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Abstract

Chemotactic bacteria are able to swim toward areas with favourable conditions. In order

to control this movement cells utilise intracellular signalling pathways which pass externally

detected signals from chemoreceptor clusters, through the cytoplasm, to the flagellar motors.

Mathematical modelling has been key in the understanding of such systems, however the models

used are often rather large and complex.

In this thesis a four-dimensional nonlinear ordinary differential equation model of the Es-

cherichia coli signalling pathway is investigated mathematically and used to understand specific

features of the chemotactic response. We investigate fold-change detection (FCD) and demon-

strate that an extension to previous theoretical results in which we account for two receptor

types produces good agreement with experimentally observed regimes of FCD behaviour. The

model is then used to provide insight into the overshoot response. In particular, stability anal-

yses allow conditions to be found describing when overshoot will occur. Simplified models are

used to identify a possible mechanism for the emergence of overshoot and subsequently show

that cell protein concentration, signalling timescales and negative feedback are closely linked to

this phenomenon.

Single cell results are then extrapolated to the population scale using agent-based modelling.

In particular, we show the effects of single cell phenomena on the behaviour of a cell population.

Additionally, we investigate how the presence of two different chemoattractant gradients affects

the chemotactic behaviour of a population of cells. This shows that the response is determined

by the sensitivity of chemoreceptors to the precise ligand concentrations detected.

Finally, we utilise both our knowledge of chemotaxis in E. coli and new experimental data

in order to elucidate the chemosensory pathways of Rhodobacter sphaeroides. We begin by

identifying the main weaknesses of previous modelling efforts before using simplified models to

further understand key system features. This leads to the proposal of a new mathematical model

of chemotaxis in R. sphaeroides that provides improved agreement with experimental data.
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Chapter 1

Introduction

The aim of this thesis is to formulate and analyse mathematical models of intracellular

signalling pathways describing chemotactic cell movement in Escherichia coli and Rhodobacter

sphaeroides cells. In particular, this allows us to link single cell behaviour to the population scale

by using well informed and analysed single cell models. We also seek to utilise knowledge gained

from E. coli studies to inform models of the more complex bacterial species R. sphaeroides.

In order to make sense of the term chemotaxis we may break it down into the prefix ‘chemo’

meaning chemical and a suffix ‘taxis’ which is from the Greek for order or arrangement. In a

literal sense then, chemotaxis could be considered as the arrangement of bacteria in relation

to chemicals. This relates well to the modern definition which is the directed movement of

cells or organisms in relation to a concentration gradient of some particular chemical substance.

The property allows cells to move around in search of regions containing chemicals that are

beneficial to both their development and survival (chemoattractants), or away from those which

could prove harmful (chemorepellents).

It is quite likely that most people have never heard of chemotaxis. Why, then, do we

study the process in such depth within this thesis? To answer this, we consider a number

of examples demonstrating its vital role from conception all the way through to death. For

example, without the chemotaxis of sperm, humans would be unable to reproduce [1]. Within

the embryonic phase of pregnancy, cells use chemotaxis in order to migrate from their source to

target locations where they become important components of various bodily organs. Neurons

inside the developing brain also display chemotaxis which allows them to move from the place

they are created to find suitable sites where they form connections that allow functions such as

learning and memory [2]. Once born, chemotaxis continues to play a key role in the survival of

the human race. In particular, white blood cells display chemotactic behaviour in order to search

for sites of infection [3]. This allows them to eradicate foreign and harmful organisms, helping to

1



maintain the healthy functioning of the body. However, in spite of this obvious health benefit,

chemotaxis is not always good news. For example, during metastasis (the spreading of cancer

throughout the body), cancer cells use chemotaxis to direct their motion toward lymphatic

vessels and then use the lymphatic system (a component of the circulatory system) in order to

spread to different parts of the human body [4].

Clearly chemotaxis plays a key role in the survival (and sometimes death) of animal species,

but does it have any further uses? Bacterial chemotaxis has been shown to be important in

the formation of biofilms - groups of microorganisms that stick to one another on or close to a

surface [5]. It has been suggested that this could help to make bioremediation a more widely

used technique for neutralising difficult to clear sources of contamination such as oil spills in the

ocean [6].

Whilst it is known that chemotaxis plays a role in each of the processes described above,

the exact mechanisms behind the sensing of the environment and cell migration are not fully

understood. The study of relatively simple, model bacteria that display chemotaxis can provide

key insights into the mechanisms controlling it. So, what are the model species used in the study

of bacterial chemotaxis? A number of bacterial species have been identified as chemotactic,

however by far the best studied example is that of Escherichia coli. More recently though other

bacterial species such as Bacillus subtilis and Rhodobacter sphaeroides have increasingly been

examined in the literature.

Why has E. coli been studied so thoroughly when other species have not? One key reason is

that, in general, E. coli is fairly harmless [7]. Most strains of E. coli are part of the normal flora of

the gut and can actually be of benefit to their host by producing vitamin K2 as well as protecting

the intestine against colonisation by pathogenic bacteria [8]. However, certain strains may cause

food poisoning and under certain circumstances are capable of causing harmful liver and kidney

infections. Whilst it is clear that working with a relatively harmless bacteria is desirable, it

is perhaps more important that this species may be grown both easily and inexpensively in a

laboratory setting [9]. This, coupled with the fact that E. coli cells are relatively simple in their

genetics compared to other species [9], are perhaps the most likely reasons for E. coli being the

model organism for studies on bacterial chemotaxis.

Utilising model systems such as that of E. coli yields interesting questions and insights on its

own. However, the knowledge of how these relatively simple model systems function should form

a knowledge base that can be used to help inform further investigations of both more complex

systems and future applications. In this thesis in particular, we study a number of phenomena

present within the E. coli model system and subsequently seek to use the knowledge obtained

in an attempt to gain insight into the function of R. spaheroides which is a far more complex
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chemotactic species of bacteria.

1.1 Thesis Outline

Within Chapter 2 of this thesis we review the biology behind the process of bacterial chemo-

taxis. Firstly, the history of bacterial chemotaxis research shall be reviewed. This begins with

the initial discovery of different bacterial species as well as their ability to move (i.e. their motil-

ity). Following this, the experimental biochemical studies that have shaped the modern view of

how chemotaxis functions within bacterial cells are reviewed. In addition to this, a summary

of the work that is beginning to shape an understanding of R. sphaeroides chemotaxis is given.

Finally, throughout this chapter mathematical models that have been used to help elucidate the

features of single cell and population level chemotaxis are reviewed with a particular emphasis

placed on the relative strengths and weaknesses of each approach.

The majority of experimental work that has been instrumental in forming the modern under-

standing of the intracellular signalling cascades controlling chemotactic behaviour has focused

on the chemotactic function of individual cells. As such, Chapter 3 analyses a recent model of

the E. coli intracellular chemotaxis signalling pathway. This model includes a representation of

the key biological processes without the issues associated with the large and complicated models

common in the literature. In the context of this mathematical model, different offset energy

functions are compared to experimental data in order to analyse which produces the most ef-

fective fit. This model is subjected to analytics including steady-state analysis. The asymptotic

stability of the biologically feasible, unique steady-state is then investigated as is the stiffness of

the model system. This study underlies much of the work included within subsequent chapters.

One feature that has been demonstrated experimentally in E. coli cells as well as being

analysed theoretically is that of fold-change detection (FCD) - a response depending on fold-

changes, rather than absolute changes in input. Within Chapter 4 the feature of FCD is analysed

in the context of the signalling pathway model from Chapter 3, using sufficient conditions

stated in the theoretical literature. Further to demonstrating the theoretical existence of FCD

within the model system, we investigate the robustness of the phenomenon to changes in model

parameters and determine under what conditions FCD fails. Finally, theoretical predictions

are given relating to the number of regimes of FCD behaviour that should be expected when

chemoreceptor clusters meet certain conditions.

Within the experimental literature it has been shown that the E. coli intracellular signalling

cascade does not always display monotonic relaxation to steady-state following the response to

a ligand stimulus. Chapter 5 examines conditions under which the mathematical model from
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Chapter 3 is able to display an overshoot response to ligand stimuli. In doing so a number of

key processes in the signalling cascade are identified as responsible for the emergence of the

response. Results are compared with experimental data and discussed with reference to their

biological feasibility.

An agent-based model (ABM) is developed in Chapter 6 to understand how individual be-

haviour identified in Chapters 3 to 5 maps to the population scale. Using this ABM we further

these single cell investigations by studying phenomena in the context of chemotactic E. coli cell

populations. In particular, the effects of variation in intracellular signalling protein concentra-

tion, such as those required to exhibit overshoot, are discussed in terms of how efficiently cells

respond when placed in chemoattractant gradients of differing steepness. Also considered here

is the ability of cells to perform chemotaxis when two separate ligand gradients are present

simultaneously.

Within Chapter 7 we seek to utilise the knowledge gained from the study of E. coli chemo-

taxis in order to help further the study of chemotaxis signalling pathways in R. sphaeroides. In a

similar manner to Chapter 3, this chapter will present a model of the R. sphaeroides chemotaxis

signalling pathways from the literature. This mathematical model is then analytically treated

in order to ascertain that there is just one biologically feasible steady-state, which is subse-

quently shown to be asymptotically stable and also belongs to a very stiff system of ordinary

differential equations (ODEs). Considering this model in the context of recent experimental

results by developing separate models of chemotaxis mutant cells reveals that the adaptation

processes assigned to the polar and cytoplasmic chemotaxis clusters within the model used here

are inadequate to represent the experimental data, thus invalidating this model.

Within Chapter 8 we consider simplified mathematical models of R. sphaeroides chemotactic

signalling. Firstly, a three ODE model is utilised in order to propose roles for each of the

processes occurring at the cytoplasmic cluster. Then, we utilise a non-adapting version of the

model in Chapter 7 in order to investigate two outstanding questions. In particular, using a

number of slightly altered versions of this model it may be found that the signalling reactions

(i.e. not those relating to adaptation) appear to produce behaviour in line with the experimental

data. A specific case considered is the reverse phosphotransfer reaction from CheB2-P onto

CheA2 that has been demonstrated in vitro but has not yet been shown to exist in vivo. This

chapter provides theoretical support for the idea that this process does in fact occur in vivo.

The same non-adapting model is then used to prove that proteins CheY3 and CheY4 must play

a role in setting the flagellar rotation behaviour of R. sphaeroides cells. It is also shown that

a certain ratio of the three CheY proteins of R. sphaeroides produces a correlation with the

experimental fraction of time that the flagella spend in a stopped state. We end this chapter by
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postulating a new R. sphaeroides signalling model and show that this helps to remove some of

the issues associated with previous modelling efforts.

Finally, in Chapter 9 a summary of the work contained within this thesis shall be given.

Within the context of this summary, the implications of this work both for the future study of

chemotaxis signalling pathways as well as other biological systems will be discussed.

In addition to the work discussed in Chapters 1-9, Appendices A-E provide further details

on mathematical results and biological concepts referred to within this thesis for the interested

reader. To this end a glossary of important biological terms appearing within this thesis is also

included.
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Chapter 2

Background

In this chapter we begin with a summary of the key biological processes underlying bacterial

chemotaxis in E. coli. Following this, we review the main mathematical modelling approaches

that have been used to elucidate various aspects of the intracellular chemotaxis signalling path-

ways of individual cells. We then progress onto a discussion of approaches used to model cell

populations. This chapter concludes with a summary of multi-scale approaches that seek to

elucidate the link between the single cell and population scales. In particular, throughout this

chapter we draw attention to the issues of model complexity and the extrapolation of single cell

behaviour onto the population scale.

2.1 Biology Underlying Chemotaxis in E. coli

Within this section we summarise the key biological processes that allow cells to exhibit

bacterial chemotaxis. We begin by outlining how cells physically produce such a response before

explaining how this is controlled by an intracellular signalling pathway.

Using a three-dimensional tracking microscope [10], Berg showed that unstimulated E. coli

cells will move about their environment by executing a random walk [11]. These cells will move in

(approximately) a straight line (runs), however these runs are interspersed with abrupt changes

in direction (tumbles). This is often referred to as the chemotactic run and tumble swimming

pattern (see Figure 2.1).

Within this run and tumble swimming pattern the direction of movement is altered at least

once every few seconds [5]. In order to display chemotaxis, cells increase the length of runs

when moving up an attractant gradient [12] (see Figure 2.1). E. coli cells utilise an intracellular

signalling cascade (see Figure 2.2) to control the balance between runs and tumbles, thus allowing

them to find areas containing beneficial substances.

This intracellular signalling cascade begins with the chemoreceptors of the cell (also called
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Figure 2.1: Chemotactic cells utilise a run and tumble swimming pattern in order to find regions
containing beneficial nutrients. Runs act to propel the cell forward whereas tumbles act to
randomly reorient the cell. When unstimulated, cells execute a three-dimensional random walk,
exploring their environment. Upon sensing a beneficial attractant gradient, cells elongate their
runs, biasing the random walk in the beneficial direction. This differs from the sensing of a
negative gradient after which cells will increase the frequency of tumbles.

methyl-accepting chemotaxis proteins, MCPs). Each of these MCPs spans the cytoplasmic

membrane of the cell, with the extracellular part able to bind molecules of certain attractants.

Within E. coli cells there have been five types of chemoreceptor identified, namely

• MCPI (Tsr) [13] - identified as the serine chemoreceptor [14];

• MCPII (Tar) [14] - identified as the aspartate chemoreceptor [15];

• MCPIII (Trg) - identified as the chemoreceptor for ribose and galactose [16];

• MCPIV (Tap) [17] - later discovered to be the dipeptide chemoreceptor [18]; and

• MCP-like protein (Aer) [19, 20] - identified as the receptor for oxygen and has little or

none of the extracellular part associated with full MCPs.

Each of the chemoreceptors identified are essentially very sensitive devices capable of detecting

attractant concentrations as low as the nanomolar (nM, 10−9 molar) range [21, 22, 23].

Since bacterial cells are too small to sense a spatial change along the length of their bod-

ies, the change in time of chemoreceptor’s ligand occupancy is detected [24]. Each receptor

type produces a signal dependent upon the sensing of their respective attractants which is then

passed into the cell. In order to translate these signals into a signalling pathway response,

the intracellular domains of chemoreceptors associate with a linker protein CheW. A histidine

protein kinase (CheA) is then able to bind CheW, thus forming functional chemotaxis com-

plexes that are localised to the poles of the cell [5]. Once these complexes are formed, CheA
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Figure 2.2: A schematic of the E. coli chemotaxis signalling pathway. Ligand molecules (blue
circles) bind to receptors that together form an array of chemoreceptors. This affects the activity
of the chemoreceptor array (Φ) and in turn, the rate of CheA (A) autophosphorylation, forming
CheA-P (Ap). The phosphoryl groups produced are passed on to either CheB (B) or CheY
(Y). Phosphorylated CheY (CheY-P, Yp) diffuses through the cell toward the flagellar motor,
binding to the motor driving protein FliM, altering the rotational behaviour. CheZ (Z) acts to
dephosphorylate CheY-P, thus helping to terminate the signal. CheR (R) and CheB (B) form
an adaptation module that acts to reset the cell to its pre-stimulus state. CheR adds methyl
groups onto the chemoreceptors at a constant rate while CheB-P (Bp) acts to demethylate them.
Note that CheW is neglected in this schematic due to the mathematical modelling assumption
that there is always a sufficient quantity to allow for the formation of chemoreceptor, CheW and
CheA complexes.

is able to autophosphorylate (forming CheA-P) at a rate dependent upon the activity of the

chemoreceptors.

Once the CheA has been phosphorylated, the phosphoryl groups may be passed from CheA-P

onto either the response regulator protein CheY or the methylesterase CheB [25]. Phosphory-

lated CheY (CheY-P) may diffuse within the cell cytoplasm toward the flagellar motors [26, 27].

Once the CheY-P has reached the flagellar motor, it is able to bind the motor-switching protein

FliM causing a greater bias towards tumbling [28, 29]. In addition to autodephosphorylation of

CheY-P, a phosphatase CheZ increases the rate at which this dephosphorylation occurs, thus

giving more rapid termination of the signal [30].

Phosphorylated CheB (CheB-P) alongside the methyltransferase CheR forms the adapta-

tion module of the signalling cascade, re-setting the chemoreceptors to their pre-stimulus state.

Within this adaptation module the protein CheR constantly methylates chemoreceptors, thus

increasing their activity [31] while CheB-P demethylates chemoreceptors, decreasing their ac-
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Figure 2.3: A graphical representation of adaptation in an E. coli cell. Shown here is the
behaviour of receptor methylation, receptor activity (Φ) and phosphorylated fractions of CheA,
CheY and CheB (i.e. CheA-P, CheY-P and CheB-P, respectively). Within this diagram the
cell begins at a steady-state before the ligand concentration is increased at τ = 100 and the
decreased at τ = 300.

tivity [32].

Upon detection of a positive change in the extracellular chemoattractant concentration the

activity of the chemoreceptors falls and so does the rate of CheA autophosphorylation. This

causes a subsequent drop in the CheY-P and CheB-P concentrations. The reduction in CheY-

P concentration within the cell causes the flagellar motors to rotate counterclockwise (CCW)

more frequently, inducing a chemotactic run. The reduction in CheB-P concentration allows the

receptors to become methylated due to the action of CheR. This causes the receptor activity to

rise, leading to a return to pre-stimulus levels of CheA autophosphorylation and subsequently

those of CheY-P and CheB-P.

For a negative change, receptor activity and thus the rate of CheA autophosphorylation

rises. This leads to an increase in the concentrations of both CheY-P and CheB-P. The flagellar

motors will in this case rotate clockwise (CW) causing the cell to tumble more often. This

is caused by the increase in the CheY-P concentration. The increased CheB-P concentration

results in the demethylation of receptors, thus causing their activity to fall. This results in a

return to pre-stimulus levels of CheA autophosphorylation as well as the CheB-P and CheY-P

concentrations.

It is this ability of E. coli cells to return to their pre-stimulus state (via adaptation) that

is one of the key factors enabling them to remain responsive over the observed five orders of

magnitude in ligand concentration [33].
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2.2 Mathematical Modelling of the Single Cell

From the early 1970s onward there has been a large amount of theoretical work aimed at

understanding bacterial chemotaxis. The majority of this work has focused on elucidating key

features of the signalling pathway (discussed in Section 2.1) in individual E. coli cells. Within

this section we summarise the main approaches used to model ligand binding and adaptation;

receptor sensitivity and gain; and the phosphorylation cascade. Throughout this section we pay

particular attention to model complexity which has been an important issue in the analysis of

past mathematical models. It is worth noting here that much of the theoretical work discussed

was conducted prior to some of the key experimental work upon which current understanding

is based.

2.2.1 Ligand Binding and Adaptation

Much of the early work on the mathematical modelling of individual chemotactic cells fo-

cused on representing the processes of ligand binding and adaptation. Within this section we

summarise work that sought to postulate mechanisms associated with these processes prior to

the existence of a full experimental understanding.

In 1972 Macnab & Koshland [34] proposed a three-variable model in which chemotactic

bacteria may utilise some type of internal “memory” in order to respond to extracellular stimuli.

The mechanism they hypothesised involved a compound W that could be rapidly converted to

an alternative state X before the system is returned to its pre-stimulus level through a much

slower degradation of X. Koshland [35] extended this work by observing that the control of

enzymatic activity of compound X was most likely due to methylation of receptors.

Block et al. [36] examined the responses of bacteria to pulses of an attractant or repellent

substance. In doing so they found that the timescales of excitation and adaptation are sufficiently

separate as to conclude that each was controlled by a different process. In addition, they noted

that cells must integrate attractant/repellent stimuli over a number of seconds. Using these

results Block et al. [36] went on to propose a two-state model of flagellar switching (between

counter-clockwise and clockwise states). In fact this was extended in order to consider different

forms of stimulus and subsequently showed that cells must make temporal comparisons of the

receptor occupancy [37]. In order to consider this, a model of light adaptation in Phycomedes [38]

was adapted using an expression of the form

dA

dt
=

1

τ
(P −A) , (2.1)
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where τ is the adaptation time and A is the adapting variable which changes according to

receptor occupancy P . Block et al. [37] observed that this model did not account for the

observed response thresholds and as such, they hypothesised that the difference between A and

P could be accounted for by variation in receptor occupancy and methylation.

Goldbeter & Koshland [39] were the first to put forward a model that explicitly included

receptor methylation. This took the form of a model in which receptors may exist in one of

four states, representing the possible combinations of ligand bound and unbound receptors that

may be either methylated or unmethylated. This model was subsequently extended by Asakura

& Honda [40] to consider multiple methylation states which proceed in a preferred order and

assumed that only unbound receptors may be methylated whilst only bound receptors may be

demethylated. This results in an model consisting of two ODEs for each methylation state.

Results obtained from this work showed that the model displayed excitation and adaptation

and allowed them to conclude that methylation must have a dual role - allowing adaptation and

increasing sensitivity to small changes in excitation.

Segel & Goldbeter [41] produced a similar four-state model to Goldbeter & Koshland [39]

that displays exact adaptation for an appropriate parameter set, however the robustness of this

was not examined. Hauri & Ross [42] added a description of CheB and CheY phosphorylation

and dephosphorylation to a similar model (resulting in a ten-state model). However this failed

to display observed levels of sensitivity and gain, nor did it display robust adaptation. Arocena

& Acerenza [43] considered receptor modification via attractant binding rather than methyla-

tion or phosphorylation. This displayed a response over the experimentally observed five orders

of magnitude in ligand concentration but did not match experimentally observed levels of sen-

sitivity. They go on to propose that a wider response range could be caused by clustering of

chemoreceptors.

More recently, Barkai & Leibler [44] constructed an adaptation model for a single receptor

species that is based upon methylation of receptors. This was initially considered in isolation

and as such did not consider the phosphorylation pathway. Here receptor methylation was

assumed to be caused by CheR acting to constantly methylate inactive receptors while CheB

demethylated active receptors at a rate dependent on the receptor activity. Parameter sensitivity

analysis showed that this model was robust for a wide range of parameter values. Further to

this, the model represents an important step since it was able to produce similar behaviour to

previous models without the large quantity of ODEs.

It is worth noting that whilst multiple methylation state models such as those discussed

above (and more recently Xin & Othmer [45]) may produce a reasonable comparison with

experimental data, they often produce large systems of ODEs (especially when coupled with a
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signalling cascade model) from which it may be difficult to obtain an intuitive understanding.

In addition to this, high order mathematical models are significantly more difficult to work with

due to the large number of parameters and variables and can often make analytical approaches

essentially impossible. The work of Barkai & Leibler [44] went some way to addressing this issue

however their model did not include a representation of the signalling pathway, thus it was of

limited use without further work.

2.2.2 Chemoreceptor Sensitivity and Gain

Whilst the models of Section 2.2.1 displayed adaptation and responses to ligand changes, they

did not capture the experimentally observed levels of receptor sensitivity and signal amplification

(gain) [46]. This feature allows cells to produce a chemotactic response in cases where only a

very small change in the extracellular chemoattractant concentration is sensed. In particular,

Sourjik & Berg [47] showed that the fractional change in kinase activity is amplified by a factor

of ∼35 relative to the fractional change in receptor occupancy. Furthermore they state that

this signal amplification occurs at the beginning of the intracellular signalling pathway and is

capable of explaining the significant degree of gain observed in E. coli cells when combined with

the existence of an ultrasensitive flagellar motor such as that described by Cluzel et al. [29]. As

such, within this section we summarise some of the most common (and successful) approaches

used to study this problem.

Bray et al. [48] were perhaps responsible for one of the most significant contributions to

the study of receptor sensitivity and gain. Similar to the idea of Arocena & Acerenza [43], it

was suggested that rather than working individually, receptors would function together (as a

cluster). They began by investigating the effects of allowing neighbouring receptors to influence

each other’s state. In a mechanism such as this the inactivation of one receptor will result in

one or more nearby receptors becoming inactivated due to nearby neighbour interactions. In

particular, they noted that sensitivity increased as a result of this mechanism but receptors must

adapt in order to display an appropriate range of ligand response.

In 2004, Bray & Duke [49] summarised the experimental data that indicated conformational

changes (changes in state) could spread. Earlier, they had considered a statistical mechanics

model (analogous to an Ising model, discussed in Section 2.2.2) in order to consider propagation

of conformational changes in a ring of proteins [50]. Results here showed that rather than

automatically switching between states, increasing numbers of proteins changed state as a signal

propagated via nearest neighbour interactions.

It is clear from the work discussed here that a large amount of the theoretical work studying

chemoreceptor sensitivity and gain has been centred on the idea of receptor clustering. The
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central idea behind this is that external signals will be amplified since ligand bound receptors will

be able to alter the activity of their nearby neighbours (known as conformational spread) when

they are part of the same cluster. Whilst the work summarised above made some progress there

are two main mathematical models that have been key to the understanding of chemoreceptor

sensitivity and gain. These are the Ising and Monod-Wyman-Changeux models discussed in the

following sections.

Ising Models

One model successfully used in the early 2000s to study receptor sensitivity and gain is the

Ising model. Such models were initially used to consider electron behaviour in the presence of

a magnetic field. It has subsequently been considered an appropriate model for the study of

receptor coupling since it allowed for the effects of particle coupling, i.e. the ability of particles

to change the state of their near neighbours.

Figure 2.4: A graphical representation of the Ising model. Each square represents a single
receptor that may exist in either active or inactive states. A non-ligand bound receptor (white
square) will be active whilst a ligand bound receptor (blue square) will be inactive. Depending
upon the coupling strength a number of close neighbours will be inactivated (green squares).
Displayed are examples with large (top left), small (bottom left) and zero (top right) coupling
strengths. Also shown is an example of the thermal fluctuation (noise) that exists in this type
of model (bottom right).

Within an Ising model receptors are allowed to exist in two states (i = ±1) between which

they may switch. The total energy of an array of receptors is calculated using a Hamiltonian

energy functional (H) of the form

H(t) = −
∑

〈ij〉

JijSiSj −
∑

i

Bi(t)Si, (2.2)

where Si and Sj represent the “spin” (so called from the original physics definition) of the i-th
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and j-th receptors, respectively, Jij denotes the coupling strength between receptors and Bi(t)

is the attractant concentration. When no attractant binding occurs, each receptor may freely

switch between their two states.

The first application of this type of model to chemoreceptor coupling was due to Shi &

Duke [51]. Using mean-field theory they demonstrated that the coupling strength of neighbour-

ing receptors had a large effect upon the sensitivity of a receptor array, however adaptation was

not studied in great detail within this work. Duke & Bray [52] later conducted Monte Carlo

simulations of this model in which each receptor was coupled to its four closest neighbours.

These simulations were able to show that changes in attractant concentration could be detected

over the experimentally observed five orders of magnitude.

Shimizu et al. [53] incorporated an Ising type model into a spatially extended version of

the algorithm used by the StochSim (software for stochastic simulation of biochemical systems)

program alongside a description of methylation and adaptation similar to that of Barkai &

Leibler [44]. This was used to examine the effects of different receptor array geometries, leading

to the conclusion that the largest gain was obtained where there were more nearest neighbours.

Shi [54] later incorporated the effects of CheB-P and CheR (adaptation) into the earlier

model [51]. In order to do this, a differential equation of the form

dSi
dt

= −σSi (t− tr) , (2.3)

was combined with equation (2.2). Within this, σ is a rate constant and tr is a delay time

representing the sum of time taken for demethylation and phosphotransfer from CheA-P to

CheB. The vastly different timescales of ligand binding, phosphorylation and adaptation allow

the Hamiltonian to be coarse grained and as such Shi [54] showed that the effects of CheB-P

and CheR are sufficient to return receptor activity to a pre-stimulus state (perfect adaptation).

Finally, this work noted that the adaptation mechanism allowed receptor coupling strength

conditions to be relaxed, hence it actually improves the robustness of the model. Mello and

colleagues [55, 56] considered an alternative extension including adaptation similar to that of

Barkai & Leibler [44]. Mean-field analysis of this model found it produced good agreement with

experimental data for a number of mutant cell types.

Shi [57] later compared their earlier model results to experimental data and in doing so found

good agreement with a number of experimental data sources. It was also noted here that whilst

modelling approaches used previously had been informative, it was not always the case that the

physical meaning of each component was clear. This has been pointed out as one of the main

strengths of Ising type models. Whilst such models clearly produce good agreement with much
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of the experimental data, their main weakness is in their computational nature. This can make

it difficult to intuit how the model will function in different situations.

Allosteric Models

The Ising models discussed in Section 2.2.2 clearly had some success in terms of comparison

with experimental data. Around the mid-2000s however, theoretical modelling of receptor sen-

sitivity and gain began to utilise Monod-Wyman-Changeux (MWC) [58] models. Such models

assume an array of receptors is divided into several smaller clusters. Within these smaller clus-

ters all receptors are assumed to be in the same (active or inactive) state. It is also assumed

that separate clusters do not interact with others. Tu [59] was able to show that this represents

a special case of the Ising model within which the interaction strength, Jij , between receptors

is infinite for those of the same small cluster but zero for those of different clusters. In a model

of this type the average receptor activity is described by

Φ =
L (1 + [L]/Ki)

N

L (1 + [L]/Ki)
N + (1 + [L]/Ka)

N
, (2.4)

where [L] is the attractant concentration, Ka/i are the ligand dissociation constants of active

and inactive receptors, respectively, N is the number of receptors in the cluster and L is an

equilibrium constant. Further discussion on the relative strengths and weaknesses of this type

of model can be found in the review of Tu [59].

Keymer et al. [60] were able to use an MWC model to investigate changes in receptor

activity due to the addition of an attractant (aspartate). In doing so they were able to show

good agreement with experimentally obtained fluorescence resonance energy transfer (FRET)

data for various different receptor methylation states. Within this work the receptor methylation

level was considered as a change in the offset energy (a component of the equilibrium constant).

Mello & Tu [61] took a similar approach, however they generalised the MWC model in order to

consider heterogeneity in receptor clusters, i.e. they considered different receptor types within

clusters as well as the effects of binding two different attractants.

Endres et al. [62] later used an MWC model in order to investigate the idea that the level of

receptor cooperativity is dynamic (i.e. cluster size varies with receptor modification). In order

to do this they produced model fits of experimental dose-response data by varying the number,

N , of receptors within a cluster.

A similar model was also used by Mello & Tu [33] in order to investigate the sensitivity of

receptor clusters in different background attractant concentrations. They took a model of the

form of equation (2.4) and defined the sensitivity as the change in receptor cluster activity with
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(a) Ising Model (b) MWC Model

Figure 2.5: A graphical representation of the differences between the Ising and MWC modelling
approaches. (a) Within Ising models receptors may exist in either active (red) or inactive (green)
states. Depending on the structure of the lattice (trigonal in this example), each receptor may
affect the states of a number of near neighbours. (b) In MWC type models receptors exist in
small “teams” (blue blobs) within which they are all either active or inactive simultaneously.
Each MWC team is equivalent to a small Ising model lattice with an infinite coupling strength.
This diagram is adapted from the work of Tu [59].

respect to a change in the attractant concentration,

S ≡ −
∂ lnΦ

∂ ln[L]
. (2.5)

Using this they were able to show that for low to intermediate aspartate concentrations the

effect of low affinity binding of aspartate to Tsr receptors is negligible. However, for high

concentrations of aspartate the low affinity binding of aspartate to Tsr receptors begins to have

an effect.

Tu et al. [63] continued the theoretical study of this model type by considering the effects

of different time varying forms of the attractant stimulus. In particular, they considered expo-

nential ramp, exponentiated sine wave and large step stimuli by utilising a variety of analytical

techniques. Kalinin et al. [64] experimentally studied the swimming responses of cells in different

(well controlled) concentration gradients. In doing so they also considered the contribution of

methylation to the free-energy of a receptor (offset energy). It was concluded that this must be

a linearly decreasing function of receptor methylation level.

Endres et al. [65] studied the effects of methylation on kinase (CheA) activity. This work

followed a similar approach to previous literature [60, 61]. As with this previous work, different

values were used for the offset energy in order to study the effects of different methylation states.

The adaptation model of Barkai & Leibler [44] was extended by Meir et al. [66] to allow
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the incorporation of an MWC description of receptor clustering. In this work they discuss the

existence of cell-to-cell variation in methylation and demethylation rates which is proposed to

be a survival/bet hedging strategy allowing for population survival in varied environments. In

addition they note the ability of their model to display the experimentally observed asymmetry

in adaptation time for addition or removal of attractant.

The experiments of Li & Hazelbauer [67] were the focus of work by Endres & Wingreen [68].

Li & Hazelbauer [67] observed that the adaptation proteins CheB and CheR can bind an approx-

imately 35 amino acid tether allowing them to act upon groups of between five and seven recep-

tors, termed an “assistance neighbourhood”. The work of Endres & Wingreen [68] then sought

to examine this effect by incorporating an adaptation model, similar to Barkai & Leibler [44],

into an MWC one. In doing so they found two different responses for high attractant concen-

trations. In particular, it was noted that the response could either be terminated by receptor

saturation (i.e. no further ligand binding is possible) or for large stimuli, receptors may become

fully methylated. At this point, low affinity binding of aspartate to Tsr receptors can allow the

cell to respond to further stimuli. Hansen et al. [69] extended this by explicitly considering the

actions of CheR and CheB in the form of an ODE for the average methylation level of receptors

within a cluster.

More recently, Clausznitzer et al. [70] considered an MWC modelling approach combining

much of the MWC modelling work discussed above. Within this work the kinetics of the average

receptor methylation level (m) were examined by considering temporal changes in receptor

cluster activity

∂Φ

dt
=
∂Φ

∂m

dm

dt
+

∂Φ

∂[L]

d[L]

dt
. (2.6)

In considering the time immediately after a step change in the attractant concentration, [L],

this reduces to

∂Φ

dt
=
∂Φ

∂m

dm

dt
, (2.7)

since d[L]/dt = 0. It was then possible to compare potential mechanisms for temporal changes

in the methylation levels. Within this work they were able to produce a functional form for the

offset energy as well as an ODE describing the average methylation level of chemoreceptors. As

such, the model produced here was able to produce good agreement with experimental data.

Skoge et al. [71] compared results of both spatially one- and two-dimensional Ising models

to those obtained from MWC type models and experimental data. They were able to establish

which produced the best results for a range of mutant cell types. This analysis showed that the

MWC model produced better agreement with experimental data for wild-type and a number of

mutant cells.
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It is clear from the work summarised here that MWC models are able to produce good agree-

ment with the experimental literature in terms of receptor sensitivity and gain. In particular,

they are able to display a response over the experimentally observed five-orders of magnitude in

ligand concentration (i.e. they can detect MeAsp concentrations in the range from 10−3mM to

102mM [47]). Such models have been highly popular in recent years due to their relative simplic-

ity in comparison with alternative models. This has allowed researchers to produce theoretical

analyses that were previously unmanageable using large ODE models. Thus, MWC models are

proving an essential tool in the study of chemotaxis in single E. coli cells.

2.2.3 The Phosphorylation Cascade

Within Section 2.1 we summarised the workings of the E. coli intracellular signalling pathway.

In doing so we referred to a large amount of experimental literature that has helped to elucidate

mechanisms in this cascade. The availability of this experimental literature inspired an increasing

amount of theoretical work that sought to mathematically model this aspect of the chemotactic

response. In this section we summarise some of the key work in this area, however the review

of Tindall et al. [72] provides a much more comprehensive overview.

In 1993 Bray et al. [73] became the first to produce a mathematical model of all known

reactions in the phosphorylation cascade. This model, built in to a computer program called

BCT (Bacterial ChemoTaxis), is essentially an extension to the work of Block et al. [36] in that

interactions between flagellar motors and CheY-P are incorporated. However, it failed to include

the effects of receptor methylation. In spite of using an extensive set of experimentally deter-

mined parameter values, this model failed to display adaptation or observed levels of gain. In

contrast to this Spiro [74] and Spiro et al. [75] produced a model that includes attractant bind-

ing, methylation, phosphorylation and motor bias. This model was able to display adaptation

but also failed to produce appropriate levels of sensitivity or gain.

Alon et al. [76] later considered an extension to the work of Barkai & Leibler [44] which

included a phosphorylation pathway description. This work demonstrated that variation in

protein concentrations causes changes in steady-state behaviour and adaptation time but that

perfect adaptation remains robust. Yi et al. [77] later showed that these models are examples

of integral feedback control systems, for which robustness is known to be an inherent property.

As in Alon et al. [76], the work of Levin et al. [78] studied the implications of variation in

protein concentration upon the phosphorylation pathway. They developed a “fine-tuned model”

that considers an adaptation mechanism similar to that of Segel & Goldbeter [41] and a “robust

model” merging the receptor kinetics of Asakura & Honda [40] and methylation of Barkai &

Leibler [44]. Varying the concentration of individual proteins displayed relatively similar results
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in terms of phosphorylation levels, however the “robust model” maintained the ability to adapt

where the “fine-tuned model” failed, suggesting robustness is a desirable feature.

It was discussed in Section 2.2.2 that Clausznitzer et al. [70] formulated an MWC model and

adaptation mechanism that produced a good fit with experimental data. In addition to this,

they incorporated a description of the phosphorylation pathway. As such, this mathematical

model was able to produce a good fit to FRET experimental results, contained all of the key

processes and is simple enough as to be amenable to mathematical analysis.

Within the modelling of the intracellular signalling cascade there has been relatively lit-

tle work aimed at studying the effects of spatial organisation of chemotaxis signalling network

components. Lipkow et al. [26] utilised three-dimensional stochastic simulations of individual

protein molecules (using Smoldyn, based on Smoluchowski dynamics [79]) to study the effects

of CheZ localisation on the distribution of CheY-P. This showed that polar localisation reduces

the CheY-P gradient observed along the length of the cell, a result also shown by Rao et al. [80]

using a partial differential equation (PDE) approach. This was later extended to study dynamic

protein localisation [30] whereby CheZ localisation depends upon the attractant/repellent con-

centration. For a positive attractant gradient, CheY-P concentration will fall allowing CheZ to

diffuse freely within the cell. Upon detection of a repellent, the concentration of CheY-P rises

causing CheY-P, CheZ and CheAs to oligomerise at cell poles. The close proximity of CheY-P

and CheZ leads to enhanced CheY-P dephosphorylation and as such a negative feedback upon

CheY-P concentration has been introduced. Lipkow [30] goes on to state that this mechanism

represents a robust second tier of adaptation for chemotactic cells.

2.3 Mathematical Modelling of Cell Populations

It is clear from Section 2.2 that a great deal of both experimental and theoretical work has

sought to explain chemotaxis in single E. coli cells. In addition to this work, there has also been

a significant body of work focused on describing chemotaxis on the scale of cell populations -

see for example the review of Tindall et al. [81].

In the 1960s, Julius Adler began his work on chemotaxis by studying the migration of

bacterial cell populations [82, 83]. This was done using agar plates (often referred to as swarm

plates) similar to those used in pioneering work by Beijerinck & Sherris and coworkers [84, 85, 86].

These consist of a petri dish containing a jelly like substance (agar) to which different attractant

chemicals are added. In Adler’s experiments he placed E. coli cells in the centre of one of these

plates. As these cells consume the attractant chemicals (in this case serine, aspartate, threonine

and oxygen) they form bands of cells depending upon the consumption of the attractants.
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Firstly, some cells will move outward using up serine until they reach the outer ring of the

serine. Then, of those which remain, some will move outward in search of aspartate, forming

a second ring. Finally, some of the remaining cells will search for threonine, forming a third

ring. The observation of these chemotactic bands was a key factor in sparking an interest in the

modelling of population scale behaviour.

2.3.1 Keller-Segel Models

Throughout the literature it is most common, when attempting to model the behaviour of

chemotactic bacterial populations (such as chemotactic band formation), to consider a math-

ematical model such as that devised by Keller & Segel [87]. Commonly referred to as the

Keller-Segel (or K-S) model, this was originally created for slime moulds but has been success-

fully applied to bacterial chemotaxis [88]. This model takes a continuum approach and uses

two partial differential equations (PDEs) to represent a population density and concentration

of some attractant substance across a spatial domain. A generalised version of this model may

be written as:

∂b

∂t
= ∇ · (µ(s)∇b)−∇ · (χ(s)b∇s) + g(b, s)− h(b, s), (2.8)

∂s

∂t
= D∇2s− f(b, s), (2.9)

within which b(x, t) represents the population density, s(x, t) the attractant concentration, x is

the spatial position, t denotes time, χ is the chemotactic coefficient, g indicates cell growth, h

cell death, f indicates degradation of attractant whilst µ and D are the diffusion coefficients of

the bacteria and attractant, respectively. For more detailed information on the impact of the

K-S model in this and other applications we recommend the reviews of Horstmann [89, 90].

It is clear upon examination of the literature that the K-S model has been useful within the

study of bacterial chemotaxis of cell populations. One of the most notable areas in which this

model has been of benefit is in explaining the formation of various patterns observed in petri-dish

experiments (see Erban & Othmer [91] for a more comprehensive review). Much of this work

seeks to find parameter limits that lead to diffusion-driven (Turing) instabilities, for example

Zhu & Murray [92] and Maini et al. [93]. Using the K-S model, Keller & Segel [94] were able to

determine that in order to produce chemotactic bands, the chemotactic coefficient must be larger

than the bacterial diffusion coefficient (i.e. χ/µ > 1). In addition to this Brenner et al. [95]

considered more complex patterning in a novel case whereby cells secreted the chemoattractant

to which they respond.

Segel subsequently sought to understand how microscopic (individual) behaviour acts to
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influence the behaviour observed on the macroscale (population) level by incorporating receptor

dynamics into a generic population model [96]. Later, by assuming the turning probability of

the bacteria depends upon the temporal rate of change of receptor occupancy a better fit to

experimental data was obtained [97].

Unfortunately, whilst K-S models have been useful in certain settings, they do not tell the

whole story. The main issue associated with such models is that they do not explain how

population scale phenomena are affected by the intracellular features of single cells. As such, in

spite of the work of Segel [96, 97] and others [98, 99, 100] that have begun to address the issue,

further work would be required in order to bridge the gap between single and population scale

modelling of chemotactic E. coli cells.

2.3.2 Stochastic Models

Also considered within the literature are stochastic approaches for explaining the behaviour

of chemotactic cell populations. A key piece of work in the field is that of Patlak [101] who

studied random walks in which there exists a correlation between the orientation in consecutive

time steps (i.e. a correlated random walk, CRW). This type of random walk model tends to

be applicable in biology since most organisms have a tendency to move forward [102]. Among

the most cited examples of work extending that of Patlak [101] is that due to Alt [103] who

considered a biased and correlated random walk (BCRW) that is applicable to cases in which the

bias is provided by a response to a spatially varying chemical gradient. This gave a governing

stochastic equation of the form:

∂σ

∂t
+
∂σ

∂τ
+ θ · ∇(cσ) = −βσ, (2.10)

for τ > 0. Within this expression σ(t,x, θ, τ) is the bacterial density distribution which turns an

angle θ, and has a run time of τ . Also defined are c(x, t) which represents the mean run speed,

β(x, t, θ, τ) the tumble frequency distribution, the turning angle η which is derived from a turn

angle distribution k(x, t, θ; η), s is the unit sphere in n-dimensional space and σ is defined for a

new run in a new direction by:

σ(x, t, η, 0) =

∫ ∞

0

∫

s
(βσ)k dθ dτ. (2.11)

The main issue associated with this approach is that, like the K-S model, it does not help in

the understanding of how intracellular signalling processes act to produce observed population

scale behaviour. Another criticism that has been levelled at this model is that it is difficult to
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solve analytically [104] and thus it does not necessarily lend itself to gaining insight into how

certain behaviours emerge.

Other stochastic approaches have also been considered such as Othmer et al. [105] and Rivero

et al. [106]. The Rivero et al. [106] (RTBL) model considered a cell population moving either

left or right along an infinite one-dimensional line with a constant velocity v (other methods

of motility are discussed by Codling et al. [102]). Considering turning probabilities of the form

r1 = λ1τ and r2 = λ2τ for left- and right-moving cells, respectively, it can be shown that

under certain conditions the problem simplifies to the biased telegraph equation along a one-

dimensional line

∂2p

∂t2
+ (λ1 + λ2)

∂p

∂t
+ v(λ2 − λ1)

∂p

∂x
= v2

∂2p

∂x2
, (2.12)

where p(x, t) denotes the total population density. This model sought to address the main issue

of the Alt [103] model, namely the difficulty of finding an analytical solution. In addition to

this, by considering temporal changes in receptor occupancy, this model represented a starting

point down the road toward explaining how single cell traits affect population level behaviour.

There is also a fair amount of work within the literature that compares the models discussed

above. Ford & Cummings [107] chose to compare three models, namely those due to Alt [103],

Segel [97] and Rivero et al. [106]. In doing so they were able to find a number of conditions

under which these various models were analogous to one another. Ford & Cummings [107]

conducted a similar comparison using numerical simulations, concluding that while the Alt [103]

model gives a detailed description of chemotactic aggregation, the RTBL model [106] gives an

adequate continuum based description of chemotaxis.

Similar to the K-S models discussed in Section 2.3.1, the stochastic modelling approaches

discussed here have been useful in certain areas, although they do not explain how intracellular

signalling processes affect the emergence of population level phenomena.

2.4 Multi-Scale Modelling Approaches

Within Sections 2.2 and 2.3 we have summarised some of the key literature that has sought

to understand both single cell and population level processes. Each of these approaches has

yielded a number of interesting mathematical problems as well as insights that may not have

been available via experimental approaches alone. However, with recent advancements in labo-

ratory equipment and methods there is an ever increasing amount of experimental data available

to mathematical modellers. Coupling this with vast increases in computing power, it has in-

creasingly become possible to devise mathematical methods that bridge the gap between the

different scales associated with bacterial chemotaxis.
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To date there has been relatively little work focused on using single cell experimental data

and mathematical models to inform how population level behaviour is controlled. Here we review

some of the main approaches used to tackle this problem.

2.4.1 Agent-Based Models

Agent-based (also known as individual-based) modelling is one of the main approaches that

has been utilised in order to understand the ways in which single cell behaviour affects that of

a cell population. Such models are computational in nature and use a set of ‘rules’ allowing the

effects of individual cell attributes/behaviours to be measured on the population scale.

One such example is that of Emonet et al. [108] which sought to examine how stochasticity

in the chemotactic signalling network would impact upon population level behaviour. The main

drawback of this model is that it failed to investigate how variation in other features such as

receptor sensitivity, adaptation and motor response may impact upon population level behaviour.

Additionally it failed to properly account for the relationship between the flagellar rotation bias

and the CheY-P concentration.

Bray and colleagues have produced agent-based models (ABMs) that give a good level of

agreement with experimental data. In contrast to the model used by Emonet et al. [108], these

models aimed to capture a greater level of realism by incorporating a highly detailed (∼90

ODE) model of the E. coli chemotaxis signalling cascade [109, 110]. They also incorporated a

significant amount of biophysical data into their model so as to produce a good approximation

of the swimming behaviour of individual cells.

The models summarised here have been able to provide good agreement with various exper-

imental literature. It is clear therefore that models such as these could be of great benefit in

allowing us to bridge the gap between single cell and population scale models. Each of these

models, however, has their own drawbacks. In particular, these models either do not properly

account for all processes or contain large ODE models making it difficult to understand which

processes (eg. receptors, signalling pathway, motors) are affected by any given variation and

how this will affect the output. It is clear therefore that further work is required to understand

how the single cell and population scales are linked.

2.4.2 Equation-Free Models

In this section we briefly summarise another of the main methods that has sought to explain

how single cell behaviour affects that of a cell population, namely equation-free methods. Mod-

els such as this consider behaviour on a coarse scale as well as incorporating a more detailed
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approach. It is worth noting here that, in spite of the name, such models do consist of a set of

equations.

Equation-free methods have notably been used by Erban & Othmer [100, 91] and Setayeshgar

et al. [111]. Setayeshgar et al. [111] showed that the large separation in excitation and adapta-

tion time allows evolution of the cell population to be coarse grained. Erban & Othmer [100]

incorporated a simplified microscopic model of the E. coli chemotaxis signalling pathway into

a telegraph process (similar to equation (2.12)), subsequently showing that the chemotactic re-

sponse vanished as the adaptation time tends to zero. Results were then generalised to higher

dimensions.

Models such as those discussed here clearly go some way toward bridging the gap between

single cell and population scale behaviour. These also address the important issue of being

able to simulate such behaviour within a reasonable time [91]. However, the main drawback of

such models is that they do not produce the same degree of detail as other approaches (such

as agent-based modelling) since they consider a coarse grained representation of the population

scale behaviour. Thus, they neglect to include the individual behaviour of each individual cell

in favour of a continuum approximation of the overall behaviour.

2.5 Chapter Summary

In this chapter we presented a summary of some key experimental and theoretical literature

associated with chemotaxis in E. coli. We began by outlining the biological processes that allow

cells to exhibit chemotaxis. This was followed by brief reviews of mathematical approaches used

to model chemotaxis both of individual cells and cell populations. We subsequently summarised

some of the key work that has sought to link the two scales.

The review of single cell chemotaxis modelling focused on work related to ligand binding and

adaptation; chemoreceptor sensitivity and gain; and the phosphorylation cascade. In doing so,

it is clear that the issue of model complexity has been a significant limitation associated with

many of the models discussed here.

Within the summary of population scale theoretical work we focused on two main approaches,

namely Keller-Segel and stochastic models. Each of these approaches was shown to be useful in

certain settings. However, they clearly possess one main drawback in that they do not consider

how single cell features impact upon the overall behaviour of the population.

Multi-scale modelling approaches were then discussed since these seek to bridge the gap

between single cell and population models. Here we focused on agent-based models and equation-

free methods. Each of these was shown to have both good and bad points. In particular, agent-

24



based models have been produced which display clear potential but either fail to account for

certain processes or suffer from the same model complexity issue as many single cell models.

It is clear that many different approaches have been considered when modelling chemotaxis.

Each of these has their own respective advantages and disadvantages. Within the more recent

literature, however, a number of these drawbacks have started to be addressed. In particular,

MWC modelling has helped to remove significant amounts of complexity from models whilst

retaining (simplified) representations of all key biological processes. In addition to this, the

emergence of agent-based modelling has allowed researchers to investigate how single cell phe-

nomena affect the behaviour of populations.

Within the remainder of this thesis we seek to take advantage of these developments. In

particular, the use of MWC models opens up avenues of investigation that were previously

hampered by model complexity whilst agent-based modelling allows single cell investigations to

be examined in terms of their impact on the population scale.
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Chapter 3

Mathematical Model of E. coli

Chemotaxis Signalling

Within this chapter we analyse a recent mathematical model of the E. coli chemotaxis sig-

nalling cascade [70]. Firstly, the model is presented alongside a discussion of how it allows for

further investigation of intracellular phenomena where other models from the literature do not.

A rigorous analysis of the model is then conducted. In particular, we compare a number of func-

tions describing the methylation dependent free-energy (offset energy) of chemoreceptors against

experimental data in order to choose the most suitable form for use throughout this thesis. A

non-dimensional re-scaling of the model system is then considered. Using this non-dimensional

model it is demonstrated that the system of equations possesses just one biologically feasible

steady-state that is subsequently shown to be asymptotically stable. Finally, the eigenvalues of

this system are examined in order to assess the stiffness of the model system, thus impacting on

the choice of numerical methods used in this thesis.

3.1 E. coli Chemotaxis Signalling Pathway Model

In this section we summarise and discuss a mathematical model of the E. coli chemotaxis

signalling pathway due to Clausznitzer et al. [70]. In particular, we begin by focusing on the

motivation behind this choice of model before outlining the model and briefly mentioning the

methods utilised by Clausznitzer et al. [70] in its derivation.

3.1.1 Motivation

Within the literature there has been a wide range of approaches considered for the modelling

of chemotaxis signalling cascades in individual E. coli cells (see Chapter 2). Here we briefly

summarise the key strengths and weaknesses of the main approaches considered by way of
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motivation for the use of the Clausznitzer et al. [70] model presented within this work.

Many mathematical models have focused on describing the processes associated with ligand

binding and adaptation [39, 40, 41, 45]. A common approach here was to consider separate

model variables for each possible receptor state (i.e. ligand bound/unbound and each possible

methylation state). This approach was able to produce good agreement with some experimental

data. However the resulting large numbers of non-linear ODEs do not lend themselves to

insightful analysis.

In stark contrast to the above approach, it is also common within the literature to produce a

minimal model that is capable of demonstrating certain behaviour. One such example is that of

Tu et al. [63] which consists of just one ODE for receptor methylation level and a decoupled read-

out variable representing CheY-P concentration. Such models have been used to great effect

within the literature in order to elucidate specific features of chemotaxis signalling pathways. In

spite of this, these models are not always suitable since they do not include a detailed enough

representation of the whole signalling pathway.

Within this thesis we analyse the model due to Clausznitzer et al. [70]. This recent math-

ematical model takes a different approach to those previously considered by making use of the

law of mass action and the Monod-Wyman-Changeux (MWC) model. The result is a model

of five non-linear ODEs that has been shown to produce a good fit to a range of experimental

data. In particular, this model includes a representation of all key signalling pathway processes,

agrees with experimental data and is small enough as to be amenable to analysis. Since each

reaction/process within this model relates directly to a physical process, it is also simple to

utilise the vast experimental literature in order to produce a fully parameterised system (see

Table 3.1). As such, this model has opened up many avenues of investigation that were not

previously possible.

3.1.2 Model Details

Here we outline the Clausznitzer et al. [70] model of the E. coli chemotaxis signalling cascade

that is studied within this thesis. Within this section we provide a summary of the model

alongside a brief description of its derivation. In addition to this we mention the key assumptions

underlying this model and state a number of simplifications considered in this work.

Within E. coli cells the spatial distribution of proteins within the chemotaxis signalling

cascade is not generally considered to play a significant role. As a result of this it is possible to

consider here a mathematical model that assumes no spatial heterogeneity exists for any of the

signalling proteins. This lack of spatial heterogeneity is one of the key assumptions underlying

the law of mass action (see Appendix A). As such Clausznitzer et al. [70] applied the law of
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mass action to reactions within the intracellular signalling cascade (see Figure 2.2), giving the

non-linear ODEs

d[Ap]

dt
= Φk1([AT ]− [Ap])− k2[Ap]([YT ]− [Yp])− k3[Ap]([BT ]− [Bp]), (3.1)

d[Yp]

dt
= k2[Ap]([YT ]− [Yp])− kA[Yp]([ZT ]− [YpZ]) + kD[YpZ], (3.2)

d[YpZ]

dt
= kA[Yp]([ZT ]− [YpZ])− (kD + k4)[YpZ], (3.3)

d[Bp]

dt
= k3[Ap]([BT ]− [Bp])− k5[Bp], (3.4)

within which Φ denotes the receptor signalling team activity, ki (i = 1, 2, 3, 4, 5, A,D) indicate

the kinetic rates of each reaction and [...] denote the concentrations of the appropriate pro-

teins with subscripts T and p indicating the total and phosphorylated amounts, respectively.

This original model of Clausznitzer et al. [70] considers a separate model variable describing

binding of CheY-P with CheZ to form a transient complexed state ([YpZ]) and the subsequent

dephosphorylation and unbinding. Since this is a transient process (i.e. it occurs on a very short

timescale), here we assume that it occurs rapidly enough as to be modelled as a one step process.

This allows it to be represented by a single term within equation (3.6). We also include the

autodephosphorylation of protein CheY-P into this model (with a kinetic rate constant denoted

k6), giving set of non-linear ODEs

d[Ap]

dt
= Φk1([AT ]− [Ap])− k2[Ap]([YT ]− [Yp])− k3[Ap]([BT ]− [Bp]), (3.5)

d[Yp]

dt
= k2[Ap]([YT ]− [Yp])− k4[Yp][ZT ]− k6[Yp], (3.6)

d[BP ]

dt
= k3[Ap]([BT ]− [Bp])− k5[Bp]. (3.7)

In addition to the above description of the phosphorylation cascade, Clausznitzer et al. [70]

produced a description of receptor methylation kinetics. More specifically, by considering the

time immediately after a step change in the attractant concentration (as in equation (2.7)), they

were able to compare a number of possible models to experimental data. In doing so it was

found that one particular representation produced a good model fit. This is given by

dm

dt
= gR[RT ](1− Φ)− gB[Bp]

2Φ, (3.8)

where m is the average methylation level of a receptor within the signalling team and gR, gB

denote the kinetic rates of receptor methylation by CheR and demethylation by CheB-P, re-

spectively. Further to this Clausznitzer et al. [70] define receptor signalling team activity (Φ) in
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equations (3.5) and (3.8) as a Monod-Wyman-Changeux (MWC) description of receptor clus-

tering [58]. This is given by

Φ =
1

1 + eF
, (3.9)

in which F , the free-energy of a receptor signalling team, is defined by

F = N

[

h(m) + νa ln

(

1 + [L]/Koff
a

1 + [L]/Kon
a

)

+ νs ln

(

1 + [L]/Koff
s

1 + [L]/Kon
s

)]

, (3.10)

where N is the number of chemoreceptors in the signalling team, νa : νs denotes the ratio of Tar

to Tsr receptors in the signalling team, h(m) represents the offset energy (i.e. the contribution

to F from the addition/removal of one methyl group) and the remainder of the expression

is the free-energy contributions from Tar and Tsr receptors with dissociation constants for a

single ligand denoted K
on/off
a/s for active/inactive Tar (a) and Tsr (s) receptors and [L] is the

extracellular ligand concentration. Parameter values used in this model are listed in Table 3.1.

This mathematical model has been shown to be a good fit to experimental data in spite of the

low copy numbers associated with CheR and CheB, suggesting that the continuum limit holds.

With this being the case we do not anticipate stochastic effects would alter any conclusions

drawn within this work.

The chemoreceptor signalling team free-energy expression in equation (3.10) contains con-

tributions from two different types of chemoreceptors when challenged with aspartate stimuli.

It is known that both Tar and Tsr chemoreceptors may sense aspartate stimuli albeit with Tsr

binding aspartate with a much lower affinity than Tar chemoreceptors. As such, it has been

shown by Mello & Tu [33] that aspartate binding to Tsr chemoreceptors has little or no effect

at small to intermediate aspartate concentrations. There is a noticeable effect from aspartate

binding to Tsr on the overall sensitivity of a receptor signalling team in cases with a very high

concentration of aspartate. With this being the case, for the majority of the subsequent work

within this thesis we shall restrict our attention to cases in which there are small to intermediate

aspartate concentrations with respect to the relevant dissociation constants. This allows us to

simplify equation (3.10) such that it becomes

F = N

[

h(m) + ln

(

1 + [L]/Koff
a

1 + [L]/Kon
a

)]

. (3.11)

Within this expression we have neglected the contribution of Tsr receptors binding aspartate.

It is also worth noting that since Clausznitzer et al. [70] state the ratio of Tar to Tsr (νa:νs)

receptors is equal to 1:1.4, the symbol νa may be neglected since it is a multiple equal to one and

thus will have no effect on the overall free-energy. The work of Clausznitzer et al. [70] compared
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the mathematical model laid out above to a range of experimental data. This demonstrated

that the model represents a detailed enough description of the chemotaxis signalling pathway of

E. coli cells as to adequately represent the biological processes involved. Whilst Clausznitzer et

al. [70] clearly explored this model in the context of large amounts of experimental data, they

provided very little in the way of mathematical analysis. As such, for the remainder of this

chapter we shall present a rigorous analysis of this model forming a platform upon which the

more detailed examination in subsequent chapters may be based.

Table 3.1: A base set of E. coli signalling pathway parameter values from the literature.
Symbol Definition Value Source

[AT ] Total concentration of CheA 7.9µM [112]*
[BT ] Total concentration of CheB 0.28µM [112]*
[RT ] Total concentration of CheR 0.16µM [112]*
[YT ] Total concentration of CheY 9.7µM [112]*
[ZT ] Total concentration of CheZ 3.8µM [112]*
k1 CheA autophosphorylation 34s−1 [113]
k2 Phosphotransfer to CheY 100µM−1s−1 [114]
k3 Phosphotransfer to CheB 15µM−1s−1 [114]
k4 CheY-P dephosphorylation by CheZ 1.6µM−1s−1 [112]
k5 Dephosphorylation of CheB-P 0.7s−1 [115]
k6 Dephosphorylation of CheY-P 0.085s−1 [116]
gR Methylation by CheR 0.0375µM−1s−1 [70]
gB Demethylation by CheB-P 3.14µM−2s−1 [70]
N Number of Tar receptors in a signalling team 18 [62]
Kon

a Dissociation constant of an active Tar receptor 0.5mM [60]

Koff
a Dissociation constant of an inactive Tar receptor 0.02mM [60]
Kon

s Dissociation constant of an active Tsr receptor 100mM [70]

Koff
s Dissociation constant of an inactive Tsr receptor 106mM [70]
νa Tar component of receptor type ratio (νa : νs) 1 [70]
νs Tsr component of receptor type ratio (νa : νs) 1.4 [70]

* All total protein concentrations are calculated from experimental values in [112]
assuming a cellular volume of 1.4fl, as per [117].

3.2 Model Analysis

3.2.1 Choosing an Offset Energy Function

Before progressing to further analysis of this mathematical model it is necessary to define

a representation of the “offset energy” function, denoted h(m). This may also be thought of

as being the methylation dependent part of the free-energy of a chemoreceptor signalling team.

Within the literature there have been a number of forms taken for this function [63, 70, 118].

However, as shall be the case within this section, these offset energy functions have never been

assessed against a collection of the available experimental data.

The offset energy functions of Tu et al. [63], Clausznitzer et al. [70] and Shimizu et al. [118]
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all take the same basic form

h(m) = α(m0 −m). (3.12)

In this expression α is a scaling value and m0 represents an initial methylation level (in the

absence of any ligand). Tu et al. [63] takes α = 2 and m0 = 1 to give

h(m) = 2(1−m), (3.13)

whilst Clausznitzer et al. [70] consider α = 0.5 and m0 = 2, i.e.

h(m) = 1−
m

2
, (3.14)

and Shimizu et al. [118] take α = 2 and m0 = 0.5, giving

h(m) = 2

(
1

2
−m

)

. (3.15)

Each of these functional forms can be compared to experimental data found in the literature [62,

118, 119] as shown in Figure 3.1. In particular, we compare each h(m) function to the range

of methylation states possible for each receptor. It is worth noting that each receptor possesses

four methylation sites, which leads to a limit of eight methyl groups per receptor dimer and an

upper limit of 48 methyl groups for an assistance neighbourhood of 6 receptor dimers.

The experimental data of both Endres et al. [62] and Vaknin & Berg [119] use similar

experimental techniques, whereby Tar receptors were genetically engineered to have either a

glutamate (E) or a glutamine (Q) at each of their four methylation sites [62, 119]. In experiments

such as these, a glutamine has similar functionality to a methylated glutamate [120]. Each data

set considers slightly different combinations of modification states with the first set considering

Tar receptors in QQQQ, QEQQ, QEQE and QEEE states [62]. The other data set gives results

for Tar receptors in QQQQ, QEQQ, QEEE and EEEE states [62, 119]. In order to make

a comparison between the representations of h(m) and the experimental data for amidation

modifications (see glossary for definition) it is necessary to convert them into the same form

since one source gives data for individual receptors and the other gives data for receptor dimers.

This means one data set, namely that of Vaknin & Berg [119], refers to QEEE as equivalent

to a methylation level of m = 1 whereas Endres et al. [62] would consider this as m = 2. This

conversion requires a simple scaling of the m values used for Figure 3.1.

It is clear upon inspection of Figure 3.1 that the two data sets give similar results and that a

good fit to this data will produce a model with a good level of realism. Examination of the three
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Figure 3.1: A plot showing experimental data and various model approximations (equa-
tions (3.13)-(3.15)). Experimental data for amidation modifications is from Endres et al. [62]
(crosses) as well as Vaknin & Berg [119] (circles). Data for methylation modifications from
Shimizu et al. [118] is also displayed (squares).

choices of h(m) reveals that the representation considered by Clausznitzer et al. [70] produces

a better fit to the two sets of amidation modification data. Since the mathematical model of

Clausznitzer et al. [70] has been shown to give a good fit to FRET experimental data, we adopt

the form of h(m) defined by equation (3.14) for the remainder of this thesis.

3.2.2 Non-Dimensionalisation

As is common in the modelling of biological systems we consider a non-dimensionalisation

(re-scaling) of the governing system of equations. In this case we choose to re-scale each of the key

protein concentrations with respect to the total concentration within the cell, i.e. [Ap] = ap[AT ],

[Bp] = bp[BT ] and [Yp] = yp[YT ]. We then re-scale time with respect to the rate of spontaneous

de-phosphorylation of the protein CheB-P, i.e. t = τ/k5. Substitution of these re-scaled variables

into equations (3.5)-(3.8) yields the system of non-dimensional ODEs

dm

dτ
= γR(1− Φ)− γBb

2
pΦ = f1(m, bp), (3.16)

dap
dτ

= Φk̄1(1− ap)− k̄2(1− yp)ap − k̄3(1− bp)ap = f2(m, ap, yp, bp), (3.17)

dyp
dτ

= α1k̄2(1− yp)ap −
(
k̄4 + k̄6

)
yp = f3(ap, yp), (3.18)

dbp
dτ

= α2k̄3(1− bp)ap − k̄5bp = f4(ap, bp). (3.19)

Within this set of non-dimensionalised equations parameters have been grouped into simplified

versions such as k̄2 = k2[YT ]/k5 (see Table 3.2 for all definitions and values). The main reason

for doing this is that it often acts to reduce the number of parameters contained in the model,
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thus making it simpler to apply, among others, parameter fitting techniques. However, in this

particular example, there exists a vast experimental literature within which all of the parameters

in this model have been measured to a good degree of accuracy.

3.2.3 Model Steady-States

In order to find the steady-state (equilibrium) of the mathematical model given in Sec-

tion 3.2.2 we seek the state(s) whereby the rate of change in time is equal to zero. Thus, we set

the derivatives in equations (3.16)-(3.19) equal to zero, giving our model steady-state(s) as

0 = γR(1− Φ∗)− γBb
∗2
p Φ∗, (3.20)

0 = Φ∗k̄1(1− a∗p)− k̄2(1− y∗p)a
∗
p − k̄3(1− b∗p)a

∗
p, (3.21)

0 = α1k̄2(1− y∗p)a
∗
p −

(
k̄4 + k̄6

)
y∗p, (3.22)

0 = α2k̄3(1− b∗p)a
∗
p − k̄5b

∗
p, (3.23)

within which the superscript asterisk (∗) indicates the steady-state value of the relevant model

variable. We now examine the form of the solution to this model.

We begin by rearranging equation (3.22), such that

y∗p =
α1k̄2a

∗
p

α1k̄2a∗p + k̄4 + k̄6
=

k2[AT ]a
∗
p

k2[AT ]a∗p + k4[ZT ] + k6
. (3.24)

Similarly, from equation (3.23)

b∗p =
α2k̄3

α2k̄3 + k̄5
=

k3[AT ]a
∗
p

k3[AT ]a∗p + k5
, (3.25)

Table 3.2: A base set of non-dimensional E. coli signalling pathway parameter values, calculated
from values in Table 3.1.

Symbol Value

k̄1 = k1/k5 48.571
k̄2 = k2[YT ]/k5 1385.714
k̄3 = k3[BT ]/k5 6
k̄4 = k4[ZT ]/k5 8.686
k̄5 = k5/k5 1
k̄6 = k6/k5 0.121

α1 = [AT ]/[YT ] 0.814
α2 = [AT ]/[BT ] 28.214
γR = gR[RT ]/k5 8.57×10−3

γB = gB[BT ]
2/k5 0.352
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and from equation (3.20)

Φ∗ =
γR

γR + γBb∗2p
=

1

1 + γB
γR
b∗2p

=
gR[RT ]

gR[RT ] + gB[BT ]2b∗2p
=

1

1 +
gB [BT ]2b∗2p

gR[RT ]

. (3.26)

Using this expression alongside equation (3.9) we see that

eF
∗

=
γB
γR
b∗2p =

gB[BT ]
2b∗2p

gR[RT ]
, (3.27)

within which F is given by equation (3.11). Now, rearranging this equality we are able to obtain

the steady-state expression for the average chemoreceptor methylation level

m∗ = 2

[

1 + ln

(

1 + [L]/Koff
a

1 + [L]/Kon
a

)

−
1

N
ln

(

γBb
∗2
p

γR

)]

= 2

[

1 + ln

(

1 + [L]/Koff
a

1 + [L]/Kon
a

)

−
1

N
ln

(

gB[BT ]
2b∗2p

gR[RT ]

)]

. (3.28)

Each of the steady-state expressions obtained thus far have been done so by simple rearranging

of expressions. These equations may also be utilised to obtain a steady-state expression for ap

(i.e. for equation (3.21)). In this case we substitute the steady-state equations (3.24)-(3.26)

into equation (3.21) and multiply through by the denominators of each term. This yields a fifth

order polynomial in a∗p, the roots of which represent values for a∗p. This takes the form

p(a∗p) = 0 = Aa∗5p +Ba∗4p + Ca∗3p +Da∗2p + Ea∗p + F, (3.29)

where A,B,C,D,E and F are coefficients of the polynomial p(a∗p) that are defined as follows

A = −gR[RT ][AT ]
4k1k2k

3
3, (3.30)

B = −gB[BT ]
3[AT ]

3k2k
3
3k5 − 3gR[RT ][AT ]

3k1k2k
2
3k5 − gR[RT ][AT ]

3[ZT ]k1k
3
3k4 (3.31)

− gB[BT ]
2[AT ]

3[YT ]k2k
3
3k6 − gR[RT ][AT ]

3[BT ]k2k
3
3k5 − gB[BT ]

2[AT ]
3[YT ][ZT ]k2k

3
3k4

− gR[RT ][AT ]
3[YT ][ZT ]k2k

3
3k4 + gR[RT ][AT ]

4k1k2k
3
3 − gR[RT ][AT ]

3[YT ]k2k
3
3k6

− gR[RT ][AT ]
3k1k

3
3k6,

C = −gB[BT ]
3[AT ]

2k33k5k6 + 3gR[RT ][AT ]
3k1k2k

3
3k5 − 3gR[RT ][AT ]

2k1k
2
3k5k6 (3.32)

− gR[RT ][AT ]
2[BT ]k

3
3k5k6 − gR[RT ][AT ]

2[BT ][ZT ]k
3
3k4k5 − 3gR[RT ][AT ]

2k1k2k3k
2
5
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− 2gR[RT ][AT ]
2[BT ]k2k

2
3k

2
5 + gR[RT ][AT ]

3[ZT ]k1k
3
3k4 − 3gR[RT ][AT ]

2[YT ]k2k
2
3k5k6

− 3gR[RT ][AT ]
2[YT ][ZT ]k2k

2
3k4k5 − gB[BT ]

3[AT ]
2[ZT ]k

3
3k4k5 + gR[RT ][AT ]

3k1k
3
3k6

− 3gR[RT ][AT ]
2[ZT ]k1k

2
3k4k5 − gB[BT ]

2[AT ]
2[YT ]k2k

2
3k5k6

− gB[BT ][AT ]
2[YT ][ZT ]k2k

2
3k4k5,

D = −2gR[RT ][AT ][BT ]k
2
3k

2
5k6 − 3gR[RT ][AT ]k1k3k

2
5k6 (3.33)

− 2gR[RT ][AT ][BT ][ZT ]k
2
3k4k

2
5 − gR[RT ][AT ]k1k2k

3
5 + 3gR[RT ][AT ]

2[ZT ]k1k
2
3k4k5

− gR[RT ][AT ][BT ]k2k3k
3
5 + 3gR[RT ][AT ]

2k1k
2
3k5k6 − 3gR[RT ][AT ][YT ]k2k3k

2
5k6

− 3gR[RT ][AT ][ZT ]k1k3k4k
2
5 + 3gR[RT ][AT ]

2k1k2k3k
2
5 − 3gR[RT ][AT ][YT ][ZT ]k2k3k4k

2
5,

E = gR[RT ][AT ]k1k2k
3
5 − gR[RT ][BT ][ZT ]k3k4k

3
5 − gR[RT ][BT ]k3k

3
5k6 (3.34)

+ 3gR[RT ][AT ]k1k3k
2
5k6 − gR[RT ]k1k

3
5k6 − gR[RT ][YT ][ZT ]k2k4k

3
5

− gR[RT ][ZT ]k1k4k
3
5 + 3gR[RT ][AT ][ZT ]k1k3k4k

2
5 − gR[RT ][YT ]k2k

3
5k6,

F = gR[RT ][ZT ]k1k4k
3
5 + gR[RT ]k1k

3
5k6. (3.35)

Since there is no generally applicable analytical solution form for quintic equations such as this,

we must consider an alternative approach to finding the ap steady-state value. In the first

instance, we substitute the parameter values from Table 3.1 into these polynomial coefficients,

thus giving the numerical values displayed in Table 3.3

Table 3.3: A table of coefficient values for the CheA-P steady-state polynomial. In the case of
p(−a∗p) we have absorbed the change of sign into the polynomial coefficients.

A B C D E F

p(a∗p) 2.682× 108 2.256× 109 8.815× 106 −5.861× 104 −261.564 −0.431

p(−a∗p) −2.682× 108 2.256× 109 −8.815× 106 −5.861× 104 261.564 −0.431

It is now possible to utilise Descartes’ rule of signs (see Appendix B) in order to examine

the nature of the solutions (roots) to equation (3.21). Since the number of sign changes between

consecutive polynomial coefficients in p(a∗p) is equal to one, we know for sure that there must be

exactly one positive root. Examining the polynomial p(−a∗p), we find four sign changes meaning

that there exists a maximum of four negative roots. However, there may also exist a number of

complex roots. Since these roots must exist in complex conjugate pairs there are three possible

combinations of roots

• 1 positive root, 4 negative roots and 0 complex roots,
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• 1 positive root, 2 negative roots and 2 complex roots,

• 1 positive root, 0 negative roots and 4 complex roots.

Given that the steady-state value for CheA-P must be positive in order to be biologically feasible

(since a negative or complex concentration does not make sense) we are able to see that there may

only be one biologically feasible steady-state for CheA-P. Therefore, under the assumption that

initial conditions are chosen within a biologically feasible range, we may have just one steady-

state for the system. In fact we find that the steady-state expressions of CheA-P, CheB-P and

CheY-P are independent of the extracellular ligand concentration or the average chemoreceptor

methylation level. In contrast to this, the steady-state value for the average chemoreceptor

methylation level (m) will vary depending upon the ambient ligand concentration as well as the

CheB-P steady-state.

Using equations (3.24), (3.25) and (3.29) in addition to the parameter values listed in Ta-

ble 3.1 we may obtain, using the MATLAB ‘roots’ function, the following non-dimensional

steady-state values

a∗p = 5.5769× 10−3, b∗p = 4.8562× 10−1, y∗p = 4.1679× 10−1,

given to four decimal places. Each of these values will remain the same for any ambient extra-

cellular ligand concentration or average chemoreceptor methylation level. We may also calculate

the steady-state value for the average chemoreceptor methylation level. Under the assumption

that there is no ambient ligand concentration (i.e. [L] = 0) we obtain

m = 1.7478,

to four decimal places. However, this steady-state methylation level will rise/fall in order to

re-set the signalling pathway to a pre-stimulus state when the extracellular ligand concentration

varies. This proceeds in the manner described by equation (3.28) and displayed in Figure 3.2.

3.2.4 Model Stability Analysis

From Section 3.2.3 we now know that given the parameter set in Table 3.1 there may only

be one biologically feasible steady-state. We now consider the stability of the steady-state

determined in the previous section. In order to do this it is necessary to analyse the eigenvalues
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Figure 3.2: A plot showing how the steady-state value for the average chemoreceptor methylation
level rises in relation to the ambient extracellular ligand concentration. This result is similar to
those given by Hansen et al. [69] and Endres & Wingreen [68].

of the Jacobian matrix for this system which is defined as

J =












∂f1
∂m 0 0 ∂f1

∂bp

∂f2
∂m

∂f2
∂ap

∂f2
∂yp

∂f2
∂bp

0 ∂f3
∂ap

∂f3
∂yp

0

0 ∂f4
∂ap

0 ∂f4
∂bp












, (3.36)

within which the partial derivatives are given by

∂f1
∂m

=
−NeFΦ2

2k5

(
gR[RT ] + gB[BT ]

2b2p
)
, (3.37)

∂f1
∂bp

=
−2gB[BT ]

2bpΦ

k5
, (3.38)

∂f2
∂m

=
Nk1(1− ap)e

FΦ

2k5
, (3.39)

∂f2
∂ap

=
k1Φ

k5
−
k2[YT ](1− yp)

k5
−
k3[BT ](1− bp)

k5
, (3.40)

∂f2
∂yp

=
k2[YT ]ap

k5
, (3.41)

∂f2
∂bp

=
k3[BT ]ap

k5
, (3.42)

∂f3
∂ap

=
k2[AT ](1− yp)

k5
, (3.43)

∂f3
∂yp

=
−k2[AT ]ap

k5
−
k4[ZT ]

k5
−
k6
k5
, (3.44)
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∂f4
∂ap

=
k3[AT ](1− bp)

k5
, (3.45)

∂f4
∂bp

=
−k3[AT ]ap

k5
− 1. (3.46)

We now investigate the eigenvalues of this system by substituting into the Jacobian each of the

steady-state values before solving

det |J − λI| = 0, (3.47)

within which I is the identity matrix with the same dimensions as the Jacobian and λ denotes

an eigenvalue of the system. Utilising the parameter values given in Table 3.1 we are able to

obtain the four eigenvalues of the system, which are

λ1 = −822.1086, λ2 = −8.8146, λ3 = −1.7996, and λ4 = −0.1942.

It is clear that each of these four eigenvalues of the system is such that λi < 0 and hence we

are able to conclude that this system is asymptotically stable at the parameter values stated in

Table 3.1.

3.2.5 Model Stiffness

It has clearly been shown that given the parameter set in Table 3.1 there exists four real,

negative eigenvalues which denotes an asymptotically stable system. However, the relative

magnitudes of these eigenvalues can tell us about the stiffness of the system. In this case we

may obtain the stiffness coefficient of the system by calculating

s =

∣
∣Re(λ)

∣
∣

|Re(λ)|
, (3.48)

in which s denotes the stiffness coefficient, whilst λ and λ indicate the eigenvalues with the

largest and smallest real part (in absolute value), respectively. In the current example the

stiffness coefficient will be given by

s =
|Re(λ1)|

|Re(λ4)|
= 4233.31, (3.49)

to two decimal places. This is clearly rather large and so many numerical methods may be

subject to significant restrictions on the length of time step that may be used when numerical

methods are applied to this problem. As such we shall utilise the inbuilt MATLAB ODE solver

ode15s for numerical approximations of this system. This particular ODE solver is specifically

designed for stiff systems of ODEs and allows the definition of error tolerances. The algorithm
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adjusts the length of each time step in order to maintain these tolerances as well as the numerical

stability of the scheme used.

3.3 Summary & Discussion

Within this chapter we began by presenting a recent mathematical model of the E. coli

intracellular signalling pathway from the literature. The remainder of this chapter then sought

to produce a rigorous analysis of the model.

This analysis began by examining three different offset energy functions from the literature

in the context of the available experimental data. Upon doing so it was shown that the function

of Clausznitzer et al. [70] produced the best fit and will thus be used for all E. coli chemotaxis

modelling work in this thesis.

A non-dimensional re-scaling of the model was then presented and utilised in order to demon-

strate that there exists just one biologically feasible steady-state for this system. This equilib-

rium state was subsequently shown to be asymptotically stable, with eigenvalues demonstrating

that this is a stiff system.

The analysis conducted within this chapter demonstrates a number of features of this math-

ematical model that had previously only been assumed within the literature. In addition to this,

the features analysed here will prove useful within subsequent chapters.
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Chapter 4

Fold-Change Detection in Escherichia

coli

In this chapter we investigate a feature of the E. coli chemotaxis signalling cascade known as

fold-change detection (FCD). We begin by giving a brief summary of some background literature

by way of motivation for this study. Here we analyse a more detailed model of the E. coli

chemotaxis signalling pathway than previously examined in the literature, namely that described

in Chapter 3. In order to do so we utilise both theoretical and numerical techniques to investigate

the ability of this model to match experimental observations. Parameter sensitivity analysis

then shows that FCD is invariant to changes in signalling pathway parameters assuming they

remain constant in time. Consideration is then given to the ability of this mathematical model

to display FCD when the chemotactic response is governed by multiple receptor types. This

chapter concludes with a discussion regarding the biological feasibility of the conditions imposed

in order to obtain FCD.

4.1 Motivation

FCD is the phenomenon whereby a system will exhibit the same response amplitude, shape

and recovery time in response to equal fold-changes in input signal relative to the background

level [121] (as shown in Figure 4.1). This has, in recent years, been a popular research area and

has now been shown to exist within a number of different systems.

Mesibov et al. [24] were first to hint at the existence of FCD in E. coli in the early 1970s when

they noted that cells produced a similar response to fractional increases in ligand concentration.

More recently Lazova et al. [122] were able to confirm using in vivo fluorescence resonance energy

transfer (FRET) techniques that E. coli cells do indeed display FCD. In particular this work

showed the existence of two distinct regimes within which FCD would be exhibited, namely
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Figure 4.1: After [121], a graphical representation of the definition of FCD. The three responses
(b)-(d) are possible given the input stimulus (change in ligand concentration) (a). Figure (d)
shows two responses which are exactly the same in terms of response amplitude, shape and
recovery time. Figure (b) shows responses with different amplitude and (c) a different response
shape.

FCD1 ([L]0 = 0.018 − 0.23mM) and FCD2 ([L]0 = 0.82 − 10.3mM), where [L]0 is an initial

ligand (e.g. MeAsp) concentration.

Within the literature it has been proposed that adopting FCD may be beneficial to chemo-

tactic bacteria. The main reason for this is that the process of a sensory search whereby cells

move through their environment becomes invariant to the amplitude of the field itself [121]. This

allows scalar multiples to be picked out from the extracellular environment, thus allowing cells

to focus on the characteristic shape of the ligand field. It has also been suggested that a sensory

search using FCD may be optimal in situations where the discovery of any nutrient source is of

benefit [122]. In other words, the payoff for cells of reaching what may well be a weak nutrient

source may be larger than the payoff if cells were to attempt to discriminate in favour of richer

nutrient sources.

Previous theoretical work has shown that FCD will be evident in a simplified model of the E.

coli chemotaxis signalling pathway [121] as proposed by Tu et al. [63]. This particular mathemat-

ical model considers a Monod-Wyman-Changeux (MWC) representation of receptor clustering

and couples it with ODEs describing receptor methylation and CheY-P concentration. Within

this work the simplified model was shown to exhibit FCD, however they did not show whether

or not the model produced a good fit with experimental observations. In the remainder of this

chapter we demonstrate the ability of a more complete model to exhibit FCD and subsequently

show a good fit to experimental data.
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4.2 Conditions for FCD

In this section we outline theoretical conditions required for a mathematical model of the

form

ẋ = f(x(m),Φ, [L]), (4.1)

Φ = g(x(m),Φ, [L]), (4.2)

to exhibit FCD as recently shown by Shoval and colleagues [121, 123]. Here Φ and [L] are as

previously defined whilst x(m) is an effective (methylation dependent) dissociation constant.

A set of four sufficient conditions are given for the existence of FCD [121, 123]. The first

two of these are that the model must exhibit a stable steady-state and exact adaptation (the

ability to return precisely to the pre-stimulus state). In addition to this a pair of homogeneity

conditions are given relating to a model of the form displayed in equations (4.1) and (4.2),

namely

f(px(m),Φ, p[L]) = pf(x(m),Φ, [L]), (4.3)

g(px(m),Φ, p[L]) = g(x(m),Φ, [L]), (4.4)

in which p is some constant such that p > 0. A proof of these two conditions as well as a

generalisation allowing a function ϕ(p, x) to be used in place of a constant p are given in the

supplementary information of [121].

4.3 FCD in a Whole-Pathway Model

We now progress to examining whether the whole-pathway mathematical model laid out

in Chapter 3 can exhibit FCD. This model is a more complete representation of the signalling

cascade within an E. coli cell than previously considered in analysing FCD in the E. coli chemo-

taxis literature [63]. Within this work we initially consider N (receptor signalling team size) to

be constant before discussing the implications for FCD when it depends upon the initial ligand

concentration.

As is common in the modelling of chemotactic systems, for now we shall consider only the cell

response to a single chemoattractant. The majority of the chemotaxis literature focuses on either

α-methylaspartate (MeAsp) or serine. These are mostly chosen due to the fact that they are

non-metabolisable (in the case of MeAsp) or are sensed by the most abundant chemoreceptors
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(in the case of serine). Within this work we consider the cell response to MeAsp as it is non-

metabolisable, thus its concentration remains constant in time.

Within the theoretical work of Shoval and colleagues [121, 123], a key assumption made is

that Koff
a ≪ [L] ≪ Kon

a , i.e. the extracellular ligand concentration must be much larger than

the ligand dissociation constant of an inactive chemoreceptor whilst also being much smaller

than the dissociation constant for an active chemoreceptor. Following the example of Shoval et

al. [121] this allows us to make two simplifications to the logarithmic terms in equation (3.11),

namely

ln

(

1 +
[L]

Kon
a

)

≈ ln(1) = 0, (4.5)

and

ln

(

1 +
[L]

Koff
a

)

≈ ln

(
[L]

Koff
a

)

, (4.6)

which, alongside the fact that νa = 1, reduces equation (3.11) to

F = N

[(

1−
m

2

)

+ ln

(
[L]

Koff
a

)]

. (4.7)

Substituting this expression into equation (3.9), we obtain

Φ =
1

1 +
(

[L]
x(m)

)N
, (4.8)

in which x(m) = Koff
a exp ((m− 2)/2).

It is now possible to assess whether the model considered here will satisfy the four sufficient

conditions for FCD [121, 123]. These conditions only apply to two expressions which may appear

to be problematic given the size of the model considered here. The composition of the model,

however, means that it is only two expressions (those for Φ and x(m)) that must be taken into

account when attempting to show the existence of FCD.

The first two sufficient conditions are that the mathematical model must exhibit a stable

steady-state and exact adaptation. That this model displays a stable steady-state was previously

demonstrated in Sections 3.2.3 and 3.2.4. It has also been shown within the literature that the

model in question here exhibits exact adaptation [70].

In order to examine the sufficient condition stated in equation (4.3) we must consider our

expression for x(m). This is the effective dissociation constant of the receptor to the chemoat-

tractant [121]. Testing this condition requires us to examine the temporal derivative of x(m)
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which, upon use of the chain rule, is given by

ẋ =
∂x

∂m

dm

dτ
=

1

2
x(m)

dm

dτ
= f(x(m),Φ, [L]). (4.9)

The sufficient condition given by equation (4.3) may then be tested by multiplying x(m) and

[L] by some constant p > 0 which gives

f(px(m),Φ, p[L]) =
1

2
px(m)

dm

dτ
= p

(
1

2
x(m)

dm

dτ

)

= pf(x(m),Φ, [L]), (4.10)

which clearly satisfies equation (4.3).

Examination of equation (4.8) is necessitated by condition (4.4). Noticing that

Φ =
1

1 +
(

[L]
x(m)

)N
= g(x(m),Φ, [L]), (4.11)

allows this condition to be tested in a similar manner to equation (4.3). Multiplication of the

x(m) and [L] terms by the same constant p > 0 yields

g(px(m),Φ, p[L]) =
1

1 +
(

p[L]
px(m)

)N
=

1

1 +
(

[L]
x(m)

)N
= g(x(m),Φ, [L]). (4.12)

As with the first homogeneity condition this gives clear evidence that the sufficient condition

(4.4) holds.

It has now clearly been demonstrated that each of the four sufficient conditions for FCD are

satisfied for this model. It is also worth noting here that, according to the conditions given by

Lazova et al. [122], any linear choice of the offset energy function h(m) should not affect the

ability of the model to exhibit FCD. Having satisfied these conditions we would now expect each

chemotaxis protein within the model to exhibit FCD since, as shown in Section 3.2.3, the ODEs

for each chemotaxis protein are not ligand dependent.

4.3.1 Numerical Simulations

Here we use numerical simulations to provide examples of the model exhibiting FCD. The

model equations ((3.16)-(3.19), (3.9) and (3.11)) were solved in MATLAB (MathWorks) using

the ordinary differential equation solver ode15s and the parameter values in Tables 3.1 and 3.2.

We allow our system to evolve to steady-state. The resultant values of m, ap, yp and bp are used

as our initial conditions in subsequent simulations. If we now assume that each chemoreceptor

signalling team is such that N ≫ 1, then in the range of ligand concentrations considered here
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Figure 4.2: Plots displaying the behaviour of each chemotaxis protein in response to two-fold
(left column) and five-fold (right column) changes in extracellular ligand concentration (applied
at t = 5 seconds). Blue lines represent the response for an initial ligand concentration of 0.1mM
and red stars for an initial ligand concentration of 0.2mM. Note that a relative error tolerance
(‘RelTol’) of 10−8 and a maximum time step (‘MaxStep’) of 0.1 were used in the production of
these simulations.

(Koff
a ≪ [L] ≪ Kon

a ) our steady-state average chemoreceptor methylation level may be given

by

m∗ ≈ 2

[

1− ln

(

Koff
a

[L]

)]

. (4.13)

This indicates that the average chemoreceptor methylation level is dominated by the ratio of

Koff
a to [L]. It is clear that in cases considered here, in which we have Koff

a ≪ [L], this will

yield a fairly large steady-state methylation level. It is often stated that each Tar receptor

dimer possesses eight methylation sites [69]. At first glance this would seem to make our high

methylation levels seem unrealistic. However, this is not the case since each CheR and CheB-P

is able to bind to a 35 amino-acid tether attached to a Tar receptor [124]. Once bound to

this tether, each CheR or CheB-P is able to methylate/demethylate approximately six nearby

receptor dimers [68]. This group of receptor dimers is termed an assistance neighbourhood [125].

The effect of these assistance neighbourhoods is to increase the ladder of possible methylation

states from 8 to ∼48 [68], meaning that high methylation levels, as defined by equation (4.13),

are feasible.
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Figure 4.3: Plots displaying the behaviour of CheY-P and average receptor methylation level
of a signalling team in response to two-fold (left column) and five-fold (right column) changes
in extracellular ligand concentration. Blue lines represent the response for an initial ligand
concentration of 0.1mM and red stars for an initial ligand concentration of 0.2mM.

A number of numerical simulations are used here to demonstrate the existence of FCD in

the range of initial ligand concentrations 0.1mM≤ [L]0 ≤ 0.7mM. Figures 4.2 and 4.3 show

the behaviour of each phosphorylated chemotaxis protein and the receptor methylation level in

response to two- and five-fold changes in ligand concentration for initial ligand concentrations of

0.1mM and 0.2mM. From the results in Figures 4.2 and 4.3 FCD is evident for each chemotaxis

protein; each shows the same shape, amplitude and recovery time in response to equal fold-

changes in ligand concentration.

As mentioned earlier, a number of simplifying assumptions have been applied to the original

mathematical model of Clausznitzer et al. [70]. In spite of these assumptions the model still gives

good agreement with the full Clausznitzer et al. [70] model and thus also with their experimental

FRET measurements. We note in particular the similarity between model and experiment in

the time taken for the system to fully adapt to a change and the amplitude and profile of the

response curves obtained.
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4.3.2 Parameter Sensitivity Analysis

The results of Section 4.3 suggest that the property of FCD will be robust to variation in

parameters in the signalling cascade. In order to test this result we undertook a local sensitivity

analysis of the kinetic rate parameters and total protein concentrations. Each of the kinetic rate

constant values and total protein concentrations in Table 3.1 were both increased and decreased

by an order of magnitude such that 0.1x ≤ x ≤ 10x, where x represents the initial parameter

value. Numerical results obtained for each parameter variation showed that FCD still holds

for all elements of the signalling cascade irrespective of which parameter value was varied, thus

confirming the theoretical results of Section 4.3.

Non-Constant Receptor Signalling Team Size

Interestingly, there is experimental evidence that the size of a receptor signalling team varies

with the extracellular ligand concentration [62]. With this being the case Clausznitzer et al. [70]

state an expression for the size of a receptor signalling team, which is

N = a0 + a1[L]0, (4.14)

where a0 and a1 are fitting parameters (given values of a0 = 17.5 and a1 = 3.35, respectively)

and [L]0 represents the initial extracellular ligand concentration. Consideration of a model such

as this would result in the use of a different value of N for each simulation. Essentially this would

amount to changing the value of a parameter between consecutive numerical simulations of the

model. Based on the theory presented in previous sections we would expect that this would not

result in FCD. This is expected since the set of model parameters is essentially altered upon

the application of each change in ligand concentration. This prediction is verified by the results

shown in Figure 4.4. Given the dependence of the signalling team size N on the initial ligand

concentration a small variation was observed between responses for the same fold-change. In

order to quantify this effect we consider two pairs of numerical simulations. The first considered

the application of a two-fold increase applied to two initial ligand concentrations falling in the

FCD1 regime. The second pair of simulations was similar but for initial concentrations lying in

the FCD2 regime. In each case the variation in observed behaviour, i.e. the extent to which

FCD fails, is rather small (< 5% of the initial CheY-P response magnitude for two-fold changes

in ligand concentration, for both the FCD1 and FCD2 regimes). We would expect that this

variation is not likely to be detectable in an experimental setting.
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Figure 4.4: FCD does not hold exactly when considering a non-constant signalling team size.
Simulations are displayed for initial ligand concentrations of 0.1mM and 0.2mM in response to
a two-fold change in ligand concentration, normalised with respect to the initial steady-state
concentration. The inset shows more clearly that FCD does not hold since the shape of the
response is not the same in both simulations.

4.4 How Realistic are the Required Dissociation Constants?

In Section 4.3 it was assumed that Koff
a ≪ [L] ≪ Kon

a , which allowed the model to meet

the conditions defined by equations (4.3) and (4.4).

In order to determine whether this condition holds for all cases in vivo we conducted a

literature search and obtained dissociation constant values for Tar receptors, as detailed in

Table 4.1. It is clear that these values vary significantly depending on the source. In particular

we can see that dissociation constant values for an inactive Tar chemoreceptor (Koff
a ) vary in the

range 1.7-30µM whilst active Tar chemoreceptors (Kon
a ) have been proposed to take dissociation

constant values in the range 12-3000µM . We would expect that the dissociation constant values

utilised by Tu and colleagues [63, 33, 126], Sourjik & Berg [127] and Endres, Wingreen and

colleagues [70, 66, 69, 60, 68, 128, 65] yield a large enough separation between dissociation

constants as to satisfy Koff
a ≪ [L] ≪ Kon

a , albeit with different sizes of FCD regimes. The final

range of dissociation constant values were proposed by Bray and colleagues who suggest that the

two dissociation constants should be very close together. This will clearly make it difficult for a

model of the form of equations (3.16)-(3.19) to exhibit FCD from a model using these values.

The range of values used for the dissociation constants within the literature is clearly very

large. However, in the majority of cases shown in Table 4.1 we would expect the condition

Koff
a ≪ [L] ≪ Kon

a to hold for some range of extracellular ligand concentrations ([L]).
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Table 4.1: Dissociation constants for active and inactive Tar receptors, as reported in the liter-
ature.

Dissociation Constant

Inactive Receptor (Koff
a ) Active Receptor (Kon

a ) Source

∼18µM ∼3000µM [63, 33, 126]
20µM-25µM 500µM [70, 66, 69, 60, 68, 128, 65]
30µM 1000µM [127]
1.7µM 12µM [129, 53]

4.4.1 Multiple Receptor Types

Within Section 4.3 we assumed that only Tar receptors are able to detect a chemoattractant

gradient. However, there is evidence that E. coli cells will respond using both Tar and Tsr

chemoreceptors. Tsr are predominantly serine sensing chemoreceptors, however they are also

able to bind MeAsp (see Table 4.2), albeit with a much lower affinity [70]. As such we now

consider whether it is feasible that a cell could exhibit FCD in the case where two or more

receptor types can detect the same attractant gradient.

Theoretically it can be shown that FCD will hold for a model with two types of chemoreceptor

as in equation (3.10). In this case, one must consider the sufficient conditions detailed in

Section 4.2, however, the form of this model requires the use of a generalised function ϕ(p, x) [121]

of the form ϕ = pR (A. Hamadeh and E. Sontag, personal communication), where R represents

the sum of all νi for each receptor type (i = a, s). The proof of this takes a very similar form to

that in Section 4.3. More details are given in Appendix E. We undertook numerical simulations

of our model using this assumption with the receptor free-energy described by equation (3.10)

and found that all proteins in the signalling network demonstrated FCD as per the theoretical

predictions. These numerical simulations are shown in Figure 4.5. Recent experimental work

has shown FCD may be observed in cells expressing a wild-type receptor configuration [122].

This same work demonstrated the existence of two regimes of FCD behaviour, namely FCD1

([L]0 = 0.018− 0.23mM) and FCD2 ([L]0 = 0.82− 10.3mM), where [L]0 is an initial ligand (e.g.

MeAsp) condition. In light of these results and those displayed in Figure 4.5 we consider the

dissociation constant values displayed in Table 4.2 to see whether these two FCD regimes may

be explained theoretically.

It is clear upon inspection of the dissociation constant values in Table 4.2 that it would be

Table 4.2: Dissociation constants of Tar and Tsr receptors for MeAsp, as reported in the liter-
ature.

Type Koff
a/s Kon

a/s Source

Tar (a) 1.7×10−3mM 0.5mM [70, 129]
Tsr (s) 100mM 106mM [70]
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Figure 4.5: Theoretically E. coli cells are able to display FCD in the presence of two receptor
types. Plots displayed here are for a model containing both Tar and Tsr receptors. Responses
are for a two-fold change in extracellular ligand concentration with initial concentrations of
0.1mM and 0.2mM. Panel (a) shows the response of CheY-P and (b) the receptor methylation

level. Plots were created using Koff
s =0.1mM and νs = 1.4.

difficult in the case where multiple receptors bind the same ligand to choose a ligand concen-

tration that would ensure Koff
i ≪ [L] ≪ Kon

i would hold for each receptor type. However, the

conditions [L] ≪ Koff
i ≪ Kon

i and Koff
i ≪ Kon

i ≪ [L] may also result in similar receptor free-

energy expressions to those given by equations (4.5) and (4.6) (see Table 4.3 for details). Hence,

FCD may potentially be found even in cases where Koff
i ≪ [L] ≪ Kon

i does not hold. Here this

results in five possible FCD regimes, as seen in Figure 4.6. In particular, we may use the values

in Table 4.2 to explain the two regimes of FCD behaviour. The FCD1 regime ([L]0 =0.018-

0.23mM) clearly satisfies Koff
a ≪ [L] ≪ Kon

a for Tar receptors and [L] ≪ Koff
s ≪ Kon

s for Tsr

receptors, when binding MeAsp. Similarly, for the FCD2 regime ([L]0 = 0.82 − 10.3mM) we

satisfy Koff
a ≪ Kon

a ≪ [L] for Tar receptors and [L] ≪ Koff
s ≪ Kon

s for Tsr receptors. The

relationship between these regimes of FCD behaviour and the sensitivity curve of a chemore-

ceptor signalling team is shown in Figure 4.7. Within this figure we can clearly see that the two

experimental regimes of FCD behaviour correspond to maxima and minima of the sensitivity

curve. This is perhaps unsurprising since at these points the sensitivity of the chemoreceptor

signalling team is essentially constant for a range of ambient ligand concentrations.

Table 4.3: Effects of different ligand and dissociation constant conditions on the free energy
expressions of active and inactive chemoreceptors.

Reduction to Active Reduction to Inactive

Condition (Koff
i ) Receptor Free Energy Receptor Free Energy

[L] ≪ Koff
i ≪ Kon

i ln(1 + [L]/Kon
i ) ≈ ln(1) = 0 ln(1 + [L]/Koff

i ) ≈ ln(1) = 0

Koff
i ≪ [L] ≪ Kon

i ln(1 + [L]/Kon
i ) ≈ ln(1) = 0 ln(1 + [L]/Koff

i ) ≈ ln([L]/Koff
i )

Koff
i ≪ Kon

i ≪ [L] ln(1 + [L]/Kon
i ) ≈ ln([L]/Kon

i ) ln(1 + [L]/Koff
i ) ≈ ln([L]/Koff

i )
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Figure 4.6: For a cell with two receptor types capable of sensing the same ligand we would predict
five separate regimes of FCD behaviour (braces). Experimental work was able to demonstrate
just two regimes of FCD behaviour, likely to be due to the cell’s range of ligand sensitivity and
small ligand concentrations not considered experimentally (red boxes). As such, we have two
remaining regimes of FCD behaviour, namely FCD1 and FCD2 (blue boxes). Note that the
regime FCD2 is truncated somewhat by the ligand sensitivity range of the cell.
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Figure 4.7: (a)After Mello & Tu [33], a plot showing the sensitivity of a chemoreceptor signalling
team for different extracellular chemoattractant concentrations. The blue line shows sensitivity
when only Tar receptors bind MeAsp whereas red shows the sensitivity when both Tar and
Tsr receptors bind MeAsp. The effect of low affinity binding of MeAsp to Tsr receptors is
demonstrated by the difference between the two curves. (b) Examining the sensitivity of E. coli
receptor clusters within different ambient ligand concentrations shows that the two regimes of
FCD behaviour predicted experimentally correspond to maxima and minima of the sensitivity
curve. (c) Numerical simulations of the mathematical model using the full receptor free-energy
expression, i.e. equation (3.10) demonstrate that FCD holds inside the two regimes of FCD
behaviour (blue and green lines & crosses) whereas it fails outside of these (red line & crosses).
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4.4.2 Multiple Different Ligand Types

In light of the results of Section 4.4.1 we now consider the effect of the cell detecting two

different ligands (MeAsp and serine). This situation is of special interest since the affinity of Tsr

receptors to MeAsp is so low, meaning MeAsp binding to Tsr receptors generally has very little

effect. In this case we consider a situation whereby both receptor types are present in similar

numbers and bind separate ligands. Parameter values have already been given for the binding

of MeAsp to Tar receptors in Table 4.2. For the particular case considered here we must define a

new chemoreceptor free-energy expression containing the effects of binding two different ligands.

This is of the form

F =

[(

1−
m

2

)

+NTar ln

(
[La]

Koff
a

)

+NTsr ln

(
[Ls]

Koff
ser

)]

, (4.15)

within which [La,s] denote the MeAsp and serine concentrations, respectively. The ligand (serine)

dissociation constant of an inactive Tsr receptor is chosen such that Kon
ser = 6 × 10−3mM [64].

As per Kalinin et al. [64] we consider receptors to be present in different quantities, namely

NTar = 6 and NTsr = 12, where NTar is the number of Tar receptors and NTsr is the number

of Tsr receptors present in a signalling team.
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Figure 4.8: FCD may be displayed in situations where multiple receptor types act to bind
separate ligands. Responses are for initial ligand concentrations of [L]a0 = 0.1mM with [L]s0 =
0.2mM and [L]a0 = 0.2mM with [L]s0 = 0.3mM. Ligand concentration changes were two-fold in
MeAsp and three-fold in serine.

In order to test whether FCD can be displayed when cells sense two different ligand types we

perform numerical simulations of the model utilising the chemoreceptor free-energy expression

given by equation (4.15). Here we shall consider a different fold-change for each ligand in addition

to the case where each ligand is subject to an equal fold-change. As with the previous multiple

receptor case, theoretically we discover that FCD will hold when each receptor satisfies either
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[L] ≪ Koff
i ≪ Kon

i , Koff
i ≪ [L] ≪ Kon

i or Koff
i ≪ Kon

i ≪ [L]. Figure 4.8 displays numerical

results verifying that FCD holds in this signalling team configuration. It should therefore be

biologically feasible given experimentally determined values for the ligand dissociation constants

of Tar and Tsr receptors to MeAsp and serine in both cases where receptors bind either the same

or separate ligands.

4.5 Summary & Discussion

Within this chapter we have demonstrated, using both theoretical and numerical techniques,

that the property of FCD is present within the model of the E. coli chemotaxis signalling pathway

described in Chapter 3. In particular, it has been shown that FCD may hold in a number of

different cases. These include situations whereby one receptor type binds one ligand type, two

receptor types bind to one ligand type and finally, two receptor types separately bind two ligand

types.

Using a parameter sensitivity analysis we were able to show that FCD is a robust property

of the E. coli chemotaxis signalling network. However, considering a model within which re-

ceptor signalling team size is dependent upon the ambient ligand concentration causes FCD to

fail. Importantly though we find only a small variation from FCD behaviour within the two

experimentally determined FCD regimes.

Here we have demonstrated that the two experimentally determined regimes of FCD be-

haviour are reproduced by the mathematical model when we allow both Tar and Tsr chemore-

ceptors to bind the chemoattractant MeAsp. In particular, we may predict that for a cell with n

different receptor types, able to bind the same ligand, there could exist 2n+1 separate regimes

of FCD behaviour. However, examining results within the experimental literature we can justify

the elimination of the three predicted additional regimes, leaving just those discovered by Lazova

et al. [122].

The results in this chapter raise interesting questions as to the occurrence of FCD in more

complicated cell signalling architectures. Results here tend to suggest that so long as the sensing

components of the cascade (most commonly those areas of the cell where receptor-ligand binding

is controlled) can exhibit FCD then the underlying signalling cascade should not affect the

FCD response. This has interesting implications for other intracellular signalling cascades in

prokaryotic and eukaryotic systems.
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Chapter 5

Overshoot in Escherichia coli

In this chapter we seek to elucidate the mechanism(s) behind the phenomenon of overshoot

within the chemotaxis signalling pathway of E. coli cells. We begin by summarising some

key background literature in order to demonstrate the motivation behind this study. Here we

hypothesise that overshoot may be modelled as damped oscillatory behaviour and seek conditions

under which this hypothesis holds. A numerical routine is developed and utilised in order to

search each possible two-parameter space for such conditions. Using this numerical routine we

find that total protein concentrations and not kinetic rates must be responsible for the emergence

of overshoot. A number of model reductions are subsequently considered, allowing an analytical

condition to be found describing when overshoot will occur. Using this condition we are then able

to identify a balance between receptor dynamics and CheB-P feedback as important in causing

overshoot. Finally, results are compared to experimental data and discussed with reference to

their biological feasibility.

5.1 Motivation

In response to a change in the extracellular ligand concentration, the phosphorylation level

of proteins in the cell will undergo a rapid increase or decrease. After this, the phosphorylation

level of proteins is usually assumed to gradually return its pre-stimulus value. However, where

the phenomenon of overshoot is evident, cellular phosphorylation levels will transiently exceed

their pre-stimulus levels in the opposing direction of the rapid initial change (see Figure 5.1).

The phenomenon of overshoot within signalling systems is not widely discussed in either the

experimental or theoretical literature. However, some examples of each do exist.

Experimentally, overshoot was first observed in the late 1970s and 1980s. This work noted

that if E. coli cells were challenged with an impulse stimulus (i.e. one lasting a very short period

of time), they would exhibit overshoot [130, 36, 37, 46].
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Figure 5.1: Diagrams showing two examples of the E. coli chemotactic response. (Left) In a
cell that does not display overshoot, the initial rapid response is followed by a period of smooth
transient behaviour in which the cell returns to pre-stimulus levels. (Right) When a cell does
display overshoot there exists a transient period during which the cellular phosphorylation level
exceeds its steady-state in the opposite direction from the initial rapid response.

Min et al. [131] have shown overshoot to exist in response to step-changes in the extracellular

ligand concentration [131], i.e. where a stimulus persists indefinitely. This work utilised an

experimental method known as ‘optical tweezers’ to demonstrate that the overshoot amplitude

(the degree to which the cell exceeds the pre-stimulus value) is dependent upon the size of

stimulus applied [131, 132].

Min et al. [131] also give alternative ideas as to why the phenomenon is not widely observed

within experimental work. These are as follows.

• Inadequate experimental duration: Experimentally it is necessary to choose a time

period over which to monitor features of interest. This time period may often be chosen

to be as short as possible given the exact feature of interest so as to minimise both finan-

cial and time costs associated with the relevant experimental work. Thus in many cases

experiments may not be of a sufficient duration to observe overshoot behaviour.

• Insufficient temporal resolution: Another necessary choice when designing experi-

ments is that of the temporal resolution. In other words, it is necessary to choose how

many data points must be captured within a given time frame so as to enable conclusions

to be drawn from the resulting data. A number of limitations including equipment avail-

ability and setup times may limit the resolution chosen for a particular experiment. Since

overshoot is a transient feature, the use of lower temporal resolutions may mean that there

are not sufficient data points as to be able to observe overshoot.

• Ligand dependency of overshoot amplitude: The experimental work of Min et

al. [131] shows that the amplitude of overshoot (i.e. the extent to which phosphorylation

transiently exceeds steady-state) is dependent upon the size of ligand stimulus applied.

It is likely therefore, that much of the experimental literature has considered stimuli that
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would yield either no or very small overshoot amplitudes that would be difficult to classify

without prior knowledge of where it may occur.

Whilst there has been little experimental investigation into overshoot, there exist examples

in the theoretical literature. A number of different mechanisms have been postulated as to the

cause of overshoot.

One such example is that due to Hansen et al. [128] that considers a Monod-Wyman-

Changeux (MWC) model of receptor clustering which has been adapted to allow transient in-

teractions between small receptor teams within a larger fixed chemoreceptor array. Within this

work the possibility of an overshoot in the methylation level of chemoreceptors was predicted.

More specifically, when a cell responds to a stimulus composed of just one ligand it is sug-

gested that non-ligand binding chemoreceptor types may become transiently methylated due to

their coupling with ligand binding receptors. An example of this is that when challenged with

an aspartate stimulus, Tar receptors would methylate as normal, however Tsr (serine sensing

chemoreceptors) may also become methylated due to the coupling of the two receptor types.

The work of Lan et al. [133] predicted a similar mechanism using a local adaptation model.

This work predicted that the activity of one chemoreceptor type may overshoot due to cross-

talk in receptor methylation. This work gives an example in which the proposed mechanism

yields overshoot in response to an aspartate stimulus. In this case, the average methylation

level of Tar chemoreceptors will monotonically reach a new steady-state level whilst the average

methylation level of Tsr chemoreceptors would change only transiently before returning to its

previous steady-state. As a result of this, the average Tar chemoreceptor activity would relax

monotonically to steady-state whereas that of Tsr chemoreceptors would overshoot before fully

returning to it pre-stimulus steady-state.

Whilst it is clear that overshoot has been mentioned within the theoretical literature, it

has mainly been referred to within a study into other features of the chemotactic signalling

pathway. As such, the mechanisms associated with overshoot have not been clearly identified.

Thus within this chapter we analyse the mathematical model from Chapter 3 and investigate

the roles of pathway signalling dynamics, negative feedbacks and their associated timescales and

how these combine to form a mechanism by which cells exhibit overshoot.

5.2 Hypothesis

Prior to analysing mathematical models, it is often useful to form hypotheses in advance

which may act as a sense check of the results obtained. As such we begin by considering

the network structure of the E. coli chemotaxis signalling pathway. Upon doing so we note the

56



existence of a negative feedback loop in which the protein CheB-P acts to reduce the methylation

level of the chemoreceptors. This particular feature of the network is of interest since negative

feedback is known to have the potential for creating oscillatory behaviour within monotone

dynamical systems (i.e. those in which proteins activating certain processes do not repress that

process at a different concentration and vice versa) [134, 135, 136].

Motivated by the existence of this negative feedback loop, we postulate that overshoot can

be described as damped oscillatory behaviour. As such, in the remainder of this chapter, we

consider the model laid out in Chapter 3 and ask under what conditions it exhibits overshoot.

5.3 Methodology

In this section we consider methods that are needed in order to test the hypothesis stated in

Section 5.2. The hypothesis that overshoot may be modelled as damped oscillatory behaviour

requires an investigation into how variation in parameter values affect eigenvalues of the system

steady-state. Thus we appeal to the theory of asymptotic stability analysis (see Appendix C).

Within Section 3.2.4, an asymptotic stability analysis for the model laid out in Chapter 3

showed that it displays (non-oscillatory) stable behaviour for the parameter values in Table 3.1.

In this case, for an eigenvalue described as

λ = a+ ib, (5.1)

the magnitudes of the real (a) and imaginary (b) parts are such that a < 0 and b = 0, respectively.

However, here we are interested in the emergence of damped oscillatory (overshoot) behaviour.

As such we are seeking conditions leading to eigenvalues with a < 0 and b 6= 0, respectively.

In order to find such conditions we consider variation in each of the parameters in the

system. In particular we wish to examine the effects of variation in the eight kinetic rate

parameters (denoted ki for i = 1, 2, 3, 4, 5, 6 and gj where j = B,R) and the total intracellular

protein concentrations (denoted [X]T where X = A,B,R, Y, Z). For the purposes of simple

visualisation and interpretation of results we consider pair-wise variations of parameters, i.e. we

vary two parameters at a time and examine for which combinations overshoot is exhibited. As

such twenty eight separate pairs of kinetic rates must be examined in addition to ten distinct

pairs of total protein concentrations.

It will clearly not be practical to study the asymptotic stability of the required 38 parameter

pairs by hand for a four dimensional non-linear ODE model. As such a numerical routine was

formulated that is capable of examining the asymptotic stability in the region about the steady-
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state of a system over some pre-defined range for any pair of parameters in the system. This

stability analysis routine takes the following form.

Algorithm 1

1: Define a base set of parameters
2: Loop over values of selected kinetic rate/protein concentration
3: Loop over values of selected kinetic rate/protein concentration
4: Calculate steady-state values of each variable
5: Construct the Jacobian matrix
6: Solve for the eigenvalues
7: Store required parts of the eigenvalues
8: End loop
9: End loop

10: Plot results

The routine discretises a two parameter space into a grid of equally spaced values. Using

a similar approach to that in Section 3.2.3, the routine calculates the system steady-state. A

stability analysis about this steady-state is then undertaken, using the approach in Section 3.2.4,

for each point in that discretised parameter space. Results obtained from this routine can then be

used to see for which combinations of those two chosen parameters damped oscillatory behaviour

is possible.

Figure 5.2: Overshoot amplitude is calculated as a percentage of either the steady-state CW
flagellar rotation bias or the CheY-P concentration. Shown is an example of overshoot amplitude
calculated for a step-increase in external ligand concentration. The magnitude of the overshoot
is divided by the steady-state CheY-P concentration or CW rotational bias and then multiplied
by 100, giving a value for the overshoot amplitude.

In addition to the numerical routine defined here we also wish to calculate overshoot am-

plitude. This is necessary so that we may compare the theoretical results obtained within this

chapter to the experimental data of Min et al. [131]. Taking a lead from this experimental

work we consider overshoot amplitude to be calculated as a percentage of the steady-state CW

bias or CheY-P concentration, as shown in Figure 5.2. For a step-increase in the extracellular

ligand concentration we take the peak amplitude of the overshoot i.e. the maximum CW bias

or CheY-P concentration minus their steady-state value. This is then divided by the relevant
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steady-state and multiplied by 100, giving overshoot amplitude as a percentage of the steady-

state value. Other definitions of overshoot amplitude could also have been considered, however,

we chose this method so as to allow a fair comparison between our results and those of Min et

al. [131].

5.4 Full Four-Dimensional Model Results

Within this section we utilise the numerical routine from Section 5.3 in order to study the

effects of pair-wise variations in kinetic rate parameters and total protein concentrations.

Application of the numerical routine to the model from Chapter 3 yields the results displayed

in Figures 5.3-5.5.

In support of the hypothesis that the observed negative feedback may be the cause of over-

shoot in the chemotactic response of E. coli cells, we find that damped oscillatory behaviour is

observed for a number of pair-wise variations in kinetic rate parameters as seen in Figures 5.3-5.5.

In particular we find that 19 out of 28 possible pairs of kinetic rates yielded damped oscillations,

while the remaining 9 did not when each parameter was varied over both a ten-fold range up-

ward and downward. However, each protein molecule within the cell is essentially identical and

as such we would not expect the kinetic rates associated with protein-protein reactions to vary

to the extent required here. As such, the ten-fold (upward and downward) ranges considered

in Figures 5.3-5.5 do not represent biologically feasible ranges. Upon closer inspection of these

results we notice that in order for any of the base parameter values (red crosses) to be moved

into a blue region of damped oscillatory behaviour would require a larger variation than we

would expect to be biologically feasible.

Since pair-wise variations in the kinetic rate parameters of this system do not appear to be

able to explain the emergence of overshoot behaviour, we consider an alternative explanation. As

such we consider the experimental literature, within which it is known that intracellular protein

concentrations are subject to significant stochastic variation between cells [137]. In particular,

the concentration of each signalling protein has been shown to vary by as much as ten-fold

depending on strain and growth conditions, albeit with certain concentration ratios being more

tightly maintained than others [112].

Based upon these experimental observations, pair-wise variation over a ten-fold range in

each of the chemotaxis signalling proteins was considered. This yielded results demonstrating

that overshoot may be found under eight out of ten separate pair-wise protein concentration

variations, as seen in Figure 5.6. Interestingly, we may observe from these results that pair-wise

variations involving the proteins CheB, CheR, CheY and CheZ allowed overshoot to occur more
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Figure 5.3: Plots showing areas of parameter space in which oscillatory behaviour may be found
by varying two kinetic rate parameters (blue). These are regions in which at least two eigenvalues
of the system have non-zero imaginary part. A red cross is used to show the location of our base
parameter set.
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Figure 5.4: Plots showing areas of parameter space in which oscillatory behaviour may be found
by varying two kinetic rate parameters (blue). These are regions in which at least two eigenvalues
of the system have non-zero imaginary part. A red cross is used to show the location of our base
parameter set.
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Figure 5.5: Plots showing areas of parameter space in which oscillatory behaviour may be found
by varying two kinetic rate parameters (blue). These are regions in which at least two eigenvalues
of the system have non-zero imaginary part. A red cross is used to show the location of our base
parameter set.
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Figure 5.6: Areas of parameter space in which oscillatory behaviour may be found by varying
the total concentrations of two chemotaxis proteins. These are regions in which at least two
eigenvalues of the system have a non-zero imaginary part. The colours of the contour lines
represent the magnitudes of the imaginary parts of the eigenvalues obtained from the fourth-
order system. Note that red crosses indicate the location of our base parameter set (outside of
the plotted range in (d)). All concentrations are expressed in µM .
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readily than those pairs that included variation of the CheA concentration. Of particular interest

amongst the results obtained here is that where the total concentrations of CheB and CheY were

varied (see Figure 5.6(d)). In this particular case we note that in order to achieve overshoot,

the total concentrations of CheB and CheY must be increased and decreased, respectively from

the experimentally determined population average (i.e. from the values in Table 3.1). This

indicates that the ratio in total concentrations of CheB and CheY is important for observing

overshoot. Since phosphoryl groups are transferred from CheA-P to both CheB and CheY, the

ratio of these protein concentrations will clearly affect how many phosphoryl groups are passed

to each protein which, in turn, will affect the timescale and strength of CheB-P feedback onto

the receptor state.

The observation that certain pairs of proteins in the signalling cascade are more able to

produce overshoot than others led us to consider the ways in which protein concentrations

are managed within the cell. Proteins in the chemotaxis signalling pathway of E. coli cells are

known to be encoded by two separate operons (see glossary for definition), namely mocha (CheA,

CheW) and meche (CheB, CheR, CheY, CheZ) [138]. This operon structure is a key mechanism

by which cells are able to maintain suitable protein levels and ratios. Where proteins are encoded

in such a manner, we would expect the ratios of protein concentrations from the same operon

to be approximately fixed. Variation would be expected to exist between proteins of different

operons. Based upon these observations we therefore choose to group proteins as per the operon

in which they are encoded and allow variation over a ten-fold range. This entails varying the

concentration of CheA against concentrations of CheB, CheR, CheY and CheZ which are varied

in such a manner as to maintain constant ratios between them, the result of which is shown in

Figure 5.7.

We may see from the results in Figure 5.7 that a ∼3-fold increase in all protein concentrations

was sufficient to produce overshoot behaviour. This falls well within the biologically realistic

ten-fold variation. While individual total protein concentrations have been shown to vary by as

much as ten-fold, the ratios between protein concentrations have not been shown to vary by much

more than ∼30% [112]. Protein co-expression only limits stochastic fluctuations in the ratios

of proteins encoded within the same operon. Hence we would expect the maximal variation to

occur between proteins encoded by separate operons. Thus a biologically feasible range within

Figure 5.7 would be such that 0.7α ≤ β ≤ 1.3α where α is a fold-change in the proteins of

one operon and β a fold-change in the proteins of the other operon. It is also noteworthy here

that beyond a ∼4-fold increase in the concentration of CheA, the vast majority of change in

magnitude of the imaginary parts of the eigenvalues appears to be caused by variation in meche

operon proteins. This is supported by the earlier observation that pairs of proteins involving
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Figure 5.7: Operon-wise variation in protein concentration can produce overshoot behaviour. A
plot showing the magnitude of imaginary parts of the eigenvalues obtained when taking operon
wise fold-changes in chemotaxis protein concentrations. The biologically feasible region is shaded
in grey.

CheB, CheR, CheY and CheZ were more readily able to produce overshoot than those where

CheA was included.

5.5 Model Reduction Analysis

In this section we consider a number of reductions to the original model. This was done

in order to further investigate the roles of network structure, negative feedback and dynamic

timescales of the E. coli chemotaxis signalling cascade. In particular, we restrict our attention

here to the study of variation in total intracellular protein concentration. Using these reduced

mathematical models it should become more feasible to obtain analytical results that will lead

to a greater understanding of the mechanism(s) causing overshoot to occur.

When handling high order dynamical systems, a common approach is to use model reduction

techniques in order to produce lower order systems. Such reduced models are more amenable

to mathematical analysis due to the fact they include less equations and most likely fewer

parameters. However, there is a trade off between the convenience associated with these simpler

models and their ability to retain all key features of the full system (see Flach & Schnell [139]).

5.5.1 Model 1 - Third-Order System: QSSA Applied to CheY-P

Examination of the non-dimensional parameter set reveals that the rate of phosphotransfer

onto CheY is very fast in comparison to all other rates in the system (see Table 3.2). As such

we assume that this rate is fast enough that the protein CheY-P may be assumed to equilibrate
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Figure 5.8: Schematic representations of the four model reductions considered. (a) Reduction
to third-order by applying the quasi-steady-state approximation to CheY-P. (b) Reduction to
second-order via application of the quasi-steady-state approximation to both CheY-P and CheB-
P. (c) Reduction to second-order by assuming CheA-P may be represented by a multiple scaling
of receptor signalling team activity and representing CheY-P as a decouplable read-out vari-
able. (d) A first-order model due to Tu et al. [63]. Here solid lines indicate interactions while
dashed lines indicate quasi-steady-state/read-out variables. The dotted line in (d) represents
the decoupled expression for CheY-P.

instantly (see Fig. 5.8(a)). This results in the application of the quasi-steady-state approximation

(QSSA) to equation (3.18) which yields a third-order dynamical system of the form

dm

dτ
= γR(1− Φ)− γBb

2
pΦ = r1(m, bp), (5.2)

dap
dτ

= Φk̄1(1− ap)− k̄2(1− y∗p)ap − k̄3(1− bp)ap = r2(m, ap, bp), (5.3)

dbp
dτ

= α2k̄3(1− bp)ap − bp = r3(ap, bp), (5.4)

within which Φ is defined by equations (3.9) and (3.11) whilst y∗p represents the non-dimensional

steady-state for CheY-P, as given by

y∗p =
k2[AT ]ap

k2[AT ]ap + k4[ZT ] + k6
. (5.5)

Comparing results obtained from this reduced model and the full system shows that there are

only small changes in the steady-state values obtained, as can be seen in Figure 5.9.

In order to compare the stability characteristics of this reduced system and the full fourth-
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Figure 5.9: A plot displaying a behavioural comparison between the full fourth-order system
and the reduced third-order system of Section 5.5.1. Here a blue line represents the behaviour
of the full-system whereas red circles display the behaviour of the reduced model system. In this
case, in order to obtain the reduced model representation of CheY-P, equation (5.5) has been
solved at each time point.

order system we utilise our numerical routine from Section 5.3. As with the analysis of the full

fourth-order system we must consider the eigenvalues of the model’s Jacobian matrix. This is

given by

J =









∂r1
∂m

∂r1
∂ap

∂r1
∂bp

∂r2
∂m

∂r2
∂ap

∂r2
∂bp

∂r3
∂m

∂r3
∂ap

∂r3
∂bp









, (5.6)

within which

∂r1
∂m

=
−gR[RT ]Ne

FΦ2 − gB[BT ]
2b2pNe

FΦ2

2k5
= ρ1, (5.7)

∂r1
∂bp

=
−2gB[BT ]

2bpΦ

k5
= ρ2, (5.8)

∂r2
∂m

=
k1(1− ap)Ne

FΦ2

2k5
= ρ3, (5.9)

∂r2
∂ap

=
−1

k5

(
k1Φ+ k2[YT ](1− y∗p) + k2[YT ]

(
y∗2p − y∗p

)
+ k3[BT ](1− bp)

)
= ρ4, (5.10)

∂r2
∂bp

=
k3[BT ]ap

k5
= ρ5, (5.11)
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∂r3
∂ap

=
k3[AT ](1− bp)

k5
= ρ6, (5.12)

∂r3
∂bp

=
−k3[AT ]ap

k5
− 1 = ρ7, (5.13)

are the partial derivatives of equations (5.2)-(5.4) with respect to each of the three system

variables. In order to obtain the eigenvalues of the system it is necessary to find the characteristic

polynomial of this Jacobian matrix. In this case the eigenvalues are obtained by calculating the

roots of the characteristic polynomial given by

p(λ) = det |J − λI| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ρ1 − λ 0 ρ2

ρ3 ρ4 − λ ρ5

0 ρ6 ρ7 − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (5.14)

Upon examining the results obtained using our numerical routine, we may observe that only small

differences exist between the stability characteristics of this reduced system and the full fourth-

order system. Since there is very little difference in the steady-state and stability characteristics

of this reduced system when compared to the full fourth-order system, we may conclude that

analysis of this system may be of use in examining the cause of overshoot in the chemotactic

response of E. coli cells. As such, this model is considered in greater detail in Section 5.6.

5.5.2 Model 2 - Second-Order System: QSSA Applied to CheB-P & CheY-P

Analysis of dynamical systems becomes significantly simpler as their dimensionality is re-

duced. As such, in spite of the apparent validity of the third-order reduction in Section 5.5.1 we

investigate whether further reductions may be suitable.

Upon examining the parameter values in Table 3.1 we see that the rate of phosphorylation

of CheB-P is quite large in relation to a number of other rates. With this being the case we

now investigate the applicability of the quasi-steady-state approximation to both CheY-P and

CheB-P (as in Fig. 5.8(b)). Doing so results in a second-order dynamical system of the form

dm

dτ
= γR(1− Φ)− γBb

∗2
p Φ = r4(m, ap), (5.15)

dap
dτ

= Φk̄1(1− ap)− k̄2(1− y∗p)ap − k̄3(1− b∗p)ap = r5(m, ap), (5.16)

where Φ is given in equations (3.9) and (3.11) whilst y∗p and b∗p represent the non-dimensional

steady-states of CheY-P and CheB-P, respectively. The non-dimensional steady-state of CheB-P

68



is given by

b∗p =
k3[AT ]ap

k3[AT ]ap + k5
, (5.17)

while y∗p is given by equation (5.5).

In order to investigate the stability characteristics of this system it is necessary to investigate

the eigenvalues of the Jacobian matrix. In this particular case the Jacobian matrix is of the

form

J =






∂r4
∂m

∂r4
∂ap

∂r5
∂m

∂r5
∂ap




 , (5.18)

where

∂r4
∂m

= −
NgR[RT ]e

FΦ2

2k5
−
N [A]2T [B]2T gBk

2
3a

2
pe

FΦ2

2k5(k3[A]Tap + k5)
= ρ8, (5.19)

∂r4
∂ap

=
2gBk

3
3[A]

3
T [B]2Ta

2
pΦ

k5(k3[A]Tap + k5)3
−

2gBk
2
3[A]

2
T [B]2TapΦ

k5(k3[A]Tap + k5)2
= ρ9, (5.20)

∂r5
∂m

=
Nk1(1− ap)e

FΦ2

2k5
= ρ10, (5.21)

∂r5
∂ap

= −
k1Φ

k5
−
k2[Y ]T (1− y∗p)

k5
−
k2[Y ]T (y

∗2
p − y∗p)

k5
−
k3[B]T (1− b∗p)

k5
(5.22)

−
k3[B]T (b

∗2
p − b∗p)

k5
= ρ11,

are the partial derivatives with respect to each of the system variables. Thus, eigenvalues of this

system are obtained by solving

λ2 − λ (ρ8 + ρ11) + ρ8ρ11 − ρ9ρ10 = 0. (5.23)

Analysis of eigenvalues obtained from equation (5.23), found using the numerical routine laid

out in Section 5.3, shows that the region of parameter space in which damped oscillations are

found is significantly altered. In particular, we require a larger fold-change in all total protein

concentrations in order for Model 2 to exhibit overshoot. We must therefore conclude that this

particular reduction is not valid. In fact it would appear that the cause of this is that we have

removed the timescale upon which the feedback of CheB-P acts on the chemoreceptors. This

supports the assertion of the main text that the CheB-P feedback timescale is important for

overshoot to be observed.
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5.5.3 Model 3 - Second-Order System: CheA-P is a Multiple of Receptor

Activity

Due to the failure of the second-order model reduction considered in Section 5.5.2 we now

investigate an alternative method of reducing this model to a second-order dynamical system. In

this particular case we consider the concentration of CheA-P to be a simple multiplicative scaling

of the receptor signalling team activity, i.e. ΛΦ ≈ [Ap], in which Λ is calculated at steady-state

from a numerical simulation of the full system using parameters from Table 3.1 (see Fig. 5.8(c))

and Φ is described by equations (3.9) and (3.11). In addition to this we consider CheY-P to be

a decouplable read-out variable as in the model of Tu et al. [63]. This results in a second-order

dynamical system of the form

dm

dτ
= γR(1− Φ)− γBb

2
pΦ = r6(m, bp), (5.24)

dbp
dτ

= α2k̄3ΛΦ(1− bp)− bp = r7(m, bp), (5.25)

in which Λ is the multiplicative scaling of Φ such that ΛΦ ≈ ap.

In this case the assumption that CheY-P concentration is a (decoupled) output variable

means that all phosphoryl groups produced by CheA must transfer to CheB. Clearly this means

that the sharing of phosphoryl groups between CheB and CheY has been removed from the

system. We can also see that the timescale upon which CheA autophosphorylates has been

removed.

Once again, in order to analyse the stability characteristics of this system we must investigate

the eigenvalues of the Jacobian matrix. For this particular reduced model the Jacobian matrix

is of the form

J =






∂r6
∂m

∂r6
∂bp

∂r7
∂m

∂r7
∂bp




 , (5.26)

within which the partial derivatives with respect to each of the system variables are given by

∂r6
∂m

= −
NgR[RT ]e

FΦ2

2k5
−
NgB[B]2T b

2
pe

FΦ2

2k5
= ρ12, (5.27)

∂r6
∂bp

= −
2gB[B]2T bpΦ

k5
= ρ13, (5.28)

∂r7
∂m

=
NΛk3[A]T (1− bp)e

FΦ2

2k5
= ρ14, (5.29)

∂r7
∂bp

= −1−
k3Λ[A]TΦ

k5
= ρ15. (5.30)
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Here eigenvalues are obtained upon solving

λ2 − λ (ρ12 + ρ15) + ρ12ρ15 − ρ13ρ14 = 0, (5.31)

in which ρ12−15 are given by equations (5.27)-(5.30). Analysing these eigenvalues shows that

a large fold-change (∼9.5 fold increase) in all protein concentrations is required for this model

to display overshoot behaviour, as seen in Figure 5.10. Clearly this represents a significant

change from the original fourth-order dynamical system. Thus we conclude that Model 3 does

not represent a valid reduction for the system. This supports the notion that the timescales

of various reactions in the system as well as the sharing of phosphoryl groups between CheB

and CheY are important features in the mechanism causing damped oscillatory behaviour to be

observed.
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Figure 5.10: A large fold-change in all total protein concentrations is required to obtain overshoot
from a two ordinary differential equation model (equations (5.24) and (5.25)) in which the CheA-
P concentration is taken to be a multiplicative scaling of the receptor signalling team activity.
The line indicates the overshoot amplitude obtained within the protein CheB-P. Here CheB-P
is used in place of CheY-P since this has been eliminated from the model.

5.5.4 Model 4 - First-Order System: Tu et al. Model

In addition to the model reductions considered in Sections 5.5.1-5.5.3 we also analyse an

example contained within the theoretical literature. The particular model considered is that

due to Tu et al. [63]. This model consists of an ODE for the methylation kinetics of the

chemoreceptors that is defined by

r8 =
dm

dt
= kRcat[RT ]

1− Φ

1− Φ+KR
M

− kBcat[BT ]
Φ

Φ +KB
M

, (5.32)

71



in which Φ is defined as per equations (3.9) and (3.11) whilst k
R/B
cat and K

R/B
M are catalytic

rates and Michaelis-Menten constants of CheR and CheB, respectively. Here the concentration

of CheY-P is described by

d[Yp]

dt
= kaΦ−

[Yp]

τz
, (5.33)

in which ka is the rate of phosphotransfer from CheA-P onto CheY and τz is the dephosphory-

lation time of the protein CheY-P. This model (see Figure 5.8(d)) is based upon a number of

assumptions including CheB acting only on active receptors, CheR only acting upon inactive

receptors and that CheY-P decouples from equation (5.32). In addition to this we note that this

model utilises only the total concentration of proteins CheR and CheB, implying that the phos-

phorylated quantity is not important in determining the receptor state. In terms of our analysis

we need only investigate equation (5.32) since equation (5.33) decouples from equation (5.32).

Due to the failure of the second-order systems considered in Sections 5.5.2 and 5.5.3, as well as

the lack of negative feedback in this model, we do not expect it to yield the damped oscillatory

behaviour examined in this chapter.

Since equation (5.33) decouples from this system we need only consider the stability of

equation (5.32). This is done by considering

λ =
∂r8
∂m

=
NkBcat[BT ]e

FΦ3

2(KB
M +Φ)2

−
NkBcat[BT ]e

FΦ2

2(KB
M +Φ)

−
NkRcat[RT ]e

FΦ2

2(KR
M − Φ+ 1)

+
NkRcat[RT ]e

F (1− Φ)Φ2

2(KR
M − Φ+ 1)2

,

(5.34)

which is akin to a 1 × 1 real valued Jacobian matrix for the system. In this case the model

will yield just one eigenvalue. Since we only have one eigenvalue, it would be impossible to

obtain a complex conjugate pair of eigenvalues and so oscillatory behaviour cannot occur in this

model. In order to confirm this we considered a ten-fold increase and decrease in all relevant

total protein concentrations (varied by operon groupings) and as expected, found no oscillatory

behaviour. Whilst this model has been used to good effect in studies of other phenomena, it

is clear that it fails to capture the potential of the chemotaxis signalling pathway to display

damped oscillatory behaviour. The failure of this model to capture the stability characteristics

of the full fourth-order system led us to the conclusion that this particular model is not suitable

for investigating the causes of overshoot. However, the fact that this model does not include

protein phosphorylation would suggest that feedback of CheB-P onto the receptor state is critical

in producing overshoot.
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5.6 Understanding Key Principles of the Overshoot Response

Using model reduction analysis we have found some support for the idea that the dynamic

timescales of intracellular processes are important for the ability of a cell to display overshoot. In

order to further examine this, we seek to deduce within this section an analytic expression that

is capable of reproducing the region of damped oscillatory behaviour displayed in Figure 5.7.

As discussed in Section 5.5, the use of lower-order dynamical systems may significantly

simplify analytical work. Based on the analysis of various reduced model forms, here we shall

make use of the third-order reduction considered in Section 5.5.1. Since we seek to explain the

emergence of overshoot we must consider here the eigenvalues of the Jacobian matrix for this

system, as given by the roots of the characteristic polynomial. In order to do this we consider

the different analytical solution forms that may be obtained from a cubic polynomial of the form

p(λ) = λ3 +Aλ2 +Bλ+ C = 0, (5.35)

in which λ is an eigenvalue of the system and

A = − (ρ1 + ρ4 + ρ7) , (5.36)

B = ρ1ρ4 + ρ1ρ7 + ρ4ρ7 + ρ6ρ6, (5.37)

C = − (ρ2ρ3ρ6 + ρ1ρ4ρ7 + ρ1ρ5ρ6) , (5.38)

are the polynomial coefficients (found as per equation (5.14)) where ρ1−7 are defined by equa-

tions (5.7)-(5.13). These analytical solution forms are listed by Murray [140] and require con-

sideration of

A = 3a, B = 3b, α = a2 − b and β = 2a3 − 3ab+ C. (5.39)

The relative sizes of these A,B, α and β terms determine the appropriate solution form for the

polynomial p(λ).

In order to understand overshoot we are seeking a solution form capable of yielding at least

one pair of eigenvalues with non-zero imaginary part. As such we restrict our attention to those

combinations of A, B, α and β which yield such eigenvalues. Using the parameter values in

Table 3.1 reveals that just one condition is capable of producing damped oscillatory behaviour

from the third-order dynamical system. As such we find that β > 2α3/2 must hold in order for us

to obtain damped oscillatory behaviour. This condition may then be applied to our third-order
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dynamical system, giving the condition

2

27

k32[YT ]
3(1− y∗p)

3

k35
−

1

2

(gR[RT ] + gB[BT ]
2b∗2p )NeF

∗

Φ∗2k2[YT ](1− y∗p)(−k3[AT ]a
∗
p − k5)

k35

− k2[YT ](1− y∗p)

[

1

6

(gR[RT ] + gB[BT ]
2b∗2p )NeF

∗

Φ∗2k2[YT ](1− y∗p)

k35

−
1

3

k2[YT ](1− y∗p)(−k3[AT ]a
∗
p − k5)

k35

]

+
k1(1− a∗p)Ne

F ∗

Φ∗3k3[AT ](1− b∗p)gB[BT ]
2b∗p

k35

− 2

[

1

3

k2[YT ](1− y∗p)(−k3[AT ]a
∗
p − k5)

k25
−

1

6

(gR[RT ] + gB[BT ]
2b∗2p )NeF

∗

Φ∗2k2[YT ](1− y∗p)

k25

+
1

9

k22[YT ]
2(1− y∗p)

2

k25

]3/2

> 0. (5.40)

It is then possible to examine the magnitudes of each term within this expression by substituting

parameter values from Table 3.1. Upon doing so we find that all terms lie in the range O(104)

to O(107). We then choose to neglect the terms of the lowest order (i.e. those ≤ O(104)) which

yields the condition

Re

(
2

27
k32[YT ]

3(1− y∗p)
3
[

1− (1− x)3/2
])

> 5× 105, (5.41)

in which

x =
3N
2 e

F ∗

Φ∗2
(
gR[RT ] + gB[BT ]b

∗2
p

)
+ k3[AT ]a

∗
p + k5

k2[YT ](1− y∗p)
, (5.42)

and 5 × 105 is an approximation of the magnitude of the largest remaining term of less than

O(107). Within this expression N is the number of chemoreceptors in a signalling team which

has activity Φ, chemoreceptor free-energy F , [...T ] denotes the total concentration of the relevant

protein and a∗p and b∗p are the (non-dimensional) steady-state concentrations of proteins CheA-P

and CheB-P.

In order to investigate the ability of this analytical condition to reproduce the numerically

obtained region of damped oscillatory behaviour we compare the results obtained from equa-

tion (5.41) to those obtained upon application of the numerical routine from Section 5.3 to

the full fourth-order model (as in Section 5.4) and Model 1 (see Section 5.5.1). Results of this

comparison are shown in Figure 5.11.

Clearly, upon comparing the prediction of this condition to the numerical results obtained

from the full-fourth order and the third-order systems, we observe good agreement between

these and equation (5.41) apart from a small region close to zero. This is likely due to the

terms neglected in forming equation (5.41). However, this small region does not affect the
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Figure 5.11: A comparison of numerical and analytical approximations to the region in which
overshoot behaviour is found. The area above each of these lines signifies the region in which the
model exhibits damped oscillatory behaviour. The blue line indicates the region of oscillatory
behaviour found from the full fourth-order dynamical system. Red crosses show the region
in which oscillatory behaviour is found in the third-order case in which the quasi-steady-state
approximation has been applied to the concentration of CheY-P. The green line shows the region
predicted by the analytical condition given by equation (5.41).

results considered here since overshoot is only observed at higher fold-changes in total protein

concentrations. This suggests that key processes involved in causing overshoot are captured

by expression (5.41). Despite its relative simplicity we are able to see that this expression

includes processes associated with receptor dynamics, the feedback timescale of CheB-P and

phosphotransfer to CheY (see Table 3.1 for parameter definitions), suggesting they each play a

role in overshoot.

We may therefore be confident that the most important features responsible for causing

overshoot are contained within equation (5.41). As such we now seek to simplify this further

to investigate whether we may narrow down the potential cause(s) of overshoot. The term

(2/27)k32[YT ]
3(1 − y∗p)

3 is neglected since it is an approximately exponential multiplier, when

subjected to simultaneous equal fold-changes in all total protein concentrations. To leading

order, an asymptotic expansion of remaining terms (assuming x≪ 1) gives

1− (1− x)3/2 ≈
3

2
x+ ..., (5.43)

where ... indicates the addition of lower order terms. This leaves 3x/2 (where x is defined

by equation (5.42)) which is further simplified upon neglecting (2/3)k2[YT ](1 − y∗p) since it is

approximately linear for equal fold-changes in all total protein concentrations. We therefore
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restrict our attention to the numerator of equation (5.41), as given by

ψ =
3N

2
eF

∗

Φ∗2
(
gR[RT ] + gB[BT ]

2b∗2p
)

︸ ︷︷ ︸
Receptor

dynamics

+ k3[AT ]a
∗
p + k5

︸ ︷︷ ︸
CheB-P

feedback

. (5.44)

Figure 5.12 displays values obtained for ψ (equation (5.44)) in addition to the overshoot

amplitude which is calculated as per Figure 5.2. In particular the overshoot amplitude is calcu-

lated using numerical simulations of the reduced third-order system in Section 5.5.1 obtained for

equal fold-changes in the total concentrations of all protein concentrations. Interestingly, it may

be observed that the minimum of the curve obtained from equation (5.44) corresponds to the

initial fold-increase in all total protein concentrations at which a non-zero overshoot amplitude

is observed.

ψ

ψ

Figure 5.12: Receptor dynamics and CheB-P feedback timescale are critical in the occurrence
of overshoot behaviour. The solid line shows values obtained from equation (5.44) and dashed
lines show overshoot amplitudes calculated from numerical simulations, as per Figure 5.2. These
are obtained under equal fold-changes in the total concentrations of all chemotaxis signalling
proteins and are expressed as a percentage of the steady-state CheY-P concentration. The
location of the minimum of the solid line corresponds to the fold-change required in order to
obtain a non-zero overshoot amplitude.

We earlier noted that the first underbrace of equation (5.44) represents a contribution from

the receptor state, specifically methylation and demethylation rates are important, whilst the

second shows the importance of CheB-P feedback onto the receptor state, as shown by the pres-

ence of k3, k5, [AT ] and a
∗
p. In particular, [AT ]a

∗
p represents the number of phosphoryl groups

available for transfer from CheA-P onto CheB at steady-state while k3 shows how quickly the

phosphoryl groups may be transferred around the system, causing demethylation of chemore-

ceptors. As such we conclude that the balance between chemoreceptor dynamics and CheB-P

feedback is important in causing overshoot.

76



5.7 Comparison with Experimental Data

Recent experimental work sought to quantify the overshoot observed in the chemotactic

response of E. coli cells [131]. In particular, this work found that overshoot may be observed in

response to step-changes (in both directions) of the extracellular chemoattractant concentration.

The overshoot observed was shown to have an amplitude that is dependent upon the magnitude

of the ligand stimulus. For low and high extremes of ligand stimulus the overshoot amplitude

observed was negligible whereas a peak of as much as ∼20% of the pre-stimulus clockwise (CW)

flagellar rotation bias was observed for intermediate stimuli, here defined as those in the range

5-50µM.

Within this section we shall focus on exploring the overshoot observed in response to step-up

ligand stimuli since there exists a greater number of experimental data points with which we may

compare our results. The experimental data for step-up stimuli also span a wider range of ligand

concentrations which is useful in terms of comparing our theoretical results with experimental

data, however the model utilised here is capable of producing overshoot in response to both

step-up and step-down ligand stimuli.
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Figure 5.13: Overshoot amplitudes are dependent on the size of a ligand stimulus. Circles with
error bars display the results of Min et al. [131] for step increases in ligand concentration. These
results are expressed as a percentage of the steady-state tumble bias of cells. Black lines indicate
overshoot amplitudes obtained from numerical simulations under equal fold-changes in the total
concentration of all proteins with solid, dashed and dash-dot lines indicating six-, eight- and
ten-fold increases in all total protein concentrations, respectively, compared with those given in
Table 3.1.

Utilising numerical simulations of the full fourth-order dynamical system we find overshoot

amplitudes, for ten-fold variation in all total protein concentrations, of up to ∼50% of the pre-

stimulus CW flagellar rotation bias (calculated as per Morton-Firth & Bray [141]) in response

to a step-increase ligand stimulus of 50µM, as seen in Figure 5.13. However, we do not believe
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such high fold-changes in protein concentration are often likely to occur. We would therefore

not expect to achieve overshoot amplitudes in excess of the ∼25% attainable with an eight-

fold variation in all protein concentrations. Within a population of cells the average overshoot

amplitude is likely to be biased by those cells with higher protein concentrations (see Figure 5.12

and 5.13).

Results given within the experimental literature were calculated using a certain number of

run and tumble events [131]. Here we have calculated the peak value of overshoot amplitude as

a percentage of the steady-state CW flagellar rotation bias obtained from numerical simulations

of the model system. This may lead to some differences in results since those of Min et al. [131]

may not necessarily capture the peak value for the overshoot amplitude if the numbers of run and

tumble events do not coincide precisely with the peak overshoot amplitude. It is notable here

that adaptation times are significantly altered by variation in total protein concentrations (see

Figure 5.14) and as such there is no guarantee that counting a fixed number of run and tumble

events from the time of stimulus application will align with the point of maximal overshoot

amplitude.
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Figure 5.14: (a) Here the adaptation time is chosen to be the time necessary for a cell to recover
from half of the initial response. (b) Shown here are the overshoot amplitudes and associated
adaptation times for different size of step-up ligand stimuli, namely 0.1µM (represented by
crosses), 1µM (circles), 10µM (diamonds) and 100µM (squares). The different data points for
each stimulus refer to cells with different (1-10) fold-increases in the concentration of all proteins.
Shorter adaptation times are associated with larger fold-increases in all protein concentrations.
Clearly, cells with shorter adaptation times display larger overshoot amplitudes, however there
is also a dependence on the size of ligand stimulus applied, as noted by Min et al. [131].

It can be seen, upon examination of the results in Figure 5.13, that we do not capture the

negligible overshoot amplitude obtained in response to high extremes in chemoattractant stimuli.

One potential explanation of this is that during experimental studies chemoreceptor clusters have

been observed to break apart during responses to large, saturating stimuli and reappear once
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the cell has enough time to adapt in both E. coli and Bacillus subtilis [142, 143]. In fact, this

observation likely explains the difference between the experimentally obtained results for step-up

and step-down stimuli. In the case of a step-up stimulus it is possible for chemoreceptors to

become saturated and break apart resulting in negligible overshoot amplitudes. However, it is

not possible to saturate a chemoreceptor cluster via a step-down stimulus thus the overshoot

amplitude will not tail off for large stimuli. To our knowledge this phenomenon has not been

modelled within the literature and could therefore prove to be an interesting area for future

work.

5.8 Summary & Discussion

This chapter has demonstrated that within a mathematical model of the E. coli chemotaxis

signalling cascade both kinetic rate parameters and total protein concentrations can affect the

cellular response. Here it was discovered that pair-wise variations of kinetic rate parameters

were theoretically able to produce overshoot, however the magnitude of variation required was

too large to be biologically feasible. As such, this work focused on studying how network

structure and total protein levels affect receptor state, dynamic time scales and sharing of

phosphoryl groups in order to produce overshoot. In particular, examining the effects of operon-

wise variation in signalling protein concentrations, we found a balance between receptor state

and the timescale of CheB-P receptor demethylation to be a key feature responsible for overshoot

within the E. coli chemotactic response.

Within the literature the phenomenon of overshoot behaviour has most commonly been

discussed as a likely result of interaction between different chemoreceptor types. In particular,

past theoretical work has proposed overshoot to be caused by cross-talk in receptor methylation

levels [128, 133]. Also discussed theoretically is that a significant increase in the catalytic

rate of the protein CheR can result in increased overshoot amplitudes in response to impulse

stimuli [144]. However, we would not expect a kinetic rate (such as the CheR catalytic rate) to

vary by a large degree and thus this may not be the only mechanism responsible for overshoot

behaviour.

Numerous theoretical studies of E. coli chemotaxis signalling have failed to observe over-

shoot [70, 63, 30, 129]. There are likely to be numerous different reasons for this. Firstly, it is

common in mathematical modelling of such systems to utilise experimentally determined aver-

age protein concentrations. In terms of the average behaviour of a cell population this would

appear to be a reasonable approach, however it fails to account for the effects of the significant

stochastic variation in protein concentrations observed over a cell population [145]; effects which
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have been shown here to be important determinants of the transient cell response. Secondly,

simplified mathematical models give a number of benefits, particularly in terms of the ease with

which analytical results may be obtained. However, such simplifications not only alter the net-

work structure but the ability of the system to exhibit previously observed transient behaviour

as demonstrated in Section 5.5. In particular the ability of the model to fit with biological

observations may be greatly altered or lost altogether. One such example is the model due to

Tu et al. [63] which has been used with some success in a number of studies such as that by

Kalinin et al. [64]. However, it has been shown here that this particular model cannot exhibit

damped oscillatory behaviour.

This chapter gives a number of theoretical results that may be investigated in an experimen-

tal setting. In particular, the results presented in Figures 5.6, 5.7, 5.12 and 5.13 are testable

by appealing to certain under/overexpression mutant cells. In the case of Figure 5.6 it is pos-

sible to create cells under/overexpressing certain proteins. To investigate Figure 5.7 the meche

and mocha operons may be under/overexpressed. Finally, Figures 5.12 and 5.13 would require

cells under/overexpressing all of the chemotaxis signalling proteins. In each case, once un-

der/overexpression mutant cells are available, analysis of flagellar rotation time-courses during

which cells are challenged with a step-change in ligand concentration should reveal the magni-

tude of overshoot exhibited by cells (if any).

Many biological systems exhibit a large degree of individual variability across their popu-

lations. This is usually put down to genetic differences, environment and history. However,

even cells identical under these criteria display behavioural variability [146]. This is likely to be

caused by the low copy numbers of components including DNA and key regulatory molecules,

leading to stochastic effects [147]. A significant stochastic cell-to-cell variation in concentrations

of the E. coli chemotaxis signalling proteins has regularly been referred to within the litera-

ture [112, 145, 148, 149, 150, 151]. When faced with such cell-to-cell variation, it has been

suggested that a reliable signal processing system will maintain key features [152]. A number

of features, such as precise adaptation, have been shown to be robust in E. coli chemotaxis

signalling [44, 76]. There are, however numerous consequences associated with the stochastic

variation discussed within the literature [153]. Most commonly studied are the effects of vari-

ation in the concentrations of proteins CheB and CheR; those directly involved in adaptation.

In studying these effects it was noted that they have a significant impact on the adaptation

times of cells [151], a feature noticeable within results obtained here (see Figure 5.14). It has

also been shown that varying the total signalling protein concentrations can result in different

steady-state phosphorylation levels [149]. This was observed within our work, which suggests

that sharing of phosphoryl groups between CheB and CheY may be important in the occurrence
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of phenomena including overshoot.

Also, demonstrated here is that protein concentration is an important factor in affecting the

temporal response of an intracellular signalling cascade. Based upon the results obtained within

this work we believe that there are three key ingredients for determining variation in a network.

These are driven by the network structure, kinetic rates and the concentrations of its constitutive

elements. We would expect these principles to be relevant in explaining similar phenomena

within other biological systems. The first two of these aspects are well founded results within

the analysis of signalling cascades [154]. The third allows us to determine how the transient

cell response will vary given different intracellular conditions, namely protein concentration in

this example. Results obtained here indicate that the simplification of using population average

values may mask the inherent effects of cell-to-cell variability. It would therefore seem sensible,

in addition to studying population behaviour using average values, to consider the potential

effects of cell-to-cell variation when considering transient behaviour in cellular systems.

In terms of a wider picture, cell-to-cell variability could be vital for population survival,

especially those cells subjected to a wide range of environmental conditions [150]. It could

therefore be the case that variation in protein concentrations may be beneficial to the survival

of a population. This will be investigated further in Chapter 6.
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Chapter 6

An Agent-Based Model of E. coli

Chemotaxis

Within Chapters 4 and 5 the mechanisms behind the phenomena of FCD and overshoot in

the chemotactic responses of single E. coli cells were investigated. The implications of these

two features have been studied in the context of a single cell chemotactic response. It is not

necessarily clear what impact such single cell phenomena will have upon the overall chemotactic

behaviour of an E. coli population. In order to do this, we present within this chapter the

formulation and analysis of an agent-based model (ABM) of E. coli chemotaxis (see Fig. 6.1).

Here we choose to focus primarily on the mathematical details of the model and subsequent

results rather than the exact numerical implementation.

6.1 Agent-Based Model Formulation

Within this section we describe the formulation of an ABM describing the chemotactic

behaviour of E. coli cells. In order to do so, we begin by giving a general overview of the ABM

algorithm before providing a more in depth description of each model component.

6.1.1 ABM Algorithm

The ABM discussed within this chapter contains a description of many different aspects of

the E. coli chemotactic response. Combining these aspects allows us to formulate an algorithm

that may be used to simulate the chemotactic behaviour of cell populations. As such, we provide

here a basic outline of the algorithm used for the ABM simulations conducted in this chapter.

This algorithm is composed of five main stages that proceed in a cyclical manner over a

time-scale appropriate for the given application. These stages are as follows.

1. Calculate ligand concentration (at the cell location);
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2. Update intracellular signalling pathway;

3. Calculate flagellar rotational bias;

4. Simulate cell movement - straight swim (run) or turn and swim (tumble);

5. Return to step 1.

For a graphical summary of this algorithm, see Figure 6.1. The details of ABM components 1-4 as

well as their respective modelling assumptions and simplifications are examined in-depth within

subsequent sections. We note that component 5 in the algorithm summary is not discussed

further since it simply refers to the saving of results and the beginning of a new time step (i.e.

a return to component 1).

Figure 6.1: A cartoon showing the workings of the agent-based model. (A) An initial location
is chosen for a simulated E. coli cell. (B) The appropriate ligand concentration feeds into an
ODE model of the intracellular signalling pathway and progresses one time step forward. (C)
The rotational bias of the simulated cell’s flagella is calculated and a (uniformly distributed)
random number generator used to choose a “run” or a “tumble”. (D) A new location is defined
if the cell “runs” or a new direction of travel and a new location are chosen if the cell “tumbles”.
The new ligand concentration is calculated and the process repeated for the desired number of
time steps, producing results as in (E).

83



6.1.2 Calculating the Ligand Concentration

In order to accurately represent any particular situation of interest it is necessary to carefully

choose a spatial domain and ligand profile. This helps to make sure that ABM simulations will

provide a good approximation of real-world experimentation.

Within this work we choose to conduct all ABM simulations within a two-dimensional square

spatial domain. This choice is common within ABM studies of chemotaxis, such as those of Zonia

& Bray [109] and Emonet et al. [108], as it allows for simple interpretation of results. The size

of this domain was chosen to be arbitrarily large, and is described by

(x, y) = {x, y ∈ R : [−2, 2]}, (6.1)

where x and y are the horizontal and vertical Cartesian coordinates, respectively.

It is also necessary to consider a ligand profile that is defined across this spatial domain. A

number of different ligand profiles have been studied within both the experimental and theoret-

ical literature. The most common examples are those with exponential, linear and zero gradient

profiles. Within this chapter we mainly focus on exponential ligand gradients of the form

[L] = l0 + exp
(

−
√

x2 + y2
)

, (6.2)

within which [L] denotes the ligand concentration (in this case MeAsp), x and y are the horizontal

and vertical Cartesian coordinates of the domain, respectively and l0 is a minimum ligand

concentration (assigned a value of l0 = 0.1mM unless otherwise stated).

We consider here a number of simplifying assumptions that allow for either easier compu-

tation or a more intuitive understanding of results. One such example is that for the majority

of this chapter we consider the response of cells to just one attractant. Choosing the attractant

MeAsp here allows for simpler computation since it is known to not be metabolised by cells.

As such we do not need to consider how the number of cells in different areas will degrade the

ligand concentration. We also choose to consider a stationary ligand profile (i.e. one in which the

ligand profile does not evolve in time). Without these two simplifications it would be necessary

to solve a reaction-diffusion equation describing ligand evolution in time, however, here we may

simply calculate concentrations directly from equation (6.2). Whilst the consideration of the

cellular response to multiple attractants is more biologically realistic, here we mostly restrict

our attention to the more simple one attractant case. This allows us to obtain a more intuitive

understanding from results obtained here.
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6.1.3 Updating the Signalling Pathway

Within the ABM described here we consider the behaviour of an E. coli cell population

within the ligand profile and spatial domain discussed in Section 6.1.2. In doing so we describe

the response of each individual cell with the model in Chapter 3. The key assumptions and

simplifications of this model were discussed in Section 3.1.2.

Within the ABM formulated here, the intracellular signalling cascade ODE model is updated

using an inbuilt MATLAB stiff ODE solver (ode15s). In contrast to previous chapters, here we

restrict this solver such that it progresses forward by the length of one ABM time-step. This

allows a new ligand concentration to be calculated and input into the ODE model depending

upon the location of each cell.

Using this ODE solver we are able to obtain a complete representation of the internal state

of each simulated cell for every model time-step. As such, we are able to observe the response of

CheA-P, CheB-P, CheY-P and the receptor methylation level for each cell over the entire period

of an ABM simulation.

6.1.4 Calculating the Cell Response

The internal signalling cascade information calculated in Section 6.1.3 is then used to calcu-

late the response of each individual cell. In particular, it is known that the CheY-P concentration

acts to regulate the rotational behaviour (bias) of the flagellar motors in E. coli cells. Within

the literature there exist some examples whereby this CheY-P and flagellar rotational bias re-

lationship is modelled. Here we shall consider two of the most commonly used models of this

relationship, namely those of Cluzel et al. [29] and Morton-Firth & Bray [155], and explain how

these functions are used within the context of the ABM.

Within the literature it was Cluzel et al. [29] that were first able to experimentally quantify

this relationship. In doing so it was found that there exists a sigmoidal relationship between

CheY-P concentration and CW (clockwise or tumble) bias. This was subsequently shown to be

fitted by a Hill function of the form

BiasC =
Kn

Kn +
(

[Yp]
[YT ]

)n , (6.3)

with [Yp] the CheY-P concentration calculated in Section 6.1.3, [YT ] is the total (phosphorylated

and non-phosphorylated) CheY concentration, n denotes a Hill coefficient (n ≈ 10.3± 1.1) and

K is a dissociation constant (K = 3.1µM).

Morton-Firth & Bray [155] considered a similar, sigmoidal function to describe this relation-
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ship. This is given by

BiasM =
1

1 + 3
7

(
[Yp]
[Yp]0

)5.5 , (6.4)

where [Yp] is the CheY-P concentration calculated in Section 6.1.3 and [Yp]0 is the concentration

in absence of any stimulus.

Examination of the results in Figure 6.2 clearly shows that equation (6.4) yields a shallower

curve than that of equation (6.3). Whilst the two expressions clearly demonstrate fairly similar

relationships, in the context of this work, equation (6.4) appears to be more suitable. This is due

to its incorporation of the ability of cells to shift the bias curve such that the steady-state CheY-

P concentration remains in the sensitive (steeply sloping) part. Thus we utilise equation (6.4)

throughout the remainder of this chapter.
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Figure 6.2: A plot demonstrating the differences between the CW (tumble) bias functions of
Cluzel et al. [29] (blue) and Morton-Firth & Bray [155] (red). It is worth noting that the Morton-
Firth & Bray bias curve shown here is calculated using a value of [Yp]0 = 0.4168 corresponding
to the CheY-P steady-state in equation (3.24) when utilising the base parameter set of Table 3.1.
Within this work the expression due to Morton-Firth & Bray [155] is utilised since it includes
the ability for the curve to shift for differing CheY-P steady-state values.

6.1.5 Simulating Cell Swimming

Within this section we outline how swimming behaviour of individual cells is considered in

the ABM. In order to accurately represent this swimming behaviour it is necessary to represent

the stochastic nature of flagellar motor switching and the subsequent run and tumble swimming

pattern.

The ability of E. coli cells to produce the observed run and tumble swimming pattern stems

from the flagella and the motors controlling their rotation. Explicitly modelling this process

would require significant computational cost. Thus, instead we consider a simplified approach
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that still represents this process to a good degree.

Here we consider the flagellar rotational bias expression from Section 6.1.4 (i.e. equa-

tion (6.4)). This tumble bias denotes the probability that a cell will produce a tumble for

any given CheY-P concentration. We therefore utilise a uniformly distributed random number

generator to choose a number 0 ≤ r ≤ 1 for each simulated cell and assign swimming behaviour

according to

Flagella Direction =







CW (Tumble), if BiasM > r

CCW (Run), otherwise

in which the BiasM value has been calculated according to equation (6.4). Using this simple

approach we represent the stochastic nature of flagellar motor switching without the need for

more complex stochastic equations.

In addition to assigning the type of swimming (run or tumble) behaviour for individual cells,

we also consider the resultant movement within the spatial domain from Section 6.1.2. During

the run phase cells are known to swim in (approximately) a straight line. Mathematically we

define this by

dx

dt
= c · sin(θn), (6.5)

dy

dt
= c · cos(θn), (6.6)

where c is the swimming speed during a run, θn is the angular direction of travel and x, y are the

horizontal and vertical location of the simulated cell in the domain of interest (see Figure 6.3).

In order for this description to hold we have assumed that each cell travels with a fixed speed

(i.e. there is no acceleration during a run). This particular physical regime implies that inertial

forces are negligible (i.e. low Reynolds number), which is a valid assumption here due to the

small size and relatively low swimming speeds of E. coli cells (see Purcell [156] for a more detailed

explanation).

During a tumble we also include a turn component, i.e. a change in θn. This is achieved by

considering

θn = θo + θr, (6.7)

within which n and o are subscripts denoting the new and old values, respectively whilst the

subscript r indicates a turning angle.

In the case of a run the cell is not re-oriented (i.e. we choose θr = 0) whereas for a tumble

θr is chosen according to a uniformly distributed random turning angle distribution restricted

to between ±18 and 98 degrees as per experimental findings summarised in Table 6.1. Since the
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Figure 6.3: A schematic demonstrating the calculation of a chemotactic run. Here the length
of a chemotactic run is denoted c whilst the direction of travel for a cell is given by θ. Using
basic trigonometric results this run length may be split into a horizontal (dx/dt) and a vertical
(dy/dt) component.

duration of a tumble is significantly shorter than that of a run we define a tumble event here as a

change in direction from equation (6.7) combined with the movement defined by equations (6.5)

and (6.6).

Consideration must also be given here to the behaviour of cells at the boundary of the spatial

domain. Specifically, we require rules governing the behaviour of cells when they pass outside

of the spatial domain from Section 6.1.2. Within the literature there are two main examples

considered. These are as follows.

• Periodic: Cells swimming outside of the spatial domain are assumed to re-appear on the

opposite side. In the case of the domain in Section 6.1.2, a cell leaving the domain at

(x, y) = (1, 2) will re-enter the domain at (x, y) = (1,−2).

• Wall: Here cells swimming outside of the domain are returned to the boundary as if

they swim into a solid wall. For example if, at the end of a time-step, a simulated cell is

positioned at (x, y) = (2.05, 1) then it will be returned to the boundary at (x, y) = (2, 1).

This is demonstrated in Figure 6.4.

In the remainder of this chapter we consider the wall boundary. This is intended to replicate

the behaviour of cells in a bounded region such as a petri dish where they will swim into the

side wall.

In biologically realistic situations, cells would clearly not be able to occupy the same space,

i.e. the presence of one cell excludes others from occupying that same space. In the context

of this ABM we would be required to implement an exclusion radius for each simulated cell.

However, here we consider a large enough spatial domain relative to the size of an E. coli cell

that we assume these effects can be neglected.
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Figure 6.4: A schematic demonstrating the implementation of the wall boundary condition. A
cell (red cross) is initially located at position (x0, y0) within the spatial domain. This cell then
undergoes a simulated chemotactic run (dashed blue line) which results in the cell crossing the
boundary of the domain (black line) to a position at (xt, yt), where t indicates that these are
temporary coordinates. According to the wall boundary condition this cell is then returned
(dotted blue line) to the boundary of the domain (i.e. the position (x1, y1) = (xb, yt), where b
indicates a location upon the boundary).

Table 6.1: A set of parameter values describing the swimming behaviour of E. coli cells.
Symbol Definition Value Source

c Swimming speed during a run 29±6µm/s [157]
θr Angle turned during a tumble 58±40◦ [158]

6.2 Model Validation

In order to assess whether the ABM formulated here is suitable for further analysis of chemo-

tactic behaviour in cell populations it is necessary to undergo a process of model validation (or

to be more precise, model non-invalidation). This will require the comparison of results obtained

using this model against results and observations within both the previous experimental and

theoretical literature. It is worth noting, however, that there is a lack of experimental literature

looking at chemotactic swimming behaviour of single E. coli cells and as such direct comparisons

are difficult to make.

The first stage in addressing the suitability of this ABM for the study of E. coli cell pop-

ulations is to compare the results obtained to the qualitative behaviour described by Berg &

Brown [11]. This provides an initial sense check of the model, ensuring it produces appropriate

chemotaxis-like behaviour. In order to do this a number of simulations were conducted for a

single E. coli cell placed in a ligand gradient of the form in equation (6.2). An example of the

simulated cell behaviour is displayed in Figure 6.5.

Upon examination of the results in Figure 6.5(a) it can be seen that the simulated cell was

able to direct its movement toward the region with the highest ligand concentration. Also,

the results of Berg & Brown [11] observed, using a three-dimensional tracking microscope, that

chemotactic cells are able to modulate their swimming behaviour such that they tumble less
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Figure 6.5: An example of a simulated E. coli cell within an exponential ligand field. (a) A plot
showing a trace of the swimming pattern displayed by the cell. (b) The CheY-P concentration
time course leading to the behaviour in panel (a). Each of the variables displayed in these plots
are expressed in non-dimensional form. A scale bar is included in (a) to indicate the relationship
between non-dimensional units (denoted N-D) and dimensional values. Note that the results
shown here represent a typical example selected from a pool of 50 simulated cells.

when travelling up a ligand gradient. In addition to this Macnab & Koshland [159] showed

that S. typhimurium cells tumble more frequently when travelling down a ligand gradient, a

feature that is now commonly accepted to exist in E. coli also. Both of these features of the

chemotactic response can clearly be seen in Figure 6.5(a) where the straight runs are much longer

when travelling in a beneficial direction and significantly shortened when travelling down a ligand

gradient. Here, we have shown a phenomenological agreement with the observations described by

Berg & Brown [11]. However, a direct comparison between the results is not possible since Berg

& Brown [11] observed E. coli cells swimming in either a spatially homogeneous environment

(i.e. cells will not display chemotaxis) or a time-varying gradient (not yet considered in this

ABM).

Figure 6.5(b) displays the CheY-P concentration time course associated with the swimming

behaviour in Figure 6.5(a). In particular, a number of prolonged drops in the concentration of

protein CheY-P can be observed in the early part of this time course. These are associated with

the extended runs visible in Figure 6.5(a). Due to experimental limitations, results displaying

both the swimming behaviour of an individual cell and the relevant intracellular signalling

dynamics are not available for comparison. However, this result can be explained by examining

equation (6.4) in which a lower CheY-P concentration leads to a greater CCW bias and thus

the cell tumbles less frequently. Similar behaviour is observed for each cell across 50 runs of this

simulation.

The ABM formulated here clearly displays phenomenological agreement with the descriptions

of Berg & Brown [11] and Macnab & Koshland [159]. In addition to these results, we also
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Figure 6.6: A bar chart showing the development of the spatial distribution of an E. coli cell
population in a domain with a spatially homogeneous ligand concentration, when all simulated
cells begin at the centre of the domain, i.e. (x, y) = (0, 0). Here the number of cells are
grouped as per their distance from the centre of the domain and bars are plotted accordingly. In
particular, results are shown for the same population of cells after 5,000 (blue bars), 10,000 (red
bars) and 15,000 (green bars) non-dimensional time steps (approximately equal to 1.2 minutes,
2.4 minutes and 3.6 minutes, respectively).

compare the ABM with previous theoretical work in the area. In order to do this we consider a

population of cells placed within a domain containing a spatially homogeneous ligand field (i.e.

the ligand concentration is constant, at [L] = 0mM, across the entire domain). This allows the

visualisation of the development of the population distribution. In particular, we shall consider

a population consisting of 500 simulated E. coli cells (10 model runs each simulating a 50 cell

population) that is initially present at the centre of the domain, i.e. (x, y) = (0, 0). These cells

are then allowed to swim freely within the domain, however there is no spatial heterogeneity in

the ligand field that can bias the movement of these cells. Results obtained from the ABM in

this configuration are displayed in Figure 6.6.

Analysing the results in Figure 6.6 we can see that the population moves outward from the

centre of the domain at an approximately constant velocity. These results may now be compared

to those in the theoretical literature. In particular, numerous methods of motility have been

discussed by Codling et al. [102] alongside descriptions of the appropriate governing equations.

It is stated within this work that the biased telegraph equation (such as that in equation (2.12))

may be used to describe the type of chemotactic behaviour discussed within this thesis. In

support of the validity of the ABM considered here it can be seen that the results in Figure 6.6

are consistent with the solution of the telegraph equation except for a stochastic component

that is most likely associated with the limited population size considered within this example.

It is clear that the ABM considered here compares well with experimental observations in

addition to cell population modelling work. In addition to this a comparison may also be made
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Figure 6.7: Plots showing the typical simulated behaviour of chemotactic E. coli cells in envi-
ronments containing no spatial ligand heterogeneity (top), a linear MeAsp concentration field
(middle) and an exponential MeAsp concentration field (bottom). These results display quali-
tatively similar behaviour to simulations conducted in the work of Zonia & Bray [109] although
an exact comparison is not possible. Note that results shown here represent a typical example
selected from a pool of 50 simulated cells in each different ligand gradient.

between results obtained from this ABM and those of another ABM that utilises a similar

formulation, namely that due to Zonia & Bray [109]. This work considered simulations within

a number of different ligand fields of single cell E. coli chemotactic behaviour. In order to

compare the results obtained from the two models simulations of single E. coli cell chemotaxis

are conducted in situations whereby there is no spatial ligand heterogeneity, a linear ligand field

and an exponential ligand field are considered. The results obtained from these simulations are

shown in Figure 6.7. We note, however, that the work of Zonia & Bray [109] does not give exact

mathematical definitions of the ligand gradients considered, thus making a direct comparison of

results impossible.

In spite of the difficulties in making a direct comparison, it appears that the results in

Figure 6.7 show a qualitative agreement with the closest examples from the work of Zonia &

Bray [109]. Within the ABM considered in this thesis we take a four ODE model of the E. coli

chemotaxis signalling cascade whereas Zonia & Bray [109] take a model consisting of ∼90 ODEs.

Whilst the ∼90 ODE model contains details of all known reactions in the E. coli chemotaxis

signalling cascade, the use of such a large ODE model can make it difficult to gain an intuitive
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understanding of how changes within the signalling network will affect the cell response.

Within this section we have shown that the ABM formulated here cannot be invalidated

based upon comparisons with either experimental observations or theoretical results obtained

from population level differential equations and an alternative ABM. None of these tests have

displayed results suggesting that the ABM considered here may be producing false results. As

such we shall utilise this model within the remaining sections of this chapter and consider any

results obtained to be a reasonable approximation to the true behaviour. As such we are now

able to consider how the intracellular signalling phenomena discussed in Chapters 4 and 5 affect

the behaviour of an overall cell population and attempt to understand what benefits (if any)

they have in terms of the development and survival of a cell population.

6.3 Chemotaxis in Different Ligand Gradients

Within Chapter 5 a number of features relating to the phenomenon of overshoot in the

chemotactic response of E. coli cells were discussed. In particular it was noted that populations

of cells display a significant amount of non-genetic variability. In the context of the overshoot

response it was proposed that cell-to-cell differences in the total intracellular chemotaxis sig-

nalling protein concentrations could be responsible for the emergence of overshoot behaviour.

Specifically, by utilising variations in the total protein concentrations we were able to find con-

ditions under which overshoot should occur. This section explores, using the ABM formulated

in Section 6.1, how individual changes in the cell response (e.g. overshoot) via total protein

concentration, affect the collective behaviour of a cell population.

In order to study the effects of variation in total protein concentrations associated with

overshoot, we investigate how it affects cells’ ability to respond in ligand gradients of varying

steepness. In order to do this we shall consider a range of different multiples of the total signalling

protein concentrations of the form

[X]T = β[X]T0, (6.8)

where [X]T (X = A,B,R, Y, Z) represents the total protein concentration used, the additional

subscript 0 indicates the population average concentration totals as listed in Table 3.1 and β

(= 1/4, 1/2, 1, 2, 4, 6, 8, 10) denotes the multiple considered for the total concentration of all

chemotaxis signalling proteins. It is clear upon inspection of the results in Figure 6.8 that

total protein concentration variations, such as those in equation (6.8), can produce significantly

different behaviour. In particular, from Figure 6.8 it is clear that cells with larger total protein

concentrations display
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• lower fractions of phosphorylated proteins at steady-state,

• shorter adaptation times,

• smaller initial response amplitudes (in terms of phosphorylated fraction),

than those with smaller total protein concentrations. Such variation in total protein concen-

trations is then applied in the signalling pathway ODE model from Chapter 3 which is used to

simulate the behaviour of E. coli cells in the ABM.
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Figure 6.8: A collection of figures showing the intracellular signalling cascade response to step-
changes in the extracellular ligand concentration. At non-dimensional time τ = 50 the MeAsp
concentration is increased from [L] = 0.1mM to [L] = 0.2mM and this is subsequently reversed
at τ = 700. The different panels here correspond to cells with different total signalling protein
concentrations. Shown here are the responses of cells in which each total protein concentration
has been multiplied by some constant factor (α = 1/4, 1/2, 1, 2, 4, 6, 8, 10).

It is now possible to simulate the behaviour of chemotactic E. coli cells under different

intracellular conditions. We wish to understand how these intracellular variations affect the

ability of a cell population to respond to different extracellular chemical environments. As such

we consider different exponential ligand gradients of the form

[L] = l0 + exp

(

−

√

x2 + y2

d

)

, (6.9)

within which [L] denotes the ligand concentration, l0 represents a minimum ligand concentration

for the domain, x and y are the horizontal and vertical spatial coordinates, respectively and d

is used in order to vary the steepness of the ligand gradient. Specifically, within this section we

shall consider three different exponential ligand fields which are achieved by considering d = 10
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Figure 6.9: Cross-sectional plots taken across the centre of the three ligand gradients used
for agent-based simulations of E. coli chemotactic behaviour. Each gradient is of the form
[L] = l0 + exp(−

√

((x2 + y2)/d)) and takes a different value of d in order to vary the steepness.
Here d = 10 produces a shallow gradient (a), d = 1 yields an intermediate gradient (b) and
d = 0.1 gives a steep gradient (c).

for a shallow gradient, d = 1 for an intermediate gradient and d = 0.1 for a steep gradient, as

shown in Figure 6.9.

In order to understand how the variation in intracellular signalling protein concentrations

affects the ability of the cell to respond in different ligand gradients a number of ABM simulations

were conducted. The ABM was used to simulate the behaviour of 100 individual cells within

each of the three ligand gradients as well as for each of the eight sets of intracellular protein

concentrations considered (i.e. a total of 24 ABM runs). Within each of these simulations all

100 cells were assigned random values for both their initial locations within the domain and

the initial direction of travel. The behaviour of each of the 100 individual cells within each

population is simulated for 50,000 model time steps equating to approximately 12 minutes (long

enough for most simulations to reach an approximate equilibrium). Results obtained from these

simulations are displayed in Figure 6.10.

Upon examination of the results displayed in Figure 6.10 a number of interesting features

may be observed. Firstly, it is clear from the average distance to the peak ligand concentration

that the performance of each cell population is not equal in all gradients. An example of this

is that the population of cells with an eight-fold increase in all signalling protein concentrations

(i.e. β = 8) is the best performing population when placed into the steep gradient yet only the

fifth best in the shallow gradient, as seen in Figure 6.11. however this result can vary dependent

upon the gradients considered.

In order to understand why cell populations with different protein concentrations may be

better at responding to certain gradients than others, it is useful to consider the signalling

cascade response of cells in each population, as seen in Figure 6.8. From these results we

may observe a significantly shorter adaptation time for those cells with larger β factors. In

particular, within these cells there will exist larger concentrations of CheB and CheR which are
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(a) Shallow Extracellular Ligand Gradient
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(b) Intermediate Extracellular Ligand Gradient
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(c) Steep Extracellular Ligand Gradient

Figure 6.10: Plots showing (left column) the final locations of simulated E. coli cells in different
ligand gradients and (right column) the development in time of the average distance to the peak
ligand concentration for each cell population. Results are shown for (a) a shallow gradient, (b)
an intermediate gradient and (c) a steep gradient. (Left) Each dot refers to the final location
of a single simulated E. coli cell. (Right) Each line shows the average behaviour of a cell
population in time. The colour of each dot/line denotes the multiple of all total signalling
protein concentrations used in the simulation of that cell population. Considered here are
multiples of 1/4 (grey), 1/2 (blue), 1 (red), 2 (green) 4 (black), 6 (pink), 8 (cyan) and 10 (gold).

96



10
−1

10
0

10
1

1

2

3

4

5

6

7

8

Ligand Gradient Division

C
lo

se
st

 to
 P

ea
k 

R
an

ki
ng

(1
=C

lo
se

st
,..

.,8
=F

ur
th

es
t)

 

 

1/4
1/2
1
2
4
6
8
10

Figure 6.11: A plot comparing the relative abilities of different cell populations to accumulate
about the peak concentration within different exponential ligand fields. In particular we consider
here a steep (left, 10−1), intermediate (centre, 100) and shallow (right, 101) ligand gradient,
where the x-axis values correspond to d in equation (6.9). Coloured lines show the rankings
of each cell population with 8 representing the worst performing population and 1 the best.
The colours of lines indicate the multiples (shown in the figure legend) of all total protein
concentrations used in order to create different cell populations. Rankings displayed in this figure
simply relate to the average distance of each population from the peak ligand concentration at
the end of the ABM simulation.

responsible for controlling adaptation. As such, with more of these proteins available methylation

and demethylation occur more rapidly and so the cell can reset itself more quickly following a

stimulus. This is usually considered to be a desirable property in chemotactic systems as it allows

the cell to prepare for sensing a new stimulus. So, why is it then that cells with larger protein

concentrations do not always respond more effectively than those with lower concentrations? To

answer this we again look to the responses of individual cells in Figure 6.8. Within these results

different adaptation times may be observed. Whilst a shorter adaptation time may be beneficial

to chemotactic cells it will also result in a shorter period where the CheY-P concentration is

out of equilibrium. Thus a shorter adaptation time will alter the ability of cells to produce long

chemotactic runs. However, an inability to produce long extended runs is not always detrimental.

For example, within a steep ligand gradient as considered here (d = 0.1) shorter runs may be

beneficial as they allow the cell to tumble more quickly as it starts to travel down the ligand

gradient, an occurrence commonly observed in steeper gradients due to large concentration

changes in short spaces.

If a cell with a shorter adaptation time really is more effective at remaining on a beneficial

course, why is this not always helpful? To answer this we consider results obtained here for the

shallow ligand gradient. In this case, cells begin to travel down the ligand gradient less often due

to the fact there is less rapid spatial variation in the concentration gradient. Thus it becomes
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beneficial for the cell to be able to produce longer runs in order to make the most of subtle

changes in the ligand concentration. Examining the single cell responses in Figure 6.8 shows

that the ability to produce long runs is associated with those cells displaying longer adaptation

times, i.e. those with smaller total protein concentrations. We therefore expect slower adapting

cells to perform more efficiently within shallower ligand gradients as seen in Figure 6.10(a).

Within the theoretical literature Vladimirov et al [160] studied a similar problem using

an MWC-type model and the RapidCell agent-based modelling program. In particular, they

note that experimentally and theoretically it can be observed that cells with too little CheB and

CheR tend toward running and fail to display tumbles, thus failing to display effective chemotaxis

behaviour. This likely corresponds to the β = 1/4 population in Figure 6.10 which do not appear

to display any significant chemotactic accumulation about the peak ligand concentrations of any

gradient considered. In addition to this, it is stated that cells with too much CheB and CheR

lose sensitivity to the gradient. Vladimirov et al. [160] also note that it is optimal for cells to

display faster rates of adaptation when placed in steeper ligand gradients. To some extent this

corresponds to the behaviour observed in Figure 6.11 within which we see that a number of

populations with large protein concentrations perform fairly well. However, the results obtained

here are slightly skewed by the initial random distribution of cells. This is due to the shallow

region seen on the outside of the steep gradient in Figure 6.9(c). In particular, in order for fast

adapting cells to respond efficiently within steep gradients they must first find their way into the

steep region of the gradient around the centre. Once again, this skews results since the faster

adapting cells are less effective in shallow gradients and as they such may struggle to find their

way into the steep portion.

6.4 Chemotactic Response to Multiple Ligands

Previous sections of this chapter have considered the ways in which features of the intracel-

lular signalling pathway affect the chemotactic response of E. coli cells. In each of these cases

it has been assumed that the only chemoattractant present in the environment was MeAsp.

This simplifying assumption has clear benefits within a theoretical framework, however more

biologically representative is the study of cells when two chemoattractants are present. As such,

within this section we shall investigate the chemotactic response of simulated E. coli cells in a

domain containing both MeAsp and serine - substances for which E. coli cells possess the most

abundant chemoreceptors.

In order to do this we take inspiration from the original model of Clausznitzer et al. [70]

that describes a response for both Tar and Tsr receptor types to MeAsp. It has previously been
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shown that for small to intermediate MeAsp concentrations, the effect of MeAsp binding to Tsr

receptors is negligible (see Figure 4.7(a)) and as such this effect has previously been ignored.

However, by considering a slight adjustment to equation (3.10) it is possible to incorporate

MeAsp and serine binding to Tar and Tsr receptors, respectively. This results in a free-energy

expression of the form

F = N

[

1−
m

2
+ νa ln

(

1 + [La]/K
off
a

1 + [La]/Kon
a

)

+ νs ln

(

1 + [Ls]/K
off
ser

1 + [Ls]/Kon
ser

)]

, (6.10)

within which [La] and [Ls] represent the concentrations of MeAsp and serine, respectively while

Kon
ser = 1mM and Koff

ser = 0.0025mM denote the ligand dissociation constants of Tsr chemore-

ceptors to serine in their active and inactive states, respectively [69]. In addition to this νa and

νs denote the abundance ratio of the two chemoreceptor types, defined as νa : νs = 1 : 1.4 [70].

All other model parameters retain their previous values (see Table 3.1) whilst the remainder of

the model is taken to be that outlined in Chapter 3.

In order to ensure that the alteration considered in equation (6.10) produces a mathematical

model that is capable of allowing chemotactic responses to both MeAsp and serine gradients we

utilise two numerical simulations. Firstly we conduct a simulation within a domain in which

there exists an exponential gradient of MeAsp in addition to a constant concentration of serine

over the entire domain. We then consider the reverse of this case in which there is an exponential

gradient of serine alongside a constant concentration of MeAsp. This gave the results displayed

in Figure 6.12 which simulate the behaviour of ten E. coli cells that are allocated a random

initial location within the domain.

It is clear upon inspection of the results in Figure 6.12 that simulated E. coli cells are

able to accumulate about the peak of both a MeAsp and a serine gradient. This would tend to

suggest that equation (6.10) is able to adequately produce a response for multiple, simultaneously

occurring ligands, in this case MeAsp and serine.

It is now possible to examine the effects upon the chemotactic behaviour of a cell population

caused by the presence of two distinct ligand gradients. In order to do this we consider two

separate exponential ligand gradients, one for each chemoattractant. These are given by the

expressions

[La] = ω
(

la0 + exp
(

−
√

(x+ xa)2 + y2
))

, (MeAsp) (6.11)

[Ls] = υ
(

ls0 + exp
(

−
√

(x+ xs)2 + y2
))

, (Serine) (6.12)

where [La/s] denote the concentration of a chemoattractant, l0 indicates a minimum chemoat-
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(a) Exponential MeAsp, Constant Serine
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Figure 6.12: Plots demonstrating the ability of simulated E. coli cells to accumulate in response
to both MeAsp and serine concentration gradients. Shown here are cases in which both MeAsp
and serine are present within the same domain. In one example (left) we consider a constant
concentration of serine across the whole domain, thus demonstrating the ability of simulated
cells to respond to a MeAsp concentration gradient. In the other example (right) we consider a
constant concentration of MeAsp across the entire domain, thus showing that cells are able to
respond to a serine concentration gradient. Within each plot green and red crosses indicate the
starting and final locations of each simulated cell, respectively whilst contour lines and colour
bars show the concentration of the non-constant ligand across the domain.

tractant concentration, x and y denote horizontal and vertical coordinates, respectively. Two

scaling parameters, namely ω and υ, are used in order to alter the relative concentrations within

the MeAsp and serine gradients, respectively. Within these equations the subscripts a and s

indicate a reference to aspartate or serine, respectively whilst xa and xs are used in order to

move the peaks of the ligand gradients apart. In order to do this we choose xa = 1 and xs = −1,

resulting in an exponential MeAsp gradient centred about (x, y) = (−1, 0) and an exponential

serine gradient centred about (x, y) = (1, 0). Finally, it is possible to utilise the parameters

ω and υ as multiplicative scaling factors in order to create ligand gradients with greater peak

concentrations.

Using the two scaling parameters it is possible to assess which chemoattractant cells will

accumulate about under a variety of different conditions. In particular we consider three different

scalings for the MeAsp gradient, namely ω = 1, ω = 5 and ω = 10. For each of these three

MeAsp gradient scalings we consider a range of scalings using various values of υ. For each

pair of ω and υ values we conduct a simulation of a 50 cell population with a random initial

distribution of cells within the domain. Results obtained from these simulations are displayed

in Figure 6.13.

It can clearly be seen from the results in Figure 6.13 that there are a number of conditions

on ω and υ which result in vastly different numbers of cells being attracted to each gradient.

Using these agent-based model simulations we may count the number cells accumulating toward
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Figure 6.13: Plots showing the final positions of simulated cells after 50,000 model time-steps
(∼12 minutes). In each case the chemotactic response is to a gradient of MeAsp centred in the
left half of the domain and a serine gradient centred in the right half of the domain. Coloured
crosses show the final position of each simulated E. coli cell with the colour indicating the
multiple of the serine gradient (i.e. the value of υ within equation (6.12)). The three separate
panels relate to the multiple applied to the MeAsp gradient (i.e. the ω value in equation (6.11)).
In particular, considered here are values of ω = 1 (top left), ω = 5 (top right) and ω = 10
(bottom).

each attractant. For simplicity we consider a cell to be attracted to MeAsp if the final location

is such that x < 0 or for x > 0 we say the cell was attracted to the serine gradient. In order to

more clearly show how the relationship between ω and υ affects the accumulation of cells about

the two different ligands are summarised in Figure 6.14.

In order to understand these results it is necessary to consider them together rather than

each in isolation. Firstly, it is clear from Figure 6.14 that there is a critical υ value below which

some cells will begin to be attracted to the MeAsp gradient. It also appears that for larger

values of ω this critical value decreases. At first this may appear counter intuitive - why would

a greater MeAsp concentration be overcome by a smaller concentration of serine? In order to

answer this question we look back to Figure 4.7(a) and consider this in the context of the peak

ligand concentrations utilised within these simulations. In particular for values of ω = 1, ω = 5

and ω = 10 we have peak MeAsp concentrations of 1.1mM, 5.5mM and 11mM, respectively.

Examining these in the context of the Mello & Tu [33] sensitivity curve (see Figure 4.7(a)) it

can be seen that for the three examples considered here, an ω = 1 scaling produces the greatest
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Figure 6.14: A plot summarising the accumulation of simulated E. coli cells towards gradients
of two separate ligands with different peak concentrations. Results displayed here represent a
summary of those in Figure 6.13 with cells considered to accumulate to MeAsp if they end with
x < 1 and to serine where they finish with x > 1. Circles represent the data points drawn from
Figure 6.13 with the colour indicating the MeAsp gradient scaling factor where ω = 1 (blue),
ω = 5 (red) and ω = 10 (green). Since the agent based model used to accumulate this data
contains a number of stochastic components, lines are used to display the general trend of the
data. In particular a Hill function is fitted to each set of data using a simple least-squares fit in
order to obtain the relevant parameter values.

sensitivity and ω = 10 (due to saturation of receptors) produces the least. As such, there is

clear theoretical support for the idea that increasing the peak concentration of one ligand will

not necessarily require increasing amounts of another ligand in order to overcome cells being

attracted to it. In fact, upon examining the results of Figure 6.13 it seems clearer that the

receptor sensitivity is playing a role in determining the ability of cells to accumulate about

the MeAsp peak concentration. In Figure 6.13(a), the example with the greatest sensitivity

to MeAsp, it is clear that there is strong accumulation toward the peak concentration located

at (x, y) = (−1, 0). This differs from panel (b) and (c) where the accumulation is clearly less

strong, as evidenced by the reduced clustering about (x, y) = (−1, 0). It is in fact possible to

observe weak clustering in panel (b), corresponding to ω = 5 whereas panel (c) (ω = 10) displays

virtually no clustering toward the MeAsp peak concentration at all which strongly suggests that

the link between the ability to accumulate toward a certain ligand concentration and the receptor

sensitivity is causing the emergence of the behaviour observed within these simulations.

Upon further consideration of the results displayed here it is clear that the sensitivity of

chemoreceptors to the chemoattractant MeAsp does not quite tell the whole story. It is clear that

the sensitivity of chemoreceptors to MeAsp is responsible for the ability of cells to accumulate

about a peak MeAsp concentration. This however will not directly affect the ability of cells

to accumulate in response to a serine chemoattractant gradient apart from the fact that the

two chemoreceptor types share a common intracellular signalling pathway in order to produce
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a single response. In order to consider the ability of cells to accumulate about serine we look to

Figure 6.14. It is clear from these results that the υ value at which cells begin to accumulate

toward MeAsp is fairly similar in each of the three examples. This would suggest that a ligand

sensitivity curve similar to that for MeAsp is acting to control the sensitivity of the response

to serine. In particular, for values of υ > 10−1 it is clear that there must be a high level of

sensitivity to the serine gradient since all 50 cells in each example are attracted toward the serine

peak. For υ < 10−4 we would expect a low sensitivity toward the peak aspartate concentration

since this is the region in which the fewest cells are attracted to the serine gradient. We should

therefore expect that in the range 10−4 < υ < 10−1 we should observe a decreasing sensitivity

to the serine peak concentration as the value of υ is decreased.

6.5 Summary & Discussion

Within this chapter we have formulated an ABM of E. coli chemotactic cell populations.

Upon comparison to both theoretical and experimental literature sources, this model could not

be invalidated. This suggests that at the very least it is capable of producing an adequate

approximation of the chemotactic behaviour of an E. coli cell population.

Within Chapter 5 it was demonstrated that the total concentrations of signalling proteins

within cells are important in determining their chemotactic response. In particular, these pro-

tein concentrations were observed to lead to different steady-state phosphorylated amounts,

significantly different adaptation times as well as the emergence of the experimentally observed

overshoot response. In this chapter, at the population scale, it was shown that variation in

intracellular protein concentrations can lead to significant differences in the ability of the cells

to accumulate about the peak concentration of a ligand gradient. More specifically cells in which

protein concentrations produced shorter adaptation times performed more effectively in steep

ligand gradients whereas those with longer adaptation times were more effective in shallow ones.

This is due to the fact that faster adapting cells are better able to deal with sharp changes in

ligand concentration, thus ensuring they maintain a beneficial swimming direction whereas cells

with longer adaptation times can produce longer runs which are more beneficial in shallower

ligand gradients.

Whilst the majority of work within this thesis focuses on the ability of cells to form a

chemotactic response to one chemoattractant (namely MeAsp), Section 6.4 went a step further

and examined how cells respond to two different chemoattractants. It was shown here that the

response of a cell population would be determined by the sensitivity of the chemoreceptors to the

precise chemoattractant concentrations present within the environment. Cells will accumulate
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toward a ligand concentration for which they are most sensitive rather than the largest absolute

concentration. In the case of two competing gradients it is necessary to compare the sensitivity

of cells to each in order to assess which gradient will be preferred, with some intermediate regime

in which some cells will be attracted to the peak of each gradient.

The results discussed within this chapter demonstrate some of the potential uses of ABM in

the study of bacterial chemotaxis. In fact, they would tend to suggest that approaches such as

that demonstrated here could even help in the study of as yet understudied systems. ABMs of

systems that are not fully understood experimentally could provide an initial round of model

rejection in which models that do not produce the experimentally observed behaviour may be

identified more rapidly than may be the case in more conventional single cell studies.
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Chapter 7

R. sphaeroides Chemotaxis Signalling

In this chapter we investigate the chemotaxis signalling pathways of R. sphaeroides cells. We

begin with a summary of the experimental and theoretical literature that represents the current

understanding of chemotaxis in R. sphaeroides cells. A recent mathematical model of this system

is then presented alongside a discussion of the main assumptions and simplifications used in its

formulation [161]. We then analyse this model in a manner similar to that in Chapter 3. In

particular, we consider a non-dimensional re-scaling. This is then used to demonstrate that

there exists just one biologically feasible equilibrium state. Stability analysis then shows this

equilibrium state to be asymptotically stable and the resulting eigenvalues are examined in order

to assess the stiffness of the model system. Finally, we identify the need for new ideas by showing

that this model fails to capture behaviour observed in recent experimental work [162].

7.1 Background

7.1.1 Biology Underlying Chemotaxis in R. sphaeroides

Here we summarise the key biological processes allowing R. sphaeroides cells to exhibit

bacterial chemotaxis. Within the experimental literature a number of features of this system

have been studied in depth. However, some other areas are less well understood. We do not

therefore possess a full understanding of the system from start to finish. As such, within this

section we begin by explaining what is known both about the chemotactic swimming behaviour

of R. sphaeroides cells and how this is controlled by the cells’ intracellular signalling pathways.

In particular, here we focus on explaining well understood features of the system and note areas

where further work is required.

It was discussed in Section 2.1 that E. coli cells use bidirectional flagellar motors to produce a

run and tumble swimming pattern. In contrast to this, R. sphaeroides possess only unidirectional

flagellar motors [5]. As such, they are unable to display tumble-type behaviour and instead
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simply stop, allowing rotational diffusion to re-orient the cell instead [163]. This run and stop

swimming pattern is controlled by the intracellular signalling pathways of the cell, however the

exact mechanism(s) by which this occurs are not clear.

Whilst it is unclear how the swimming behaviour of R. sphaeroides cells is controlled, many

intracellular features are better understood. One such feature is the degree of complexity dis-

played by R. sphaeroides cells. This complexity manifests itself in two main ways. The first

of these is the existence of three operons that encode multiple homologues of the chemotaxis

signalling proteins (four CheW, four CheA, six CheY, two CheB and three CheR) [164]. It is

the case however, that proteins encoded in just two of these operons are essential for chemo-

taxis [164]. As such, within the remainder of this section we focus only on these essential

chemotaxis proteins.

Another source of this increased complexity in R. sphaeroides is the existence of two separate

clusters of MCP-like proteins (chemoreceptors) [165]. These have been shown to localise either

to the poles of cells or in the cytoplasm [165]. These distinct receptor clusters are linked to

two separate chemosensory pathways [166]. In particular, the two pathways will each begin at

a different receptor cluster (see Figure 7.1).

The first of these chemosensory pathways is that beginning at the polar receptor cluster.

Similar to those found in E. coli, receptors span the cytoplasmic membrane of the cell with the

external part able to bind molecules of certain attractants/repellents. A signal is then passed

into the cell. Here the intracellular domain of the chemoreceptors bind to the protein CheA2

via the linker proteins CheW2 and CheW3 [167]. Similar to the HPK (histidine protein kinase)

in E. coli, CheA2 autophosphorylates (forming CheA2-P) at a rate dependent upon the signal

received.

Once phosphorylated, CheA2-P may pass phosphoryl groups onto the response regulating

proteins CheY3, CheY4, CheY6, CheB1 and CheB2 each of which has been shown to be essential

for chemotaxis [164]. Similar to E. coli, it is thought that an adaptation module exists to return

the cell to its pre-stimulus state. Within this mechanism CheR2 constantly methylates receptors

to increase their activity whilst CheB1-P demethylates receptors, lowering their activity [168].

The second signalling pathway of R. sphaeroides cells begins at a cytoplasmic cluster con-

sisting of soluble chemoreceptors. This receptor cluster is thought to sense the metabolic state

of the cell, although the mechanism(s) associated with this are unclear [5]. In order to pass this

signal into the cell, the soluble chemoreceptors associate with proteins CheA3 and CheA4 via a

linker CheW4 [169]. The proteins CheA3 and CheA4 each lack some of the domains associated

with traditional autophosphorylation. As such, together they form an atypical HPK [170]. Here,

neither individual protein may autophosphorylate themselves, rather CheA4 has been shown to
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Figure 7.1: A schematic of the R. sphaeroides chemotaxis signalling pathway model due to
Kojadinovic et al. [161]. This system consists of two chemoreceptor clusters, one located at the
cell pole and the other in the cytoplasm of the cell. CheA2 autophosphorylation occurs at the
polar cluster and subsequently passes phosphoryl groups onto CheB1, CheB2, CheY3, CheY4 and
CheY6. Similarly, CheA3 phosphorylation by CheA4 (modelled as CheA3 autophosphorylation)
occurs at the cytoplasmic cluster and the phosphoryl groups are passed onto either CheB2 or
CheY6. It is believed that CheY3-P, CheY4-P and CheY6-P control the rotational behaviour
of the flagellar motor. Proteins CheR2 and CheR3 along with CheB1 and CheB2 are likely to
control the process of adaptation and thus the re-setting of the cell to its pre-stimulus state,
however the mechanism by which this occurs is, as yet, unknown.

phosphorylate CheA3 (forming CheA3-P). Subsequent to this, phosphoryl groups may be passed

on to a subset of the response regulating proteins, namely CheY6 and CheB2 [170]. It is thought

that the proteins CheR2 and CheB2-P form an adaptation mechanism. Whilst this mechanism

is not known, it has previously been assumed to function in a similar manner to that in E. coli.

It is clear that each receptor cluster can produce responses to different signals via the phos-

phorylation of certain response regulating proteins. However, since the cell possesses just one

flagellum, the two separate chemosensory pathway signals must be integrated into a single re-

sponse. In order to do this, the proteins CheY3, CheY4 and CheY6 may all interact with the

flagellar motor regulating protein FliM [171]. These protein interactions are thought to control

the run and stop swimming behaviour of R. sphaeroides cells, however the mechanism by which

this occurs is unknown.
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7.1.2 Mathematical Modelling

In addition to the experimental work discussed in Section 7.1.1, there are also a number of

examples within the literature whereby mathematical modelling has sought to further under-

standing of chemotaxis in R. sphaeroides cells. Each of the examples discussed here utilise ODE

models to investigate various aspects of the R. sphaeroides chemotaxis signalling network. As

such, here we focus on the main findings of each paper and provide just a brief summary of the

key differences between the theoretical approaches considered.

Early examples of theoretical work on this system sought to elucidate the network of reactions

responsible for chemotaxis in R. sphaeroides. In particular, the works of Roberts et al. [172] and

Hamadeh et al. [173] each constructed a number of mathematical models containing different

combinations of possible network connections (i.e. phosphorylation and methylation reactions).

In each case the models were compared against experimental data in order to assess which was

the most effective model of R. sphaeroides chemotaxis. However, whilst these models produce

a reasonable fit to some experimental data, they have subsequently been shown to contain

reactions that cannot occur biologically.

Tindall et al. [174] sought to utilise mathematical modelling to elucidate the roles of var-

ious components of the R. sphaeroides chemotaxis signalling pathways. This work was able

to demonstrate that CheA3 functions as a bi-functional kinase-phosphatase protein. Biologi-

cally, this means that CheA3-P phosphorylates CheY6 and CheB2 (kinase action), however both

CheA3 and CheA3-P act to dephosphorylate CheY6-P (phosphatase action). This work also

showed that a number of reverse phosphorylation reactions occur, i.e. phosphorylated response

regulator proteins (CheB and CheY homologues) may transfer their phosphoryl groups on to

non-phosphorylated CheA proteins. In particular, a reverse phosphorylation reaction was found

to exist for each phosphotransfer reaction except for one - CheY6-P does not transfer phosphoryl

groups onto CheA2.

The work of Amin et al. [175] modelled only reactions occurring at the cytoplasmic cluster

of R. sphaeroides cells. As such, their model included proteins CheA3, CheA4 and CheY6 in

their phosphorylated and non-phosphorylated states as well as the transient complexes formed

during each reaction. Using this model it was shown that the atypical HPK present in R.

sphaeroides cells is capable of producing both ultrasensitivity and bistability under certain pa-

rameter regimes.

Martin et al. [168] investigated the mechanisms behind adaptation in R. sphaeroides cells by

studying reactions involving CheR and CheB proteins. Whilst no mechanisms were proposed

in this work, it was concluded that CheR and CheB homologues are likely to be responsible
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for adaptation. They also went on to state that in spite of utilising homologues of the same

proteins, the mechanism for adaptation in R. sphaeroides does not appear to be the same as

that of B. subtilis or E. coli.

Recently, the work of Hamadeh et al. [176] and Kojadinovic et al. [161] demonstrated the ex-

istence of fold-change detection (FCD) within chemotactic R. sphaeroides cells. The theoretical

work of Kojadinovic et al. [161] is of particular interest here since it extends the work of Tindall

et al. [174] and couples this with an MWC-based adaptation mechanism similar to those consid-

ered for E. coli chemotaxis modelling for both the polar and cytoplasmic receptor clusters. This

model therefore represents the most complete description of the chemotaxis signalling pathways

of R. sphaeroides within the literature.

7.2 Motivation

Since the work summarised in Section 7.1, new experimental data has become available that

has sought to provide new insight into the chemotaxis signalling pathways of R. sphaeroides

cells [162]. In particular, this work examined the effects on chemotactic swimming behaviour of

various different cellular mutations (alterations from the wild-type workings of the cell). These

mutations are summarised in Table 7.1 whilst their impacts upon the steady-state fraction of

time each cell type spends in a stopped state is shown in Figure 7.2.

Figure 7.2: From the work of de Beyer [162], the fractions of time each chemotaxis mutant
spends stopped. Box plot edges indicate first and third quartile, box centre indicates median,
whiskers indicate minimum and maximum and circles indicate outliers.

109



It is clear from Section 7.1 that a number of mathematical models have been used to study

certain features of R. sphaeroides chemotaxis signalling pathways. Each of these examples has

relied on a number of assumptions or hypotheses, the effects of which have not been been

considered in depth.

Table 7.1: Descriptions of each R. sphaeroides mutant utilised within the experimental work.
Mutation Description

#1 WT Wild-type strain
#2 ∆CheB2 CheB2 deletion
#3 ∆CheR2 CheR2 deletion
#4 CheA2(H48Q) CheA2 cannot be phosphorylated
#5 CheA2(G470K) CheA2 is unable to autophosphorylate
#6 CheA2(H48Q,G470K) CheA2 has no kinase activity
#7 CheA3(H48Q)CheY6(D57N) CheA3 cannot be phosphorylated &

CheY6 full phosphorylation mimic
#8 CheA4(G470K)CheY6(D57N) CheA4 cannot autophosphorylate &

CheY6 full phosphorylation mimic
#9 CheY3(D57A) CheY3 inactive and non-phosphorylatable
#10 CheY4(D57A) CheY4 inactive and non-phosphorylatable
#11 CheY3,4(D57A) CheY3 inactive and non-phosphorylatable &

CheY4 inactive and non-phosphorylatable
#12 CheY3(D57A)∆CheY4 CheY3 inactive and non-phosphorylatable &

CheY4 deletion
#13 CheY3**CheY4(D57A) CheY3 inactivated &

CheY4 inactive and non-phosphorylatable
#14 ∆CheY3,4 CheY3 and CheY4 deletions
#15 ∆CheB1 CheB1 deletion
#16 ∆CheB1,2 CheB1 and CheB2 deletions
#17 ∆TlpT Deletion of TlpT (chemoreceptor)
#18 ∆CheR3 CheR3 deletion
#19 ∆CheR1,2,3 CheR1, CheR2 and CheR3 deletion
#20 CheA3(H48Q) CheA3 cannot be phosphorylated
#21 CheA4(G470K) CheA4 cannot autophosphorylate
#22 CheY6(D57A) CheY6 inactive and non-phosphorylatable
#23 CheY3(D57N) CheY3 full phosphorylation mimic
#24 CheY4(D57N) CheY4 full phosphorylation mimic
#25 CheY3,4(D57N) CheY3 full phosphorylation mimic &

CheY4 full phosphorylation mimic
#26 CheY3(D57N)∆CheY1,2,4,5 CheY3 full phosphorylation mimic &

Deletion of CheY1,2,4,5

#27 CheY4(D57N)∆CheY1,2,3,5 CheY4 full phosphorylation mimic &
Deletion of CheY1,2,3,5

#28 ∆CheY1−6 Deletion of CheY1−6

#29 CheY6(D57N) CheY6 full phosphorylation mimic
#30 ∆CheY4 CheY4 deletion
#31 ∆CheY3 CheY3 deletion
#32 ∆CheY6 CheY6 deletion

In light of this new experimental data, we are presented with an opportunity to further

analyse existing mathematical models. As such, we consider here a number of altered models

representing mutant cell types. Using these models we are able to demonstrate that the most
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complete model to date does not represent an adequate description of chemotaxis signalling in

R. sphaeroides and identify areas for further work.

7.3 R. sphaeroides Chemotaxis Signalling Model

Within Section 7.1 we summarised the key experimental and theoretical literature that repre-

sents the current understanding of R. sphaeroides signalling pathways. One model of particular

interest is that due to Kojadinovic et al. [161]. This represents the most complete description of

R. sphaeroides chemotaxis signalling to date and as such is subjected to further analysis within

the remainder of this chapter.

This model takes an ODE model of known signalling pathway reactions (formulated using

the law of mass action, see Appendix A) and couples this with MWC descriptions of both the

polar and cytoplasmic receptor clusters. In addition to this, the adaptation mechanism of E.

coli cells is assumed to function at each of the polar and cytoplasmic receptor clusters. Due to

the methods used in formulating this model it is subject to the assumptions/limitations detailed

in Appendix A. Further details of the Kojadinovic et al. [161] model are summarised in the

remainder of this section.

The polar chemoreceptor cluster is modelled borrowing the MWC approach from E. coli that

is as follows. The chemoreceptor activity (ΦP ) is given by

ΦP =
1

1 + eFP
, (7.1)

within which FP denotes the free-energy of the chemoreceptor signalling team. This takes the

form

FP = NP

[

1−
mP

2
+ ln

(

1 + [L]/Koff
P

1 + [L]/Kon
P

)]

, (7.2)

where NP denotes the number of receptors forming the polar cluster signalling team, [L] is

the extracellular ligand concentration, K
on/off
P are the ligand dissociation constants of polar

chemoreceptors in their active and inactive states, respectively and mP denotes the methylation

level of the polar chemoreceptors. The behaviour in time of this receptor methylation level is

described by the ODE

dmP

dt
= gR2(1− ΦP )− gB1[B1P ]

2ΦP , (7.3)

within which gR2 and gB1 represent the kinetic rate parameters of receptor methylation and

demethylation by the proteins CheR2 and CheB1-P, respectively.

In a manner similar to that of the polar chemoreceptor cluster, the cytoplasmic receptor
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cluster activity (ΦC) is also borrowed from E. coli and is described by the expression

ΦC =
1

1 + eFC
, (7.4)

in which FC represents the free-energy of a cytoplasmic cluster chemoreceptor signalling team.

This free-energy is represented by

FC = NC

[

1−
mC

2
+ ln

(

1 + [L]/Koff
C

1 + [L]/Kon
C

)]

, (7.5)

where NC indicates how many receptors constitute a signalling team within the cytoplasmic clus-

ter, [L] is the ligand concentration, K
on/off
C are the ligand dissociation constants of cytoplasmic

cluster chemoreceptors in their active and inactive states, respectively and mC is the methy-

lation level of the cytoplasmic chemoreceptors. The dynamic behaviour of the chemoreceptor

methylation level is given by

dmC

dt
= gR3(1− ΦC)− gB2[B2P ]

2ΦC , (7.6)

within which gR3 and gB2 represent the kinetic rate parameters of receptor methylation and

demethylation by the proteins CheR3 and CheB2-P, respectively.

In addition to the MWC representations of the polar and cytoplasmic chemoreceptor clusters,

it is also necessary to consider a set of ODEs for the behaviour in time of the chemotaxis proteins

CheA2, CheA3, CheY3, CheY4, CheY6, CheB1 and CheB2. Based upon the reactions outlined in

Figure 7.1, the law of mass action (see Appendix A) was utilised and conservation laws identified

in order to produce a pair of ODEs describing the behaviour of proteins CheA2-P and CheA3-P.

These take the form

d[A2p]

dt
= k1ΦP ([A2]T − [A2p])− k3[A2p] ([Y3]T − [Y3p]) + k−3 ([A2]T − [A2p]) [Y3p] (7.7)

− k4[A2p] ([Y4]T − [Y4p]) + k−4 ([A2]T − [A2p]) [Y4p]− k5[A2p] ([Y6]T − [Y6p])

− k6[A2p] ([B1]T − [B1p]) + k−6 ([A2]T − [A2p]) [B1p]− k7[A2p] ([B2]T − [B2p])

+ k−7 ([A2]T − [A2p]) [B2p],

d[A3p]

dt
= k2ΦC ([A3]T − [A3p])− k8[A3p] ([Y6]T − [Y6p]) + k−8 ([A3]T − [A3p]) [Y6p] (7.8)

− k9[A3p] ([B2]T − [B2p]) + k−9 ([A3]T − [A3p]) [B2p].

In addition to the ODEs describing the dynamics of the CheA proteins, the law of mass action
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Table 7.2: A base set of R. sphaeroides parameter values from experimental and theoretical
literature sources. Here the superscript a denotes a value taken directly from experimental
data, b shows that a parameter was obtained by fitting a mathematical model to experimental
data and c indicates that a value was inferred from E. coli experimental values.
Symbol Description Value Source

k1 Rate of CheA2 autophosphorylation 0.12s−1 [177]a

k2 Rate of CheA3 phosphorylation by CheA4 0.98s−1 [170]a

k3 Phosphotransfer CheA2-P to CheY3 6.60×103(Ms)−1 [174]b

k−3 Reverse phosphotransfer CheY3-P to CheA2 1.17×104(Ms)−1 [174]b

k4 Phosphotransfer CheA2-P to CheY4 8.85×105(Ms)−1 [174]b

k−4 Reverse phosphotransfer CheY4-P to CheA2 2.32×105(Ms)−1 [174]b

k5 Phosphotransfer CheA2-P to CheY6 1.54×103(Ms)−1 [174]b

k6 Phosphotransfer CheA2-P to CheB1 1.78×106(Ms)−1 [174]b

k−6 Reverse phosphotransfer CheB1-P to CheA2 2.85×106(Ms)−1 [174]b

k7 Phosphotransfer CheA2-P to CheB2 3.07×103(Ms)−1 [174]b

k−7 Reverse phosphotransfer CheB2-P to CheA2 1.53×103(Ms)−1 [174]b

k8 Phosphotransfer CheA3-P to CheY6 7.75×105(Ms)−1 [174]b

k−8 Reverse phosphotransfer CheY6-P to CheA3 2.83×103(Ms)−1 [174]b

k9 Phosphotransfer CheA3-P to CheB2 6.15×104(Ms)−1 [174]b

k−9 Reverse phosphotransfer CheB2-P to CheA3 3.10×103(Ms)−1 [174]b

k10 Autodephosphorylation of CheY3-P 5.39×10−2s−1 [177]a

k11 Autodephosphorylation of CheY4-P 3.36×10−2s−1 [177]a

k12 Autodephosphorylation of CheY6-P 1.60×10−1s−1 [177]a

k13 Autodephosphorylation of CheB1-P 4.70×10−3s−1 [177]a

k14 Autodephosphorylation of CheB2-P 1.01×10−2s−1 [177]a

k15 Dephosphorylation of CheY6-P by CheA3 5.20×103(Ms)−1 [178]a

k16 Dephosphorylation of CheY6-P by CheA3-P 5.20×103(Ms)−1 [178]a

gR2 Rate of polar receptor methylation by CheR2 6.00×10−3s−1 [161]b

gR3 Rate of cytoplasmic methylation by CheR3 6.00×10−3s−1 [161]b

gB1 Rate of polar receptor methylation by CheB1 1.57×108(M2s)−1 [161]b

gB2 Rate of cytoplasmic demethylation by CheB2 1.57×109(M2s)−1 [161]b

[A2]T Total concentration of CheA2 89.93µM [179]a

[A3]T Total concentration of CheA3 89.93µM [179]a

[B1]T Total concentration of CheB1 81.20µM [179]a

[B2]T Total concentration of CheB2 20.78µM [179]a

[R2]T Total concentration of CheR2 0.16µM [112]c

[R3]T Total concentration of CheR3 0.16µM [112]c

[Y3]T Total concentration of CheY3 3.46µM [179]a

[Y4]T Total concentration of CheY4 13.84µM [179]a

[Y6]T Total concentration of CheY6 225µM [179]a

NP Receptors in a polar signalling team 18 [62]c

NC Receptors in a cytoplasmic signalling team 18 [62]c

Kon
P Dissociation constant: active polar receptor 5×10−1mM [70]c

Koff
P Dissociation constant: inactive polar receptor 2×10−2mM [70]c

Kon
C Dissociation constant: active cytoplasmic receptor 5×10−1mM [161]c

Koff
C Dissociation constant: inactive cytoplasmic receptor 2×10−2mM [161]c
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and conservation laws may also be applied to the reactions involving CheY proteins, yielding

the following ODEs for the behaviour of CheY3-P, CheY4-P and CheY6-P. These are of the form

d[Y3p]

dt
= k3[A2p] ([Y3]T − [Y3p])− k−3[Y3p] ([A2]T − [A2p])− k10[Y3p], (7.9)

d[Y4p]

dt
= k4[A2p] ([Y4]T − [Y4p])− k−4[Y4p] ([A2]T − [A2p])− k11[Y4p], (7.10)

d[Y6p]

dt
= k5[A2p] ([Y6]T − [Y6p]) + k8[A3p] ([Y6]T − [Y6p])− k−8 ([A3]T − [A3p]) [Y6p](7.11)

− k12[Y6p]− k15 ([A3]T − [A3p]) [Y6p]− k16[A3p][Y6p].

It is worth noting that in equation (7.11) the terms −k15([A3T ]− [A3p])[Y6p] and −k16[A3p][Y6p]

could be written as −k15[A3T ][Y6p] since the rate constants k15 and k16 are equal. However,

in this case the separate terms are retained to explicitly include the effects of each reaction.

Finally, the law of mass action and conservation laws may again be utilised in order to derive

a pair of ODEs describing the dynamic behaviour of the proteins CheB1-P and CheB2-P which

take the form

d[B1p]

dt
= k6[A2p] ([B1]T − [B1p])− k−6[B1p] ([A2]T − [A2p])− k13[B1p], (7.12)

d[B2p]

dt
= k7[A2p] ([B2]T − [B2p])− k−7 ([A2]T − [A2p]) [B2p] (7.13)

+ k9[A3p] ([B2]T − [B2p])− k−9 ([A3]T − [A3p]) [B2p]− k14[B2p].

Within equations (7.1)-(7.13) protein concentrations are denoted [...] with subscripts P and

T indicating the phosphorylated and total concentrations of the relevant protein, respectively.

The kinetic rate parameters of each reaction are (unless otherwise stated) denoted ki (i =

1, 2, 3,−3, 4,−4, 5, 6,−6, 7, −7, 8,−8, 9,−9, 10, 11, 12, 13, 14, 15, 16) and full descriptions of each

parameter are listed in Table 7.2.

In order to complete this model, a set of initial conditions are also considered. These take

the form

mP = mP0, mC = mC0, [A2p] = [A2p]0, [A3p] = [A3p]0,

[Y3p] = [Y3p]0, [Y4p] = [Y4p]0, [Y6p] = [Y6p]0, [B1p] = [B1p]0, and [B2p] = [B2p]0.

Values for these initial conditions may take any value within the biologically feasible range. For

each protein this requires, for example, 0 ≤ [A2p]0 ≤ [A2]T , while each methylation level must

be chosen such that, for example, 0 ≤ mP0 ≤ mmax, where mmax denotes the greatest possible

methylation level of a chemoreceptor.
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7.4 Model Analysis

7.4.1 Non-Dimensionalisation

Here we consider a non-dimensionalisation (re-scaling) of the mathematical model presented

in equations (7.1)-(7.13). In particular we make the choice to re-scale each of the chemotaxis

protein concentrations with respect to the relevant total concentration, eg. [A2p] = a2p[A2]T .

We also consider a re-scaling of time with respect to the rate of CheA2-P autophosphorylation,

i.e. t = τ/k1, where τ represents non-dimensional time. Substitution of these re-scaled variables

into equations (7.1)-(7.13) results in the system of non-dimensional ODEs

dmP

dτ
= γR2(1− ΦP )− γB1b

2
1pΦP = g1, (7.14)

dmC

dτ
= γR3(1− ΦC)− γB2b

2
2pΦC = g2, (7.15)

da2p
dτ

= k̄1ΦP (1− a2p)− k̄3a2p (1− y3p) + k̄−3 (1− a2p) y3p (7.16)

− k̄4a2p (1− y4p) + k̄−4 (1− a2p) y4p − k̄5a2p (1− y6p)

− k̄6a2p (1− b1p) + k̄−6 (1− a2p) b1p − k̄7a2p (1− b2p)

+ k̄−7 (1− a2p) b2p = g3,

da3p
dτ

= k̄2ΦC (1− a3p)− k̄8a3p (1− y6p) + k̄−8 (1− a3p) y6p (7.17)

− k̄9a3p (1− b2p) + k̄−9 (1− a3p) b2p = g4,

dy3p
dτ

= α1k̄3a2p (1− y3p)− α1k̄−3y3p (1− a2p)− k̄10y3p = g5, (7.18)

dy4p
dτ

= α2k̄4a2p (1− y4p)− α2k̄−4y4p (1− a2p)− k̄11y4p = g6, (7.19)

dy6p
dτ

= α3k̄5a2p (1− y6p) + α6k̄8a3p (1− y6p)− α6k̄−8 (1− a3p) y6p (7.20)

− k̄12y6p − k̄15 (1− a3p) y6p − k̄16a3py6p = g7,

db1p
dτ

= α4k̄6a2p (1− b1p)− α4k̄−6b1p (1− a2p)− k̄13b1p = g8, (7.21)

db2p
dτ

= α5k̄7a2p (1− b2p)− α5k̄−7 (1− a2p) b2p + α7k̄9a3p (1− b2p) (7.22)

− α7k̄−9 (1− a3p) b2p − k̄14b2p = g9,
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within which lower case ai (i = 2, 3), yi (i = 3, 4, 6) and bi (i = 1, 2) denote the (non-

dimensional) fractions of the relevant chemotaxis proteins that are phosphorylated, k̄i (i =

1, 2, 3,−3, 4,−4, 5, 6,−6, 7,−7, 8,−8, 9,−9, 10, 11, 12, 13, 14, 15, 16) are non-dimensional param-

eters (as defined in Table 7.3), αi (i = 1, 2, 3, 4, 5, 6, 7) represent total protein concentration

ratios and all other symbols retain their previous definitions.

Table 7.3: A base set of non-dimensional R. sphaeroides parameter values calculated using values
in Table 7.2.

Parameter Value

k̄1 = k1/k1 1
k̄2 = k2/k1 8.167
k̄3 = k3[Y3]T /k1 0.190
k̄−3 = k−3[Y3]T /k1 0.337
k̄4 = k4[Y4]T /k1 102.070
k̄−4 = k−4[Y4]T /k1 26.757
k̄5 = k5[Y6]T /k1 2.888
k̄6 = k6[B1]T /k1 1204.467
k̄−6 = k−6[B1]T /k1 1928.500
k̄7 = k7[B2]T /k1 0.532
k̄−7 = k−7[B2]T /k1 0.265
k̄8 = k8[Y6]T /k1 1453.125
k̄−8 = k−8[Y6]T /k1 5.306
k̄9 = k9[B2]T /k1 10.650
k̄−9 = k−9[B2]T /k1 0.537
k̄10 = k10/k1 44916.667
k̄11 = k11/k1 0.280
k̄12 = k12/k1 0.133
k̄13 = k13/k1 0.014
k̄14 = k14/k1 0.084
k̄15 = k15[A3]T /k1 3.897
k̄16 = k15[A3]T /k1 3.897
γR2 = gR2/k1 0.050
γR3 = gR3/k1 0.050
γB1 = gB1[B1]

2
T /k1 8.626

γB2 = gB2[B2]
2
T /k1 5.649

α1 = [A2]T /[Y3]T 25.991
α2 = [A2]T /[Y4]T 6.498
α3 = [A2]T /[Y6]T 0.400
α4 = [A2]T /[B1]T 1.108
α5 = [A2]T /[B2]T 4.328
α6 = [A3]T /[Y6]T 0.400
α7 = [A3]T /[B2]T 4.328

In considering a non-dimensionalisation such as this, the initial conditions must also be

re-scaled. As such, the initial conditions become

a2p = a2p0, a3p = a3p0, b1p = b1p0, b2p = b2p0,

y3p = y3p0, y4p = y4p0 and y6p = y6p0.
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Those conditions for variables mP and mC remain unaffected. As in Section 7.3, these initial

conditions must be chosen to satisfy biologically realistic conditions, for example, 0 ≤ a2p0 ≤ 1.

7.4.2 Model Steady-States

Similar to the work in Section 3.2.3, here we seek to find the steady-state(s) of the mathe-

matical model outlined in Section 7.4.1. As such, we seek states whereby the temporal rate of

change is zero. Thus, we set the derivatives in equations (7.15)-(7.22) to zero, giving our model

steady-state(s) as

0 = γR2(1− Φ∗
P )− γB1b

∗2
1pΦ

∗
P , (7.23)

0 = γR3(1− Φ∗
C)− γB2b

∗2
2pΦ

∗
C , (7.24)

0 = k̄1Φ
∗
P

(
1− a∗2p

)
− k̄3a

∗
2p

(
1− y∗3p

)
+ k̄−3

(
1− a∗2p

)
y∗3p (7.25)

− k̄4a
∗
2p

(
1− y∗4p

)
+ k̄−4

(
1− a∗2p

)
y∗4p − k̄5a

∗
2p

(
1− y∗6p

)

− k̄6a
∗
2p

(
1− b∗1p

)
+ k̄−6

(
1− a∗2p

)
b∗1p − k̄7a

∗
2p

(
1− b∗2p

)

+ k̄−7

(
1− a∗2p

)
b∗2p,

0 = k̄2Φ
∗
C

(
1− a∗3p

)
− k̄8a

∗
3p

(
1− y∗6p

)
+ k̄−8

(
1− a∗3p

)
y∗6p (7.26)

− k̄9a
∗
3p

(
1− b∗2p

)
+ k̄−9

(
1− a∗3p

)
b∗2p,

0 = α1k̄3a
∗
2p

(
1− y∗3p

)
− α1k̄−3y

∗
3p

(
1− a∗2p

)
− k̄10y

∗
3p, (7.27)

0 = α2k̄4a
∗
2p

(
1− y∗4p

)
− α2k̄−4y

∗
4p

(
1− a∗2p

)
− k̄11y

∗
4p, (7.28)

0 = α3k̄5a
∗
2p

(
1− y∗6p

)
+ α6k̄8a

∗
3p

(
1− y∗6p

)
− α6k̄−8

(
1− a∗3p

)
y∗6p (7.29)

− k̄12y
∗
6p − k̄15

(
1− a∗3p

)
y∗6p − k̄16a

∗
3py

∗
6p,

0 = α4k̄6a
∗
2p

(
1− b∗1p

)
− α4k̄−6b

∗
1p

(
1− a∗2p

)
− k̄13b

∗
1p, (7.30)

0 = α5k̄7a
∗
2p

(
1− b∗2p

)
− α5k̄−7

(
1− a∗2p

)
b∗2p + α7k̄9a

∗
3p

(
1− b∗2p

)
(7.31)

− α7k̄−9

(
1− a∗3p

)
b∗2p − k̄14b

∗
2p.

We begin here by rearranging equation (7.27) such that y∗3p is expressed in terms of other

parameters and variables. This gives the steady-state of CheY3-P as

y∗3p =
k3[A2]Ta

∗
2p

k3[A2]Ta∗2p + k−3[A2]T (1− a∗2p) + k10
. (7.32)
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By application of a very similar process to equation (7.28) we are able to find that the steady-

state expression for CheY4-P is of the form

y∗4p =
k4[A2]Ta

∗
2p

k4[A2]Ta∗2p + k−4[A2]T (1− a∗2p) + k11
. (7.33)

Equation (7.29) may then be investigated from which we find that the steady-state expression

for CheY6-P takes the form

y∗6p =
k5[A2]Ta

∗
2p + k8[A3]Ta

∗
3p

k5[A2]Ta∗2p + k8[A3]Ta∗3p + k−8[A3]T (1− a∗3p) + k12 + k15[A3]T (1− a∗3p) + k16[A3]Ta∗3p
.

(7.34)

The steady-state expression for protein CheB1-P may be obtained upon rearranging equa-

tion (7.30) which yields

b∗1p =
k6[A2]Ta

∗
2p

k6[A2]Ta∗2p + k−6[A2]T (1− a∗2p) + k13
. (7.35)

We may also apply this same method to equation (7.31) which gives the steady-state expression

for CheB2-P as

b∗2p =
k7[A2]Ta

∗
2p + k9[A3]Ta

∗
3p

k7[A2]Ta∗2p + k9[A3]Ta∗3p + k−7[A2]T (1− a∗2p) + k−9[A3]T (1− a∗3p) + k14
. (7.36)

It is also possible to obtain steady-state expressions for the chemoreceptor signalling team activ-

ities for both of the polar and cytoplasmic receptor clusters. These are found upon rearranging

equations (7.23) and (7.24) and are given by

Φ∗
P =

gR2

gR2 + gB1[B1]2T b
∗2
1p

=
1

1 +
(
gB1[B1]2T

gR2
b∗21p

) , (7.37)

and

Φ∗
C =

gR3

gR3 + gB2[B2]2T b
∗2
2p

=
1

1 +
(
gB2[B2]2T

gR3
b∗22p

) . (7.38)

Upon comparing these two expressions with equations (7.1) and (7.4) it can be seen that

eFP =
gB1[B1]

2
T

gR2
b∗21p, (7.39)

and

eFC =
gB2[B2]

2
T

gR3
b∗22p, (7.40)

in which FP is given by equation (7.2) and FC by equation (7.5). It is now possible to re-
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arrange these two expressions in order to obtain the steady-state expressions for the average

chemoreceptor methylation level at the polar and cytoplasmic clusters. As such, these are given

by

m∗
P = 2

[

1 + ln

(

1 + [L]/Koff
P

1 + [L]/Kon
P

)

−
1

NP
ln

(
gB1[B1]

2
T

gR2
b∗21p

)]

, (7.41)

and

m∗
C = 2

[

1 + ln

(

1 + [L]/Koff
C

1 + [L]/Kon
C

)

−
1

NC
ln

(
gB2[B2]

2
T

gR3
b∗22p

)]

. (7.42)

It is still clearly necessary to obtain the steady-state expressions for CheA2-P and CheA3-P

since these must be substituted into equations (7.32)-(7.42) in order to obtain specific steady-

state values. However, upon substituting these a2p and a3p dependent steady-state expressions

into equations (7.25) and (7.26) and rearranging, we obtain coupled polynomial expressions of

the form

p(a∗2p, a
∗
3p) = c1a

∗8
2p + c2a

∗7
2p + c3a

∗6
2p + c4a

∗5
2p + c5a

∗4
2p + c6a

∗3
2p + c7a

∗2
2p + c8a

∗
2p + c9 = 0, (7.43)

and

q(a∗2p, a
∗
3p) = c10a

∗5
3p + c11a

∗4
3p + c12a

∗3
3p + c13a

∗2
3p + c14a

∗
3p + c15 = 0, (7.44)

in which the polynomial coefficients c1−9 depend upon the value of a∗3p and coefficients c10−15

are dependent upon the a∗2p value.

We begin our analysis of the above polynomial equations by examining equation (7.44), the

roots (solutions) of which represent the possible steady-state values for a∗3p. We may investigate

the nature of solutions to this polynomial equation utilising Descartes’ rule of signs (see Ap-

pendix B) and the parameter values listed in Table 7.2. Upon substitution of these parameters

into equation (7.44) we find that

c10 = −59.1490, (7.45)

c11 = −977.0201 + 18.7423a∗2p, (7.46)

c12 = −79.3906− 116.3834a∗2p + 2.1571a∗22p, (7.47)

c13 = −1.8894× 10−1 − 7.4581a∗2p − 4.3907a∗22p + 5.6289× 10−2a∗32p, (7.48)

c14 = 4.3715× 10−3 + 5.8141× 10−3a∗2p − 1.7374× 10−1a∗22p − 4.7975× 10−2a∗32p (7.49)

+ 4.8953× 10−5a∗42p,
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c15 = 3.3667× 10−4 + 4.4652× 10−4a∗2p + 2.2002× 10−4a∗22p + 3.0993× 10−4a∗32p (7.50)

+ 7.9690× 10−5a∗42p,

where each term is expressed to four decimal places. Examining these values shows that in the

range 0 ≤ a∗2p ≤ 1 coefficients c10-c13 are negative whilst c15 is positive. Coefficient c14 may

be either positive or negative depending upon the magnitude of a∗2p. In spite of the fact that

the sign of c14 may change it is clear that there exists just one sign change between consecutive

polynomial coefficients. Hence there will be just one positive steady-state value for this equation.

Furthermore we may examine the coefficients of the polynomial q(a∗2p,−a
∗
3p), within which the

coefficients c10, c12 and c14 will take the opposite sign to the previous case. As such we find that

there are four changes in sign between consecutive polynomial coefficients. It will therefore be

the case that this polynomial will have either:

• Case i: one positive real, four negative real and zero complex roots;

• Case ii: one positive real, two negative real and two complex roots; or

• Case iii: one positive real, zero negative real and four complex roots.

However, in each of the above three cases these four roots are not biologically feasible and as

such they may be neglected.

Analysis of the coefficients in the polynomial equation (7.43) using Descartes’ rule of signs

is inconclusive, i.e. the signs of the coefficients are not all clear. As such we must seek an

alternative method to investigate the steady-state(s) of CheA2-P. Since we have already shown

that there is only one biologically feasible steady-state for CheA3-P, we may investigate the roots

of equation (7.43) using parameter values listed in Table 7.2 and varying the value of a∗3p over

the whole biologically feasible range 0 ≤ a∗3p ≤ 1. This investigation was carried out using the

‘roots’ function in MATLAB which calculates all possible roots of a polynomial equation given

values for each of the coefficients. This analysis yields the results displayed in Figure 7.3.

Upon inspection of the results in Figure 7.3 it is clear that there are three positive real roots,

two complex roots and three negative real roots to equation (7.43). Interestingly, whilst the

values of these roots vary, their nature does not change as a∗3p varies. Within this work we are

only interested in those roots which lie in the biologically feasible range 0 ≤ a∗2p ≤ 1. As such we

may neglect each of the negative real and complex roots (i.e. root 1 and roots 5-8 in Figure 7.3).

Inspecting the positive real roots we are able to see (in Figure 7.3(c)) that there is just one root

lying within the biologically feasible range. Hence we may neglect roots 2 and 3 in Figure 7.3

and conclude that the steady-state value for a∗3p will be that given by root 4.
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Figure 7.3: Plots showing all possible roots that may be obtained from equation (7.43) when
taking parameter values as in Table 7.2 and varying a∗3p over the biologically feasible range
0 ≤ a∗3p ≤ 1. Plot (a) displays all eight roots of the polynomial equation. Plot (b) focuses in on
the region of biological feasibility. Plot (c) further focuses on this region of interest. Different
coloured symbols indicate the eight different roots of this polynomial, only one of which lies in
the biologically feasible range 0 ≤ a∗2p ≤ 1.

7.4.3 Asymptotic Stability Analysis

Section 7.4.2 has clearly demonstrated that given the parameter set in Table 7.2 there is

only one biologically feasible steady-state. It is now useful to consider the asymptotic stability

of this particular steady-state. Proceeding as in Section 3.2.4 we obtain the Jacobian matrix, as
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given by

J =





























∂g1
∂mP

0 0 0 0 0 0 ∂g1
∂b1p

0

0 ∂g2
∂mC

0 0 0 0 0 0 ∂g2
∂b2p

∂g3
∂mP

0 ∂g3
∂a2p

0 ∂g3
∂y3p

∂g3
∂y4p

∂g3
∂y6p

∂g3
∂b1p

∂g3
∂b2p

0 ∂g4
∂mC

0 ∂g4
∂a3p

0 0 ∂g4
∂y6p

0 ∂g4
∂b2p

0 0 ∂g5
∂a2p

0 ∂g5
∂y3p

0 0 0 0

0 0 ∂g6
∂a2p

0 0 ∂g6
∂y4p

0 0 0

0 0 ∂g7
∂a2p

∂g7
∂a3p

0 0 ∂g7
∂y6p

∂g7
∂b1p

∂g7
∂b2p

0 0 ∂g8
∂a2p

0 0 0 0 ∂g8
∂b1p

0

0 0 ∂g9
∂a2p

∂g9
∂a3p

0 0 0 0 ∂g9
∂b2p





























. (7.51)

It is clear upon inspection that this Jacobian matrix is much more complex than that obtained

when studying the E. coli model system (equation (3.36)) and as such there are significantly

more partial derivatives to be evaluated. In this particular case, these partial derivatives are of

the form

∂g1
∂mP

= −
NP e

FPΦ2
P

2

(
γR2 + γB1b

2
1p

)
, (7.52)

∂g1
∂b1p

= −2γB1b1pΦP , (7.53)

∂g2
∂mC

= −
NCe

FCΦ2
C

2

(
γR3 + γB2b

2
2p

)
, (7.54)

∂g2
∂b2p

= −2γB2b2pΦC , (7.55)

∂g3
∂mP

=
1

2
(1− a2p)NP e

FPΦ2
P , (7.56)

∂g3
∂a2p

= −ΦP − k̄3(1− y3p)− k̄−3y3p − k̄4(1− y4p)− k̄−4y4p (7.57)

− k̄5(1− y6p)− k̄6(1− b1p)− k̄−6b1p − k̄7(1− b2p)− k̄−7b2p,

∂g3
∂y3p

= k̄3a2p + k̄−3(1− a2p), (7.58)

∂g3
∂y4p

= k̄4a2p + k̄−4(1− a2p), (7.59)

∂g3
∂y6p

= k̄5a2p, (7.60)

∂g3
∂b1p

= k̄6a2p + k̄−6(1− a2p), (7.61)

∂g3
∂b2p

= k̄7a2p + k̄−7(1− a2p), (7.62)

∂g4
∂mC

= k̄2
(1− a3p)NCe

FCΦ2
C

2
, (7.63)

122



∂g4
∂a3p

= −k̄2ΦC − k̄8(1− y6p)− k̄−8y6p − k̄9(1− b2p)− k̄−9b2p, (7.64)

∂g4
∂y6p

= k̄8a3p + k̄−8(1− a3p), (7.65)

∂g4
∂b2p

= k̄9a3p + k̄−9(1− a3p), (7.66)

∂g5
∂a2p

= α1k̄3(1− y3p) + α1k̄−3y3p, (7.67)

∂g5
∂y3p

= −α1k̄3a2p + α1k̄−3(1− a2p)− k̄10, (7.68)

∂g6
∂a2p

= α2k̄4(1− y4p) + α2k̄−4y4p, (7.69)

∂g6
∂y4p

= −α2k̄4a2p + α2k̄−4(1− a2p)− k̄11, (7.70)

∂g7
∂a2p

= α3k̄5(1− y6p), (7.71)

∂g7
∂a3p

= α6k̄8(1− y6p) + α6k̄−8(1− y6p) + k̄15y6p − k̄16y6p, (7.72)

∂g7
∂y6p

= −α3k̄5a2p − α6k̄8a3p − α6k̄−8(1− a3p)− k̄12 − k̄15(1− a3p) (7.73)

− k̄16a3p,

∂g8
∂a2p

= α4k̄6(1− b1p) + α4k̄−6b1p, (7.74)

∂g8
∂b1p

= −α4k̄6a2p − α4k̄−6(1− a2p)− k̄13, (7.75)

∂g9
∂a2p

= α5k̄7(1− b2p) + α5k̄−7b2p, (7.76)

∂g9
∂a3p

= α7k̄9(1− b2p) + α7k̄−9b2p, (7.77)

∂g9
∂b2p

= −α5k̄7a2p − α5k̄−7(1− a2p)− α7k̄9a3p − α7k̄−9(1− a3p)− k̄14. (7.78)

Each of the partial derivatives in the Jacobian matrix that are not included in the above list are

equal to zero. In order to investigate the asymptotic stability of the system equilibrium found

in Section 7.4.2 we must examine the eigenvalues of the Jacobian matrix evaluated at this point.

This is done by solving

det |J − λI| = 0, (7.79)

within which I denotes the identity matrix with the same dimensions as the Jacobian matrix.

Examining the system equilibrium stated in Section 7.4.2 it is clear that the steady-state values

of CheA2-P and CheA3-P depend upon one another and also that all other protein concentration
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steady-states also depend upon the CheA2-P and CheA3-P steady-states. We therefore utilise

the parameter values listed in Table 7.2 and examine the eigenvalues obtained from evaluating

equation (7.79) for values over the ranges 0 ≤ a∗2p ≤ 1 and 0 ≤ a∗3p ≤ 1. Upon doing so we

obtain a set of nine eigenvalues for each combination of a∗2p and a∗3p as shown in Figure 7.4.
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Figure 7.4: Plots showing the real and imaginary parts of eigenvalues (λi) of the model in
equations (7.14)-(7.22), evaluated at steady-state values in the ranges 0 ≤ a∗2p ≤ 1 and 0 ≤
a∗3p ≤ 1. Plot (a) shows the location of all eigenvalues whilst (b) focuses about the origin and
(c) focuses yet further. All eigenvalues have Re(λi) < 0 and so the system is stable.

It is clear to see from the results in Figure 7.4 that each of the eigenvalues is such that

Re(λi) < 0 and as such we may conclude that given the parameter set in Table 7.2 this system

is asymptotically stable for all steady-states of the system with a∗2p and a∗3p in the ranges 0 ≤

a∗2p ≤ 1 and 0 ≤ a∗3p ≤ 1.

It is also clear that pairs of complex eigenvalues are common within this system. Examination

of results displayed in Figure 7.3 clearly shows that in the range 0 ≤ a∗3p ≤ 1, it is not possible

to obtain all values of a∗2p in the range 0 ≤ a∗2p ≤ 1. Thus it is likely that if eigenvalues obtained

from values within the ranges 0 ≤ a∗2p ≤ 1 and 0 ≤ a∗3p ≤ 1 that cannot feasibly be obtained

are removed then it is likely that we will always have at least one pair of complex eigenvalues
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and as such damped oscillatory behaviour is likely a fixed feature of this system under realistic

conditions.

7.4.4 Model Stiffness

As discussed in Section 3.2.5, the stiffness coefficient of a dynamical system can be deter-

mined from the magnitudes of the extreme eigenvalues of the system. In this case, the stiffness

coefficient may be calculated as

s =

∣
∣Re(λ̄)

∣
∣

|Re(λ)|
=

|Re(λ1)|

|Re(λ7)|
, (7.80)

within which λ̄ = λ1 and λ = λ7 represent the largest and smallest magnitude eigenvalues of

the system, respectively. In this particular case we may utilise the asymptotic stability analysis

of Section 7.4.3 in order to obtain eigenvalues of this system. This gives a stiffness coefficient of

s = 31, 482.06 which is clearly large. In actual fact, the use of an ODE solver for stiff systems

(such as the previously mentioned ode15s solver in MATLAB) is definitely required for the

numerical simulation of this system since this stiffness coefficient is ∼7.5 times larger than that

of the E. coli system that was obtained in Section 3.2.5 which was also deemed to be a stiff

system.

7.5 Deletion Mutants

Within this section we seek to test the validity of the Kojadinovic et al. [161] model by

examining its ability to reproduce experimental results. In particular, we wish to study whether

this model is sufficient to explain the behaviour of R. sphaeroides mutant strains studied within

the recent experimental work of de Beyer [162]. Within this experimental work a range of

different mutant strains were studied (see Table 7.1 for definitions).

The results of de Beyer [162] demonstrate that a number of mutations result in significantly

different swimming behaviour at steady-state (i.e. the time spent in runs and stops differs). In

order to assess the ability of the Kojadinovic et al. [161] model to accurately represent this data

we consider a number of alterations. Each of these altered models represents a single mutant

cell type. We can then obtain steady-state concentrations of CheY3-P, CheY4-P and CheY6-P,

thus allowing us to investigate whether these concentrations could produce the differences in

swimming behaviour observed experimentally.

Within this chapter we produce mutant models for a subset of the strains considered in the

work of de Beyer [162]. In order to capture the effects of these mutations within our altered
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Table 7.4: Alterations to kinetic rates required for the creation of each R. sphaeroides chemotaxis
mutant model used in this chapter.

Strain Parameters set to zero Other

#1 No alteration -
#2 k7, k−7, k9, k−9, k14, gB2 b2p = 0
#3 gR2 -
#6 k−3, k−4, k−6, k−7, Φ∗

P -
#9 k3, k−3, k10 y3p = 0
#10 k4, k−4, k11 y4p = 0
#14 k3, k−3, k4, k−4, k10, k11 -
#15 k6, k−6, k13, gB1 b1p = 0
#18 gR3 -
#20 k−8, k−9, Φ∗

C -

models there are a number of options available. For example, there are two main methods that

could be used to represent the deletion of protein CheY3 (i.e. a ∆CheY3 mutant cell). Firstly,

we may set the relevant total protein concentration ([Y3]T ) parameter to zero. Alternatively, by

setting each kinetic rate associated with the deleted protein to zero we may remove the effects

of that protein from the system. Here we consider only changes to kinetic rate parameters

since setting total protein concentrations to zero can cause divisions by zero as a result of the

non-dimensionalisation.

It is clear upon examination of Table 7.1 that not all mutations relate to the deletion of a

protein. However, in most cases they may continue to be modelled as such. Take for example the

CheY3,4(D57A) mutant strain in which CheY3 and CheY4 cannot be phosphorylated. It is clear

that these proteins will not directly influence chemotactic behaviour. If we also assume that there

are no indirect effects (eg. via intracellular crowding, etc.) then the CheY3,4(D57A) mutant can

clearly be modelled in the same manner as a ∆CheY3,4 deletion mutant (see Figure 7.2). Other

mutant cell types may be considered in the same manner, for example, CheA2(H48Q, G470K)

and CheA3(H48Q) mutants are considered here to be equivalent to ∆CheA2 (CheA2 deletion)

and ∆CheA3 (CheA3 deletion) mutants, respectively.

A complete summary of all kinetic rate parameter alterations used to represent mutant

strains in this work are listed in Table 7.4. It is now possible to obtain the steady-state values

for these ‘mutant models’ following the procedure laid out in Section 7.4.2. It is worth noting

however that in the case of deletion mutants, the denominators of the steady-state expressions

will be altered since a number of the rate parameters will now equal zero. Upon carrying out

this investigation we obtain the steady-state values shown in Table 7.5.

Examination of the experimental data shows that the phosphorylation levels of certain pro-

teins can affect the swimming behaviour of R. sphaeroides cells. In particular, CheY6(D57A)

and CheY6(D57N) mutants will have zero and full phosphorylation, respectively whilst a wild-
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Table 7.5: Steady-state values for CheY3-P, CheY4-P and CheY6-P in a number of R. sphaeroides
chemotaxis protein deletion mutant models. Shown in this table are non-dimensional steady-
state values as well as the equivalent dimensional values.

Strain y∗3p [Y ∗
3p] (µM) y∗4p [Y ∗

4p] (µM) y∗6p [Y ∗
6p] (µM)

Wild-Type 0.0785 0.27 0.3783 5.22 0.2452 55.17
∆CheA2 0 0 0 0 0.3039 68.38
∆CheA3 0.07601 0.27 0.3703 5.11 0.1038 23.36
∆CheB1 0.1605 0.56 0.5798 8.00 0.1853 41.69
∆CheB2 0.1069 0.37 0.4620 6.38 0.6263 140.92
∆CheR2 0.004629 0.016 0.03196 0.44 0.3440 77.40
∆CheR3 0.0702 0.25 0.3504 4.84 0.0297 6.68
∆CheY3 0 0 0.3787 5.23 0.2451 55.15
∆CheY4 0.07997 0.28 0 0 0.2436 54.81
∆CheY3,4 0 0 0 0 0.2434 54.77

type cell has an intermediate phosphorylation level. Experimental results for these three cell

types shows that greater CheY6-P concentrations relate to a greater fraction of time spent in

a stopped state by a cell’s flagellar motor. As such, here we compare the model prediction of

CheY6-P concentration with the experimentally observed fraction of time spent stopped. In

doing so, we would expect a sufficiently accurate model to display an increase in the fraction of

time spent in a stopped state as the CheY6-P concentration increases.

Upon investigating the results displayed in Table 7.5 (and visualised in Figure 7.5) it can be

seen that this model does not adequately explain the experimental data since it does not predict

suitable CheY6-P concentrations for each mutant cell type. In particular, the results of Figure 7.5

show that most mutant cell types do not vary too far from the expected relationship. However,

the ∆CheB2 (CheB2 deletion) mutant displays a predicted CheY6-P concentration that is clearly

far too high. As such, we must seek to understand why the behaviour observed in Figure 7.5

occurs. Firstly, it may be possible that CheY6-P concentration is not exclusively responsible for

setting the rotational behaviour of the flagellar motor. Alternatively, the mathematical model

analysed here may not contain an adequate description of signalling pathway mechanisms.

In addition to the results displayed in Table 7.5 and Figure 7.5 a number of alternative

functions were considered to control the flagellar rotation. Specifically we considered the con-

centrations of CheY3-P, CheY4-P, the sum CheY3-P + CheY4-P + CheY6-P, the combination

Bias = [Y6p]([Y3p] + [Y4p]), (7.81)

and the rotational frequency function described by Hamadeh et al. [173] which is given by

f = −
1

0.125 + φ ([Y3p], [Y4p], [Y6p])
4 , (7.82)

127



0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

Fraction of Time Spent Stopped (Experimental)

S
te

a
d
y
−

S
ta

te
 [

C
h
e
Y

6
]

∆cheR
3

∆cheB
2

cheY
3
(D57A)

cheA
3
(H48Q)

∆cheB
1

∆cheY
3
,cheY

4

cheA
2
(H48Q,G47

�
K)

wild−type
cheY

4
(D57A)

∆cheR
2

S
te

a
d

y
-S

ta
te

 [
C

h
e

Y
6
-P

]

Figure 7.5: The model of Kojadinovic et al. [161] is not sufficient to represent the experimental
data of de Beyer [162]. The horizontal axis displays the fraction of time that the flagellar motor
spends in a stopped state for a number of chemotaxis mutant cells (labelled in the figure). The
vertical axis displays the steady-state CheY6-P concentration predicted by the mathematical
model presented by Kojadinovic et al. [161].

within which

φ ([Y3p], [Y4p], [Y6p]) = q[Y6p]
[Y3p] + [Y4p]

0.1 + [Y3p] + [Y4p]
. (7.83)

Each of these different cases displayed a similar failure to represent the behaviour of the R.

sphaeroides chemotaxis mutants. This is likely to suggest that the model considered here does

not include an adequate description of some key feature(s) in the signalling pathway.

Analysis of Figure 7.5 clearly shows that the most severe failure of the model to display

the expected behaviour occurs when the proteins involved with adaptation (i.e. the CheBs

and CheRs) are deleted. This suggests that the mechanisms used here are not a suitable de-

scription of R. sphaeroides adaptation. CheB2 and CheR3 display the greatest deviation from

the expected behaviour and are associated with adaptation in the cytoplasmic cluster. With

this being the case, in Chapter 8 mathematical modelling approaches shall be used in order

to analyse features of the chemotaxis signalling pathways that may be used in order to create

improved models of R. sphaeroides chemotaxis signalling in future studies. In particular, this

work focuses on investigating simplified models of R. sphaeroides chemotaxis signalling to draw

conclusions relating to the role of signalling proteins as well as the relationship between the

signalling pathway and rotational behaviour of flagellar motors.

128



7.6 Summary & Discussion

This chapter began by analysing a recent model of intracellular signalling in R. sphaeroides

cells from the literature. In particular, we considered a non-dimensional re-scaling of this model

for which it was found that there is just one biologically feasible steady-state. Following the

example of Chapter 3 it was shown that this model equilibrium state is asymptotically stable

and the associated eigenvalues demonstrate that this is a stiff model system.

The same mathematical model was then considered in the context of recent experimental

data obtained for a number of mutant strains. Utilising a number of kinetic rate alterations it

was possible to formulate models of mutant strains. Upon obtaining the steady-states of each

mutant model it was possible to show that the recent Kojadinovic et al. [161] model does not

represent an adequate description of the chemotaxis signalling pathways in R. sphaeroides cells.

Upon closer inspection it can in fact be seen that the main failings of this model are associated

with CheB and CheR proteins, i.e. those associated with adaptation. We therefore concluded

that the adaptation mechanism borrowed from E. coli models is not suitable for use here and

thus further work is required in order to identify the true adaptation mechanisms of this species.

In particular, it was noted that whilst the adaptation mechanisms associated with both receptor

clusters appear inadequate, it was the deletion of cytoplasmic cluster adaptation proteins that

produced the much more serious failing. Thus within the next chapter we seek to provide a

better understanding of intracellular signalling processes occurring at the cytoplasmic cluster of

R. sphaeroides cells. In addition to this a number of outstanding questions shall be addressed,

providing further information that will be useful in both future theoretical and experimental

studies.
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Chapter 8

Understanding R. sphaeroides using

Simplified Modelling Approaches

Within this chapter we further investigate mechanisms associated with chemotaxis in R.

sphaeroides. In particular, we formulate and analyse two simplified mathematical models in

order to elucidate the workings of various system components. Firstly, we formulate a simple

model of the cytoplasmic cluster in order to understand the roles of processes acting there.

We then consider a simplified Kojadinovic et al. [161] model, in which adaptation is removed.

This is first used to verify that the correct intracellular reactions are considered regardless of

whether or not adaptation mechanisms are included. In addition to this, the creation of various

models based on mutations considered within the experimental data allows us to further our

understanding of the cell’s flagellar response. This chapter concludes with the proposal of a

new R. sphaeroides chemotaxis model formulated according to results obtained both here and

in Chapter 7.

8.1 Motivation

In Section 7.5 it was demonstrated that the main failing of the Kojadinovic et al. [161] was

its failure to represent the behaviour of ∆CheB2 (CheB2 deletion) mutant cells. Thus, within

this chapter we seek to formulate a new mathematical model that is able to provide better

agreement with experimental data [162] (see Figure 7.2).

This experimental data allows us to examine a number of key features. In particular, within

this chapter we seek to understand each process acting at the cytoplasmic cluster; verify the

set of phosphorylation/dephosphorylation reactions considered; and investigate the link between

protein phosphorylation levels and flagellar rotational behaviour. Each of these investigations is

carried out in subsequent sections of this chapter, followed by the proposal of a new mathematical
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Figure 8.1: A schematic diagram of the simplified R. sphaeroides cytoplasmic cluster model.
Here ki (i = 2, 8,−8, 9,−9, 12, 13, 15, 16) denote the kinetic rate constants of each reaction while
arrows indicate the direction of phosphoryl groups passing around the system.

model that better represents the experimental data.

8.2 Simplified Mathematical Models

Within this chapter we outline the formulation of two simplified mathematical models of

chemotaxis in R. sphaeroides. In particular, Section 8.2.1 considers a reduced model of cyto-

plasmic cluster processes while Section 8.2.2 lays out a simplified Kojadinovic et al. [161] model

from which adaptation has been removed. Analysis of these models and results obtained are

then discussed within later sections of this chapter.

8.2.1 Simplified Model 1: The Cytoplasmic Cluster

Within Section 7.5 it was demonstrated that the main failing of the Kojadinovic et al. [161]

model was its failure to accurately capture the behaviour of ∆CheB2 (CheB2 deletion) mutant

cells. It was thus suggested that the description of cytoplasmic cluster adaptation was not

adequate. As such, here we consider a reduced model that contains only reactions occurring at

the cytoplasmic cluster. This is then used to answer a number of outstanding questions on the

workings of the cytoplasmic cluster.

In order to formulate this reduced model we consider only the set of reactions occurring at

the cytoplasmic receptor cluster (shown in Figure 8.1), namely

• CheA3 phosphorylation by CheA4 (simplified here to CheA3 autophosphorylation);

• phosphotransfer from CheA3-P onto CheY6 and CheB2;

• reverse phosphotransfer from CheY6-P and CheB2-P onto CheA3;
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• autodephosphorylation of CheY6-P and CheB2-P; and

• CheA3 and CheA3-P phosphatase action on CheY6-P.

Applying the law of mass action (see Appendix A) in addition to conservation laws of the form

[X]T = [X] + [Xp] for each protein, we obtain three non-linear ODEs of the form

d[A3p]

dt
= k2 ([A3T ]− [A3p])− k8[A3p] ([Y6T ]− [Y6p]) + k−8 ([A3T ]− [A3p]) [Y6p] (8.1)

− k9[A3p] ([B2T ]− [B2p]) + k−9 ([A3T ]− [A3p]) [B2p],

d[Y6p]

dt
= k8[A3p] ([Y6T ]− [Y6p])− k−8 ([A3T ]− [A3p]) [Y6p]− k12[Y6p] (8.2)

− k15 ([A3T ]− [A3p]) [Y6p]− k16[A3p][Y6p],

d[B2p]

dt
= k9[A3p] ([B2T ]− [B2p])− k−9 ([A3T ]− [A3p]) [B2p]− k14[B2p], (8.3)

within which [X] (with X = A3, B2, Y6) represents the concentration of the relevant protein

with subscripts T and p denoting the total and phosphorylated concentrations, respectively and

ki (i = 2, 8,−8, 9,−9, 12, 14, 15, 16) indicating the kinetic rates of each process (see Table 7.2

for values). Here we have chosen not to assign new subscripts to each kinetic rate within this

model so as to allow direct comparison with the model in Chapter 7.

Non-Dimensionalisation

Equations (8.1)-(8.3) are non-dimensionalised such that [Xp] = [X]Txp, where xp is the

associated non-dimensional protein concentration, X ∈ [A3, Y6, B2] and x ∈ [a3, y6, b2]. We also

re-scale time with respect to the timescale of CheA3 autophosphorylation such that t = τ/k2.

This yields

da3p
dτ

= (1− a3p)
︸ ︷︷ ︸

A

− k̃8a3p (1− y6p)
︸ ︷︷ ︸

A

+ k̃−8 (1− a3p) y6p
︸ ︷︷ ︸

A

(8.4)

− k̃9a3p (1− b2p)
︸ ︷︷ ︸

D

+ k̃−9 (1− a3p) b2p
︸ ︷︷ ︸

D

,

dy6p
dτ

= α6k̃8a3p (1− y6p)
︸ ︷︷ ︸

A

−α6k̃−8 (1− a3p) y6p
︸ ︷︷ ︸

A

− k̃12y6p
︸ ︷︷ ︸

B

(8.5)

− k̃15 (1− a3p) y6p
︸ ︷︷ ︸

C

− k̃16a3py6p
︸ ︷︷ ︸

C

,

db2p
dτ

= α7k̃9a3p (1− b2p)
︸ ︷︷ ︸

D

−α7k̃−9 (1− a3p) b2p
︸ ︷︷ ︸

D

− k̃14b2p
︸ ︷︷ ︸

D

. (8.6)
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Here, k̃i (i = 8,−8, 9,−9, 12, 14, 15, 16) are non-dimensional kinetic rate parameters and αj

(j = 6, 7) are protein concentration ratios. Values for each non-dimensional parameter are listed

in Table 8.1.

Table 8.1: A base set of non-dimensional R. sphaeroides parameter values calculated using values
in Table 7.2.

Parameter Value

k̃2 = k2/k2 1

k̃8 = k8[Y6]T /k2 177.934

k̃−8 = k−8[Y6]T /k2 0.650

k̃9 = k9[B2]T /k2 1.304

k̃−9 = k−9[B2]T /k2 0.0657

k̃12 = k12/k2 0.0163

k̃14 = k14/k2 0.0103

k̃15 = k15[A3]T /k2 0.477

k̃16 = k15[A3]T /k2 0.477
α6 = [A3]T /[Y6]T 0.400
α7 = [A3]T /[B2]T 4.328

To assist in understanding processes acting at the cytoplasmic cluster, terms associated with

specific mechanisms have been split into four groups denoted A, B, C and D, as shown in

equations (8.4)-(8.6). This model is analysed further in Section 8.3.1 of this chapter.

8.2.2 Simplified Model 2: No Adaptation at Either Cluster

Section 7.5 clearly showed that models of mutant cells in which CheB or CheR homologues

(i.e. those associated with adaptation) were removed produced the greatest deviation from

expected behaviour in terms of the CheY6-P concentrations they predict. Within Section 8.2.1

a reduced model of the R. sphaeroides cytoplasmic cluster was outlined. This allows us to

study the effects of cytoplasmic cluster processes. However, it is known that R. sphaeroides

cells display two chemosensory pathways. Thus, in order to fully understand this system it is

necessary to consider both of these pathways. As such, here we consider a simplified version of

the Kojadinovic et al. [161] model, in which adaptation has been removed.

In order to formulate such a model we assume that each receptor cluster produces a constant

level of kinase activity. This is achieved by considering the substitution of polar (ΦP ) and

cytoplasmic (ΦC) cluster kinase activities for their respective steady-state values Φ∗
P and Φ∗

C .

In order to determine values for Φ∗
P and ΦC it is necessary to utilise the steady-states given in

equations (7.37) and (7.38), which yield values as displayed in Table 8.2. Consideration of such

a simplification allows for the removal of all reactions relating to methylation and demethylation

of chemoreceptors (i.e. dmP /dt = 0 = dmC/dt) as well as the MWC description of the receptor
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signalling teams. This yields the non-linear ODEs

d[A2p]

dt
= k1Φ

∗
P ([A2]T − [A2p])− k3[A2p] ([Y3]T − [Y3p]) + k−3 ([A2]T − [A2p]) [Y3p] (8.7)

− k4[A2p] ([Y4]T − [Y4p]) + k−4 ([A2]T − [A2p]) [Y4p]− k5[A2p] ([Y6]T − [Y6p])

− k6[A2p] ([B1]T − [B1p]) + k−6 ([A2]T − [A2p]) [B1p]− k7[A2p] ([B2]T − [B2p])

+ k−7 ([A2]T − [A2p]) [B2p],

d[A3p]

dt
= k2Φ

∗
C ([A3]T − [A3p])− k8[A3p] ([Y6]T − [Y6p]) + k−8 ([A3]T − [A3p]) [Y6p] (8.8)

− k9[A3p] ([B2]T − [B2p]) + k−9 ([A3]T − [A3p]) [B2p],

d[Y3p]

dt
= k3[A2p] ([Y3]T − [Y3p])− k−3[Y3p] ([A2]T − [A2p])− k10[Y3p], (8.9)

d[Y4p]

dt
= k4[A2p] ([Y4]T − [Y4p])− k−4[Y4p] ([A2]T − [A2p])− k11[Y4p], (8.10)

d[Y6p]

dt
= k5[A2p] ([Y6]T − [Y6p]) + k8[A3p] ([Y6]T − [Y6p])− k−8 ([A3]T − [A3p]) [Y6p] (8.11)

− k12[Y6p]− k15 ([A3]T − [A3p]) [Y6p]− k16[A3p][Y6p],

d[B1p]

dt
= k6[A2p] ([B1]T − [B1p])− k−6[B1p] ([A2]T − [A2p])− k13[B1p], (8.12)

d[B2p]

dt
= k7[A2p] ([B2]T − [B2p])− k−7 ([A2]T − [A2p]) [B2p] (8.13)

+ k9[A3p] ([B2]T − [B2p])− k−9 ([A3]T − [A3p]) [B2p]− k14[B2p],

within which all parameters retain their earlier values and definitions (see Tables 7.2 and 7.3).

Table 8.2: Steady-state receptor activities obtained from the Kojadinovic et al. model.
Activity Symbol Value

Polar Φ∗
P 0.413

Cytoplasmic Φ∗
C 0.354

Model Analysis

Non-Dimensionalisation As with all models discussed throughout this thesis, analysis be-

gins by considering the application of a non-dimensional re-scaling. Here we consider a similar

non-dimensionalisation to that presented in Section 7.4.1.

Steady-States In Section 8.1 it was discussed that the experimental data of de Beyer [162]

relates to the steady-state behaviour of R. sphaeroides mutant cell types. As such, here it is

important to obtain steady-state expressions for each component of this model. The specific
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simplification of the Kojadinovic et al. [161] model considered here leaves the steady-states of

CheY and CheB proteins unaffected, thus equations (7.32)-(7.36) remain valid. However, the

CheA2-P and CheA3-P steady-state polynomials now reduce to

0 = A1a
∗6
2p +A2a

∗5
2p +A3a

∗4
2p +A4a

∗3
2p +A5a

∗2
2p +A6a

∗1
2p +A7, (8.14)

0 = B1a
∗3
3p +B2a

∗2
3p +B3a

∗1
3p +B4, (8.15)

within which A1−7 and B1−4 denote the polynomial coefficients composed of the parameters

of the original ODE system. These polynomial equations are very similar to those in equa-

tions (7.43) and (7.44). The only differences here come from the fact that the kinase activities

here are considered to be constant and thus there is one less denominator to clear in each case.

As such the result will be lower order steady-state polynomials than those in previous examples.

It has already been stated that the kinase activities utilised here are chosen to be equal to

the steady-state values within the Kojadinovic et al. [161] model. As such, the steady-state

values obtained from equations (8.14) and (8.15) will yield the same biologically feasible steady-

state values found in Section 7.4.2. Thus it may be concluded without further work here that

Simplified Model 2 will possess just one biologically feasible steady-state.

Stability Analysis It has been shown here that this simplified model will yield the same

biologically feasible steady-state as the full Kojadinovic et al. [161] model. However, in spite of

this it is not so clear how the asymptotic stability characteristics of the system analysed here

will be affected.

In order to determine how a simplification to a model without adaptation affects the be-

haviour of the system an asymptotic stability analysis very similar to that in Section 7.4.3 was

conducted. This yielded the eigenvalues

λ1 = −44924.90604, λ2 = −3327.57927, λ3 = −1026.67477, λ4 = −284.56248,

λ5 = −4.36955, λ6 = −3.92332, λ7 = −1.42700,

for the non-adapting model (Simplified Model 2) which are clearly all negative and real valued.

From these eigenvalues it may be concluded that the non-adapting model system will be asymp-

totically stable. This is interesting since Section 7.4.3 suggested that in the adapting version of

this model, damped oscillatory behaviour was likely to be a fixed property. It is therefore the

case that this system loses some characteristics of the dynamic response as a result of removing

adaptation. This is not surprising given the removal of negative feedbacks from the system.
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8.3 Model Analysis and Results

Here we seek to utilise the simplified mathematical models presented in Section 8.2 in order

to elucidate a number of features of the R. sphaeroides chemotaxis signalling pathways. Firstly,

we utilise Simplified Model 1 (Section 8.2.1) to investigate the roles of processes acting at the

cytoplasmic cluster. Simplified Model 2 (Section 8.2.2) is then used to validate the phospho-

rylation/dephosphorylation reactions within the signalling pathways and to help elucidate the

link between CheY phosphorylation levels and flagellar rotational behaviour.

8.3.1 Elucidating the Roles of Cytoplasmic Cluster Processes

In this section we seek to utilise Simplified Model 1 (equations (8.4)-(8.6)) in order to help

elucidate the roles of cytoplasmic cluster processes. In particular, we wish to answer the following

questions.

1. Does CheB2 act as a phosphate sink?

2. How do CheA3 and CheA3-P phosphatase activities affect CheY6-P levels?

3. Is adaptation necessary at the cytoplasmic cluster?

Here the role of each set of mechanisms (A-D) is examined independently and in detail to

see how they affect CheY6-P levels and thus the cell response. In particular, these terms are

grouped as follows.

• Group A: Autophosphorylation of CheA3 (k2), phosphotransfer from CheA3-P onto

CheY6 (k8) and its related reverse phosphotransfer (k−8). These terms are essential for

the cell to function, thus they are included in each model.

• Group B: Autodephosphorylation of CheY6-P (k12).

• Group C: Phosphatase action of CheA3 (k15) and CheA3-P (k16) on CheY6-P.

• Group D: Phosphotransfer from CheA3-P onto CheB2 (k9) as well as the associated

reverse phosphotransfer (k−9) and autodephosphorylation (k14). This also brings into the

model the implied sharing of phosphoryl groups between CheY6 and CheB2.

As such, each model containing terms from groups A, AB, AC, AD, ABC, ABD, ACD and

ABCD are numerically simulated. In order to create each of these models we set all kinetic rates

in neglected groups to zero. Each of these simulations is conducted using the initial conditions

a3p = 0, b2p = 0 and y6p = 0, (8.16)

136



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [Non−Dimensional]

C
he

A
3−P

 C
on

ce
nt

ra
tio

n 
[N

on
−D

im
en

si
on

al
]

 

 
A
AB
ABC
AC
AD
ABD
ACD
ABCD

(a) CheA3-P
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(b) CheY6-P
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(c) CheB2-P

Figure 8.2: Results obtained from the ODE model outlined in equations (8.4)-(8.6). Sym-
bols indicate the combinations of terms considered in each case. These are A (circles), AB
(pluses), ABC (asterisks), AC (crosses), AD (dots), ABD (diamonds), ACD (triangles) and
ABCD (squares). See Section 8.2.1 for details of the meanings of A, B, C and D.

and run (using solver ode15s) until each system reaches its respective steady-state. The effect

of the various combinations of terms of CheA3-P, CheY6-P and CheB2-P levels are shown in

Figure 8.2.

For CheA3-P (see Figure 8.2(a)) combinations of terms A and AD result in essentially sat-

urated CheA3-P. The inclusion of CheY6-P autodephosphorylation into these models (i.e. AB

and ABD) results in a lower steady-state CheA3-P concentration. This is due to the autode-

phosphorylation of CheY6-P creating more CheY6, thus allowing more phosphoryl groups to

transfer away from CheA3-P. Whilst this concentration is lowered, it would still appear that the

CheA3-P concentration is higher than expected for a HPK (histidine protein kinase), based on

E. coli which has a very low a∗p value. Combinations of terms AC, ACD, ABC and ABCD all

yielded fairly similar results in terms of their steady-state CheA3-P concentration. This lower

concentration is due to the inclusion of more CheY6-P dephosphorylation (via the phosphatase

action of CheA3 and CheA3-P) and phosphotransfer onto CheB2, each of which results in more

phosphoryl groups passing away from CheA3-P. These concentrations are more in line with our
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expectations based upon the HPKs of other systems such as E. coli.

Results for CheY6-P (Figure 8.2(b)) show that the inclusion of autodephosphorylation has

a much more subtle effect than was the case for CheA3-P. This is due to autodephosphoryla-

tion creating more non-phosphorylated CheY6. The result of this is that phosphotransfer from

CheA3-P increases, thus reducing the CheA3-P concentration. However, the increase in this

phosphotransfer from CheA3-P onto CheY6 partially compensates for the effects of the autode-

phosphorylation. In particular, here we see that each of the combinations A, AB, AD and ABD

lead to what is essentially saturation of CheY6-P. This is likely to be an undesirable trait for the

system since CheY6-P is essential for chemotaxis in R. sphaeroides (with changes in this level

likely to be essential). The combinations of terms AC and ACD (i.e. those that include the

experimentally observed CheA3 and CheA3-P phosphatase action on CheY6-P) give steady-state

CheY6-P concentrations of approximately 75% of the total amount. The addition of CheY6-P

autodephosphorylation into these two systems (i.e. combinations ABC and ABCD) appears to

further lower the steady-state concentration to around 60% of the total amount. Either of the

75% or 60% phosphorylation levels could feasibly allow significant enough changes to allow for

chemotaxis. However, all of the reactions have been demonstrated using in vitro experimental

techniques and are likely to be present for some purpose and as such it is likely that the 60%

CheY6-P phosphorylation level is more desirable for chemotaxis in R. sphaeroides.

Also shown in Figure 8.2(c) are results obtained for protein CheB2-P. Here we see that

combinations AB and ABD lead to essentially saturated CheB2-P. This saturation would ap-

pear undesirable since it would likely mean CheB2 loses the ability to participate in any cellular

response. The other combinations (ACD and ABCD) produce more reasonable levels of phospho-

rylation, with the inclusion of CheY6-P autodephosphorylation simply lowering the steady-state

concentration by 40% of the total amount. The exact role of protein CheB2 is not known,

however it has been suggested that it is involved in adaptation at the cytoplasmic cluster. An-

other possibility is that it may act as a phosphate sink. This essentially means that CheB2

may act to limit the CheY6-P concentration via the sharing of phosphoryl groups transferred

from CheA3-P. Considering the results of Figure 8.2(b), this phosphate sink hypothesis may be

ruled out since the inclusion of CheB2 (i.e. group D) into the model has very little effect on

the CheY6-P concentration. Thus, it is likely that CheB2 is involved in a cytoplasmic cluster

adaptation mechanism which is not yet understood.

Within bacterial signalling pathways it is the dynamic behaviour of protein phosphorylation

levels which allows cells to respond to stimuli. As such, we also consider the dynamic behaviour

of each model system when subjected to a persistent change in the rate of CheA3 autophosphory-

lation. This mimics the initial response displayed by the system to a change in the extracellular
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Figure 8.3: Dynamic results obtained from the ODE model outlined in equations (8.4)-(8.6).
Results are shown under changes in the rate of CheA3 autophosphorylation, scaled by L. In
particular, L drops from L = 1 to L = 0.95 at time τ = 5 and subsequently returns to L = 1 at
τ = 105. Symbols indicate the combinations of terms considered in each case. These are ABC
(asterisks), AC (crosses), ACD (triangles) and ABCD (squares). See Section 8.2.1 for details of
the meanings of A, B, C and D.

ligand concentration. Such effects are modelled here via an autophosphorylation term of the

form L(1 − a3p) rather than (1 − a3p). Here, L is a scaling of the autophosphorylation rate

used to represent a dynamic change within the system. To begin with we consider L = 1 and

then reduce the autophosphorylation rate by choosing L = 0.95. We then consider the reverse

change from L = 0.95 back to L = 1. Results obtained using this method are shown for protein

CheY6-P in Figure 8.3 for combinations AC, ABC, ACD and ABCD since these are most likely

to yield experimentally realistic results, i.e. they do not produce saturation of phosphorylated

proteins.

The results in Figure 8.3 indicate that the system comprising terms AC and ACD yield very

similar results when the system is subjected to alterations in the rate of CheA3 autophosphory-

lation (L). Groupings ABC and ABCD also show very similar results to one another, and indeed

to AC and ACD, however they both have a different basal level of phosphorylation. Note that

the inclusion of terms marked D in equations (8.4)-(8.6) leads to a slightly slower response to the

change in L. The fact that the dynamic behaviour of each of these four systems is very similar

suggests that these proteins do not play a significant role in setting the timescales associated

with the initial, transient chemotactic response. Thus we conclude that CheB2 is associated

with the dynamic response of the cell via a possible adaptation mechanism.
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Considering steady-state and dynamic results together, we may propose a number of roles

for the chemotaxis signalling proteins studied here.

• Group A: These terms are required to ensure functioning of the signalling pathway.

• Group B: Autodephosphorylation acts to reduce the phosphorylated CheY6 concentra-

tion slightly. The small degree to which this occurs is likely to suggest that this process

represents an additional level of robustness, allowing the cell to produce a limited response

even when the phosphatase action fails.

• Group C: Phosphatase action of CheA3 and CheA3-P on CheY6-P is important in con-

trolling the basal CheY6-P concentration. It therefore prevents the basal CheY6-P con-

centration from becoming too close to saturation as to hinder normal function.

• Group D: It is clear that CheB2 acts to create a sharing of phosphoryl groups between

itself and CheY6. However, the effect on the CheY6-P concentration is very small due to

the very large CheY6 concentration in R. sphaeroides cells.

How then may CheB2 be involved in adaptation? In Chapter 7 it was shown that adaptation

via an E. coli MWC mechanism leads to unrealistic CheY6 phosphorylation levels in protein

deletion mutant strains. In particular, the deletion of CheB2 led to large increases in the

phosphorylation level of CheY6. Considering a model of the form given in equations (8.4)-(8.6)

appears to limit this issue. We could perhaps then suggest that the adaptation mechanism at

the cytoplasmic cluster of R. sphaeroides cells is much weaker or slower than in the case of E.

coli, the mechanism of which was previously assumed to hold for R. sphaeroides. This would

likely lead to a much smaller difference in the steady-state CheY6-P concentration for a CheB2

deletion mutant cell since the effect of CheB2 on the system would be much more subtle than

in the E. coli mechanism.

It is worth noting that this very simple system lacking in an adaptation mechanism appears

to solve the problem associated with the ∆CheB2 mutant cell type, since the CheY6-P concen-

tration remains almost unaffected. However, the experimental data of de Beyer [162] describes

the behaviour of the ∆CheB2 deletion mutant as being inhibited, with much longer adaptation

times. A system with no adaptation mechanism such as that considered here cannot produce

a response of this type under a CheB2 deletion and thus another mechanism must be sought

in future work. It is perhaps possible that the connection between the polar and cytoplasmic

clusters via CheB2, may act to produce an appropriate response however the exact mechanism

for this is as yet unknown.
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The results presented within this section clearly demonstrate the roles of each cytoplasmic

cluster process. Whilst useful in its own right, this model considers only the cytoplasmic cluster.

Thus, in order to improve our understanding of other cell features it is necessary to consider the

two chemosensory pathways together in the same model.

8.3.2 Validation of the Signalling Pathways

In Section 8.3.1 a simplified mathematical model of processes occurring at the cytoplasmic

cluster in R. sphaeroides cells was investigated. Studying the steady-state and dynamic proper-

ties of this simplified ODE model with various processes systematically removed allowed us to

assign likely roles to each of the relevant signalling proteins acting at the cytoplasmic cluster.

Within this section we utilise Simplified Model 2 (Section 8.2.2) in order to investigate a key

outstanding question relating to the polar cluster. This is as follows.

• A reverse phosphotransfer from CheB2-P onto CheA2 has been observed in in vitro ex-

perimental work. However, to date, this has not been shown to occur in vivo. Would we

expect to see this reaction occurring?

Within the previous literature, all phosphorylation reactions included within the Kojadi-

novic et al. [161] model have been shown to occur in vitro. In fact, all apart from the reverse

phosphotransfer from CheB2-P onto CheA2 have also been demonstrated to exist in vivo. An

investigation into the existence of this reaction allows us to create a full, validated set of phos-

phorylation/dephosphorylation reactions occurring within R. sphaeroides cells. This is explored

in-depth within the next section.

Is Reverse Phosphotransfer from CheB2-P onto CheA2 Expected in vitro?

As discussed in Section 8.3.2, all phosphorylation/dephosphorylation reactions in the sig-

nalling pathways of R. sphaeroides cells have been validated except for one. This is the reverse

phosphotransfer from CheB2-P onto CheA2 which has been shown to be possible in vitro but

not demonstrated in vivo. As such, here we utilise mathematical modelling to ascertain whether

or not this reaction will be expected to occur in vivo. This will then result in a full set of

validated phosphorylation/dephosphorylation reactions for the two chemosensory pathways of

R. sphaeroides cells.

In order to answer this question, the wild-type system described in Section 8.2.2 is com-

pared with a system in which the reverse phosphotransfer in question has been eliminated (i.e.

k−7 = 0). Analysis of each of these two models shows the existence of just one biologically

feasible steady-state, each of which is asymptotically stable.
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Using a steady-state analysis of the two systems discussed here, the effects of a reverse phos-

photransfer from CheB2-P onto CheA2 can be investigated. In particular, the differences between

the steady-states of each signalling protein can be studied which should allow a prediction to be

made as to whether this reverse phosphotransfer will be present in vivo.
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Figure 8.4: A bar chart showing the differences at steady-state between systems with (blue bars)
and without (red bars) a reverse phosphotransfer from CheB2-P onto CheA2.

Inspecting the results of Figure 8.4, it can be seen that most of the steady-state phospho-

rylated protein concentrations remain almost unchanged. However the exception is CheB2-P.

Perhaps unsurprisingly this protein displays the largest change as a result of the removal of

this reverse phosphotransfer. In fact, a wild-type cell with the reverse phosphotransfer act-

ing will have around one third of its total CheB2 phosphorylated at steady-state whereas in

those where this reverse phosphotransfer has been eliminated, around 95% of all CheB2 will be

phosphorylated. Clearly this is rather a significant change in the CheB2-P steady-state.

If a cell were to maintain a steady-state CheB2-P concentration whereby ∼95% is phospho-

rylated (as in the k−7 = 0 case) then the ability of CheB2-P to perform its intracellular function

would be severely impaired in cases where this concentration is required to increase. In contrast

to this, maintaining a steady-state in which ∼33% of CheB2 is phosphorylated allows room for

this protein to function in both cases whereby an increase or a decrease is required.

Upon considering the effect of removing the reverse phosphotransfer from CheB2-P, it is clear

that some process must be acting to maintain a reasonable CheB2-P concentration in vivo. The

results shown in Figure 8.4 demonstrate the ability of this reverse phosphotransfer to limit the

CheB2-P concentration. Using this result as well as the fact that the reverse phosphotransfer

from CheB2-P onto CheA2 has been shown to occur in vitro, it can reasonably be expected that
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this process is acting to limit the CheB2-P concentration.

8.3.3 Understanding the Motor Response

Within this section we seek to elucidate mechanisms underlying the control of flagellar rota-

tion in R. sphaeroides cells. In particular, we consider the experimental data of de Beyer [162]

that investigated the behaviour of a number of mutant cell types (discussed in Section 8.1). Here

we produce variations of Simplified Model 2 (Section 8.2.2) in order to assess how intracellular

protein phosphorylation levels may act to control the rotational behaviour of the cell’s flagellar

motor. Specifically, we consider two key outstanding questions:

1. The experimental data of de Beyer [162] showed that wild-type and ∆cheY3,4 (CheY3

and CheY4 deletion) mutant cells produce different steady-state swimming behaviour (see

Figure 7.2). Why is this the case if CheY6-P dominantly controls flagellar rotation as

previously assumed in the literature?

2. Using model predictions of protein phosphorylation levels for each mutant cell type, can

we understand how these are linked to the control of flagellar rotation?

The difference in steady-state swimming behaviour observed between wild-type and ∆cheY3,4

mutant cells suggests that CheY6-P does not dominantly control flagellar rotation as previously

assumed. An investigation into the mechanism behind this difference (Question 1) allows us to

obtain a better understanding of how protein phosphorylation levels control flagellar rotational

behaviour. This is the subject of further investigation in this section.

By producing a number of altered versions of Simplified Model 2 (Section 8.2.2), it is possible

to obtain a predicted phosphorylation level for all proteins under each mutation considered.

Using these predictions alongside the experimental data of de Beyer [162] (Figure 7.2) we may

investigate how protein phosphorylation levels affect flagellar rotation.

Why do ∆cheY3,4 Cells Differ from Wild-Type?

As discussed above, wild-type and ∆cheY3,4 strains of R. sphaeroides display different steady-

state swimming behaviour. It has previously been assumed that CheY6-P dominantly controls

the rotational behaviour of the cell’s flagellum. How then do these cell types produce different

behaviour? In order to investigate why this is the case, here we conduct steady-state analyses of

two mathematical models (based on Simplified Model 2) one representing each cell type. Results

of this are shown in Table 8.3.

Upon inspection of the steady-state CheY3-P, CheY4-P and CheY6-P concentrations of wild-

type and ∆CheY3,4 cells it can be seen that the ∆CheY3,4 mutation does not significantly alter
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Table 8.3: Steady-state CheY concentrations for wild-type and ∆CheY3,4 cell types. All con-
centrations listed in this table are expressed in µM and are shown to four decimal places.

Cell Type [CheY3-P] [CheY4-P] [CheY6-P]

W-T 5.27087×10−5 5.2514 68.9646
∆CheY3,4 0 0 68.1697

the steady-state concentration of CheY6-P. In fact, this particular mutation only leads to an

increase of ∼ 0.8µM (of the total 225µM) in the steady-state CheY6-P concentration. We

would anticipate that this small increase would not be sufficient to allow for the experimentally

observed behavioural differences if CheY6-P dominantly controls flagellar rotational behaviour.

Thus, we must consider what is the cause of this behavioural difference if it is not a difference

in CheY6-P concentration?

One possible cause of the difference between W-T and ∆CheY3,4 cells is that the flagellar

motor of R. sphaeroides cells will change its action in the face of this mutation. Using the results

obtained here it is not possible to rule this out since the relationship between intracellular protein

concentrations and flagellar motor rotational behaviour is as yet unknown. Whilst we cannot rule

out a change in motor action, we would perhaps see this as less likely as a cause of behavioural

changes than differences in protein concentrations other than CheY6-P. Since there is a difference

of ∼5.25µM in the combined CheY3-P and CheY4-P concentration between these two cell types

(see Table 8.3) we would anticipate that this is the more likely cause of behavioural differences.

The results in Table 8.3 could potentially be seen as evidence of CheY3 and CheY4 acting to

re-start flagellar rotation. Assuming that the ∆CheY3,4 mutation does not have any knock-on

effects on other processes in the system then the only difference between the two cell types

discussed here will be the absence of the proteins CheY3 and CheY4. Since removing these

proteins does not have a significant effect on the steady-state concentrations of other proteins

in the system (see Tables 8.3 and 8.5) we would expect that the difference in the steady-state

swimming behaviour between these two cell types will be due to CheY3-P and CheY4-P. This

difference could be caused by one of two effects. Firstly, CheY3 and CheY4 may compete with

CheY6 for the ability to bind to the motor driving protein. We would perhaps not expect this

to be such a significant effect due to the relatively small concentrations of CheY3 and CheY4

in comparison to CheY6 (see Table 7.2). The other, and perhaps more likely option, is that

CheY3 and CheY4 have more of an active role in setting the flagellar rotational behaviour of R.

sphaeroides cells. We would suggest that due to the fact that a ∆CheY3,4 mutant cell spends a

greater fraction of time spent stopped than a wild-type cell, CheY3-P and CheY4-P could play

a role in re-starting the rotation of the flagellar motor.
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How is Flagellar Rotation Controlled?

In this section we consider a number of alterations to Simplified Model 2 (Section 8.2.2),

each of which represents one of the mutant cell types described in Table 7.1. In order to

investigate how the flagellar rotational behaviour is controlled we conduct steady-state analyses

of each mutant model. This, alongside the experimental data of de Beyer [162] (Figure 7.2) then

allows us to investigate how protein phosphorylation levels act to control the flagellar rotational

behaviour.

Table 8.4: Kinetic rate alterations required to create each R. sphaeroides mutant model.
Strain Parameters set to zero Other

#1 No alteration -
#2 — -
#3 — -
#4 k−3 k−4 k−6 k−7 -
#5 Φ∗

P -
#6 k−3 k−4 k−6 k−7 Φ∗

P -
#7 k5 k8 k−8 k9 k−9 k12 k15 k16 Φ∗

C y6p = 1
#8 k5 k8 k−8 k12 k15 k16 Φ∗

C y6p = 1
#9 k3 k−3 k10 y3p = 0
#10 k4 k−4 k11 y4p = 0
#11 k3 k−3 k4 k−4 k10 k11 y3p = 0 = y4p
#12 k3 k−3 k4 k−4 k10 k11 y3p = 0
#13 k3 k−3 k4 k−4 k10 k11 y3p = 0 = y4p
#14 k3 k−3 k4 k−4 k10 k11 -
#15 — -
#16 — -
#17 — -
#18 — -
#19 — -
#20 k−8 k−9 Φ∗

C -
#21 Φ∗

C -
#22 k5 k8 k−8 k12 k15 k16 y6p = 0
#23 k3 k−3 k10 y3p = 1
#24 k4 k−4 k11 y4p = 1
#25 k3 k−3 k4 k−4 k10 k11 y3p = 1 = y4p
#26 k3 k−3 k4 k−4 k10 k11 y3p = 1
#27 k3 k−3 k4 k−4 k10 k11 y4p = 1
#28 k3 k−3 k4 k−4 k5 k8 k−8 k10 k11 k12 k15 k16 -
#29 k5 k8 k−8 k12 k15 k16 y6p = 1
#30 k4 k−4 k11 -
#31 k3 k−3 k10 -
#32 k5 k8 k−8 k12 k15 k16 -

Similar to the work in Section 7.5, here we implement a number of changes to model pa-

rameters in order to represent each mutant cell type. These are detailed in Table 8.4. Using

the method of obtaining the steady-state values laid out in section 7.4.2 it is possible to obtain

steady-state chemotaxis protein concentrations for mutant cells examined within this work, see

Table 8.5. In doing so each model formulated within this work (one for each mutant cell type

145



considered) is found to display just one biologically feasible steady-state, i.e. all non-dimensional

steady-state values lie in the range 0 ≤ x∗p ≤ 1. Further to this, analysis of the eigenvalues of

each system (as discussed in Section 7.4.3), undertaken using the ‘eig’ function in MATLAB

shows that each of these biologically feasible steady-states are asymptotically stable, as indi-

cated by the existence of only negative eigenvalues (see Table 8.6). It is worth noting here that

the number of eigenvalues relates to the number of variables within the system. Thus, in cases

whereby a protein concentration is not able to change or has been deleted, less variables would

exist. As such, for each constant concentration or deletion we would lose one eigenvalue.

In order for the results detailed in Table 8.5 to be of use it is necessary to define an output

variable of interest. Within the earlier work on E. coli this output variable was considered to

be either the concentration of the flagellar motor regulating protein (CheY-P) or the directional

rotation bias of the cells’ flagellar motors. Here it is not so simple to define a variable of

interest since the relationship between intracellular proteins and the flagellar motor response

is not known. Examining the experimental data of de Beyer [162] as well as Section 8.3.3, it

appears likely that CheY6-P is responsible for causing flagellar rotation to stop and the proteins

CheY3-P and CheY4-P may be responsible for re-starting the rotation of the flagellar motor.

As such, it is supposed here that the response of the flagellar motor in R. sphaeroides is likely

controlled by the ratio of CheY6-P concentration to the sum of concentrations of CheY3-P and

CheY4-P, i.e.

Ratio =
[CheY3-P] + [CheY4-P]

[CheY6-P]
. (8.17)

Upon consideration of this ratio as our output variable we obtain the values in Table 8.7.

It is worth noting that within Table 8.7 some of the ratios are listed as ‘Div By 0’. This

indicates that the steady-state CheY6-P concentration was zero within that model and thus in

calculating the output ratio we would be required to divide by zero. It is unclear exactly how

these cases should be handled and thus we arbitrarily assign a ratio value of one in each of these

cases. Also, mutant strains #29 - #32 are created for the interest of modelling, but do not have

a directly comparable experimental result and thus they are not considered any further here.

Extracting the experimentally determined fraction of time stopped from Figure 7.2, we are able

to create a comparison with model predicted ratios in Table 8.7.
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Table 8.5: Steady-states of each R. sphaeroides mutant model.
Steady-State Concentrations [Non-Dimensional]

Description CheA2-P CheA3-P CheY3-P CheY4-P CheY6-P CheB1-P CheB2-P

WT 0.1384 0.004322 1.523E-005 0.3794 0.3030 0.09115 0.3385
∆CheB2 - - - - - - -
∆CheR2 - - - - - - -
CheA2(H48Q) 0 0.003961 0 0 0.2725 0 0.8865
CheA2(G470K) 0.004584 0.003946 5.050E-07 0.01724 0.2722 0.002868 0.1418
CheA2(H48Q,G470K) 0 0.003961 0 0 0.2725 0 0.8865
CheA3(H48Q)CheY6(D57N) 0.5912 0 6.509E-005 0.8460 1 0.4746 0.7437
CheA4(G470K)CheY6(D57N) 0.4256 4.500E-03 4.686E-005 0.7381 1 0.3164 0.6351
CheY3(D57A) 0.1480 0.004349 0 0.3980 0.3051 0.09784 0.3509
CheY4(D57A) 0.1441 0.004338 1.586E-005 0 0.3042 0.09514 0.3459
CheY3,4(D57A) 0.1544 0.004367 0 0 0.3065 0.1024 0.3592
CheY3(D57A)∆CheY4 0.1544 0.004367 0 0 0.3065 0.1024 0.3592
CheY3**CheY4(D57A) 0.1544 0.004367 0 0 0.3065 0.1024 0.3592
∆CheY3,4 0.1544 0.004367 0 0 0.3065 0.1024 0.3592
∆CheB1 - - - - - - -
∆CheB1,2 - - - - - - -
∆TlpT - - - - - - -
∆CheR3 - - - - - - -
∆CheR1,2,3 - - - - - - -
CheA3(H48Q) 0.1159 0 1.276E-005 0.3330 0.03213 0.07569 0.2083
CheA4(G470K) 0.1066 0.0001445 0.00001174 0.3124 0.03255 0.06934 0.1938
CheY6(D57A) 0.7104 0.6982 7.821E-005 0.9030 0 0.6050 0.9901
CheY3(D57N) 0.1480 0.004349 1 0.3980 0.3051 0.09784 0.3509
CheY4(D57N) 0.1441 0.004338 1.586E-005 1 0.3042 0.09514 0.3459
CheY3,4(D57N) 0.1544 0.004367 1 1 0.3065 0.1024 0.3592
CheY3(D57N)∆CheY1,2,4,5 0.1544 0.004367 1 0 0.3065 0.1024 0.3592
CheY4(D57N)∆CheY1,2,3,5 0.1544 0.004367 0 1 0.3065 0.1024 0.3592
∆CheY1−6 0.9765 0.9151 0 0 0 0.9629 0.9993
CheY6(D57N) 0.7104 0.6982 7.821E-005 0.9030 1 0.6050 0.9901
∆CheY4 0.1441 0.004338 1.586E-005 0 0.3042 0.09514 0.3459
∆CheY3 0.1480 0.004349 0 0.3980 0.3051 0.09784 0.3509
∆CheY6 0.7104 0.6982 7.821E-005 0.9030 0 0.6050 0.9901
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Table 8.6: Eigenvalues associated with the steady-state of each R. sphaeroides chemotaxis mutant model.
Eigenvalues (to 5 d.p.)

Description λ1 λ2 λ3 λ4 λ5 λ6 λ7 Stability

WT -44924.90604 -3327.57927 -1026.67477 -284.56248 -4.36955 -3.92332 -1.42700 Stable
∆CheB2 - - - - - - - -
∆CheR2 - - - - - - - -
CheA2(H48Q) -44916.66667 -1308.88797 -1065.06796 -4.03404 -2.56477 -0.28000 -0.01417 Stable
CheA2(G470K) -44925.41736 -3378.97011 -1073.06437 -238.31540 -4.23978 -3.64706 -1.26113 Stable
CheA2(H48Q,G470K) -44916.66667 -1308.88797 -1065.06796 -4.03404 -2.56477 -0.28000 -0.01417 Stable
CheA3(H48Q)CheY6(D57N) -44923.17534 -3232.05643 -480.06038 -2.72955 -2.10003 -0.29587 - Stable
CheA4(G470K)CheY6(D57N) -44923.80820 -3252.12794 -405.30908 -7.52107 -1.19343 -0.28136 - Stable
CheY3(D57A) -3324.24919 -1023.50468 -288.23981 -4.37887 -3.93330 -1.33131 - Stable
CheY4(D57A) -44924.88415 -3294.83388 -1024.77909 -4.37323 -3.99557 -1.61196 - Stable
CheY3,4(D57A) -3291.71890 -1021.37678 -4.38325 -4.00038 -1.49361 - - Stable
CheY3(D57A)∆CheY4 -3291.71890 -1021.37678 -4.38325 -4.00038 -1.49361 - - Stable
CheY3**CheY4(D57A) -3291.71890 -1021.37678 -4.38325 -4.00038 -1.49361 - - Stable
∆CheY3,4 -3291.71890 -1021.37678 -4.38325 -4.00038 -1.49361 - - Stable
∆CheB1 - - - - - - - -
∆CheB1,2 - - - - - - - -
∆TlpT - - - - - - - -
∆CheR3 - - - - - - - -
∆CheR1,2,3 - - - - - - - -
CheA3(H48Q) -44924.99185 -3335.72200 -1414.87227 -276.14834 -4.25441 -2.27629 -1.03334 Stable
CheA4(G470K) -44925.02750 -3339.06216 -1416.89595 -272.69133 -4.23927 -3.84851 -1.77068 Stable
CheY6(D57A) -44922.71980 -3230.11771 -534.92032 -35.54345 -0.47060 -0.33474 - Stable
CheY3(D57N) -3324.24919 -1023.50468 -288.23981 -4.37887 -3.93330 -1.33131 - Stable
CheY4(D57N) -44924.88415 -3294.83388 -1024.77910 -4.37323 -3.99557 -1.61196 - Stable
CheY3,4(D57N) -3291.71890 -1021.37678 -1.49361 -4.38325 -4.00038 - - Stable
CheY3(D57N)∆CheY1,2,4,5 -3291.71890 -1021.37678 -4.38325 -4.00038 -1.49361 - - Stable
CheY4(D57N)∆CheY1,2,3,5 -3291.71890 -1021.37678 -4.38325 -4.00038 -1.49361 - - Stable
∆CheY1−6 -3254.83384 -45.25421 -0.40278 -0.26009 - - - Stable
CheY6(D57N) -44922.71980 -3230.11771 -534.92032 -35.54345 -0.47060 -0.33474 - Stable
∆CheY4 -44924.88415 -3294.83388 -1024.77909 -4.37323 -3.99557 -1.61196 - Stable
∆CheY3 -3324.24919 -1023.50468 -288.23981 -4.37887 -3.93330 -1.33131 - Stable
∆CheY6 -44922.71980 -3230.11771 -534.92032 -35.54345 -0.47060 -0.33474 - Stable
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Table 8.7: Values obtained from equation (8.17) for each R. sphaeroides mutant model consid-
ered.
Mutation Ratio Mutation Ratio

WT 0.077034 ∆TlpT -
∆CheB2 - ∆CheR3 -
∆CheR2 - ∆CheR1,2,3 -
CheA2(H48Q) 0.203684 CheA3(H48Q) 0.637575
CheA2(G470K) 0.003896 CheA4(G470K) 0.590262
CheA2(H48Q,G470K) 0.000000 CheY6(D57A) Div By 0
CheA3(H48Q)CheY6(D57N) 0.052041 CheY3(D57N) 0.130650
CheA4(G470K)CheY6(D57N) 0.045404 CheY4(D57N) 0.202180
CheY3(D57A) 0.080246 CheY3,4(D57N) 0.250853
CheY4(D57A) 8.02E-07 CheY3(D57N)∆CheY1,2,4,5 0.050171
CheY3,4(D57A) 0.000000 CheY4(D57N)∆CheY1,2,3,5 0.200683
CheY3(D57A)∆CheY4 0.000000 ∆CheY1−6 Div By 0
CheY3**CheY4(D57A) 0.000000 CheY6(D57N) 0.055543
∆CheY3,4 0.000000 ∆CheY4 8.02E-07
∆CheB1 - ∆CheY3 0.080246
∆CheB1,2 - ∆CheY6 Div By 0

The ratio referred to in this table is calculated as Ratio=[CheY3-P]+[CheY4-P]/[CheY6-P].
Those displaying ‘Div By 0’ in the Ratio column produce a steady-state CheY6-P concen-
tration of 0µM .

It can be seen from the results of Figure 8.5 that there is a general correlation in that those

cells with larger [Y3p]+[Y4p]:[Y6p] ratios correspond to those displaying a smaller fraction of time

stopped within the experimental data. In addition to this, cells with smaller [Y3p] + [Y4p]:[Y6p]

ratios appear to correspond to those for which experimental data shows a larger fraction of time

spent stopped.

Within a deterministic modelling study of this type it would perhaps be expected that the

work would produce results that do not display a fluctuation from the predicted relationship.

Whilst this would be true in many cases, the simplistic nature of the models used within this

work do not necessarily allow for an exact relation to be obtained, rather a somewhat näıve

approximation of the true result is given. The reason for this is that a number of processes

have been neglected/simplified here that would be present within the experimental data. In

particular, it has already been discussed that adaptation is not included within this model.

This could impact upon the results here since the distribution of phosphoryl groups around the

system will affect the strength of demethylation feedback upon chemoreceptor state. It would

be expected that a variation in the strength of this feedback would impact upon the steady-state

chemoreceptor activity level, thus affecting the autophosphoylation rate and subsequently the

steady-state phosphorylation levels of chemotaxis proteins.

In this work, the chemoreceptor activities at the polar and cytoplasmic clusters have been

assigned a constant value determined from the steady-state values in the model of Kojadinovic

et al. [161]. Whilst this would most likely be a good approximation in most of the mutant
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Figure 8.5: A comparison of the model predicted [Y3p]+ [Y4p]:[Y6p] ratio with the experimentally
measured fraction of time stopped for chemotaxis mutant cells. Blue crosses indicate data
points for model predicted [Y3p] + [Y4p]:[Y6p] ratio and experimentally determined fraction of
time stopped (for R. sphaeroides flagella). Experimental fraction of time stopped data points
refer to the median of the experimental data, as displayed in Fig. 7.2.

cell types considered here, some examples may deviate further from these values causing the

observed fluctuations in results. It is worth noting here that whilst fluctuations about the true

relationship within our results may be caused by the mechanism used here, a number of mutant

cell types that would directly impact upon methylation/demethylation have been removed, i.e.

we have neglected those mutants involving alterations to the proteins CheR2, CheR3, CheB1 and

CheB2. It is therefore anticipated that this will reduce the impact of variation in chemoreceptor

activity, thus improving the validity of results in this chapter.

8.4 Proposed New Model

Within Section 7.5 it was shown that the Kojadinovic et al. [161] model did not provide an

adequate description of chemotaxis in R. sphaeroides cells. As such, Section 8.3 of this chapter

investigated various features associated with the chemosensory pathways of R. sphaeroides cells

in order to help identify ways in which this model could be improved.

Using the results of these previous sections, in Section 8.4.1 we identify some alterations

which could improve the performance of the Kojadinovic et al. [161] model. This results in the

statement of a new mathematical model of chemotaxis in R. sphaeroides, some results of which

are then presented in Section 8.4.2.
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8.4.1 Mathematical Modelling

Within the results of Section 7.5 it was shown that the deletion of CheB and CheR homo-

logues produced some deviation from expected steady-state CheY6-P concentrations. By far

the largest deviation resulted from the deletion of CheB2 which is assumed to be responsible

for demethylation of cytoplasmic cluster chemoreceptors within the model of Kojadinovic et

al. [161]. By comparison, deviations from expected CheY6-P steady-state concentrations as a

result of CheB1 and CheR2 deletions were small. Thus, here we consider adaptation at the polar

cluster to follow the E. coli mechanism, as in the Kojadinovic et al. [161] model. However, a

new mechanism must be formulated for the cytoplasmic cluster.

Another area in which this model may be improved relates to the chemosensory behaviour

of the cytoplasmic receptor cluster. Within the literature it is often stated that the cytoplasmic

cluster is likely responsible for metabolic sensing [5]. However, within the Kojadinovic et al. [161]

model the cytoplasmic cluster is assumed to detect the same external ligand signal as the polar

cluster. As such it could potentially be seen as an improvement were a new model to sense an

external signal at the polar cluster and a metabolic signal at the cytoplasmic cluster.

Figure 8.6: A schematic diagram of the proposed new R. sphaeroidesmodel. Here the adaptation
process at the cytoplasmic receptor cluster has been altered from the original Kojadinovic et
al. model [161] to consider the detection of a metabolic signal. This metabolic signal acts by
increasing or decreasing the steady-state receptor activity Φ∗

C . Note that greyed out elements
in this diagram refer to those parts which have been altered from the original model.
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Based on these suggestions we must now propose a mechanism for the cytoplasmic cluster

that relieves the issue of CheY6-P saturation when CheB2 is deleted from the cell and also

allows for the sensing of a metabolic signal (see Figure 8.6). In order to do this we look to the

simplified cytoplasmic cluster model considered in Section 8.2.1. This mechanism clearly solved

the issue associated with the deletion of CheB2 and is easily adjusted to consider metabolic

signals. As such, here we utilise the law of mass action (see Appendix A), conservation laws and

a non-dimensionalisation similar to those in Section 7.4. This yields the set of non-dimensional

ODEs

dmP

dτ
= γR2(1− ΦP )− γB1b

2
1pΦP , (8.18)

da2p
dτ

= ΦP (1− a2p)− k̄3a2p(1− y3p) + k̄−3(1− a2p)y3p − k̄4a2p(1− y4p) (8.19)

+ k̄−4(1− a2p)y4p − k̄5a2p(1− y6p)− k̄6a2p(1− b1p) + k̄−6(1− a2p)b1p

− k̄7a2p(1− b2p) + k̄−7(1− a2p)b2p,

a3p
dτ

= k̄2Φ
∗
C(1− a3p)− k̄8a3p(1− y6p) + k̄−8(1− a3p)y6p − k̄9a3p(1− b2p) (8.20)

+ k̄−9(1− a3p)b2p,

dy3p
dτ

= α1k̄3a2p(1− y3p)− α1k̄−3(1− a2p)y3p − k̄10y3p, (8.21)

dy4p
dτ

= α2k̄4a2p(1− y4p)− α2k̄−4(1− a2p)y4p − k̄11, (8.22)

dy6p
dτ

= α3k̄5a2p(1− y6p) + α6k̄8a3p(1− y6p)− α6k̄−8(1− a3p)y6p − k̄12y6p (8.23)

− k̄15(1− a3p)y6p − k̄16a3py6p,

db1p
dτ

= α4k̄6a2p(1− b1p)− α4k̄−6(1− a2p)b1p − k̄13b1p, (8.24)

db2p
dτ

= α5k̄7a2p(1− b2p)− α5k̄−7(1− a2p)b2p + α7k̄9a3p(1− b2p) (8.25)

− α7k̄−9(1− a3p)b2p − k̄14b2p, (8.26)

in which all parameters retain their previous definitions (see Tables 7.3 and 8.2), ΦP is the

receptor signalling team activity at the polar cluster (as in equations (7.1) and (7.2)) and Φ∗
C is

the steady-state receptor signalling team activity of chemoreceptors at the cytoplasmic cluster.

We also consider initial conditions of the form

mP = mP0, a2p = a2p0, a3p = a3p0, y3p = y3p0, y4p = y4p0,
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y6p = y6p0, b1p = b1p0 and b2p = b2p0.

8.4.2 Results

Within this section we seek to understand whether or not the model proposed in Section 8.4.1

(equations (8.18)-(8.25)) represents an improvement on that of Kojadinovic et al. [161] (see

Figure 8.7). As such, here we present the results of numerical simulations representing a number

of different biological scenarios. In particular, we consider numerical simulations of wild-type

and ∆CheB2 (CheB2 deletion) mutant cells in response to both an external ligand signal and

an internal metabolic signal.

In the case of an external stimulus, this is modelled as either an increase or decrease in the

value of [L]. Results of this are displayed in Figure 8.8. Within these results it can be seen that

both wild-type and ∆CheB2 cell types each display similar responses. In particular, we note the

similarity between results shown here and those of E. coli cells. This is perhaps unsurprising

since the external ligand stimulus is sensed only at the polar cluster and adaptation is assumed

to proceed using the same mechanism as E. coli.

The response of a cell to some internal metabolic signal must be modelled differently to

external signals. In order to do this we consider alterations to the value of Φ∗
C with an increase

or decrease representing a positive or negative metabolic signal, respectively. Results obtained

for wild-type and ∆CheB2 cell types are given in Figure 8.9. Upon inspection of these results

it is clear that both cell types display similar responses. In particular, it is noticeable that a

positive metabolic signal results in an increase in the steady-state concentration of CheY6-P.

For the simulated wild-type cell an increase in the steady-state CheB2-P concentration may also

be seen.

Within the results of both Figures 8.8 and 8.9 we do not obtain the near saturation of

CheY6-P when protein CheB2 is removed. Thus, the model considered here clearly appears

to resolve this issue. In order to investigate the validity of this model yet further we consider

how the steady-state concentration obtained from this model would impact upon the rotational

behaviour of the cell’s flagellum. Results of this are given in Figure 8.10.

We have already demonstrated that this proposed model eliminates the issue of CheY6-P

saturation in ∆CheB2 mutant cells. In order to investigate this in greater detail we compare

the results of Figure 8.10 to the experimental data of de Beyer [162] (Figure 7.2). Within

this experimental data it can be seen that the flagellum of ∆CheB2 mutant cells spends ∼40%

of time in a stopped state. This differs only slightly from wild-type cells which spend ∼35%

of time in a stopped state. Assuming that the flagellar motor control mechanism discussed in

Section 8.3.3 (described by equation (8.17)) holds, the results of this model appear very positive.
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(b) ∆CheB2

Figure 8.7: Plots showing numerical simulations of the Kojadinovic et al. [161] model when
subjected to an increase (at τ = 100) and a subsequent decrease (at τ = 200) in the ligand
concentration detected at both the polar and cytoplasmic clusters. Results are shown for (a) a
wild-type cell and (b) a ∆CheB2 mutant cell.
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Figure 8.8: Plots showing numerical simulations of equations (8.18)-(8.25) when subjected to
an increase (at τ = 100) and a subsequent decrease (at τ = 200) in the external ligand concen-
tration. Results are shown for (a) a wild-type cell and (b) a ∆CheB2 mutant cell. Here, each
cell type displays a response similar to that of E. coli cells and does not display near saturation
of CheY6-P when CheB2 is deleted.
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Figure 8.9: Plots showing numerical simulations of equations (8.18)-(8.25) when subjected to
an increase (at τ = 100) and a subsequent decrease (at τ = 200) in a metabolic signal. This
is modelled as an increase in Φ∗

C from 0.345 to 0.545 and a subsequent decrease from 0.545 to
0.345. Results are shown for (a) a wild-type cell and (b) a ∆CheB2 mutant cell. Here, each cell
type displays a similar response in which the CheY6-P steady-state is scaled according to the
metabolic signal.
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Figure 8.10: Plots showing CheY phosphorylation ratios (as per equation (8.17)) for wild-type
(blue) and ∆CheB2 mutant (red) cells. Values here are obtained from the numerical simulations
of Figures 8.8 and 8.9.

In particular, Figure 8.10 shows that the deletion of CheB2 increases the CheY phosphorylation

ratio (equation (8.17)) by just a small amount. This increase appears to be of a magnitude

suitable to produce the ∼5% difference in time spent stopped by R. sphaeroides wild-type and

∆CheB2 mutant cells.

The mathematical model proposed here clearly eliminates a number of issues associated

with the model of Kojadinovic et al. [161]. In particular, this model produces three main

improvements, namely

• the ability of the model to represent the effects of an internal metabolic signal sensed at

the cytoplasmic cluster;

• elimination of CheY6-P saturation when protein CheB2 is deleted; and

• production of CheY phosphorylation ratios suitable to explain the ∼5% difference in time

spent stopped by the flagella of wild-type and ∆CheB2 cells.

It would therefore appear that this proposed model represents an improvement on that of Kojadi-

novic et al. [161]. However, to further improve this model, more experimental work is required.

In particular, it would be necessary to elucidate the metabolic signal sensed at the cytoplasmic

cluster. This would then allow us to formulate an appropriate functional description of this

process, thus improving the model yet further.

8.5 Summary & Discussion

Within this chapter both a reduced model of the R. sphaeroides cytoplasmic cluster and a

simplified form of the Kojadinovic et al. [161] model, in which adaptation has been removed,
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have been examined. In doing so a number of features of the signalling pathway have been

investigated. Specifically, steady state analyses of these two models have revealed the following.

Firstly, a simple ODE model of the R. sphaeroides cytoplasmic cluster was investigated.

In doing so it was possible to propose roles for each of the processes that occur about this

cytoplasmic cluster. Specifically it was proposed that

• autophosphorylation is essential for the cytoplasmic cluster to act in any way;

• the phosphatase action of CheA3 and CheA3-P on CheY6-P acts to ensure the basal level

of CheY6 phosphorylation is maintained at a reasonable level;

• autodephosphorylation of CheY6-P is not as effective as phosphatase action at limiting

CheY6 phosphorylation but gives an extra layer of robustness should the phosphatase

action fail; and

• CheB2 very slightly lowers the steady-state CheY6-P concentration but is more likely to

play a role in adaptation.

The simplified Kojadinovic et al. [161] model, in which adaptation is removed, was examined

and steady-state results compared to experimental data. Specifically, separate versions of this

model representing each mutant strain from the work of de Beyer [162] were formulated and

their respective steady-states analysed. This revealed a number things.

Section 8.3.2 compared a model including reverse phosphotransfer from CheB2-P onto CheA2

to one from which it had been eliminated. This showed that removing the reaction from the net-

work results in a large increase in the CheB2-P concentration when the reverse phosphotransfer

was removed. This would likely limit the ability of this protein to participate in any chemotactic

response. Adding this to the fact that the reverse phosphotransfer reaction has been shown to

occur in vitro led to the conclusion that it is most likely the process acting to limit the CheB2-P

concentration in vivo.

Further to this, a comparison of W-T and ∆CheY3,4 mutant cell models was conducted. This

was motivated by experimental data showing that these cell types displayed different chemotactic

behaviour at steady-state [162]. Using the results in Table 8.3 we can suggest that the CheY3-P

and CheY4-P concentrations are likely to account for the differences between their respective

behaviours at steady-state.

In Section 8.3.3 a comparison of experimental data against model predictions of the steady-

state behaviour was given. Using this comparison in addition to that of W-T and ∆CheY3,4

strongly suggest that CheY3-P and CheY4-P must play some role in setting the flagellar rotation
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behaviour of R. sphaeroides cells. In support of this idea it was shown that the relative con-

centration of CheY6-P against the cumulative concentration of proteins CheY3-P and CheY4-P

displays a correlation between this ratio and the experimentally determined fraction of time cells

spend in a stopped state. Fluctuations from the predicted relationship displayed in Fig. 8.5 are

likely due to the simplifications considered within our modelling.

The results of Section 7.5 clearly demonstrated that the E. coli adaptation mechanism as-

sumed by Kojadinovic et al. [161] to function at the cytoplasmic cluster of R. sphaeroides

cells was not adequate. Thus, as discussed here, we investigated a number of features of R.

sphaeroides chemotaxis signalling pathways with the aim of identifying ways in which the Ko-

jadinovic et al. [161] model may be improved. This led us to propose a new mathematical

model of R. sphaeroides chemotaxis. This model is based on that of Kojadinovic et al. [161]

and retains the E. coli adaptation mechanism at the polar receptor cluster. However, the E.

coli adaptation mechanism at the cytoplasmic cluster is substituted for a simple representation

of internal metabolic sensing. Analysis of this model for wild-type and ∆CheB2 cells showed

CheY phosphorylation ratios consistent with the experimentally observed ∼5% difference in the

proportion of time a cell’s flagellum spends in a stopped state. It therefore appears that the

model postulated here produces a better fit to experimental data than that of Kojadinovic et

al. [161]. However, further work is necessary to allow a functional form to be derived for the

sensing of metabolic signals at the cytoplasmic cluster of R. sphaeroides cells.
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Chapter 9

Discussion

The main achievements of the work in this thesis have been the analyses of ODE models of

E. coli and R. sphaeroides chemotaxis signalling pathways.

In particular, analysis of the E. coli ODE model system revealed key features associated

with the phenomena of fold-change detection (FCD) and overshoot. These studies illustrated

the importance of receptor dynamics, methylation and phosphorylation timescales as well as

total protein concentrations. Further to this, agent-based modelling allowed an investigation in

to the effects of these features/phenomena upon the overall behaviour of a cell population to be

investigated.

Analysis of the E. coli chemotaxis signalling network equipped us with a number of tools that

were used in order to study the more complex R. sphaeroides system. This allowed us to assign

roles to a number of signalling proteins as well as identifying areas that require improvement

within future work.

Here we summarise the main findings of this work in addition to giving areas for future

theoretical and experimental work. This will help to further elucidate the signalling cascade

characteristics of E. coli and R. sphaeroides as well as other biological systems.

9.1 Summary & Conclusions

In Chapter 2 we provided a summary of the past literature most relevant to the work con-

tained within this thesis. In particular, we began by summarising the biological work that sought

to identify key components of chemotaxis signalling cascades and their respective roles. Addi-

tionally, throughout this chapter we focused on how experimental results inspired mathematical

modelling and vice versa, leading to the modern understanding of bacterial chemotaxis. Due

to their importance throughout this thesis, aspects of chemotaxis signalling cascades including

the roles of various signalling proteins, chemoreceptors, methylation and phosphorylation were
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explored in addition to their relevance to signal transduction, adaptation and the flagellar motor

response.

There have been a number of mathematical models formulated that have sought to elucidate

key features of chemotactic responses of single E. coli cells. One such model, namely that of

Clausznitzer et al. [70], is analysed within Chapter 3. In particular, we began by comparing

different offset energy functions to the available experimental data in order to produce the best

possible model fit. Subsequent to this, the model was subjected to a rigorous mathematical anal-

ysis. In particular, it was shown that this mathematical model may display just one biologically

realistic steady-state. The asymptotic stability of this equilibrium state was then conducted,

demonstrating that it is asymptotically stable with eigenvalues that demonstrate that it is a

stiff model system.

The mathematical model laid out in Chapter 3 was then utilised for investigations into

a number of features observed within the experimental literature relating to the chemotactic

response of single E. coli cells.

One such feature was that of FCD which has previously been analysed in both experimental

and theoretical settings. In Chapter 4 we considered the sufficient conditions given by Shoval and

colleagues [121, 123] alongside experimentally determined parameter values in order to demon-

strate that the model from Chapter 3 does indeed display FCD. Alternative sets of sufficient

conditions are then considered in order to predict that there should exist more than the two

experimentally observed regimes of FCD behaviour. We went on to show that FCD is a robust

property so long as all parameter values remain constant in time.

In Chapter 5 mechanisms associated with the emergence of overshoot behaviour were in-

vestigated. In order to do so we observed a negative feedback loop in which CheB-P reduces

the methylation level of receptors. We thus tested the hypothesis that overshoot is the result

of damped oscillations caused by this negative feedback loop. Within this investigation we

identified cell-to-cell variation in total intracellular protein concentration as being essential for

the emergence of this phenomenon. This cell-to-cell variation creates differences in a number

of different intracellular features. In particular, we were able to identify a balance between

chemoreceptor dynamics and CheB-P feedback as important in causing overshoot. Results ob-

tained within this chapter were then compared to experimental data showing that they produce

a good agreement for small to intermediate step-up ligand stimuli (i.e. ≤ 50µM) and the full

range of step-down stimuli (i.e. 1µM to 1mM).

Based on the investigations within Chapters 4 and 5 it is clear that the mathematical model

of Clausznitzer et al. [70] is both capable of explaining significant amounts of experimental

data and being used for predictive work. As such, within Chapter 6 we built this model into
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an ABM framework in order to investigate E. coli population level phenomena. Using the

ABM we were able to extrapolate single cell findings to study the effect of variation in protein

concentration on the efficiency of the chemotactic response within ligand gradients of varying

steepness. Also considered here was the ability of cells to perform chemotaxis when two separate

ligand gradients are present simultaneously. This revealed that cells will accumulate about the

ligand concentration to which they are more sensitive and that this may not necessarily be the

largest absolute concentration.

Chapters 3 to 6 investigated features associated with chemotaxis in E. coli cells. The remain-

ing chapters focused on testing a recent single cell model of R. sphaeroides chemotaxis against

experimental data and using the results to help elucidate new understanding of the signalling

cascade and mechanistic function of the cell.

In Chapter 7 we analysed the recent mathematical model of the R. sphaeroides chemotaxis

signalling network due to Kojadinovic et al. [161]. It was shown that the model exhibits one

biologically feasible steady-state which was shown to be asymptotically stable. A number of

variations of this model representing mutant cell types finally showed that this model fails to

capture the steady-state behaviour observed in recent experimental data. In particular, it was

clear that the cytoplasmic cluster adaptation mechanism considered here represented the main

failing of the model, as evidenced by the high CheY6-P levels obtained when CheB2 is removed

from the system. Within these results we could observe that the cytoplasmic cluster produces

the greatest variation from the experimental data. It is clear therefore that this model has been

invalidated and as such we required alternative approaches in order to gain further knowledge

of this species.

Due to the invalidation of the Kojadinovic et al. [161] model in Chapter 7 we proceeded to

formulate and analyse two simplified mathematical models within Chapter 8. These were utilised

in order to gain further understanding of the R. sphaeroides chemotaxis signalling system.

The first of these simplified models was a three ODE model of the cytoplasmic cluster. This

allowed us to identify the role of each reaction. In particular, it was found that in order to reg-

ulate the phosphorylated concentration of CheY6-P, autodephosphorylation and phosphatase

action are required. This phosphatase action was shown to be far more effective than autode-

phosphorylation at regulating CheY6-P levels, although this is likely to represent an additional

layer of regulation should the phosphatase action fail. In addition to this it was shown that

CheB2 cannot act as a phosphate sink due to the small concentration of this relative to CheY6.

Further to the cytoplasmic cluster model, we also considered a non-adapting version of the

model in Chapter 7 in order to investigate two further questions. Similar to earlier work within

this thesis, a number of variants of this model were considered representing mutant cell types
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used within a recent experimental study (neglecting those relating to CheR and CheB proteins

associated with adaptation). Within this work it was possible to show that a model without

the reverse phosphotransfer reaction from CheB2-P onto CheA2 that has been demonstrated in

vitro leads to near saturation of CheB2-P. It is clear therefore that some regulatory process is

required and due to the in vitro evidence for this reverse phosphotransfer, it would seem likely

that this is indeed the regulatory mechanism acting in vitro. The same model was then used

in order to prove that CheY3 and CheY4 must play some role in setting flagellar rotation. In

addition to this it is shown that the ratio of CheY3-P and CheY4-P to CheY6-P produced a

correlation with the proportion of time flagellar motors spend in a stopped state. Using the

work in Chapters 7 and 8 we postulate a new signalling model for R. sphaeroides and show that

it helps remove some issues associated with previous models.

Using the results of Chapters 7 and 8 we then proposed a new mathematical model of chemo-

taxis in R. sphaeroides within Section 8.4. This model was based upon that of Kojadinovic et

al. [161], however it incorporated the simplified cytoplasmic cluster model studied in Section 8.2.1

that allowed for the consideration of intracellular metabolic stimuli. Results obtained from this

model revealed two distinct response types. In particular, for an extracellular ligand stimulus,

the cell displays a response similar to that observed in E. coli. In contrast to this, intracellular

metabolic signals acted to tune the steady-state phosphorylation levels of CheB2 and CheY6.

Each of these responses appears in line with experimental data. The main improvement of this

model however is that it removes the issue of near saturation of CheY6-P upon the deletion of

CheB2.

Whilst it is clear that we have identified a number of features associated with R. sphaeroides

chemotaxis signalling pathways, there is still much work to do. In particular, it is necessary to

produce both extra experimental and theoretical work in order to identify the exact mechanisms

associated with adaptation at the polar and cytoplasmic clusters of chemotactic R. sphaeroides

cells.

9.2 Future Work

In this section we shall discuss a number of ideas for future work. These suggestions will

cover a number of different areas, each of which would potentially complement, further or verify

work contained within this thesis.
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9.2.1 Modelling Assumptions

Within this thesis a number of different mathematical models have been formulated and

analysed. As is commonplace in mathematics, these are based on a number of assumptions

and simplifications that allow for the production of tractable models. In doing so it should

be clear that to some degree the use of such simplifications/assumptions will necessarily cause

differences between the model and reality. We shall now discuss the main assumptions associated

with models contained in this thesis alongside methods that would allow the effects of these to

be studied.

The mathematical models utilised within this work are comprised of systems of deterministic

nonlinear ODEs, most of which are formulated using the law of mass action. In utilising this

method for deriving mathematical models, a number of assumptions are inherently made. In

particular, the two main assumptions associated with the law of mass action are that all reactions

proceed in a continuous manner (i.e. concentrations and intracellular space are large enough to

avoid significant stochastic effects) and that the environment is well mixed (i.e. concentrations

are spatially homogeneous).

In the context of the chemotaxis signalling pathways of E.coli and R. sphaeroides cells,

theoretical literature has demonstrated that models created using the law of mass action provide

a good fit with available experimental data. This would suggest that the models used here are

valid for comparison with experimental observations as well as for more predictive work. It would

however be possible to create alternative mathematical models that are able to capture more

complex features and as such examine how these affect the behaviour of chemotactic bacteria.

The continuum models utilised in this work provide a good approximation of general be-

haviour within the relevant phosphorylation cascades. However, it is clear upon examination of

the experimental literature that reactions in these networks do not occur in a purely determinis-

tic manner, i.e. they are stochastic. Whilst the models utilised appear suitable for the purposes

considered here it would be useful to consider a stochastic model of, in particular, the E. coli

chemotaxis signalling pathway [26, 30, 129, 155, 180]. It would then be possible to build this

into our ABM framework in order to assess the importance of stochasticity within intracellular

chemotaxis signalling cascades.

The other main assumption of the law of mass action is that the environment is well mixed.

In the case of E. coli in particular, this assumption has been shown to be a good approximation.

For R. sphaeroides cells it is less clear how important spatial inhomogeneity may be in their

chemotactic response. One example of the spatial inhomogeneity observed within R. sphaeroides

cells are the proteins CheA3 and CheA4 that are both localised about the polar receptor clus-
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ter. In order to understand how spatial organisation such as this affects the cell’s chemotactic

response, it is possible to use a PDE model. This would allow for the consideration of protein

diffusion within the cytoplasm as well as restriction of certain components to specific regions of

the cell, similar to the work of Rao et al. [181].

Within the formulation of models such as those considered here, it is assumed that phospho-

transfer reactions occur as instantaneous events. In reality however, such reactions occur in a few

stages. Initially, one phosphorylated and one non-phosphorylated protein will form a complex.

This exists only transiently before they split apart, with the phosphoryl group exiting attached

to the other protein. Following the approach of Tindall et al. [182] it is possible to formulate a

model that considers a more complete representation of each step in phosphotransfer reactions.

We could then examine the ways in which this intermediate complex formation affect the overall

chemotactic response and whether there is any impact upon the overshoot mechanism discussed

within this work. Conducting a similar analysis to that presented in Chapter 5 would be more

difficult however since such a model would result in much higher dimensional ODE models.

The last main assumption made in formulating models used throughout this work is that we

are only interested in events occurring on a relatively short timescale. This allows us to neglect

protein synthesis since this occurs on a longer timescale. Supposing we wished to simulate

behaviour over longer periods of time then we would be required to consider how proteins are

synthesised and degraded. This would involve incorporating a genetic model describing how

DNA is transcribed into mRNA and subsequently translated into protein molecules.

The models used within this thesis are clearly based on a number of assumptions. We would

not anticipate that these would significantly alter the conclusions of this work, however a number

of techniques that could be used in order to assess the effects of these have been proposed above.

Further to this, a number of limitations associated with this work shall be discussed alongside

techniques/methods that could be utilised in order to address these.

9.2.2 E. coli

In Chapter 5 the phenomenon of overshoot in the chemotactic response of E. coli cells was

examined. This work noted that, in spite of producing a good fit to experimental data, our

results were unable to capture the negligible overshoot amplitudes observed for large step-up

ligand stimuli. This would appear to be a likely consequence of the phenomenon whereby

receptor clusters break apart when subjected to large, saturating stimuli. As previously stated,

this has not featured within the theoretical literature and as such it would be an interesting area

for future modelling work. We would anticipate that this would extend upon the work of Endres

et al. [62] who gave a functional form describing the size of a receptor cluster in different ligand
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environments. Upon doing so, this mechanism could then be incorporated into the methodology

used within this thesis in order to re-examine the proposed overshoot mechanism. Results could

then be compared against the experimental literature.

Chapter 6 formulated an ABM and utilised this in order to study population level behaviour.

This followed a similar methodology to a number of hybrid models within the literature [109, 183,

184, 185]. Within this work it was assumed that the ligand profile was temporally homogeneous.

In experimental settings this is unlikely to be the case since ligand is likely to diffuse as a result

of spatial heterogeneity and certain ligands would be metabolised by cells. In order to formulate

a more detailed ABM we could define a PDE describing the time evolution of the ligand profile.

It would seem simple enough to state that for ligand diffusion we must solve a PDE of the

form

∂[L]

∂t
= D∇2[L], (9.1)

however this does not do justice to the computational complexities that must be addressed

in order to do so. In the first instance it would be necessary to define a mesh over which

the numerical solution of the ligand PDE may be calculated. As such we no longer have a

ligand concentration defined at each point within the domain. Thus we would need to use

some interpolation method in order to approximate the ligand concentration at the location

of each simulated cell. Some initial results show that for an exponential ligand profile (see

equation (6.2)), application of bilinear interpolation (over a 21×21 grid) results in a maximal

error of <2% as shown in Figure 9.1. Allowing an extension of this type would allow modellers

to create more accurate simulations of experimental situations.

When seeking to produce a model with full biological detail, the addition to our ABM of

ligand diffusion is not necessarily sufficient. In particular, certain chemoattractants have been

shown to be metabolised by cells and some may naturally degrade over time, thus reducing the

ligand concentration. Each of these two processes (metabolism and degradation) could feasibly

be incorporated into the ABM. By generalising equation (9.1) to a reaction-diffusion equation

of the form

∂[L]

∂t
= D∇2[L]− ρ[L]− ζ, (9.2)

where ρ(η) is the rate of ligand degradation, ζ(η) is the rate of ligand metabolism by cells and

η is the number of cells at/close to a given spatial location. Once again, this would require

interpolation methods as well as experimental data on the rates of ligand degradation and

metabolism in order to produce a realistic model.

The final limitation associated with the ABM in this work is the amount of computational

time required to produce each simulation. In order to illustrate this issue, a simulation of 50
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(a) Exponential ligand profile
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Figure 9.1: An example of results obtained from application of bilinear interpolation. (a) The
exponential ligand profile that we wish to capture using bilinear interpolation. (b) A represen-
tation of the ligand profile in (a) created on a 21×21 mesh. (c) The ligand profile resulting from
application of bilinear interpolation to the rough mesh representation in (b). (d) The percent-
age error resulting from application of bilinear interpolation. This is calculated as the difference
between results in panels (a) and (c) expressed as a percentage of the exact value in panel (a).
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cells in a fixed, exponential ligand field over a time period of ∼12 minutes requires ∼45 minutes

to run across a pool of three processor cores (referred to as workers in the MATLAB parallel

computing toolbox). As can clearly be seen in Chapter 6, for each result we generally require a

reasonable number of separate simulations, thus the time required can begin to add up rather

significantly. It would therefore be sensible, if seeking to use this ABM for more complex work,

to first optimise the code in order to reduce the necessary computational time.

There are a number of adjustments that could potentially make the ABM code more time

efficient. A number are summarised below.

• ODE solution: The numerical solver ode15s is used in order to progress the signalling

cascade ODE model within our ABM model code. For a ∼12 minute simulation of 50

cells, the ABM currently requires information be passed in and out of the ode15s solver

function ∼2.5 million times. Since the solver has been restricted to taking one time step on

each function call, it may be faster to directly include a finite-difference (or other method)

representation of the ODE model within the code itself. As such, the model would no

longer need to pass values in and out of the ode15s function, potentially saving some time,

especially when scaled up over a large simulation.

• Save sparingly: In many numerical codes, passing information to and from system mem-

ory can be a time consuming process. As such, within the ABM code utilised here it would

be possible to reduce the number of pieces of data that are passed into and out of system

memory as well as reducing the amount of data that is permanently stored. At present

the ABM code stores each of the system variables at each time step. Thus a significant

reduction in running time could possibly be achieved by storing just one previous time

step and using this to update results. In addition to this, permanently storing only the

output variable of interest at each time step would significantly reduce the total amount

of data that is permanently stored.

Whilst the above alterations could increase the efficiency of our ABM, there may be other

slightly less conventional methods that could be considered. One such example is that of Flegg

and colleagues [186, 187] who utilise a two-regime method. Within this method a spatial domain

is split into two halves, each of which uses a different solution. One half of the domain uses

an individual-based Brownian motion simulation while the other makes use of a lattice based

compartmental model. The two solutions are then matched according to a set of rules at

the domain interface. These two methods each produce different levels of detail and differ

significantly in their computational costs. An approach such as this could potentially simplify

our ABM by allowing a less detailed model to be used in regions of less interest while a full
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ABM simulation is completed for some region of interest. This has the potential to significantly

reduce computational costs; however a significant amount of work would be required to allow

the matching of results between the two different simulation regions/regimes.

9.2.3 R. sphaeroides

In Chapters 7 and 8 of this thesis, the chemotaxis signalling pathways of R. sphaeroides

cells were our focus. In spite of being able to show that the ODE model of the phosphotransfer

network appears, in the most part, to re-produce experimental data the adaptation mechanisms

included in the modelling work were shown to be inadequate. As such, a new modelling ap-

proach is required in order to fully explain this data. There are a number of ways in which

a new mathematical model of adaptation could be formulated, a few of which shall be briefly

summarised here.

The first approach that could be taken mimics early models of E. coli ligand binding and

adaptation. This would aim to create a mechanistically complete description of receptor state for

each receptor cluster. In order to do this a model would be formulated that takes into account

ligand binding and the relevant number of methylation states available for each receptor cluster.

In the case of the polar receptor cluster where there are known to be 4 methylation sites this

approach would yield a model consisting of 20 possible states and therefore 20 ODEs. The total

cluster activity would also need to be calculated and this is likely to take the form of a sum

of each receptor state balanced by the relative contributions of each. As discussed earlier in

this thesis, mathematical models of this type can be difficult to analyse due to their sheer size.

Another issue is models such as this require large numbers of parameter values. These must

either be obtained through mathematical parameter fitting techniques or experimentation, both

of which can take significant amounts of time. Once such a model has been formulated and

parameterised, it could be possible to apply a number of different model reduction techniques.

In many cases such methods are capable of reducing large ODE systems into much smaller

systems that maintain the input-output profile within a small error tolerance.

In addition to the mechanistic description described above it would also be possible, given

further experimental data, to produce a description of the average methylation of each receptor

cluster in a similar manner to that considered by Clausznitzer et al. [70] for E. coli cells. In

particular it would be possible to observe that

dΦ

dt
=

∂Φ

∂m

dm

dt
+

∂Φ

∂[L]

d[L]

dt
=

∂Φ

∂m

dm

dt
, (9.3)

at the time immediately after a step change in the ligand concentration is applied (i.e. where
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d[L]/dt = 0). Using currently available experimental techniques it is possible to experimentally

determine both dΦ/dt and ∂Φ/∂m. As such, we could then formulate a functional description

of the methylation/demethylation ODE (dm/dt) that provides a good fit to the experimental

data.

9.2.4 Experimental Work

We have so far discussed a number of assumptions and limitations associated with the work

in this thesis. Another key area in which further work would help to improve our knowledge

of chemotaxis signalling is through comparison of results from this work with theory and new

experimental work. For the remainder of this section we shall briefly mention some key areas

in which further work would be beneficial and outline proposals as to how this work may be

undertaken.

A number of predictions made within this work could be tested using experimental methods.

Some of these have been discussed within the relevant chapters/sections however here we shall

briefly summarise some of these predictions and the methods that could be used to verify (or

indeed invalidate) them.

• FCD regimes: It was predicted in Chapter 4 that a system of n receptor types with well

separated ligand dissociation constants would display 2n + 1 regimes of FCD behaviour.

In the case of E. coli, it was shown that just three of these five predicted regimes would

be observed due to the cell’s maximum detectable ligand concentration. Our work has

shown good agreement with the two experimentally observed FCD regimes, leaving just

one unverified. Using the same FRET approach as Lazova et al. [122] it should be possible

to assess whether this third regime exists.

• Overshoot: A number of theoretical predictions have been made in this thesis relating to

the occurrence of overshoot behaviour. Section 5.8 discussed experimental methods that

could be used to test these. In particular, for Figure 5.6 it is possible to create cells un-

der/overexpressing certain proteins; Figure 5.7 needs the meche and mocha operons to be

under/overexpressed whilst Figures 5.12 and 5.13 would require cells under/overexpressing

all chemotaxis signalling proteins simultaneously. In each example analysis of flagellar ro-

tation time-courses, for the under/overexpression mutant cells, in response to step-changes

in ligand concentration should reveal the magnitude of overshoot exhibited by cells (if any).

• Protein concentration effects: Using our ABM a number of population level phenom-

ena were observed as a result of variation in total concentration of chemotaxis signalling

proteins between cells. In order to test these results it would first be necessary to create
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cells in which the total concentration of all signalling proteins may be controlled. In ad-

dition to this it would be necessary to create a well-controlled ligand gradient that very

closely matches those in our ABM simulations. These newly created cells could then be

placed into the controlled ligand gradient. Observing their behaviour over time, it should

then be possible to compare the migration of cells in this experimental work to our ABM

simulations, thus either confirming or invalidating this work.

In conclusion, a number of phenomena associated with chemotaxis of E. coli cells have

been investigated. It is hoped that the modelling framework/methodology, observations and

predictions within this work will be useful to future work on bacterial chemotaxis and other

biological systems. In the case of R. sphaeroides a number of areas have been identified that

would benefit from further theoretical and experimental work. In addition to this, a new model

was postulated that helps to remove some of the issues of previous models. As such it is hoped

that this work proves a useful step in providing a more complete understanding of chemotaxis

in R. sphaeroides as well as signalling networks (chemotaxis or otherwise) of other bacterial

species.
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Appendix A

Law of Mass Action

The law of mass action is an example of a kinetic formula. It states that a reaction will

proceed at a rate that is proportional to the product of the concentrations of participating

species. This is often used in the formulation of mathematical models in the field of mathematical

biology and is based upon a number of key assumptions that will be discussed shortly.

Here two examples are considered in order to demonstrate how the law of mass action works

to represent a set of reactions as a system of ODEs. The first such example considers the

case whereby an enzyme interacts with a substrate resulting in the creation of a product. This

reaction (−→) may be represented schematically as

[A] + [B]
k

−→ [C], (A.1)

within which [...] indicates the concentration of the relevant species with A representing a sub-

strate, B an enzyme, C the product and k the constant kinetic rate parameter associated with

this reaction. Now, using the law of mass action, we may represent this reaction as a set of

ODEs of the form

d[A]

dt
= −k[A][B], (A.2)

d[B]

dt
= −k[A][B], (A.3)

d[C]

dt
= k[A][B]. (A.4)

Further to the simple example above, we now consider the example of Michaelis-Menten

reaction kinetics [188]. In this example an enzyme interacts with a substrate to form a complex.

This complex then separates giving back the enzyme and converting the substrate into a product.

This reaction mechanism is a more complex example than that given above since it requires the

formation of a complexed state as well as a reversible reaction (−⇀↽−). Schematically this may be
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written as

[S] + [E]
k1
−⇀↽−
k−1

[SE]
k2−→ [P ] + [E], (A.5)

within which S denotes a substrate, E an enzyme, SE is a complex formed of S and E, P is

a product and ki (i = 1,−1, 2) are the constant kinetic rate parameters associated with these

reactions. The law of mass action may then be applied to this reaction mechanism in order to

produce a set of ordinary differential equations of the form

d[S]

dt
= −k1[E][S] + k−1[SE], (A.6)

d[E]

dt
= −k1[E][S] + (k−1 + k2)[SE], (A.7)

d[SE]

dt
= k1[E][S]− (k−1 + k2)[SE], (A.8)

d[P ]

dt
= k2[SE]. (A.9)

The law of mass action was formulated in order to model reactions that are subject to a

specific set of conditions. These conditions correspond to the associated assumptions and relate

to the speed of reaction, the environment in which reactions occur as well as the amounts of

each reactant. Each of these assumptions imposes some restrictions which must be considered

before the law of mass action is used in modelling any biological system.

Firstly, we must consider the time taken for each reaction to occur. The law of mass action

generally corresponds to a reaction that occurs instantaneously. An example of this would be

that an enzyme and substrate act to form a product instantaneously when a collision between

the two occurs. This simple case corresponds to example (A.1).

The law of mass action as stated above applies to reactions that occur in a well mixed

environment. Specifically this refers to the fact that the environment in which a reaction oc-

curs contains homogeneous concentrations of all relevant species, i.e. the concentration of each

reactant is equal at every point within the environment, hence any spatial features may be

neglected.

Finally, it is assumed within the definition of the law of mass action that reactions proceed

in a continuous, deterministic manner. Reactions of the type modelled by the law of mass

action generally occur via collisions between reactant components. These can be considered as

deterministic processes in situations whereby the concentrations of each reactant are sufficiently

high, i.e. the continuum limit holds. In cases whereby the concentrations of reactants are low,

stochastic effects become more prevalent (i.e. the continuum limit breaks down) and as such

the law of mass action becomes invalid.
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Appendix B

Descartes’ Rule of Signs

Descartes’ rule of signs may be used to investigate solutions of polynomial equations. More

specifically it may be used to find the number of positive, negative and complex roots that can

possibly be obtained from a polynomial equation.

In order to utilise this rule it is first necessary to arrange the polynomial equation in order

from highest to lowest power of the relevant variable, for example

p(x) = a1x
3 ± a2x

2 ± a3x± a4 = 0, (B.1)

within which x is the variable of interest and ai (i = 1, 2, 3, 4) are the polynomial coefficients

expressed such that every ai > 0, i.e. the relevant signs should be expressed in the equation

rather than hidden in the coefficient definitions. It is then possible to apply Descartes’ rule of

signs in two main forms (Rule 1 and Rule 2), which are as follows.

• Rule 1: For a polynomial equation p(x) with real coefficients, the maximum number of

positive real roots of this equation will be equal to the number of sign changes in the

coefficients (with zero coefficients not constituting a sign change). Then, the number of

positive real roots will either be equal to this maximum or will be less than this by some

multiple of two depending upon the number of complex conjugate pairs of roots of the

polynomial.

• Rule 2: For a polynomial equation with real coefficients the maximum number of negative

real roots may be determined by examining the number of sign changes in the polynomial

equation p(y) where y = −x. Then the number of negative, real roots of the polynomial

p(x) is equal to the number of coefficient sign changes of the polynomial p(y) or less than

this by some multiple of two depending upon the number of complex conjugate pairs of

roots of the polynomial. Once again, a zero coefficient does not constitute a sign change.
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• Rule 3: It is also sometimes possible to obtain some information about the minimum

number of complex roots of a polynomial equation of the form p(x). If this polynomial

does not have a zero root then there will be at least n− (q + r) complex roots, where q is

the maximum number of positive roots and r is the maximum number of negative roots,

which may be determined using the two forms of Descartes’ rule of signs explained above.

B.1 Example 1

In order to demonstrate the application of Descartes’ rule of signs we here consider an

example of the form

p(x) = a1x
3 − a2x

2 − a3x+ a4 = 0. (B.2)

Making use of Rule 1 we can clearly see that there exist two changes of sign in the polynomial

coefficients. As such there will be a maximum of two positive real roots. Thus, here we may

have either two positive, real roots and zero complex roots or alternatively there may be zero

positive, real roots and two complex roots.

In order to use Rule 2 we then re-write equation (B.2) such that it takes the form

p(y) = p(−x) = −a1x
3 − a2x

2 + a3x+ a4 = 0. (B.3)

In this case we can clearly see that there exists just one sign change in the polynomial coefficients

meaning that there will be one negative, real root to the polynomial equation (B.2).

B.2 Example 2

Suppose we now consider the same example as that in Example 1, but with the polynomial

coefficients altered such that a2 = a3 = 0, i.e. we have

p(x) = a1x
3 + a4 = 0. (B.4)

In this example we can clearly see that there exist no sign changes in the polynomial coefficients

and so there will be zero positive, real roots.

If the polynomial equation (B.4) is then re-written such that it becomes

p(y) = p(−x) = −a1x
3 + a4 = 0. (B.5)

Inspecting this expression it is possible to see one change in sign in the polynomial coefficients
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and so there will exist one negative, real root to the polynomial equation (B.4).

In order to use Rule 3 we may then see that q = 0 and r = 1, from above. We may then

calculate that there will be two complex roots since n− (q + r) = 3− (0 + 1) = 2.
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Appendix C

Asymptotic Stability Analysis

Asymptotic stability analysis is a technique utilised in order to examine the stability of

solutions to a system of differential equations and the relevant trajectories of such systems under

small perturbations. In particular, asymptotic stability analysis may be used to investigate the

nature of a dynamical system’s behaviour in the vicinity of a steady-state.

In order to conduct an analysis of this type we define a system of ODEs in the form

dx

dt
= ẋ = f(x), (C.1)

where x ∈ R
n, with n denoting the dimensionality of the system and

x =









x1
...

xn









and f(x) =









f1(x1, ..., xn)

...

fn(x1, ..., xn)









. (C.2)

Before we seek to investigate the system behaviour in the vicinity of some steady-state

(equilibrium), we must obtain an expression for the steady-state of interest which is denoted

x∗. Once this equilibrium point has been obtained we may take a small perturbation to this

steady-state of the form ξ(t) = (ξ1, ..., ξn)
T , which can be used to linearise about the equilibrium

point. This is carried out by expanding f in a vector-valued Taylor series of the form

ẋ∗ + ξ̇ = f(x∗ + ξ) = f(x∗) + Jξ + ... , (C.3)

in which ... denotes the addition of higher order terms and J is the n × n Jacobian matrix of

partial derivatives ∂fi/∂xj , evaluated at the equilibrium point x∗.

In order to assess the asymptotic stability of the relevant equilibrium point, we solve for the
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eigenvalues by evaluating

det |J − λI| = 0, (C.4)

in which λ are the eigenvalues of the linearised system and I indicates the n×n identity matrix.

The nature of these eigenvalues tell us about the qualitative behaviour of our dynamical system

in the vicinity of the relevant equilibrium state.

All eigenvalues of this Jacobian matrix may be considered as the addition of a real and an

imaginary part. The magnitude of the real component of the eigenvalues are used to determine

the stability of the equilibrium point. In particular there are three main possibilities:

• λ < 0: In cases whereby all of the eigenvalues possess strictly negative real parts then the

system will be asymptotically stable. This will be the case since the small perturbation

will, in time, shrink to zero, i.e. |ξ(t)| → 0 as t→ ∞.

• λ > 0: Supposing the system possesses one (or more) eigenvalue(s) with a real part strictly

greater than zero then the system will be asymptotically unstable. In such cases the small

perturbation will grow in time, i.e. |ξ(t)| → ∞ as t→ ∞.

• λ = 0: The final possibility here is that the real components of the eigenvalues may equal

zero. In this case we possess a state that is neutral, i.e. it is neither asymptotically stable

or unstable. Here we would have a case in which the small perturbation will maintain the

same value for all time, i.e. |ξ(t)| = |ξ(0)| for all t ≥ 0.

Whilst the real parts of the eigenvalues clearly denote the asymptotic stability of the relevant

equilibrium point, the imaginary components are also of interest in many cases. In particular,

non-zero eigenvalues may occur but only in complex conjugate pairs, i.e.

λ1 = a+ bi and λ2 = a− bi.

The occurrence of one or more such pairs of eigenvalues indicate the existence of oscillatory

behaviour. As before, the real component of the eigenvalues determine the stability of the

system which in the context of oscillatory behaviour may be considered as damping (stable)

or amplification (unstable) of the amplitude of oscillation. The magnitude of the imaginary

components are also of interest since they are indicative of the frequency of oscillation within

the solution.
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Appendix D

Protein Synthesis

Within Chapter 5 it was discussed that there exists a significant amount of variation in the

concentrations of signalling proteins in E. coli cells. One of the causes of this is the stochastic

nature of gene expression which has been studied in some depth for E. coli cells. Here we briefly

summarise the process by which proteins are synthesised within cells.

DNA

mRNA

Protein

Transcription

Translation

Degradation

γR

γP

kR

kP

ϕ

ϕ

Figure D.1: Protein synthesis is a process comprising multiple stages. In the first instance, a
DNA sequence is copied to produce an mRNA via a process called transcription. This occurs
at a rate kR and the resultant mRNAs are degraded at a rate γR. Once an mRNA has entered
the cytoplasm of the cell, translation acts to produce protein molecules based on the mRNA
instructions. This occurs at some rate kP whilst the protein molecules produced will be degraded
at a rate γP .

Protein synthesis begins within the cell nucleus where DNA (deoxyribonucleic acid) is lo-

cated. DNA contains all of the information the cell needs in order to correctly produce the

proteins and other components it requires for healthy function. The first stage of this process is

called transcription. This is the process whereby upon receiving a signal which the cell needs to

produce more of a particular protein, the relevant gene or section of a DNA nucleotide sequence

is copied in order to produce RNA (ribonucleic acid). This is a one-to-one process in so much

as each base on the DNA corresponds to one base on the resultant RNA. In the case of the E.

coli chemotaxis signalling pathway this process will form an mRNA (messenger RNA) since the

gene being transcribed encodes a protein.

Every different mRNA may be considered as a template for the production of a particular

protein required for healthy cellular function. Once the appropriate mRNA has been transcribed
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from a DNA nucleotide sequence, the mRNAs move from the nucleus into the cytoplasm of the

cell. At this point they interact with large RNA and protein complexes known as ribosomes in

order to build proteins from the mRNA template, a process known as translation. In particular,

the ribosome moves along an mRNA strand and builds the relevant amino acid polymer (also

known as a protein molecule) one amino acid at a time. Different to the process of transcription,

translation is not a one-to-one process. During translation a protein is created piece by piece as

per the instructions encoded in the mRNA. For every three bases in the mRNA, there will be

one particular amino acid added to the strand. This will continue until a particular set of three

bases known as a stop codon gives the signal that the protein is complete.

Once the translation process is halted by the stop codon on the mRNA, the resultant amino

acid strand is released into the cytoplasm. At this point the final stage of protein synthesis

occurs. This is known as protein folding, which is the process whereby the elements of a linear

strand of amino acids interact with one another in order to assume a particular three-dimensional

shape or conformation.

Figure D.2: Once the ribosome is finished with translating the mRNA into a strand of amino
acids (left) there is one final stage that must be undergone in order to have a fully functional
protein molecule. This is known as protein folding and is the process whereby the linear strand of
amino acids assume the necessary three-dimensional conformation, which often appears similar
to the right hand panel.

Within this section, a summary of the main processes involved in protein synthesis has been

given. In addition to this there are a number of regulatory processes that act to control the

rates at which each of these steps proceeds. Within this thesis we consider the effects of protein

variation upon the chemotactic response of the cell rather than mathematically modelling all

of the genetic processes. Whilst the genetic processes summarised here are not included within

our modelling work it is still important to consider how these processes lead to the signalling

cascade analysed within this work, especially since they are partially responsible for the variation

in protein concentration considered in Chapter 5.
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Appendix E

FCD in a Model with Multiple

Receptor Types

Within Chapter 4 we have demonstrated that, subject to a number of assumptions and

simplifications, the property of FCD holds for a model of the form in equations (3.16)-(3.19).

However, as stated in Section 4.4.1 it is discussed that E. coli cells produce a response to aspartate

using both Tar and Tsr receptors. Here we outline a proof that a mathematical model including

the effects of Tsr binding aspartate is also able to exhibit FCD. This proof was provided in a

personal communication by A. Hamadeh and E. Sontag.

In order to examine the multiple receptor case, it is necessary to consider the generalised

homogeneity conditions of Shoval et al. [121]. These are given by

f (ϕx(m),Φ, p[L]) = ϕf(x(m),Φ, [L]), (E.1)

g (ϕx(m),Φ, p[L]) = g(x(m),Φ, [L]). (E.2)

These sufficient conditions are considered here in the context of a multiple receptor model similar

to that in equations (3.16)-(3.19). However, in order to capture the effects of multiple receptors,

the receptor free-energy expression of equation (3.10) is now utilised. As in Section 4.3, assuming

that Koff
i ≪ [L] ≪ Kon

i for each receptor type (i.e. for i = a, s). This simplifies equation (3.10)

such that it takes the form

F = N

[(

1−
m

2

)

+ νa ln

(
[L]

Koff
a

)

+ νs ln

(
[L]

Koff
s

)]

, (E.3)
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where all symbols retain their earlier definition. Substituting this into equation (3.9) gives

Φ =
1

1 +
(

[L]R

x(m)

)N
, (E.4)

where R = νa + νs and x(m) = Koff
a Koff

s e(m−2)/2 is the effective dissociation constant of this

model. In order to assess the homogeneity conditions here we consider ϕ = pR.

In order to examine the first homogeneity condition (equation (E.1)), it is necessary to

compute the temporal derivative of x(m). Upon use of the chain rule this is found to be

ẋ =
∂x

∂m

dm

dτ
=

1

2
x(m)

dm

dτ
= f(x(m),Φ, [L]). (E.5)

As such it is possible to satisfy the first homogeneity condition as follows

f (ϕx(m),Φ, p[L]) =
1

2
ϕx(m)

dm

dτ
= ϕ

(
1

2
x(m)

dm

dτ

)

= ϕf (x(m),Φ, [L]) . (E.6)

The second homogeneity condition may be satisfied in a similar manner since

g (ϕx(m),Φ, p[L]) =
1

1 +
(

ϕ[L]R

ϕx(m)

)N
=

1

1 +
(

[L]R

x(m)

)N
= g (x,Φ, [L]) . (E.7)

Thus, it is clear that a model including the effects of multiple receptors binding the same ligand

will exhibit FCD when Koff
i ≪ [L] ≪ Kon

i .
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Glossary

• Adaptation

The process by which cells return to a pre-stimulus state. In the case of E. coli this occurs

via balanced receptor methylation and demethylation.

• Amidation

Conversion of a specific protein domain into an amide a compound derived from carboxylic

acids.

• Aspartate

An amino acid acting as a chemoattractant for E. coli. The most common form of aspartate

considered in the literature is MeAsp (α-methylaspartate) since it is non-metabolisable.

• Autophosphorylation

Phosphorylation of a protein as a result of its own activity.

• Chemoattractant (Ligand)

A chemical substance that causes cells to display a positive chemotactic response. The

terms chemoattractant, attractant and ligand are used interchangeably within this thesis.

• Chemoreceptor

A type of protein that detects certain chemical substances within the environment.

• CW/CCW Bias

The fraction of time that the flagella of a cell spend rotating in a clockwise (CW) or

counter-clockwise (CCW) direction.

• Cytoplasm

The contents of a cell, i.e. everything inside of the cytoplasmic membrane (for prokaryotes)

but outside of the nucleus (for eukarotes).

• Escherichia coli (E. coli)

A rod-shaped bacterium commonly found in the lower intestine of warm-blooded organ-

isms. Most strains are harmless and are part of the regular flora of the gut. There are
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however a number of strains that may cause illnesses such as gastroenteritis, urinary tract

infections and neonatal meningitis.

• Eukaryote

A type of cell that contains a membrane-bound nucleus.

• Flagellum (Plural: Flagella)

A long, slender, whip-like extension of a cell used for movement. The rotational movement

of each flagellum is controlled by a flagellar motor.

• FliM

A protein controlling the rotational behaviour of flagella. In the case of E. coli, a phos-

phorylated protein (CheY-P) binds to FliM, resulting in an increase in clockwise flagellar

rotation.

• Gain

This refers to the amplification of an external stimulus. In particular, here this refers to

the fact that a small change in receptor occupancy can produce a much larger difference

in intracellular signalling activity.

• Histidine Protein Kinase (HPK)

A protein playing a vital role in passing extracellular signals into the cell. For E. coli and

R. sphaeroides cells, this is achieved by changing the rate at which the histidine kinase

protein (CheA or CheA2) produces phosphoryl groups (autophosphorylates).

• In vitro

Literally translates to “in glass”. Here this is used to signify that an experiment was

conducted outside of a living cell.

• In vivo

Literally translates to “within the living”. This is used to indicate that an experiment was

conducted within the context of a living cell.

• Linker Protein

A protein that is used as an intermediate in the binding of two other items. In the case

of E. coli chemotaxis, the linker protein CheW allows CheA to bind to receptors. It may

essentially be thought of as an binding adapter.

• Methyl Group

A type of chemical compound derived from methane. In the chemotaxis signalling pathway

of E. coli cells these regulate the activity at which the chemoreceptors of the cell act.
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• Methylation (Demethylation)

The addition of methyl groups onto, for example, a chemoreceptor is referred to as methy-

lation. Demethylation relates to the removal of methyl groups.

• Methylesterase

A protein that is able to remove methyl groups from chemoreceptors. This plays a key

role in the process of adaptation.

• Methyltransferase

Also known as a methylase. This type of protein is able to pass a methyl group from one

location to another. In the case of E. coli the methyltransferase (CheR) passes methyl

groups onto chemoreceptors forming a key part of the adaptation process.

• Mutant Cell

This refers to a cell that has been altered from its natural state, often resulting in altered

cell behaviour.

• Operon

A functioning unit of DNA (Deoxyribonucleic Acid) that produce strands of mRNA (mes-

senger Ribonucleic Acid). This mRNA is then translated into a number of gene products

that in this case are the chemotaxis proteins.

• Phosphatase

A protein that is able to to remove phosphoryl groups from other proteins. In the case of E.

coli, the phosphatase (CheZ) acts to remove phosphoryl groups from the phosphorylated

CheY (CheY-P).

• Phosphoryl Group

A chemical compound of phosphoric acid. In terms of the chemotaxis signalling pathway,

phosphoryl groups may be thought of as changing/enhancing the behaviour of a chemotaxis

protein.

• Phosphorylation (Dephosphorylation)

The addition of phosphoryl groups onto a protein is known as phosphorylation. Dephos-

phorylation refers to the loss of phosphoryl groups from a protein.

• Phosphotransfer

A transfer of phosphoryl groups between two molecules. Here, this refers to the passing

of a phosphoryl group from one chemotaxis protein to another.
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• Prokaryote

A single-cell organism lacking a distinct nucleus.

• Receptor Cluster

A number of chemoreceptors that are closely packed in an area. This is often necessary to

enhance the sensitivity of a cellular response.

• Response Regulator

The protein controlling the response of the cell. For E. coli the response regulator (CheY)

controls the swimming behaviour of the cell.

• Rhodobacter sphaeroides (R. sphaeroides)

Another example of a rod-shaped bacterium and is commonly found in soil, mud and

sludge. Multiple areas of research into this bacterium are ongoing including bioremedia-

tion (using biological processes to overcome environmental problems) and biofuel produc-

tion [189].

• Serine

Another example of an amino acid representing a chemoattractant for E. coli cells.

• Signalling Team

A group of chemoreceptors that act together. A stimulus sensed by one chemoreceptor

affects the activity of each receptor in the signalling team.
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