedure is no longer positive definite, i.e.
it is no longer a norm. We show here that the two—stage form of the
procedure is however still valid provided that the second stage is
defined in a nodewise manner. This aspect is considered in §2 and 3
below. (The issues treated in these sections do not arise when the
Gradient Weighted form of MFE is used [8], since the residual norm is
always positive definite in this case. This is ensured by considering
the nodal speeds normal and tangential to the solution surface.)

The local MFE procedure of Baines [9], which provides a more
compact procedure for the same purpose, is also cast in a two-stage form
in [4]. The corresponding function norm is again described in [5]. The
discrete version of this norm, which is valid for overtaking and
therefore multi-valued solutions, is discussed in §84. The flexibility

of the two-stage approach is exploited in 85 where various special cases



are considered, appropriate to one- and two—-dimensional versions of both
moving and fixed finite elements. Implementation of these procedures is
discussed in 86.

An alternative MFE procedure (splitting the solver from the grid
motion) has been suggested [10] (see also [11]). and is considered from
the present point of view in 87. It is also noted that in the special
case of a fixed grid the local method is closely associated with mass
lumping [12].

Finally in 88 th> use of standard piecewise linear basis functions
in one-stage forms of the three approaches is reconstructed from the

two-stage approach in the non-overturning case.

§2. The Two—-Stage Procedure

In this section we describe the one-and two-stage forms of the MFE
procedure and characterise their norms.

Let u be a continuously differentiable function of the space
variables x and time t in 0 x (0,t) , where Q 1is a polygonal
region C Rd (d being the dimension of the space used) and t1 is a

fixed positive time, and let ¢%(¢) be a first order operator

continuously differentiable in x such that

u, - ¢(u) =0 . (2.1)

For each t let U€S and Ut €T be finite-dimensional
approximations to u and u, which are piecewise linear functions on
I , apartition of  with linear facets (triangles, tetrahedra, etc.),

where S and T are (generally distinct) linear spaces of such

functions.



Since ¢(+) 1is first order continuously differentiable, ¥(U)
exists and is continuous in @ except at internal boundaries of the
partition IT .

Assuming that U 1is continuously differentiable with respect to
Ut - £(U) (2.2)

exists and is integrable over Q for all t €(O.t1) . Although u
satisfies (2.1) the function (2.2) will not vanish in general and we may

define the residual
R=U_-2(@U). (2.3)

Now define the usual L2 inner product of square-integrable functions

f and g as

<rg> = [ (eI (2.4)
Q

where W(x) is a positive weight function, and the L2 norm of g

(squared) as
llgll? =< g.g > . (2.5)

With R given by (2.3) the MFE procedure minimises ||R||? over all
Ut € T , leading to nodal velocities which provide the evolution of both
grid and solution [1],[2].

Consider now the space S* of piecewise linear discontinuous
functions on the partition II (called DPL in [5]). Following [5], we

define g* to be the L2 projection of g into S* (see fig. 2.1).



By definition g*e s minimises

g - &7 (2.6)
or equivalently [13]

<g-g,g >=0. (2.7)

Then

E3 E .3 ¥
llg||? =<geg>=<g-g.g~g +g >

{g- g*.g = g* >+ < g*.g* >+2<(g- g*-g* >

3 %
llg - g [17 + |l 112 (2.8)
by (2.7). Thus we may write the minimisation of
0 0
[IRI1Z = [IR - R7|]2 + [IR7][® (2.9)

% %
as two separate minimisations, those of ||R - R || and ||R ||2 .
%* %
where R is the projection of R into S . This is a consequence of

the orthogonality condition (2.7) and gives the two—stage method.

g




Let Q(U)* be the L2 projection of ¢(U) into g* . Then,

%
since Ut €ESCcSs ,

R - RS = —¢(U) + 2(U)* (2.10)

and stage one, the minimisation of the first of (2.8) with g =R,

g* = R, 1is therefore to find Q(U)* (see fig. 2.2).

£ (u)

fig. 2.2

Stage two, the minimisation of the second term of (2.8) with

% %
g =R is to obtain the Ut € T which minimises

R =U, - 2U)" (2.11)

in the L, norm. Since U €T, 2(U)°e€s”, with T,8" both

finite-dimensional spaces, we may describe the minimisation of the L2



norm of (2.11) as the minimisation of the 82 norm of a vector of
coordinates of (2.11). For this purpose we introduce sets of basis

functions for the spaces T and S*.

Let therefore {¢i} and {6i} be sets of piecewise linear basis
functions which span the spaces S* and T , respectively (c.f. [5]),
and let {wi} and {qi} be the corresponding sets of coefficients

(coordinates) for the functions Q(U)* €S and Ut €T, so that

2(U)™ = ) wo, U =)aq 5, . (2.12)
i i

Since T C s*, each 6, may be written in terms of the {¢i} .

5, = Yuy, b, . (2.13)

say, where uij are coefficients, so that Ut may be written

v, =§§qi Wl E Equ Hig ¥y - (Bu1d)
J

ij i

Thus, from (2.11)

LR = 1Y 3 ay mgg - wo 112 (2.15)

i

which is to be minimised over the coefficients of Ut , i.e. the {qi} .



Rewrite (2.15) as

¥ 12
R = < Z EE a5 Hyg T Wi] LI E [ Ap Moy ~ Wk]¢k %
i K o

=ZE [z 9 Hii _wi][z 9 “ek_wk]< Py > - (2.16)
ik j 2

This is a quadratic form in the unknown coefficients {qi}.{qe} whose

minimisation leads to a set of linear equations for the q’'s 1in terms
2

of the w's , which are known through ¢(U) from the first stage.

Indeed, from (2.10), (2.12) the coefficients {wi} in the first

stage minimise

| -2y + ) w, 9,112 . (2.17)

leading to a set of linear equations for the {wi} in terms of
< ¢i.2(u) > . Once the q's have been found, Ut is known and hence
the nodal motions.

Thus we may accomplish the minimisation of |[R||? ., henceforth
known as the global method, in two stages, the second of which may be
written as an 22 projection. The advantage of this approach will be
seen when we come to consider multi-valued solutions and the alternative

local MFE method [4] in the following sections.

§3 Multi—Valued Solutions

The difficulty with multi-valued functions, which arise from

overturning solutions, is that unless the quantity

| IR] |2 (3.1)
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is decomposed into element contributions and suitably weighted, it is in
general no longer a positive definite function of Ut . However, by
approaching the minimisation of (3.1) in two stages (c.f.(2.9)), via

separate minimisations of
IR - R |2 (3.2)

(which is elementwise and always positive definite), and ||R*||2 (which
may be considered as an 82 projection unaffected by the sense of
integration) the difficulty may be easily overcome.

In effect we simply redefine the norm to be minimised as

[IR-R"[]2 + E E [E a3 Hy4 = wi] [2 dp Moy ~ Wk] Cope9 > (3.3)
ik § 2

(c.f. (2.16)), which reduces to ||R||® in the single-valued
non-overturning case. Note that it is necessary to specify the basis
{¢i} for s* and also the uji but otherwise there is no restriction.
The w’'s come from minimising IIR*I|2 , as in (2.17), and the
objective here is to determine the q's, which will give the nodal
motions. In programming terms, however, the two-stage code is
unal tered.
We now turn our attention to the compactness of the sets of linear
equations for the w’'s and the q’'s , which links up with the local

method of [4].

84 Local Method

Since S is the space of piecewise linear discontinuous functions
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we may choose {¢i} to be a set of linear basis functions whose members
are zero except on particular elements of II . As a result the set of
linear equations for the w's decouples into separate
element-by—element sets of d + 1 equations, where d is the dimension
of the physical space.

On the other hand, it is obvious from the double summation in (3.3)
that the set of linear equations for the q’'s 1is fully coupled in
general, although the matrix involved may be sparse.

With the aim of obtaining a decoupling of the set of linear
equations for the q's along the lines of that for the w's , we now
define, following [5], a diagonal norm for the minimisation of
| IR |2

This may be approached by introducing a new inner product ((-,°))

with the property
<éye ¢j > i=3
(($;.9) = (4.1)
0 : A
and using it in (2.16), so that (2.15) and (2.16) become

z E [E 3 i3 7 wi] [z Qo Kok ~ wk]((¢i’¢k))
ik j 2

= z [2 93 By ~ wi]2< ¢85 2
i J

D11 (ay mgy = w13 Tlegl 12 = [IR*13, (4.2)
i
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where II.IIdd denotes a discrete diagonal 22 norm. This effectively
diagonalises the quadratic form (2.16) and, if i 1is taken to be a sum
over nodes, leads to a decoupling of the set of linear equations for the
q’'s 1into separate node-by-node sets of equations.

The L2 norm ‘[-

|d associated with the £

norm | |-

2 lag 13

given by

[R113 = (®R*.R%) (4.3)

(c.f. (2.15) and [5]) and is evidently dependent on the basis {¢i}
chosen (because of (4.2)).

In parallel with (3.3), then, we define the local norm (capable of

handling multi-valued solutions) as

| [R-B*[]2 + z z [2 9y Hyq T wi] [z Qp Hox ~ wk]((¢i'¢k))
i k j 2

%) 15 2
= | |[R-R"|| +§ [} q By " wi] <oty > (4.4)
I8 ol

Again the ¢, must be specified (satisfying (4.1)) and also the

L This norm is equal to the norm |||R|[|? defined in [5] in the

ji -’
case of non-overturning solutions, and then the method corresponds to
the two stage local method described in [4] (see fig. (4.1)). In linear

algebra terms each stage of the procedure is now broken into separate

compact element-by-element or node-by-node systems of equations.
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85. The Spaces S*, T and S and the Coefficients "ji

We have defined S* to be the space of piecewise linear
discontinuous finctions on the partition II . The space T containing
Ut depends on the number of physical dimensions d . If d =1, the
moving element form of Ut also lies in S* , so that in this case
T = S* . In that case the second stage is merely a change of
coordinates (see fig. 5.1). If however d > 1 , the function Ut lies
in a smaller space than s (see fig. 2.2). In that case the second
stage is a projection into the smaller space.

The fixed element form of Ut is always in S , the space chosen
for U . In that case the space T 1is the same as the space S . A

convenient basis {Gi} for the space S 1is the set of standard linear

hat functions, in which case (2.12) becomes

5, =) b (5.1)
J

elements of

the patch
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(5.2)

1 J € patch of elements around node i
0 otherwise

The result of this choice in the present approach, when minimising the
L2 norm, is the standard Galerkin weak form of the original equation
(2.1), to be referred to as the Fixed Finite Element (FFE) method. (The
same construction holds when the nodes have prescribed motions, the only
modification needed being to ¥(U) and not to the spaces — as in the

|-

obtain a local FFE method equivalent to a centred Petrov-Galerkin form

"split"” method in §7 below). In the case of the |

|| norm we

of equation (2.1) (see [4] and §8).

Returning to the MFE method in the case d > 1 , although U € S
the time derivative Ut belongs to a larger space which includes
functions which are discontinuous along element boundaries in a
particular way [1],[2].[4]. The corresponding basis functions include

the &6’'s given by (5.1) but also 6's of the form

5, =z [-mij]¢ij (5.3)
elements

of the Patch

(c.f. (2.13)), where the myy are the (prescribed) components of the

gradient of U . In this case

} J € patch of elements around node i

0 otherwise

(5.4)
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In the overtaking case the function Ut is replaced by a vector of
nodal motions and the spaces T and S are no longer function spaces.
3
However, we can still use the space S  with basis {51} and the

coefficients By g to insert into the discrete norm of (3.3) and (4.4).

86. Implementation of the Methods
We now describe the implementation of the two—stage and one-stage
methods and demonstrate how they give rise to sets of linear equations

for MFE. The methods are applied to the equation

u, - $(u) =0 (6.1)
where u = u(x,t) and %(u) contains only x,u and first derivatives
of u . The methods are written down only for the 1-d case except
when this is insufficiently general (i.e. the 1-D global and local

methods are equivalent but the 2-D versions are not).

Implementation of the 1-D global method

For this case we describe only the implementation of the two-stage
method for multivalued solutions, since the non-overturning case is the
already well-documented minimisation of the L2 norm [17,[2],[4].

Using the ideas of Miller & Carlson ([8]. see also [14]), the
approximation to u may be written as a linear combination of local

elementwise basis functions ¢£1).¢£2) (see fig. 6.1).
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-1 .] _ §
J e 35l J
(2) 1
Py ¢1(< )
fig. 6.1
Let u be approximated by ﬁk in element k where
T (8.7) = 2, (MR (® + 2, (&) (6.2)

§ being a reference variable and with 7 = t (c.f. [10]). Also let the

transformation § - x in element k be approximated by

R(£.m) = s, (M) + s, e (6.3)

Using the chain rule, we get

_et L fr (D), @\ 8
=& o {sj—l L P } B% ()

where the dot notation indicates differentiation with respect to T .
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Hence (6.1) becomes
9 (1) , 2 42 <L), s ()
gt = 25-1 % T2y % T Uds; g o F sy e

(2)

_ L _ * (1) Ll _ *
= {aj_1 m sj—l} ¢ 0t {aj m sj} b (6.5)
where ™ is the gradient Ux in the kth element.
Alternatively, writing
(1) _ - _ -
Yk ©OT -1 T ™k S5-1
(6.6)
(2) _ L] _ L]
L aj e Sj
we have
ol
k 1 1 2 2
= o) oD 0 D o e

The two forms

and by Baines

(6.5) and (6.7) are those used by Miller and Carlson [8]

and Wathen [4], respectively.

Stage 1
We first minimise
ot N
5= - (U 1] (6.8)

over each element k , with respect to

(1)

W w£2) (c.f. (2.17)) using



(6.6). obtaining the system

au.
(1) _k _ oy -
< ¢k T Q(Uk) >=0
d (6.9)
al
(2) Xk _ o -
< ¢k ' Bt Q(Uk) > = O‘
which gives two equations in two unknowns for each element k . The

system is non-singular in general and, using (6.7), can be written in

the form
(1)
Yk ) 2 1
where W = 2) Ck =5 Ask
Wi 1 2

Ask =Sy~ S5q and

<o) e >

b, =
I P ¢£2) (@) >

The square of the norm (6.8) can then be written as

T s
we = 2w b+ [|eU)]]® . (6.11)

(The L variables are in fact elementwise combinations of the Legendre

dual variables discussed in [10]).
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Alternatively, following Miller & Carlson [8].[14], we may minimise

(6.7) over éﬁl), é£2), éél), éﬁz) , which leads to the double system

au.
(1) "k _ ,(F _
<ol s -2y > =0
au
(2) "k _ 45 _
<oz -2(T) > =0

- (6.12)

oD, ) > -0

au
s (2) k _ of
C-med e g 20 2

Il
o

This gives four equations in four unknowns for each element k .
The system is singular. However, considering all elements together we
find that values of éj' éj are defined on both sides of each node,
i.e. from element k-1 we have éﬁ%%, éﬁ%i and from element k we
have éﬁl), éﬁl) where for continuity these need to be equal. To
obtain this continuity and also to enforce boundary conditions,
constraints must be applied. The result is an assembly of the sets
(6.12) to give a non-singular system. (In fact this approach projects

£(U) 1into S* twice, as opposed to (6.9) which projects it once.)

Following [14], the singular system (6.12) can be written as

G, (6.13)

;{-

Ek
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where

—
-t
S’
>
[
.
bo
|12
g
I'ﬂ
|3
=]
I'—]

sz'ak 1 . Ek=T . (6.14)

|12
=]
[ —3
[\
|13
1S

Rl Y (@) >
< gy : g(ﬁk) >

1 .
C-omy ¢1(< ) (@) > (6.15)

- (2) %
_ < meod Q(Uk) > |
The square of the norm (6.8) can then be written as

LB ¥y - 2,6, + [l2@)]1° (6.16)

but, as we have already stated, this gives rise to a singular system
unless the constraints of stage 2 are applied.
Stage 2

In stage 2 we work only with the coordinates satisfying (6.10)

W

or y, satisfying (6.13).
In the case of the w's we need to implement the minimisation of

(2.16) with the p’'s given by (5.4) in the 1-D version. This gives the
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standard form [4] of the MFE equations

M'cMy = Mcb = g . (6.17)

y=1[...2a,, TS (6.18)

Returning to (6.12), and applying the continuity constraints on

a, s , also gives rise to the standard global MFE equations, as follows

[ a. I 1 0
let Y, = aﬁz) =R -1 where R, = 2 ., I =
j-1 2 0 1
-(2)
k-1
-(1)
(1)
(6.19)
Then over the whole system we obtain
Y=Ry (6.20)
where
00 ... 0]
RT _ 12120 0
0 OI2I2
O . 0
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The sum of the squares of the norms (6.8) over k may now be written

TeEv-Tc=3'RTERy-25" R G (6.21)

and, minimising this expression over i' yields

RRERy =g (6.22)

where

E=diag () . g=R G.

Note that applying constraints to (6.10) is equivalent to

‘1 o [j] ) ag% )
min ) @ 1 E."j éé%% | W
5,8, 1 0 a1

o 1 5

where W is a weight function (matrix). By the appropriate choice of

W . we can obtain either the global or local method. Global corresponds

A

1
to W= El , local to W = Eg , where E., = diag {E} (see below).

d
It is shown in [14] that (6.22) gives rise to the usual MFE system,
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where
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RIER=R M cHR (6.23)
-ucH (6.24)
~ A
- 1 0 0

=G %, ., - (.25

= diag () M=HR.E=H CH. (6.26)

Note that the difference between the matrix decompositions (6.23) and

(6.24) is essentially in the use of nodal variables (in E) rather than

element variables (in C).

Implementation of the l.ocal Method

For the two-stage global and local methods both the first and

second stages are identical in 1-D, whereas in higher dimensions only

the first stage is the same (see §4 and [4].[6]). In 1-D M=H¥R is

square and if it is also non-singular we may proceed as follows

DERy=DCI®RM g

R pliry=rR M dDc! ® ¥)!lg (6.27)
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where D = diag{C} , so we get

W opuy=wpcltulyg
l.e.
M DMy = Db (6.28)

which is the local method.

We now consider the local method in 2-D. In this case the term
€(u) in (6.1) contains x,y,u and first derivatives of u with respect
to x and y . For both the global and local methods we apply the same

first stage to obtain

Co =hy
or Eg =G =
where now
A |2 1 1 A onm  mm  omm
Q=i 2 1], E =7 (mm 2mm nm (6.30)
T2 | = T T
1 1 2 m m m m 2 m mT

8 i
Ak being the area of element k , and m = (1 m —nk) where m
is the x derivative of U in element k and n the y derivative.

- = ¢ of1) i
Also b = {bki} m b, =< ¢ Q(Uk) > .



A
1
-
N~
—
St
S
a
e
S~
v

<-mo ¢ w(ﬁk) > . (6.31)

< ™y ¢£3) L2l

v

(Note that in the second of (6.29) the projection of stage one into s
is done three times.)

For the global case the projection of w (81-3) or the constraints
on ik are applied as before [14]. However, for the local method we

implement the minimisation of (4.2) which leads to equation (6.28). 1In

the Miller & Carlson approach define Edk to be
2m mT 0 0
- e omm 0 |=3 D f (6.32)
dk = T2 apm o = M P M :
0 0 2m m

where Dk = diag {Ck} , (c.f. (6.25)), so that (6.29) may be written as

. -1
Par e = By By G (=0

We now apply the constraints of stage 2 as before. In 2-D these
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constraints need to be applied as follows

He

where p,v refer to the elements around the node j .

Let
: a.
Y v R 3
= . = . . 6.
J ’f.lu J },{J (6.34)
Yin 3
L ‘Y
1 0 0
T
where Rj = [13. 13, 13] . 13 = |0 1 o] . (6.35)
0 0 1
T * L ] L]
vy =( C By Xy, yj....,)
oT oT
i = @)
so that
i - Ri . (6.36)

Then, defining E, = diag {Edk} ., D = diag {C} , from (6.33) this gives

d
the system



~T

# T

DMRy=R

M p§E!

- 927 -

G

which is equivalent to (6.28), i.e.

T

M T

DMy=M Db .

87

(6.37)

The Split Method and Prescribed Model Speeds

The theory in §2-5 can also be applied to other forms of 'moving'

finite element methods.
proposed in [10].

Consider the equation

u + f(x.u.ux) =0

Here we consider the °split method’ in 1-D

which gives rise to the basic MFE equations

<y, + f(x,U.Ux), a >

<U, + £(x.U,0), B>

where «o,B are the usual basis

(7.1)
=0 (7.2)
=0 (7.3)
functions. The split method replaces
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the [ equation (7.3) by

<S—6—Ux-,a>=0 (7.4)

which also corresponds to minimisation of
+ Jf
15 - 211 (7.5)
X

over s (c.f.(6.4)).

However, as in 82, if we allow the solution to become multi-valued the

expression is no longer positive definite, so we are no

longer minimising a norm. This prompts us to apply the previous theory
by again writing the minimisation as a two-stage procedure. We shall
describe the implementation for equation (7.4) since the method will be
similar for equation (7.2). (There is no distinction here between the

two approaches of Baines & Wathen [4] and Miller & Carlson [8],[14].)

Stage 1

We first minimise (7.5) over s 1in each element k , i.e.

. + _of
min lls - Eﬁ;llz (7.6)

S, ,,S.
il
where

R O S A (7.7)
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éél) §£2) being the values of s at the lhs and rhs of the element
respectively (see fig. 7.1). Note that the ék here play the role of

the w’'s of earlier sections.

. +(2)
Sy éﬁl) k
=i K > §
fig. 7.1.

From 7.6 we obtain the system

NI I ¢V BN

S W. =0
x
.9 ,(2) _ (7.8)
{s 30 ¢ %% >=0
X
which may be written as the overdetermined set
, of (1)
ps, 20 1) (3(M) AT
- -%2) = | s (2 (7.9)
1 2] |s Com oty D
x
(Note that (7.8) is the system which is written in 86 as
b, (21 3{1)
“%B =P 0 %=T |, L %7 [@ (tal)
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of (1)
g . 0 % b
and s oL X _ 1k )
—* < ﬁ. ¢(2) > - b
du ' Tk 2k
X
Hence
-(1) ]
S 2 [®P1k ~ P
-(2) = 1o ) (7.11)
Sk k --blk + 2b2k

k-1

continuous solution, so constraints must be applied as in the Miller and

However, this allows 5(2) and éﬁl) to be unequal where we want a

Carlson approach of §6.

Stage 2

Rewriting the system (7.7) in the same form as (6.13) we get

Ek Yy = gk (7.12)
(1)
As, (2 1
k . k
where Ek = —6—-[1 2] Yy = [;(2)] (7.13)
k
b
2k

(1) 1
ik = [.%5;] E Re éj—l where Re = [ } . (7.14)
Sy 1
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So over the whole system we obtain

Y=R ¥y
where
. ] 10 w0 O] ]
é' 10... O
. -1 01 s s
y =371, R = |01 Y=Y, (7.15)
s
J : s
\. G 0 1
10 1 -
Hence as before we now solve the system
RLER y = (7.16)
o o L=8 - .
T
where g = R0 G .
Using earlier notation this gives
R EN y=-¢
or
M CM y=g (7.17)
o oL T E ’

Note that applying constraints to (7.12) is equivalent to

{5 )

min
s,
J
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where W 1is a weight function (matrix). Hence by application of

particular W’'s we can obtain either a global or local 'split method’:

# %
Local corresponds to W =D", global to W = .

-

@ v

We now solve (7.9) to find i_: s.;| . These values of éj may

then be substituted into the system (7.2) to find the corresponding

. S .
J

If we set the éj's to be zero and then apply the above method to the

aj s , we obtain the fixed finite element method. A local fixed finite

element method may also be constructed, which is given by

T . T . ~1
M DM y = M DC  w (7.18)

(c.f. (7.10)). Comparing, in 1-D

A om m' mm om m' 0

E, =g with D, = (7.19)
T T k T
mm 2mm 0 2m m

it is clear that Dk is two thirds of the lumped matrix Ek . When
this lumped Ek is assembled the result is proportional to the left
hand side of (7.11). Therefore the matrix in (7.11) is, apart from a
factor 2/3, the lumped form of the standard fixed finite element
matrix [12], where we note that the right hand side has also been
lumped. The result is also true in higher dimensions but with a

different factor.
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88 The One—Stage Local Method for Non—-overturning Solutions

We have already considered the implementation of the following
methods in two stage form, which are valid for both overturning and non

overturning solutions

(a) Global MFE
(b) Local MFE
(c) Split method
i) Global
ii) Local
iii) Special case where s=0 gives FFE.
The following remarks apply to non-overturning solutions only,

where one-stage methods can be used.

(a) Global MFE
The global method written as a one-stage method is the usual

minimisation of the L2 norm. A description of this may be found in

e.g. [4].

(b) Local MFE

The local method may be obtained as a one-stage method using the
|11.1]] norm of Miller [5] and its associated inner product ((...)).
However, to express the local method in terms of L2 inner products use
the $ basis functions defined below.

According to Baines & Wathen [4], Miller [5], the basis functions

3 can be written as linear combinations of the usual ¢ basis
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functions in each element and this leads to a version of the local
method written as a one-stage method.

In 1-D let $£1) be of the form

TOIROINOINOING (5.1
where
R IR R S
and < (8.2)
< $£2). ¢£1) >=0

This gives $£1) = §-¢£1) - §-¢£2) and similarly

X(2) _2 (1) _4 (2
=3 T3 %
The same approach is valid in higher dimensions and in n

dimensions it is found [5] that

N
a1=1+-nT2-,a2=... =a =-—=3 (8.3)

Hence the $'s can be found in terms of the ¢°s.
The |||.||| norm is defined from the inner product ((.,.)); to

express the local method in terms of the L2 inner product we now show

that

((e.9t1)) = (2.6{1))

over each element k .
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Remembering that |[||.|]] is defined as the sum of two stages, we

first carry out the projection from L space to the finite dimensional

2
% . % % 1 2 £ 3
space S , 1i.e. g ->g where B, = Wik ¢£ ) + Wor ¢£ ) . £ = ng .

This gives

¢(1) . ¢£1)) +0+0

(e . {1y .

(W1

PO

Also by definition g - g is orthogonal to S. so that
(g . 5 = @ FD) = oy ol gty = vl el
It follows that

(. 5 = . & . (8.4)

Hence writing Ek and Ek as

Q. = ¢£ ) + ¢£ ) . Bk =u o (see fig. 8.1) (8.5)

/ /

~{1) I_-JS ;(2) &

Fd
31 S i € 31 \‘\_ J J
L N -2/4
4/3
/\
s
/ N\
/ N
31 / i N r+1 £

fig. 8.1.
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we get the local system

< u, - L(uk) o >=0
(8.6)
<E{{—L(Ek),'f3'k>=o

which has been shown [4] to be the local method.

(c) Split Method
Since the split method may be expressed in either a global or local

form it will follow either (a) or (b) above which have already been

considered.

§9. Conclusion

We have shown that, by writing the MFE residual minimisation
procedure in two stages and writing the second stage explicitly as an
82 projection, the procedure (without weights) is valid for overturning
solutions.

The breakdown into stages throws light on the two implementations
due to Baines & Wathen [4] and Miller & Carlson [8],[14] and also shows
up the distinction between the standard (global) method and the local
method of [4].

We have also discussed the implementation of the split method of
[1], methods with other prescribed motions and the fixed method from
this point of view, identifying in particular the local fixed node

procedure which is equivalent to lumping.
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