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Abstract

This thesis is a collection of several qualitative and quantitative studies on local-global
principles for norms obtained by the author during the course of his PhD.

In the first part of this thesis we study the Hasse norm principle, a classical local-global
principle for norms of number fields first introduced by Hasse. We exploit the geometric
interpretation of this principle to obtain a new result, namely the validity of the Hasse
norm principle for any An-extension of degree n ≥ 5. We also develop theoretical methods
and give explicit results on the obstruction to the Hasse norm principle and the defect of
weak approximation for the associated norm one torus. We describe how to implement
these results in order to compute the obstructions to the local-global principles in the
computer algebra system GAP. We further apply our methods to do a detailed study of
the Hasse norm principle and weak approximation for the norm one torus of any extension
with normal closure having alternating or symmetric Galois group.

In the second part we investigate the so-called multinorm principle, a natural general-
ization of the Hasse norm principle to a finite number of extensions. We generalize work of
Drakokhrust–Platonov to provide explicit and computable formulas for the obstructions to
the multinorm principle and weak approximation for the multinorm one torus. These for-
mulas are given in terms of generalized representation groups of Galois groups, a tool that
makes them fairly easy to manipulate and amenable to computation. We subsequently il-
lustrate the flexibility of our methods by studying the multinorm principle in three concrete
families, extending results of Bayer-Fluckiger–Lee–Parimala, Demarche–Wei and Pollio.

In the third and final part of this thesis we obtain several statistical results on the Hasse
norm principle and weak approximation for norm one tori. We show that 100% of degree
n ≤ 15 extensions of a number field k with bounded discriminant satisfy the Hasse norm
principle. This result is given as conditional on the weak Malle conjecture, but we also
present unconditional results for n = 4 and n = 6 by exploiting certain known cases of this
conjecture over k = Q. Finally, we capitalize on recent advances in arithmetic statistics
by Shankar–Varma and Altuğ–Shankar–Varma–Wilson to determine the density of octic
D4-extensions of Q that fail the Hasse norm principle, when ordered by discriminant or by
conductor.
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Notation

Given a field k, we use the notation k for a (fixed) algebraic closure of k, unless stated
otherwise. If k is a global field and L/k is a Galois extension, we use the following notation:

A∗k the idèle group of k
Ok the ring of integers of k
Ωk the set of all places of k
Lv the completion of L at some choice of place above v ∈ Ωk

Dv the Galois group of Lv/kv

Given a field K, a variety X over K and an algebraic K-torus T , we use the following
notation:

Gm,K the multiplicative group Spec(K[t, t−1]) of K (when K is clear from the
context we omit it from the subscript)

XL the base change X ×K L of X to a field extension L/K
X the base change of X to an algebraic closure of K
PicX the Picard group of X
RK/kX the Weil restriction of X to a subfield k of K such that [K : k] is finite
T̂ the character group Hom(T ,Gm,K) of T

Let G be a finite group. The label ‘G-module’ shall always mean a free Z-module of
finite rank equipped with an action of G. Given a subgroup H of G, a G-module A, an
integer q, a non-negative integer i and a prime number p, we use the following notation:

|G| the order of G
exp(G) the exponent of G
Z(G) the center of G
[H,G] the subgroup of G generated by all commutators [h, g] with h ∈ H, g ∈ G
ΦG(H) the subgroup of H generated by all commutators [h, g] with g ∈ G and

h ∈ H ∩ gHg−1

Gab the abelianization G/[G,G] of G
G∼ the Q/Z-dual Hom(G,Q/Z) of G
Gp a Sylow p-subgroup of G
Hi(G,A) the i-th homology group
Hi(G,A) the i-th cohomology group
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Ĥ
q
(G,A) the q-th Tate cohomology group1

Xq
ω(G,A) the kernel of the restriction map Ĥ

q
(G,A)

Res−−→
∏

g∈G Ĥ
q
(〈g〉, A).

We also use the notation G′ for the derived subgroup [G,G] of G. If H is a normal
subgroup of G, we write H E G. For x, y ∈ G we adopt the convention [x, y] = x−1y−1xy
and xy = y−1xy. If G is abelian and d ∈ Z>0, we use the following notation:

G[d] the d-torsion of G
G(d) the d-primary part of G.

We often use ‘=’ to indicate a canonical isomorphism between two objects.

1Since Ĥ
q
(G,A) = Hq(G,A) for q ≥ 1, we will omit the hat in this case.
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“If you’re walking down the right path and you’re
willing to keep walking, eventually you’ll make
progress.”

- Barack Obama
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Chapter 1

Background

In this chapter we review several background concepts and results which will be used
throughout the thesis.

1.1 Group cohomology

Given a homomorphism f : G→ H of groups and an H-module A, we can regard A as an
G-module via f and there are induced homomorphisms of cohomology groups

f ∗ : Hi(H,A)→ Hi(G,A)

for each i ∈ Z≥0, see [15, III, §8]. Similarly, f gives rise to homomorphisms of homology
groups

f∗ : Hi(G,A)→ Hi(H,A)

for each i ∈ Z≥0. The most important examples of such maps for us will be the restriction
and corestriction maps.

Definition 1.1.1. Let H be a subgroup of a group G and let A be a G-module. For
each i ∈ Z≥0, the embedding H ↪→ G induces maps ResGH : Hi(G,A) → Hi(H,A) and
CorGH : Hi(H,A)→ Hi(G,A) called restriction and corestriction, respectively.

The restriction and corestriction maps commute with the cohomology and homology
boundary homomorphisms, respectively. Therefore, by dimension shifting (see [18, p. 104]),
these maps can be extended to all Tate cohomology groups Ĥ

i
, i ∈ Z. We collect some

well-known results about these maps below.
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Lemma 1.1.2. Let K ≤ H ≤ G be a tower of groups with [G : K] finite. Then

ResGK = ResHK ◦ResGH and CorGK = CorGH ◦CorHK .

Proof. See [15, III, Proposition 9.5(i)].

Lemma 1.1.3. Let G be a finite group and H a subgroup of G. Let A be a G-module.
Then

CorGH ◦ResGH : Ĥ
i
(G,A)→ Ĥ

i
(G,A)

equals the multiplication by [G : H] map.

Proof. See [15, III, Proposition 9.5(ii)].

Lemma 1.1.4. Let G be a finite group and Gp a Sylow p-subgroup of G. For any G-module
A and any i ∈ Z>0, the restriction map

ResGGp : Hi(G,A)→ Hi(Gp, A)

maps Hi(G,A)(p) injectively into Hi(Gp, A).

Proof. See [15, III, Theorem 10.3].

Lemma 1.1.5. (Inflation-Restriction) Let G be a group, H a normal subgroup of G and
A a G-module. Then there is a fundamental exact sequence, called the inflation-restriction
exact sequence,

0→ H1(G/H,AH)
Inf−→ H1(G,A)

Res−−→ H1(H,A)G/H
Tr−→ H2(G/H,AH)

Inf−→ H2(G,A),

where Inf denotes the inflation map (see [34, Construction 3.3.9, p. 63]) and Tr denotes
the transgression map (see [34, Remark 3.3.16, p. 67]).

Proof. See [34, Proposition 3.3.14].

Definition 1.1.6. Let A be an H-module. We define the co-induced module IndGH(A) to
be the set of functions ϕ : G→ A such that ϕ(hg) = hϕ(g) for all h ∈ H, g ∈ G. This set
naturally has a structure of a G-module via the operations

(ϕ+ ϕ′)(g) = ϕ(g) + ϕ′(g)

(g′ϕ)(g) = ϕ(gg′)

for all ϕ, ϕ′ ∈ IndGH(A), g, g′ ∈ G.
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Lemma 1.1.7 (Shapiro’s lemma). Let H be a subgroup of a group G. Let A be an H-
module. Then

Hi(G, IndGH(A)) = Hi(H,A)

for each i ≥ 0.

Proof. See [18, IV, §4, Proposition 2].

Lemma 1.1.8. Let H be a subgroup of a group G. Let A be a G-module and let i be a
positive integer. Let f : Hi(G,A)→ Hi(G, IndGH(A)) be the map on cohomology induced by
the homomorphism A → IndGH(A) sending a ∈ A to the function g 7→ ga of IndGH(A). Let
sh be the canonical isomorphism given in Shapiro’s lemma 1.1.7. Then

sh ◦f = ResGH : Hi(G,A)→ Hi(H,A).

Proof. See [95, Ex. 3.7.14(iii), p. 131].

We will mainly use the concept in Definition 1.1.6 when A = Z is theH-module with the
trivial action. In this case, it is easy to check that the assignment f 7→

∑
gH∈G/H

f(g−1)gH

identifies IndGH(Z) with the G-module Z[G/H].

Lemma 1.1.9. Let G be a group. Then Hi(H,Z[G]) = 0 for all integers i > 0 and all
subgroups H of G.

Proof. See [34, III, Lemma 3.3.15].

1.2 Duality

Definition 1.2.1. Let G be a finite abelian group. The Pontryagin dual of G is the group

G∼ := Hom(G,Q/Z).

Definition 1.2.2. Let G,G′ be finite abelian groups. If f : G→ G′ is a group homomor-
phism, then the dual f∼ of f is the homomorphism f∼ : G′∼ → G∼ defined by

f∼(g′)(g) = g′(f(g))

for all g ∈ G, g′ ∈ G′∼.

3



Lemma 1.2.3. If f : G→ G′ is a homomorphism of finite abelian groups, then

Ker(f∼) ∼= Coker(f)∼

Proof. Applying the left-exact contravariant functor Hom(−,Q/Z) to the exact sequence

G
f−→ G′ → Coker(f)→ 0

gives the exact sequence

0→ Hom(Coker(f),Q/Z)→ Hom(G′,Q/Z)
f∼−→ Hom(G,Q/Z)

and the result follows.

Let G be a group and let A,B be G-modules.

Theorem 1.2.4 (Cup-products). There exists a unique family of bi-additive pairings
(called cup-products)

∪ : Hi(G,A)× Hj(G,B) −→ Hi+j(G,A⊗B)

(a, b) 7−→ a ∪ b

defined for all integers i, j ≥ 0 satisfying the following conditions:

1. for any homomorphism A→ A′ of G-modules, the induced diagram

Hi(G,A)× Hj(G,B) ∪ //

��

Hi+j(G,A⊗B)

��
Hi(G,A′)× Hj(G,B) ∪ // Hi+j(G,A′ ⊗B)

commutes. Similarly, the analogous diagram for a homomorphism B → B′ of G-
modules commutes.

2. if i = j = 0, the pairing ∪ is simply

AG ×BG −→ (A⊗B)G

(a, b) 7−→ a⊗ b

4



3. if 0→ A→ A′ → A′′ → 0 is an exact sequence of G-modules such that

0→ A⊗B → A′ ⊗B → A′′ ⊗B → 0

is also exact, then

(δa′′) ∪ b = δ(a′′ ∪ b), ∀a′′ ∈ Hi(G,A′′), ∀b ∈ Hj(G,B)

where the map δ on the left denotes the connecting homomorphism

Hi(G,A′′)→ Hi+1(G,A)

and δ on the right denotes the connecting homomorphism

Hi+j(G,A′′ ⊗B)→ Hi+j+1(G,A⊗B).

4. if 0→ B → B′ → B′′ → 0 is an exact sequence of G-modules such that

0→ A⊗B → A⊗B′ → A⊗B′′ → 0

is also exact, then

a ∪ (δb′′) = (−1)iδ(a ∪ b′′), ∀a ∈ Hi(G,A), ∀b′′ ∈ Hj(G,B′′)

where again, by abuse of notation, δ denotes the corresponding boundary maps.

Proof. See [71, II, Proposition 1.38].

If G is further assumed to be finite, then for every integer i the cup-product above
defines a pairing

FG : Ĥ
i
(G,Z)× Ĥ

−i
(G,Z)

∪−→ Ĥ
0
(G,Z) = Z/|G|Z.

Theorem 1.2.5. The above pairing induces an isomorphism FG : Ĥ
−i

(G,Z) ∼= Ĥ
i
(G,Z)∼

defined by

FG(g)(f) =
1

|G|
(f ∪ g) ∈ Z/|G|Z =

1

|G|
Z/Z ⊂ Q/Z

for any f ∈ Ĥ
i
(G,Z), g ∈ Ĥ

−i
(G,Z).

Proof. See [15, VI, Theorem 7.4].
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Lemma 1.2.6. Let G be a finite group, let H be a subgroup of G and let i be an integer.
Then the dual of the restriction map ResGH : Ĥ

i
(G,Z)→ Ĥ

i
(H,Z) is the corestriction map

CorGH : Ĥ
−i

(H,Z)→ Ĥ
−i

(G,Z).

Proof. The cup-product satisfies the projection formula

CorGH(f ∪ ResGH(g)) = CorGH(f) ∪ g

for any f ∈ Ĥ
i
(H,Z) and g ∈ Ĥ

−i
(G,Z), see [18, IV, §7, Proposition 9]. As the corestriction

map
CorGH : Ĥ

0
(H,Z) = Z/|H|Z→ Z/|G|Z = Ĥ

0
(G,Z)

in dimension 0 is induced by multiplication by [G : H], multiplying the projection formula
above by 1

|G| on both sides gives

1

|H|
(f ∪ ResGH(g)) =

1

|G|
(CorGH(f) ∪ g)⇔

FH(ResGH(g))(f) = FG(g)(CorGH(f)).

We thus have a commutative diagram

Ĥ
−i

(G,Z)
FG //

ResGH��

Ĥ
i
(G,Z)∼

(CorGH)∼

��

Ĥ
−i

(H,Z)
FH // Ĥ

i
(H,Z)∼

Since the horizontal maps are duality isomorphisms by Theorem 1.2.5, the result follows.

1.3 Covering groups

Let G be a finite group.

Definition 1.3.1. A group G is called a stem extension of G if there exists a central
extension

1→M → G
λ−→ G→ 1, (1.3.1)

such that M ⊆ [G,G]. We call M the base normal subgroup of G. A Schur covering group
of G is a stem extension of G of maximal size.
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Definition 1.3.2. The homology group Ĥ
−3

(G,Z) is called the Schur multiplier of G.

Lemma 1.3.3. The base normal subgroup M of any Schur covering group of G is isomor-
phic to the Schur multiplier Ĥ

−3
(G,Z) of G.

Proof. See [38, §9.9, p. 214]

Proposition 1.3.4. A Schur covering group of G always exists.

Proof. See [54, Theorem 2.1.4].

Remark 1.3.5. Despite the fact that Schur covering groups of G always exist, these are
not necessarily unique. For example, it is easy to check that both the group D4 and the
quaternion group Q8 of order 8 are Schur covering groups of the Klein four-group V4.

Definition 1.3.6. A finite group G is called a generalized representation group of G if
there exists a central extension

1→M → G
λ−→ G→ 1, (1.3.2)

such that M ∩ [G,G] ∼= Ĥ
−3

(G,Z). We again call M the base normal subgroup of G.

Remark 1.3.7. The isomorphism M ∩ [G,G] ∼= Ĥ
−3

(G,Z) in Definition 1.3.6 is canonical,
since the existence of such a bijection is equivalent to the surjectivity of the transgres-
sion map TrG : Ĥ

1
(M,Q/Z) → Ĥ

2
(G,Q/Z) in the inflation-restriction exact sequence of

Lemma 1.1.5. Indeed, note that by Lemma 1.2.3 the surjectivity of TrG is equivalent to
the injectivity of the dual map Tr∼G in the exact sequence Ĥ

−3
(G,Z)

Tr∼G−−→ Ĥ
−2

(M,Z) →
Ĥ
−2

(G,Z), where the second map is induced by the inclusion M ⊂ G. Hence, a central
extension as in (1.3.2) gives a generalized representation group if and only if Tr∼G gives an
isomorphism Ĥ

−3
(G,Z) ∼= M ∩ [G,G].

Even though a generalized representation group is not uniquely determined up to iso-
morphism, its commutator subgroup is. The existence of such an isomorphism is a classical
result dating back to Schur (see [7, II, Corollary 2.4(iii)] for example), but we outline this
construction here to verify that it has several properties to be used later on.

Lemma 1.3.8. Let G̃ (respectively, G) be a generalized representation group of G with
projection map λ̃ (respectively, λ) and base normal subgroup M̃ (respectively, M). For any
subgroup B of G, define B̃ = λ̃−1(B) and B = λ

−1
(B).
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There exists an isomorphism

τ : [G̃, G̃]
'−→ [G,G]

with the following properties:

(i) λ(τ(a)) = λ̃(a) for every a ∈ [G̃, G̃];

(ii) τ([g̃1, g̃2]) = [g1, g2] for all g̃1, g̃2 ∈ G̃ and g1, g2 ∈ G such that λ̃(g̃i) = λ(gi).

For any subgroup B of G, τ further identifies

• [B̃, B̃] ∼= [B,B] and

• M̃ ∩ [B̃, B̃] ∼= M ∩ [B,B].

Proof. Let π : F → G be a surjective homomorphism, where F is a free group generated
by a set X. As λ̃ is surjective, for any x ∈ X there exists l̃x ∈ G̃ such that λ̃(l̃x) = π(x).
Then G̃ is generated by M̃ and the elements l̃x and the group homomorphism Λ̃ : F → G̃,
defined by Λ̃(x) = l̃x for all x ∈ X, satisfies π = λ̃ ◦ Λ̃.

Moreover, if R = Ker π, then 1 = π(R) = λ̃(Λ̃(R)) and so Λ̃(R) ⊂ Ker λ̃ = M̃ . Thus
Λ̃([F,R]) = [Λ̃(F ), Λ̃(R)] ⊂ [G̃, M̃ ] = 1 since M̃ ⊂ Z(G̃). We see also that [G̃, G̃] is
generated by the elements [l̃x, l̃y] and thus Λ̃ induces a surjective homomorphism

η̃ : [F/[F,R], F/[F,R]]→ [G̃, G̃]

Since |[F/[F,R], F/[F,R]]| = |[G̃, G̃]| in the case where G̃ is a Schur covering group
(see [55, Theorem 6.4, Equation (3)]) and [G̃, G̃] does not depend on G̃ being a Schur
covering group (see [26, Lemma 2]), the map η̃ above is an isomorphism. Likewise, there
exists a homomorphism Λ : F → G with analogous properties inducing an isomorphism
η : [F/[F,R], F/[F,R]]

'−→ [G,G]. Setting τ := η ◦ η̃−1 yields the desired isomorphism
and the stated properties are clear from its construction. The additional identifications
concerning the subgroup B follow immediately from (i) and (ii).

We finish this section with a lemma that will enable us to employ generalized repre-
sentation groups to calculate the image of the corestriction map CorGH inside the Schur
multiplier Ĥ

−3
(G,Z):

Lemma 1.3.9. [27, Lemma 4] Let H be a subgroup of G and let G be a generalized
representation group of G with projection map λ and base normal subgroup M . Then

Im
(

CorGH : Ĥ
−3

(H,Z)→ Ĥ
−3

(G,Z)
)
∼= M ∩ [λ−1(H), λ−1(H)].
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1.4 Algebraic tori

Let k be a field with (fixed) separable closure k.

Definition 1.4.1. An algebraic torus T (or torus, for simplicity) over k is a k-algebraic
group such that, over k, T becomes isomorphic to d ≥ 1 copies of the multiplicative group
Gm. We call d the rank of T and if the isomorphism T ×k k ∼= Gd

m is defined over a subfield
L of k, the torus T is said to be split by L.

Definition 1.4.2. Let T be a torus defined over k. A character of k is a homomorphism
of algebraic groups χ : T → Gm,k.

Let T̂ = Hom(T ,Gm,k) denote the set of all characters of T . This set is naturally an
abelian group under pointwise product. Additionally, one can give T̂ the structure of a
Gk := Gal(k/k)-module via the action

(g.χ)(x) = gχ(g−1x)

for all g ∈ Gal(k/k), χ ∈ T̂ and x ∈ T . Note that if T is split by a Galois subextension L/k
of k/k, then Gal(k/L) acts trivially on the character group T̂ and thus T̂ is a Gal(L/k)-
module.

Theorem 1.4.3. Let L/k be a finite Galois extension with Galois group G. Let A be the
category of algebraic tori over k that are split by L and let B be the category of finitely gen-
erated torsion-free G-modules. Then taking character groups gives a contravariant equiva-
lence of categories Φ : A → B.

Proof. See [75, Theorem 2.1].

This theorem makes it possible to study properties of algebraic tori via the correspond-
ing properties of their character modules, a tool that will be very useful for us in this
thesis.

Lemma 1.4.4. The Gk-module Ĝm is isomorphic to Z (with the trivial Gk-action), being
generated by the identity morphism.

Proof. See [87, Example 3.2.2].
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We now analyze tori of the form RK/kGm, whereK/k is a finite separable field extension
and RK/k is the Weil restriction functor (recall that this functor is characterized by the
property (RK/kX)(S) = X(S ×k K) for any K-scheme X and any k-algebra S).

Lemma 1.4.5. Let L/k be the Galois closure of K/k. Set G = Gal(L/k) and H =
Gal(L/K). Then T = RK/kGm is a torus split by L/k of rank d = [K : k]. Moreover, we
have T̂ ∼= Z[G/H] as G-modules.

Proof. Write K = k(α) for some primitive element α of K/k and let f be the minimal
polynomial of α over k. We have

T (k) ∼= (K ⊗k k)∗ ∼= (k[x]/(f(x)))∗ ∼=
⊕

gH∈G/H

(k[x]/(x− gα))∗ ∼= (k
∗
)d, (1.4.1)

where we used the Chinese remainder theorem in the third isomorphism. It follows that T
is a torus of rank d and since the isomorphisms in (1.4.1) are defined over L, T is split by
L/k.

Moreover, the isomorphism (1.4.1) allows us to write any x ∈ T (k) as x =
⊕

gH∈G/H
xgH

for uniquely determined xgH ∈ k
∗. Define χgH : T → Gm,k by x 7→ xgH . It is clear that

χgH is a character of T and, conversely, any character of T can be uniquely written as a
product of characters of this form. In other words, the homomorphism of abelian groups

ξ : Z[G/H] −→ T̂

gH 7−→ χgH

is an isomorphism. We prove that ξ is G-equivariant, finishing the proof of the lemma.
Note that the action of Gk = Gal(k/k) on Z[G/H] is induced by its G-action and the
projection map π : Gk → G. Similarly, the action of G on T̂ is induced by the action of
Gk on T̂ and π. It thus suffices to check that ξ is Gk-equivariant. Since the Gk-action on
T (k) is given by (σx)gH = σ(xπ(σ)−1gH), we have

(σ.χgH)(x) = σ(χgH(σ−1x)) = σ((σ−1x)gH) = σ(σ−1(xπ(σ)gH)) = xπ(σ)gH = xσ.gH

for all σ ∈ Gk, gH ∈ G/H and x =
⊕

gH∈G/H
xgH ∈ T (k).
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1.5 Arithmetic of tori

Let T be an algebraic torus over a global field k.

Definition 1.5.1. The Tate-Shafarevich group X(T ) of T is defined as the kernel of the
product of the restriction maps

X(T ) := Ker

(
H1(k, T )→

∏
v∈Ωk

H1(kv, T )

)
.

Definition 1.5.2. A principal homogeneous space (or torsor) for T (or under T ) is a non-
trivial variety X/k equipped with a free and transitive action of T by regular functions.

It is easy to verify that a principal homogeneous space X for T has a k-rational point
if and only if X ∼= T over k. Moreover, it is a well-known fact that isomorphism classes of
k-torsors under T are classified by the cohomology group H1(k, T ), see [86, §2.2]. In this
way, we obtain the following characterization of the Tate–Shafarevich group of T .

Definition 1.5.3. Let C be a class of algebraic varieties defined over k. The Hasse
principle is said to hold for C if, for every X ∈ C, the existence of kv-points on X for all
v ∈ Ωk implies the existence of a k-point on X.

Lemma 1.5.4. X(T ) = 0 if and only if the Hasse principle holds for all principal homo-
geneous spaces for T .

Assuming that a variety does have a k-point, it is natural to ask if it is possible to ap-
proximate a finite number of local points of the variety by a single global point, i.e. whether
weak approximation holds.

Definition 1.5.5. The defect of weak approximation for T is defined as

A(T ) :=

(∏
v∈Ωk

T (kv)

)
/T (k),

where T (k) denotes the closure of T (k) in
∏

v T (kv) with respect to the product topology.
Weak approximation is said to hold for T if A(T ) = 0.

Example 1.5.6. Weak approximation holds for the torus Gm by the approximation the-
orem of algebraic number theory, see [72, II, §3, Theorem 3.4].
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We now present one of the main results in the arithmetic of algebraic tori, tying together
weak approximation for a torus T and the Hasse principle for principal homogeneous spaces
under T . We will make use of the following lemma:

Lemma 1.5.7. There exists a smooth complete k-variety X containing T as an open subset.

Proof. See [22, Corollary 1].

Throughout the thesis, we will refer to a variety X in the conditions of Lemma 1.5.7
as a smooth compactification of T .

Theorem 1.5.8 (Voskresenskĭı). Let T be a torus defined over a number field k and let
X/k be a smooth compactification of T . Then there exists an exact sequence

0→ A(T )→ H1(k,PicX)∼ →X(T )→ 0. (1.5.1)

Proof. See [91, Theorem 6].

Theorem 1.5.9. If X1 and X2 are two smooth compactifications of a torus T defined over
a number field k, then

H1(k,PicX1) = H1(k,PicX2).

In particular, the group H1(k,PicX) is a birational invariant of T .

Proof. Voskresenskĭı showed (see [91, Theorem 1]) that there exists a canonical isomor-
phism of Gk-modules Pic(X1)⊕P1 = Pic(X2)⊕P2 for some permutation Gk-modules (see
below for the definition of a permutation module) P1, P2. Since a permutation module is
a sum of induced Gk-modules of the form Z[Gk/H], where H is a closed subgroup of finite
index of Gk, and H1(k,Z[Gk/H]) = H1(H,Z) = Hom(H,Z) = 0 by Shapiro’s lemma 1.1.7,
we deduce that H1(k,PicX1) = H1(k,PicX2).

Remark 1.5.10. The group H1(k,PicX) admits another interpretation, namely using the
Hochschild–Serre spectral sequence one obtains an isomorphism BrX/Br0X ∼= H1(k,PicX),
where Br0X = Im(Br k → BrX) and BrX denotes the Brauer–Grothendieck group of X.
In this way, the study of this invariant can be put into the framework of the well-known
Brauer–Manin obstruction, which by work of Sansuc [81] is the only one to the Hasse prin-
ciple and weak approximation for any principal homogeneous space S of T . Therefore, if
Y is a smooth compactification of S, the analysis of the group BrY/Br0 Y (which injects
into BrX/Br0X by results in [6, §5]) is of considerable interest. For examples of work on
the construction of these groups, see [6] or [23].
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Voskresenskĭı proved Theorem 1.5.8 by working with a flasque resolution of T̂ , a notion
that was later put into a general framework by Colliot-Thélène and Sansuc ([20]). We
explain this concept below as it will be useful for us in later chapters.

Let G be a finite group and let A be a G-module. We say that A is a permutation
module if it has a Z-basis permuted by G. We say that A is flasque if Ĥ

−1
(G′, A) = 0 for

all subgroups G′ of G. A flasque resolution of A is an exact sequence of G-modules

0→ A→ P → F → 0,

where P is a permutation module and F is flasque. We say two G-modules A1 and A2 are
similar if A1⊕P1

∼= A2⊕P2 for permutation modules P1, P2 and denote the similarity class
of A by [A].

Proposition 1.5.11. Every G-module A admits a flasque resolution.

Proof. See [20, Lemme 3].

The following result shows that the group H1(k,PicX) appearing in Voskresenskĭı’s
exact sequence 1.5.1 has a simple cohomological description and can be computed using
any flasque resolution of the Galois module T̂ .

Theorem 1.5.12 (Colliot-Thélène and Sansuc). Let T be a torus defined over a number
field k and split by a finite Galois extension L/k with G = Gal(L/k). Let

0→ T̂ → P → F → 0

be a flasque resolution of T̂ and let X/k be a smooth compactification of T . Then the
similarity class [F ] and the group H1(G,F ) are uniquely determined and

H1(k,PicX) = H1(G,PicXL) = H1(G,F ). (1.5.2)

Additionally,

H1(G,F ) = X2
ω(G, T̂ ) := Ker

(
H2(G, T̂ )

Res−−→
∏
g∈G

H2(〈g〉, T̂ )
)
. (1.5.3)

Proof. See [20, Lemme 5 and Proposition 6] for the proof of (1.5.2). The isomorphism
H1(G,F ) = X2

ω(G, T̂ ) is proved in [21, Proposition 9.5(ii)].
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The Tate–Shafarevich group X(T ) also has a description in terms of the cohomology
of T̂ :

Theorem 1.5.13 (Tate). Let T be a torus defined over a number field k and split by
a finite Galois extension L/k with G = Gal(L/k). Then Poitou–Tate duality gives a
canonical isomorphism

X(T )∼ = X2(G, T̂ ), (1.5.4)

where X2(G, T̂ ) = Ker
(

H2(G, T̂ )
Res−−→

∏
v∈Ωk

H2(Dv, T̂ )
)
.

Proof. This is the case i = 1 of [75, Theorem 6.10].

Proposition 1.5.14. Let T be a torus defined over a number field k and split by a finite
Galois extension L/k with G = Gal(L/k). Then taking duals in Voskresenskĭı’s exact
sequence (1.5.1) yields the exact sequence

0→X2(G, T̂ )→X2
ω(G, T̂ )→ A(T )∼ → 0, (1.5.5)

where the map X2(G, T̂ )→X2
ω(G, T̂ ) is the natural inclusion arising from the Chebotarev

density theorem.

Proof. This follows from the proof of [91, Theorem 6] and isomorphisms (1.5.2), (1.5.3)
and (1.5.4).

1.6 The norm one torus

Let K/k be a finite separable extension of fields and let L/k be a finite Galois extension
containing K/k. Set G = Gal(L/k), H = Gal(L/K) and d = [K : k].

Definition 1.6.1. The norm one torus of K/k is defined as

R1
K/kGm := Ker(RK/kGm

NK/k−−−→ Gm).

Remark 1.6.2. On k-points, the morphism RK/kGm

NK/k−−−→ Gm is just the usual norm map
NK/k : K∗ → k∗ and so the norm one torus R1

K/kGm is represented by the hypersurface
NK/k(x1, . . . , xd) = 1 in affine space Ad

k (where x1, . . . , xd denote the coordinates of an
element of K in some k-basis).
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More concretely, one can also view the algebraic group R1
K/kGm as follows: embed

RK/kGm ↪→ GLd by considering the left regular representation of K/k (with respect to
some k-basis)

ρ : K →Md(k).

Taking the algebraic group defined by the equations describing Im ρ gives exactly RK/kGm.
Note that changing the basis with respect to which ρ is defined has the effect of conjugating
Im ρ, so that RK/kGm is well-defined up to k-isomorphism. In this way, the norm one torus
R1
K/kGm is simply defined as the subgroup of matrices in RK/kGm with determinant 1.

Lemma 1.6.3. T = R1
K/kGm is a torus of rank d− 1 and split by L/k.

Proof. In the proof of Lemma 1.4.5 it was shown that the group RK/kGm(k) is diago-
nalisable, isomorphic to (k

∗
)d and that this isomorphism is already defined over L. As

NK/k = det ◦ρ, it is easy to check that NK/k(x) =
d∏
i=1

xi for any x =
d⊕
i=1

xi ∈ RK/kGm(k)

and therefore T (k) ∼= (k
∗
)d−1. Since this isomorphism is defined over L, T is split by

L/k.

Definition 1.6.4 (Chevalley module). Let G be a finite group and H a subgroup of G.
The map η : Z → Z[G/H] defined by η : 1 7→ NG/H =

∑
gH∈G/H

gH produces the exact

sequence of G-modules
0→ Z η−→ Z[G/H]

π−→ JG/H → 0, (1.6.1)

where JG/H = coker η is called the Chevalley module of G/H.

Proposition 1.6.5. R̂1
K/kGm

∼= JG/H as G-modules.

Proof. The result follows from taking character groups in the exact sequence

1→ R1
K/kGm → RK/kGm

NK/k−−−→ Gm → 1,

using Lemmas 1.4.4, 1.4.5 and noticing that χ ◦ NK/k =
∏

gH∈G/H
χgH , where χ : Gm,k →

Gm,k is the identity morphism and χgH are the characters constructed in the proof of
Lemma 1.4.5.

The next lemma will be useful when taking the cohomology of the module JG/H :
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Lemma 1.6.6. Let G be a finite group and H a subgroup of G. Then, for every i ∈ Z≥0

and for every subgroup G′ of G, the diagram obtained by taking the group cohomology of
the exact sequence (1.6.1)

Hi(G,Z) Hi(G,Z[G/H]) Hi(G, JG/H) Hi+1(G,Z)

Hi(G′,Z) Hi(G′,Z[G/H]) Hi(G′, JG/H) Hi+1(G′,Z)

η∗

ResG
G′

π∗

ResG
G′

δi

ResG
G′ ResG

G′

η∗ π∗ δi

(1.6.2)

commutes.

Proof. It is well-known that the restriction map commutes with the connecting homo-
morphisms δi, see [18, end of p. 103] for example. Moreover, as ResGG′ corresponds to
restricting a cocycle defined on G to the subgroup G′, it is clear that it commutes with the
map π∗ given by composing a cocyle with π. By a similar reasoning one checks that ResGG′
commutes with the map η∗ given by composing a cocycle with η.

The next result shows how the Tate–Shafarevich group of the norm one torus completely
controls the local-global principle for norms of K/k, an interpretation that will be essential
in later applications.

Proposition 1.6.7. If K/k is an extension of global fields, then

X(R1
K/kGm) = (k∗ ∩NK/k(A∗K))/NK/k(K

∗).

Proof. See [75, p. 307].

We finish this chapter with two results that describe the Tate-Shafarevich group and
the birational invariant H1(k,PicX) (via Theorem 1.5.12) for the norm one torus of a
Galois extension:

Theorem 1.6.8. If T = R1
L/kGm is the norm one torus of a Galois extension L/k of

number fields with Galois group G, we have

X2
ω(G, T̂ ) = H2(G, T̂ ) = H3(G,Z). (1.6.3)

Proof. Taking character groups in the defining sequence of T

1→ T → RL/kGm

NL/k−−−→ Gm → 1
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and using Lemmas 1.4.4 and 1.4.5 gives the exact sequence of G-modules

0→ Z→ Z[G]→ T̂ → 0.

Taking the group cohomology of the above sequence and using Lemma 1.6.6 gives the
following commutative diagram of abelian groups with exact lines:

H2(G,Z[G]) H2(G, T̂ ) H3(G,Z) H3(G,Z[G])

∏
g∈G

H2(〈g〉,Z[G])
∏
g∈G

H2(〈g〉, T̂ )
∏
g∈G

H3(〈g〉,Z)
∏
g∈G

H3(〈g〉,Z[G])

Res Res Res Res

(1.6.4)
where the vertical arrows are the products of the restriction maps. By Lemma 1.1.9 we
have Hi(G,Z[G]) = Hi(〈g〉,Z[G]) = 0 for i = 2, 3. Additionally, by the 2-periodicity of
group cohomology of cyclic groups, we have H3(〈g〉,Z) = H1(〈g〉,Z) = Hom(〈g〉,Z) = 0.
Therefore diagram (1.6.4) shows that H3(G,Z) = H2(G, T̂ ) = X2

ω(G, T̂ ), as desired.

Theorem 1.6.9 (Tate). If T = R1
L/kGm is the norm one torus of a Galois extension L/k

of number fields with Galois group G, we have

X(T )∼ = Ker

(
H3(G,Z)

Res−−→
∏
v∈Ωk

H3(Dv,Z)

)
, (1.6.5)

where Dv = Gal(Lv/kv) is the decomposition group at v.

Proof. See [18, p. 198].
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Part I

The Hasse norm principle
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Chapter 2

Introduction

In this part of the thesis we study a local-global principle for norms known as the Hasse
norm principle. Let K/k be an extension of number fields with associated idèle groups A∗K
and A∗k. One can naturally define a norm map NK/k : A∗K → A∗k by

NK/k((xw)w) =

∏
w|v

NKw/kv(xw)


v∈Ωk

where the product runs over all places w ∈ ΩK above v. Since NK/k(x) =
∏
w|v
NKw/kv(x)

for any x ∈ K∗ (see, for example, [72, II, Corollary 8.4]), this idèlic norm map extends the
usual norm map NK/k : K∗ → k∗ of K/k, i.e. the diagram

K∗ A∗K

k∗ A∗k

NK/k NK/k

commutes.

Definition 2.0.1. The Hasse norm principle (often abbreviated to HNP) is said to hold
for K/k if the so-called knot group

K(K/k) := (k∗ ∩NK/k(A∗K))/NK/k(K
∗)

is trivial, i.e. if being a norm everywhere locally is equivalent to being a global norm from
K/k.
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This principle was formally introduced and first investigated in [43] by Hasse, who
proved the following result:

Theorem 2.0.2 (The Hasse norm theorem, [43]). The HNP holds if K/k is a cyclic
extension.

Hasse also showed that this principle can fail in general, with biquadratic extensions
providing the simplest setting where failures are possible.

Theorem 2.0.3. The HNP fails for the extension Q(
√
−3,
√

13)/Q. Indeed, 3 is not a
global norm, despite being the norm of an idèle.

Proof. See [43, §2].

In general, the HNP fails for a biquadratic extension if and only if all its decomposition
groups are cyclic, see [18, p. 199]. Since this principle was first introduced, multiple cases
have been analyzed in the literature. For instance, if K/k is Galois, there is an explicit
description of the knot group due to Tate1

K(K/k)∼ = Ker
(
H3(G,Z)

Res−−→
∏
v∈Ωk

H3(Dv,Z)
)
, (2.0.1)

as it follows from Proposition 1.6.7 and Theorem 1.6.9. Using this characterization, many
results on the validity of the HNP were obtained in the Galois setting, with a particular
emphasis on the abelian case, see e.g. the works of Gerth ([39], [40]), Gurak ([41], [42]) and
Razar ([79]).

Nevertheless, results for the non-abelian and non-Galois cases are still limited. For
example, if N/k is the normal closure of K/k, the following instances of the HNP are
known:

Theorem 2.0.4 (Bartels). If [K : k] is prime, then the HNP holds for K/k.

Proof. See [3, Lemma 4].

Theorem 2.0.5 (Bartels). If [K : k] = n and Gal(N/k) ∼= Dn is the dihedral group of
order 2n, then the HNP holds for K/k.

Proof. See [4, Satz 1].
1Part of this characterization also appeared in earlier work of Scholz, see [83, II, Satz 3].
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Theorem 2.0.6 (Voskresenskĭı and Kunyavskĭı). If [K : k] = n and Gal(N/k) ∼= Sn, then
the HNP holds for K/k.

Proof. See [92] or [93].

The main underlying theoretical tool used to derive these results is the geometric in-
terpretation of the HNP: by Proposition 1.6.7 the knot group K(K/k) is identified with
the Tate–Shafarevich group X(T ) of the norm one torus T = R1

K/kGm and thus by
Lemma 1.5.4 the HNP holds forK/k if and only if the Hasse principle holds for all principal
homogeneous spaces

Tc : NK/k(Ξ) = c (2.0.2)

(where Ξ is a variable) under T . In this way, one can explore techniques from the arithmetic
of algebraic tori (as presented in Section 1.5) to investigate the group X(T ) and thus
deduce results on the validity of the HNP.

Over the next four chapters, we exploit this toric interpretation of the Hasse norm
principle and related tools in order to do a comprehensive study of this principle in several
families of extensions. In Chapter 3 we add to the above list of non-Galois cases where the
HNP is known to hold by establishing this principle for any degree n ≥ 5 extension K/k
of number fields such that Gal(N/k) is isomorphic to An.

We subsequently give theoretical results and explicit methods for the computation of
the obstructions to the Hasse principle and weak approximation for norm one tori of non-
Galois extensions in Chapter 4. We start by applying techniques from the arithmetic of
algebraic tori to provide some comparison isomorphisms between these obstructions for a
fixed extension and its subextensions/superextensions (see Theorem 4.1.1 and the results of
Section 4.2). We then use certain quotients of the knot group and the birational invariant
H1(k,PicX) to derive explicit formulas for the the p-primary part of the obstructions we
study for all but finitely many primes p, see Corollary 4.1.3 and the results of Section 4.3.
We also utilize generalized representation groups and outline work of Drakokhrust which
uses these groups to describe the invariant H1(k,PicX) (see Theorem 4.1.4). We end
the chapter by describing in detail how to compute some of the obstruction groups using
computer algebra systems such as GAP [33], see Section 4.4.

In Chapter 5 we make use of the techniques developed in Chapter 4 to do a broad study
of the local-global principles for any extension whose normal closure has symmetric or al-
ternating Galois group, generalizing Theorem 2.0.6 above and the main result of Chapter 3.
In this setting, we provide explicit formulas for the knot group and the birational invariant
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H1(k,PicX) of any An or Sn-extension (see Theorem 5.1.1) and further determine all possi-
bilities for these groups, showing that each possibility occurs (see Theorem 5.1.3). Finally,
we demonstrate how to apply our results to obtain precise local conditions controlling the
failure of the local-global principles for small values of n, see Propositions 5.1.7, 5.1.8, 5.1.9
and 5.1.10.

A big motivation for providing explicit conditions for the failure of the HNP as described
above is to enable an analysis of the frequency of its failures in families of extensions of
number fields (see Part III of this thesis for several results in this direction). Furthermore,
in order to obtain asymptotic formulas for the number of extensions satisfying certain
conditions, it is often necessary to first show the existence of at least one such extension,
see [30, Theorem 1.7] for example. The results of the last chapter of this part of the thesis,
Chapter 6, address this issue. In this chapter we prove the existence of field extensions with
prescribed Galois group that satisfy or fail the Hasse norm principle (see Theorem 6.1.3)
and constructAn and Sn-extensions (over at most a quadratic extension ofQ) that illustrate
all cases of Propositions 5.1.7 and 5.1.9 (see Sections 6.2.1 and 6.2.2).
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Chapter 3

The Hasse norm principle for
An-extensions

3.1 Main result

In this chapter we investigate the Hasse norm principle for a degree n extension K/k
of number fields with normal closure N/k such that Gal(N/k) is isomorphic to An, the
alternating group on n letters. We also look at weak approximation – recall that this
property is said to hold for a variety X/k if X(k) is dense (for the product topology)
in
∏

v∈Ωk
X(kv). In particular, we examine weak approximation for the norm one torus

R1
K/kGm associated with a degree n extensionK/k of number fields with An-normal closure.

The first non-trivial case is n = 3. In this case, K = N is a cyclic extension of k and the
Hasse norm theorem 2.0.2 implies that the HNP holds for K/k. Moreover, one can show
that weak approximation holds for the associated norm one torus by invoking a result of
Colliot-Thélène and Sansuc, see Remark 3.1.3 below.

The case n = 4 was analyzed by Kunyavskĭı in his work [57] on the arithmetic of
three-dimensional tori:

Theorem 3.1.1 (Kunyavskĭı). Let K/k be a quartic extension of number fields and let
N/k be its normal closure. If Gal(N/k) ∼= A4, then K(K/k) = 0 or Z/2 and K(K/k) is
trivial if and only if there exists v ∈ Ωk such that the decomposition group Dv = Gal(Nv/kv)
is not cyclic. Moreover, the HNP holds for K/k if and only if weak approximation fails for
R1
K/kGm.
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The main goal of this chapter is to complete the picture for this family of extensions
by proving the following theorem.

Theorem 3.1.2. [62, Theorem 1.1] Let K/k be a degree n ≥ 5 extension of number fields
and let N/k be its normal closure. If Gal(N/k) ∼= An, then the HNP holds for K/k and
weak approximation holds for the norm one torus R1

K/kGm.

Our strategy to establish this result is twofold. First, we combine the toric interpreta-
tion of the HNP described in Sections 1.5 and 1.6 with several cohomological facts about
An-modules to prove the aforementioned result for n ≥ 8. Next, we use a computational
method developed by Hoshi and Yamasaki to solve the case n = 6. The remaining cases
n = 5 and 7 follow from the remark below. In Chapter 5 we will also see how to ob-
tain Theorem 3.1.2 and further results on An-extensions by using different techniques, see
Remark 5.1.11.

Remark 3.1.3. We note that when n = p is a prime number, Theorem 3.1.2 was already
known. Indeed, in this case the HNP always holds by Theorem 2.0.4 and a result of Colliot-
Thélène and Sansuc on the rationality of the norm one torus of an extension with prime
degree also shows the validity of weak approximation (see [21, Proposition 9.1 and Remark
9.3]).

3.2 Cohomology of An-modules

In this section we prove Theorem 3.1.2 for n ≥ 8. We start out by establishing several
group-theoretic and cohomological facts about An-modules. We then exploit the conse-
quences of these results in the arithmetic of norm one tori associated with An-extensions.

Recall that, for n ≥ 5, An is a non-abelian simple group and hence perfect. Moreover,
its Schur multiplier M(An) = Ĥ

−3
(An,Z) is given as follows (see [45, Theorem 2.11]):

M(An) =


0 if n ≤ 3;

Z/2 if n ∈ {4, 5} or n ≥ 8;

Z/6 if n ∈ {6, 7}.

Given a copy H of An−1 inside G = An, we have an induced corestriction map on coho-
mology

CorGH : M(H)→M(G).
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This map will play an important role in the proof of Theorem 3.1.2, so we begin by
establishing the following result.

Lemma 3.2.1. Let n ≥ 8 and let H be a copy of An−1 inside G = An. Then the corestric-
tion map CorGH is surjective.

In order to prove this lemma, we will use multiple results about covering groups of Sn
and An together with the characterization of the image of CorGH given in Lemma 1.3.9. To
put this plan into practice, we will use the following presentation of a Schur covering group
(as defined in Section 1.3) of Sn due to Schur.

Proposition 3.2.2 (Schur). Let n ≥ 4 and let U be the group with generators z, t1, . . . , tn−1

and relations

1. z2 = 1;

2. zti = tiz, for 1 ≤ i ≤ n− 1;

3. t2i = z, for 1 ≤ i ≤ n− 1;

4. (titi+1)3 = z, for 1 ≤ i ≤ n− 2;

5. titj = ztjti, for |i− j| ≥ 2 and 1 ≤ i, j ≤ n− 1.

Then U is a Schur covering group of Sn with base normal subgroup M = 〈z〉. Moreover, if
ti denotes the transposition (i i+ 1) in Sn, then the map

π : U −→ Sn

z 7−→ 1

ti 7−→ ti

is surjective and has kernel M .

Proof. See Schur’s original paper [84] or [45, Chapter 2] for a more modern exposition.

Remark 3.2.3. By Lemma 1.3.3 and Proposition 3.2.2, we immediately see that the Schur
multiplier M(Sn) of Sn is isomorphic to Z/2 for all n ≥ 4.

Using the Schur cover of Sn given in Proposition 3.2.2, one can also construct a Schur
covering group of An for n = 4, 5 or any n ≥ 8.
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Lemma 3.2.4. In the notation of Proposition 3.2.2, the group V := π−1(An) defines a
Schur covering group of An for n = 4, 5 or any n ≥ 8.

Proof. It is well-known that An is generated by the n − 2 permutations ei := t1.ti+1 =
(1 2)(i + 1 i + 2) for 1 ≤ i ≤ n − 2. Hence, V = π−1(An) is generated by z, e1, . . . , en−2,
where ei := t1ti+1 for 1 ≤ i ≤ n− 2. Clearly, we have M ⊆ Z(V ) and V/M ∼= An. As the
Schur multiplier of An is also Z/2 for n = 4, 5 or n ≥ 8, in order to show that V defines a
Schur covering group of An it suffices to prove that M ⊆ [V, V ].

Claim: z = [e−1
1 e2e1, e2]. (3.2.1)

Proof of claim: This follows from a straightforward (but long) computation using the
identities (e1e2)3 = z, e3

1 = z and e2
i = z for 2 ≤ i ≤ n− 2, which result directly from the

relations satisfied by ti. Alternatively, noticing that it suffices to check the assertion for
n = 4, one can obtain a proof of the claim by using the following instructions in GAP [33]:

G:=SymmetricGroup(4);

pi:=EpimorphismSchurCover(G);
M:=Kernel(pi);

z:=Elements(M)[2];
p1:=(1,2);
p2:=(2,3);
p3:=(3,4);

t1:=PreImagesRepresentative(pi,p1);
t2:=PreImagesRepresentative(pi,p2);
t3:=PreImagesRepresentative(pi,p3);

x:=Inverse(t1∗t2)∗t1∗t3∗t1∗t2;
y:=t1∗t3;

Print(Inverse(x)∗Inverse(y)∗x∗y=z);

This last line of code outputs true, as desired.

From the claim, it follows that M = 〈z〉 is contained in [V, V ], finishing the proof of the
lemma.
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Given a copy H of An−1 inside An, one can subsequently repeat the same procedure of
this last lemma and further restrict π to W := π−1(H) to seek a Schur covering group of
H. The same argument works, but with two small caveats.

First, it is necessary to assure that we still have z ∈ [W,W ]. To show this we will use
the following lemma:

Lemma 3.2.5. Let n ≥ 7. Then any subgroup H ≤ An isomorphic to An−1 is conjugate
to the point stabilizer (An)n of the letter n in An

Proof. This is a consequence of [96, Lemma 2.2].

By Lemma 3.2.5 we have H = (An)n
y for some y ∈ Sn. As π is surjective, y = π(x) for

some x ∈ U and hence z = zx = [e−1
1 e2e1, e2]x = [(e−1

1 e2e1)x, ex2 ] is in [W,W ], as clearly
e1, e2 ∈ (An)n.

Second, note that we are making use of the fact that the Schur multipliers of An−1 and
Sn coincide, which does not hold for n = 8 (recall that M(A7) = Z/6). However, it is still
true that π−1(A7) gives a (non-maximal) stem extension (as defined in Section 1.3) of A7,
by the same reasoning as above. We have thus established the following result.

Lemma 3.2.6. Let n ≥ 8 and let H be a copy of An−1 inside An. Then the restriction of
the Schur cover V of An given in Lemma 3.2.4 to the group W = π−1(H) defines a stem
extension of H.

We can now prove the surjectivity of CorGH for n ≥ 8.

Proof of Lemma 3.2.1. Let V be the Schur covering group of G constructed in Lemma
3.2.4. We then have a central extension

1→M(G)→ V
π−→ G→ 1,

where we identified the base normal subgroup M of V with the Schur multiplier M(G)
of G. Since M(G) ⊂ [V, V ], V is a generalized representation group (Definition 1.3.6) of
G. Therefore, by Lemma 1.3.9 we have an isomorphism CorGH(M(H)) ∼= M(G) ∩ [W,W ],
where W = π−1(H). Hence, it is enough to show that M(G) ∩ [W,W ] = M(G). By
Lemma 3.2.6, W defines a stem extension of H for n ≥ 8, so that we immediately get
M(G) ⊂ [W,W ]. It follows that M(G) ∩ [W,W ] = M(G), as desired.
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Using this lemma we show the vanishing of the cohomology group H2(G, JG/H) (where
JG/H is the Chevalley module of G/H, as defined in Section 1.6), which we will then use
to prove Theorem 3.1.2 for n ≥ 8.

Proposition 3.2.7. Let n ≥ 8 and H be a copy of An−1 inside G = An. Then H2(G, JG/H) =
0.

Proof. Taking the G-cohomology of the exact sequence defining JG/H

0→ Z η−→ Z[G/H]→ JG/H → 0

(where η : Z → Z[G/H] is the norm map defined by 1 7→
∑

gH∈G/H
gH) gives an exact

sequence of abelian groups

H2(G,Z[G/H])→ H2(G, JG/H)→ H3(G,Z)
η∗−→ H3(G,Z[G/H]).

Applying Shapiro’s Lemma 1.1.7, the fundamental duality Theorem 1.2.5 in the cohomol-
ogy of finite groups and the fact that Ĥ

−2
(G′,Z) ∼= G′/[G′, G′] for any group G′ (see [18,

IV, §3, Proposition 1]), we have H2(G,Z[G/H]) ∼= H2(H,Z) ∼= Ĥ
−2

(H,Z) ∼= H/[H,H] = 0,
as H is perfect. Therefore, this last exact sequence becomes

0→ H2(G, JG/H)→ H3(G,Z)
η∗−→ H3(G,Z[G/H]),

which shows that H2(G, JG/H) = 0 if η∗ is injective. Since the composition of the map η∗
with the isomorphism of Shapiro’s lemma

H3(G,Z)
η∗−→ H3(G,Z[G/H])

∼=−→ H3(H,Z)

gives the restriction map by Lemma 1.1.8, it suffices to prove that the restriction

ResGH : H3(G,Z)→ H3(H,Z)

is injective. By Lemmas 1.2.3 and 1.2.6, this is the same as proving that the corestriction
map

CorGH : Ĥ
−3

(H,Z)→ Ĥ
−3

(G,Z)

is surjective. But this is the content of Lemma 3.2.1 and so it follows that H2(G, JG/H) =
0.
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We now prove Theorem 3.1.2 for n ≥ 8. We will make use of the following auxiliary
lemma:

Lemma 3.2.8. Let n ≥ 5 and let H be a subgroup of G = An with index n. Then
H ∼= An−1.

Proof. G acts by multiplication on the set of cosets of H in G and identifying this set
with {1, . . . , n} gives a homomorphism ρ : G → Sn. Since An is simple, ρ is injective and
therefore Im ρ = An. Finally, note that ρ(H) is a point stabilizer of a letter in {1, . . . , n}
and so ρ(H) ∼= An−1. It follows that the restriction of ρ to H gives an isomorphism
H ∼= An−1.

Proof of Theorem 3.1.2 for n ≥ 8. Set G = Gal(N/k) ∼= An and H = Gal(N/K). By
Theorems 1.5.8 and 1.5.12, it is enough to show that the group H2(G, T̂ ) is trivial, where
T = R1

K/kGm is the norm one torus associated with the extension K/k. Recall that
T̂ ∼= JG/H as G-modules by Proposition 1.6.5, so it suffices to prove that H2(G, JG/H) = 0.
But since [G : H] = n, we have H ∼= An−1 by Lemma 3.2.8 and so the result follows from
Proposition 3.2.7.

Remark 3.2.9. Note that in the proof of Proposition 3.2.7 we actually showed that

H2(G, JG/H) ∼= Ker(ResGH : H3(G,Z)→ H3(H,Z))

for every n ≥ 6. Using this fact and an approach similar to the one carried out in the
proof of Lemma 3.2.1, one can show that H2(G, JG/H) = Z/3 when n = 6. Therefore the
statement of Proposition 3.2.7 does not hold in this case and hence the proof of Theorem
3.1.2 for n = 6 requires a different strategy.

3.3 The case n = 6

In this section, we conclude the proof of Theorem 3.1.2 by using the computer algebra
system GAP [33] to establish the remaining case n = 6. For this, we make use of the
algorithms1 developed by Hoshi and Yamasaki in [47]. In this work, the authors study the
rationality of low-dimensional algebraic tori via the properties of the corresponding group
modules, which they analyze using various computational methods. In particular, they
create the following GAP algorithms:

1The code for these algorithms is available in the web page: https://www.math.kyoto-u.ac.jp/
~yamasaki/Algorithm/RatProbAlgTori/, accessed December, 2020.
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• Norm1TorusJ(d,m) (Algorithm N1T in [47, Section 8]), computing the action of G
on JG/H , where G is the transitive subgroup of Sd with GAP index number m (cf.
[17] and [33]) and H is the stabilizer of one of the letters in G;

• FlabbyResolution(G) (Algorithm F1 in [47, Section 5.1]), computing a flasque res-
olution of the G-lattice MG (see [47, Definition 1.26]);

• H1(G) (Algorithm F0 in [47, Section 5.0]), computing the cohomology group H1(G,MG)
of the G-lattice MG.

Using these algorithms, we can easily prove the A6 case of Theorem 3.1.2 as follows:

Proof of the case n = 6 of Theorem 3.1.2. Set G = Gal(N/k) ∼= A6, H = Gal(N/K) and
T = R1

K/kGm. Note that H ∼= A5 by Lemma 3.2.8 and that T̂ ∼= JG/H (as G-modules)
by Proposition 1.6.5. Therefore, by Theorems 1.5.8 and 1.5.12 it is enough to prove that
H1(G,FG/H) = 0, where FG/H is a flasque module in a flasque resolution of JG/H . Writing
K = NH = k(α1) and N = k(α1, . . . , α6) for some αi ∈ k, we see that H is the stabilizer
of α1 and so the above algorithm Norm1TorusJ to compute JG/H applies. Observing that
A6 is the transitive subgroup of S6 with GAP index number 15, one can conclude that the
desired cohomology group is trivial by running the following code in GAP:

gap> Read("FlabbyResolution.gap");
gap> J:=Norm1TorusJ(6,15);
<matrix group with 2 generators>
gap> F:=FlabbyResolution(J).actionF;
<matrix group with 2 generators>
gap> Product(H1(F));
1

Remark 3.3.1. The computation used for the case n = 6 in the previous proof can be
reproduced for other small values of n. We have checked that for n ≤ 11 the algorithm
confirms our results, giving the trivial group for n 6= 4 and producing the counterexample
H1(A4, FG/H) = Z/2 for n = 4, as computed by Kunyavskĭı in [57].

Although the primary goal of this section was to establish the case n = 6 of Theorem
3.1.2, the computer algorithms of Hoshi and Yamasaki employed here might be of indepen-
dent interest. Indeed, this computational method can consistently be used to compute the
birational invariant H1(G,FG/H) for low-degree field extensions. In Section 4.4 we describe
Hoshi and Yamasaki’s method in greater detail, develop a slight modification of their al-
gorithms and subsequently use it in Section 5.3 to deduce consequences on the validity of
the Hasse norm principle and weak approximation for norm one tori in further cases.
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Chapter 4

Explicit methods for the Hasse norm
principle

4.1 Main results

While results of Colliot-Thélène and Sansuc (Theorem 1.5.12) give concise descriptions of
the birational invariant H1(k,PicX) of an algebraic torus T , and a result of Tate (Theo-
rem 1.5.13) does the same for its Tate–Shafarevich group, actually computing these groups
in practice can be challenging. In this chapter we address this problem by giving theoreti-
cal results and explicit methods for computing the groups X(T ), H1(k,PicX) and A(T )
for the norm one torus T = R1

K/kGm of an extension of number fields K/k.
Except where stated otherwise, our assumptions throughout the rest of the chapter will

be as follows. Let T = R1
K/kGm and let X denote a smooth compactification of T . Let

L/k be a Galois extension containing K/k and set G = Gal(L/k) and H = Gal(L/K).
Let X0 be a smooth compactification of the torus T0 = R1

L/kGm. There is a natu-
ral inclusion j : T ↪→ T0, which induces canonical maps A(T ) → A(T0),X(T ) →X(T0).
Moreover, j extends to a morphism j′ : X → X ′ for some suitably chosen smooth compacti-
fication X ′ of T0 (see [13, §1.2.2.]) and so it induces a map H1(k,PicX)∼ → H1(k,PicX ′)∼.
Since H1(k,PicX1) is canonically isomorphic to H1(k,PicX2) for any two smooth com-
pactifications X1, X2 of a torus by Theorem 1.5.9, we also obtain a map H1(k,PicX)∼ →
H1(k,PicX0)∼ compatible with Voskresenskĭı’s exact sequence in Theorem 1.5.8. Our first
result utilizes these maps to obtain comparison isomorphisms between the aforementioned
arithmetic invariants for the tori R1

K/kGm and R1
L/kGm. In what follows, we write A(p) for

the p-primary part of an abelian group A.
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Theorem 4.1.1. Let L/K/k be a tower of finite extensions. Let T0 = R1
L/kGm, let T =

R1
K/kGm and let X0 and X be smooth compactifications of T0 and T , respectively. For any

prime p such that p - [L : K] there is a commutative diagram with exact rows as follows,
where the vertical isomorphisms are induced by the natural inclusion j : T ↪→ T0:

0 // A(T )(p)
//

∼=
��

H1(k,PicX)∼(p)
//

∼=
��

X(T )(p)

∼=
��

// 0

0 // A(T0)(p)
// H1(k,PicX0)∼(p)

//X(T0)(p)
// 0.

Alternatively, the norm map NL/K : T0 � T can be used to obtain a commutative
diagram similar to the one in Theorem 4.1.1 with the direction of the vertical isomorphisms
reversed. Let

fL/K : H1(k,PicX0)∼ → H1(k,PicX)∼

be the canonical map induced byNL/K . In order to study the birational invariant H1(k,PicX),
we introduce an object called the ‘unramified cover of the first obstruction to the HNP for
K/k corresponding to the tower L/K/k’ defined as

Fnr(L/K/k) = Coker(fL/K).

In addition to general techniques from the arithmetic of algebraic tori, our work makes
use of a quotient of the knot group called the ‘first obstruction to the HNP for K/k
corresponding to the tower L/K/k’ first defined by Drakokhrust and Platonov in [27] as

F(L/K/k) = (k∗ ∩NK/k(A∗K))/NK/k(K
∗)(k∗ ∩NL/k(A∗L)),

i.e. as the cokernel of the natural map K(L/k) → K(K/k). As shown in [27], the first
obstruction to the HNP in a tower of number fields admits a purely group-theoretic de-
scription in terms of the relevant local and global Galois groups, see Theorem 4.3.5 below.
In similar fashion to the first obstruction to the HNP, its unramified cover Fnr(L/K/k)
also admits an explicit group-theoretic description:

Theorem 4.1.2. There is a canonical isomorphism

Fnr(L/K/k) = (H ∩ [G,G])/ΦG(H),

where ΦG(H) denotes the focal subgroup of H in G, see Definition 4.3.7.
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As a corollary, one can use this object to compute the p-primary parts of the knot
group, the invariant H1(k,PicX), and the defect of weak approximation for all but finitely
many primes p. In what follows, let

F(G,H) = (H ∩ [G,G])/ΦG(H).

Corollary 4.1.3. If p is a prime such that H3(G,Z)(p) = 0, then

(i) K(K/k)(p) = F(L/K/k)(p);

(ii) H1(k,PicX)∼(p) = F(G,H)(p);

(iii) A(T )(p) = Ker
(
F(G,H)(p) → F(L/K/k)(p)

)
, where the map F(G,H)→ F(L/K/k) is

a natural surjection, see Section 4.3.

Let G be a generalized representation group of G with base normal subgroup M , as
defined in Section 1.3. By Theorems 1.5.12 and 1.6.8 the group H1(k,PicX) for R1

L/kGm

is Ĥ
−3

(G,Z) ∼= M ∩ [G,G], which equals F(G,M) since M is a central subgroup of G. Our
next main result shows that this is a special case of a more general phenomenon.

Theorem 4.1.4 (Drakokhrust). Let G be a generalized representation group of G with
projection map λ. Then there is a canonical isomorphism

H1(k,PicX)∼ = F(G,H),

where H = λ−1(H).

We remark that the above theorem is a direct consequence of Drakokhrust’s work in [26]
(see the proof in Section 4.3), although it seems to have never appeared in the literature in
the concise form given above. The formula in this theorem also enables the computation
of the group H1(k,PicX) using a computer algebra system. We have implemented this
formula as an algorithm in GAP [33], presented as Algorithm A2 in the Appendix 4.5.

4.2 Using subextensions and superextensions

In order to study the HNP and weak approximation in non-Galois extensions of k, it is
often useful to be able to deduce information about the knot group of an extension K/k
from information about its subextensions or superextensions, the latter meaning extensions
of k containing K. In this section we collect some results that serve this purpose, proving
Theorem 4.1.1 along the way.
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Lemma 4.2.1. Let K/k be a finite extension and let X be a smooth compactification of
T = R1

K/kGm. Then T ×k K is stably rational. Consequently, H1(K,PicX) = 0 and
H1(k,PicX) is killed by [K : k].

Proof. Write TK = T ×k K. Applying base change to the exact sequence defining T gives

1→ TK → (RK/kGm)×k K
NK/k−−−→ Gm,K → 1. (4.2.1)

Let L/k be a Galois extension containing K. Let G = Gal(L/k) and let H = Gal(L/K).
Taking character groups gives an exact sequence of H-modules

0→ Z
NG/H−−−→ Z[G/H]→ T̂K → 0 (4.2.2)

where NG/H : 1 7→
∑

gH∈G/H
gH. The map

∑
gH∈G/H

agH · gH 7→ aH defines a left splitting of

(4.2.2). Therefore, (4.2.1) splits and consequently

TK ×Gm,K
∼= (RK/kGm)×k K.

Hence, TK is K-stably rational, whereby H1(K,PicX) = H1(H,PicXL) = 0 by [20,
Proposition 6]. Now recall that CorGH ◦ResGH is multiplication by [G : H] = [K : k] by
Lemma 1.1.3 and ResGH : H1(G,PicXL) → H1(H,PicXL) = 0. This completes the proof
that [K : k] kills H1(G,PicXL) = H1(k,PicX).

The corollary below is an immediate consequence of Theorem 1.5.8 and Lemma 4.2.1.

Corollary 4.2.2. Let T = R1
K/kGm. Then A(T ) and K(K/k) are killed by [K : k].

Lemma 4.2.3. Let φ : T1 → T2 be a morphism of algebraic tori over k, and let X1 and
X2 be smooth compactifications of T1 and T2, respectively. Then we obtain a commutative
diagram with exact rows as follows, where the vertical arrows are induced by φ:

0 // A(T1) //

��

H1(k,PicX1)∼ //

��

X(T1)

��

// 0

0 // A(T2) // H1(k,PicX2)∼ //X(T2) // 0.

Proof. It suffices to show that the diagram
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H1(k,PicX1)∼ X(T1)

H1(k,PicX2)∼ X(T2)

is commutative. But this follows from Voskresenskĭı’s proof of [91, Theorem 6], since all
the cohomology groups involved in the construction of the surjection H1(k,PicX)∼ �

X(T ) therein (namely Ĥ
0
(k, Ck(T )),H1(k, T (k)) and H1(k, Ck(N)) = H1(k,PicX)∼) are

functorial in T .

Definition 4.2.4. An isogeny between two algebraic tori T1, T2 is a surjective morphism
φ : T1 → T2 with finite kernel.

Corollary 4.2.5. Let φ : T1 → T2 be an isogeny of algebraic tori over k with kernel µ. Let
X1 and X2 be smooth compactifications of T1 and T2, respectively. Then for any prime p
such that p - |µ(k)|, we obtain a commutative diagram with exact rows as follows, where
the vertical isomorphisms are induced by φ:

0 // A(T1)(p)
//

∼=
��

H1(k,PicX1)∼(p)
//

∼=
��

X(T1)(p)

∼=
��

// 0

0 // A(T2)(p)
// H1(k,PicX2)∼(p)

//X(T2)(p)
// 0.

Proof. There exists an isogeny ψ : T2 → T1 (called the dual isogeny) such that ψ ◦ φ is
multiplication by |µ(k)| on T1 (see [73, Proposition 1.3.1.]). Now apply Lemma 4.2.3.

Using Corollary 4.2.5, we can now prove Theorem 4.1.1:

Proof of Theorem 4.1.1. Let S be the kernel of NL/K : RL/kGm → RK/kGm and let i : S →
RL/kGm be the inclusion. Then the following diagram with exact rows commutes:

1 // S i // R1
L/kGm

NL/K //
_�

��

R1
K/kGm

//
_�

��

1

1 // S
i // RL/kGm

NL/K // RK/kGm
// 1.
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Let d = [L : K] and let [d] denote the map x 7→ xd. The natural inclusion j : RK/kGm →
RL/kGm satisfies NL/K ◦ j = [d]. Using i and j, we obtain a morphism of algebraic tori

α : S ×RK/kGm −→ RL/kGm

(x, y) 7−→ i(x)j(y)

Note that if (x, y) ∈ Kerα, i.e. i(x)j(y) = 1, then j(y) ∈ S and therefore 1 = NL/K(j(y)) =
yd. We thus see that Kerα = {(i−1(j(x)), x−1) | x ∈ RK/kµd} (where µd is the group of
d-th roots of unity) is finite. Moreover, α is surjective: given z ∈ RL/kGm(k), we have
NL/K(z) = yd for some y ∈ RK/kGm(k), and thus NL/K(z) = NL/K(j(y)), which gives
z = α(x, y) for some x ∈ S. We conclude that α is an isogeny with kernel killed by d.

Let Z,W andW0 be smooth compactifications of S, RK/kGm and RL/kGm, respectively.
By [91, Lemma 3], Pic(Z ×W ) = PicZ ⊕ PicW . Thus, Corollary 4.2.5 yields

H1(k,PicZ)(p) ⊕ H1(k,PicW )(p)
∼= H1(k,PicW0)(p).

Furthermore, RK/kGm and RL/kGm are k-rational so H1(k,PicW ) = H1(k,PicW0) = 0 by
[20, Proposition 6] and hence H1(k,PicZ)(p) = 0. Therefore, X(S)(p) = A(S)(p) = 0 by
Theorem 1.5.8. The result now follows from an application of Corollary 4.2.5 similar to
the one done above, but to the surjective morphism

S ×R1
K/kGm → R1

L/kGm

whose finite kernel is killed by d.

The following special case of Theorem 4.1.1 reduces the calculation ofA(T ), H1(k,PicX)
and X(T ) to the case where K/k is the fixed field of a p-group.

Corollary 4.2.6. Let L/K/k be a tower of finite extensions with L/k Galois. Let G =
Gal(L/k) and H = Gal(L/K). For p prime, let Hp denote a Sylow p-subgroup of H and
let Kp denote its fixed field. Let X and Xp be smooth compactifications of T = R1

K/kGm

and Tp = R1
Kp/k

Gm, respectively. Then we obtain a commutative diagram with exact rows
as follows, where the vertical isomorphisms are induced by the natural inclusion T ↪→ Tp:

0 // A(T )(p)
//

∼=
��

H1(k,PicX)∼(p)
//

∼=
��

X(T )(p)

∼=
��

// 0

0 // A(Tp)(p)
// H1(k,PicXp)

∼
(p)

//X(Tp)(p)
// 0.

Alternatively, the norm map NKp/K : Tp � T can be used to obtain a similar commutative
diagram with the direction of the vertical isomorphisms reversed.
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As a consequence of Corollary 4.2.6, we obtain the following result which deals with
the two extremes in terms of the power of p dividing |H|.

Corollary 4.2.7. Retain the notation of Corollary 4.2.6.

(i) If p - |H|, then H1(k,PicX)(p)
∼= H3(G,Z)(p).

(ii) If H contains a Sylow p-subgroup of G, then H1(k,PicX)(p) = 0.

Proof. (i) Follows from Theorems 1.5.12 and 1.6.8 and Corollary 4.2.6.

(ii) Follows from Lemma 4.2.1.

We additionally obtain the following result when H is a Hall subgroup of G, i.e. a
subgroup such that gcd(|H|, [G : H]) = 1.

Corollary 4.2.8. Retain the notation of Corollary 4.2.6. If H is a Hall subgroup of G,
then

H1(k,PicX)∼=
∏
p-|H|

H3(G,Z)(p),

K(K/k)∼=
∏
p-|H|

K(L/k)(p), and

A(T )∼=
∏
p-|H|

A(T0)(p),

where T = R1
K/kGm and T0 = R1

L/kGm.

Proof. Follows from Lemma 4.2.1 and Corollaries 4.2.2, 4.2.6, 4.2.7.

We now drop the assumption that L/k is Galois and return to the more general setting
of Theorem 4.1.1.

Corollary 4.2.9. Retain the notation of Theorem 4.1.1. Then:

(i) A(T ) is killed by [L : K] · exp(A(T0));

(ii) H1(k,PicX) is killed by [L : K] · exp(H1(k,PicX0));

(iii) X(T ) is killed by [L : K] · exp(X(T0)).
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Proof. We give the proof for A(T ) – the other proofs are analogous. Let d = [L : K],
e = exp(A(T0)) and let x ∈ A(T ). Since NL/K ◦ j = [d], we have xde = NL/K(j(x)e) = 1,
as j(x) ∈ A(T0).

Corollary 4.2.10. Retain the notation of Theorem 4.1.1.

(i) If exp(A(T0)) · [L : K] is coprime to [K : k], then weak approximation holds for K/k.

(ii) If exp(X(T0)) · [L : K] is coprime to [K : k], then the HNP holds for K/k.

Proof. This follows immediately from Corollaries 4.2.2 and 4.2.9.

The following result is a slight generalization of [42, Proposition 1].

Proposition 4.2.11. Let L/K/k be a tower of finite extensions and let d = [L : K]. Then
the map x 7→ xd induces a group homomorphism

ϕ : K(K/k)→ K(L/k)

with Kerϕ ⊂ K(K/k)[d] and {xd | x ∈ K(L/k)} ⊂ Imϕ. In particular, if |K(K/k)| is
coprime to d, then ϕ induces an isomorphism K(K/k) ∼= {xd | x ∈ K(L/k)}.

Proof. The proposition follows from the inclusions NL/k(A∗L) ⊂ NK/k(A∗K), NL/k(L
∗) ⊂

NK/k(K
∗), (NK/k(A∗K))d ⊂ NL/k(A∗L) and (NK/k(K

∗))d ⊂ NL/k(L
∗). If |K(K/k)| is coprime

to d, then Imϕ ⊂ {xd | x ∈ K(L/k)}.

Next, we establish a generalization of Gurak’s criterion (see [42, Proposition 2]) for the
validity of the HNP in a compositum of two subextensions with coprime degrees.

Proposition 4.2.12. Let L/k be a finite extension with subextensions K/k and M/k such
that L = KM . Let T = R1

L/kGm, T1 = R1
K/kGm and T2 = R1

M/kGm and let X,X1 and
X2 be their respective smooth compactifications. Then we obtain a commutative diagram
with exact rows as follows, where the vertical homomorphisms are induced by the natural
inclusions T1 ↪→ T and T2 ↪→ T :

0 // A(T1)⊕ A(T2) //

��

H1(k,PicX1)∼ ⊕ H1(k,PicX2)∼ //

��

X(T1)⊕X(T2)

��

// 0

0 // A(T ) // H1(k,PicX)∼ //X(T ) // 0.

If [K : k] and [M : k] are coprime, then the vertical maps in the diagram are isomorphisms.
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Proof. The commutative diagram comes from Lemma 4.2.3. If [K : k] and [M : k] are
coprime, then any prime number divides at most one of [L : K] and [L : M ], whence
Lemma 4.2.1 and Theorem 4.1.1 show that the vertical maps in the diagram are isomor-
phisms.

Proposition 4.2.13. In the notation of Proposition 4.2.12, the map X(T1) ⊕X(T2) →
X(T ) induces the following homomorphism on the relevant knot groups

ϕ : K(K/k)× K(M/k)→ K(L/k)

(x, y) 7→ xnym

where m = [L : M ] and n = [L : K]. Moreover, if a = exp(K(K/k)), b = exp(K(M/k)),
and h = gcd(m,n), then ϕ satisfies Kerϕ ⊂ K(K/k)[bn] × K(M/k)[am] and {zh | z ∈
K(L/k)} ⊂ Imϕ.

Proof. This follows from the argument in the proof of Proposition 4.2.11.

We end this section by proving a version of [42, Theorem 1] for weak approximation
in nilpotent Galois extensions. We require the following description of the defect of weak
approximation:

Proposition 4.2.14. Let T be a torus defined over a number field k and split by a finite
Galois extension L/k with G = Gal(L/k). Then

A(T )∼ = Im

(
X2

ω(G, T̂ )
Res−−→

∏
v∈Ωk

H2(Dv, T̂ )

)
(4.2.3)

where Dv = Gal(Lv/kv) is the decomposition group at v. If T = R1
L/kGm then

A(T )∼ = Im

(
H3(G,Z)

Res−−→
∏
v∈Ωk

H3(Dv,Z)

)
. (4.2.4)

Proof. The equality in (4.2.3) follows from Proposition 1.5.14. Then (4.2.4) follows from
Theorem 1.6.8 and the analogous result that H2(Dv, T̂ ) = H3(Dv,Z) in this setting.

We make use of the following weak approximation version of [41, Lemma 2.3]:
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Lemma 4.2.15. Let K/k and M/k be finite subextensions of L/k such that [K : k] and
[M : k] are coprime. If weak approximation holds for R1

KM/MGm, then it holds for R1
K/kGm.

Under the additional assumption that K/k is Galois, weak approximation for R1
K/kGm

implies weak approximation for R1
KM/MGm.

Proof. Let T = R1
K/kGm, TM = T ×k M and TK = T ×k K. Suppose first that weak

approximation holds for R1
KM/MGm = TM . By Lemma 4.2.1 and Theorem 1.5.8, weak

approximation holds for TK . To complete the proof, observe that weak approximation
for TK and TM implies weak approximation for RK/kTK and RM/kTM . Since [K : k] and
[M : k] are coprime, the surjective morphism of algebraic groups

RK/kTK ×RM/kTM→T

(x, y) 7→NK/k(x)NM/k(y)

has a section. Therefore, weak approximation for T follows from weak approximation for
RK/kTK and RM/kTM .

Now suppose that K/k is Galois and that weak approximation holds for R1
K/kGm. Then

KM/M is Galois with Galois group isomorphic to Gal(K/k). Let w be a place of M and
let v be the place of k lying below w. The various restriction maps give a commutative
diagram

H3(Gal(K/k),Z)

Resv
��

∼= // H3(Gal(KM/M),Z)

Resw
��

H3(Dv,Z) // H3(Dw,Z).

Since weak approximation holds for R1
K/kGm, isomorphism (4.2.4) of Proposition 4.2.14

shows that Resv is trivial, and hence Resw is also trivial. As w was arbitrary, weak ap-
proximation for R1

KM/MGm follows from (4.2.4).

Remark 4.2.16. The hypothesis thatK/k is Galois in the second implication of Lemma 4.2.15
is necessary. To see this, consider a Galois extension L/k with Galois group G = C3 × S3

and with a decomposition group Dv containing the Sylow 3-subgroup of G for some place v
of k (such an extension always exists, see Chapter 6). Let K/k and M/k be subextensions
of L/k of degree 9 and 2, respectively. One can verify that the invariant H1(k,PicX)
vanishes for K/k (see the example in Algorithm A1 of the Appendix 4.5) and thus weak
approximation holds for R1

K/kGm by Theorem 1.5.8. On the other hand, KM/M = L/M
is Galois with Galois group C3 × C3 and decomposition group C3 × C3 for a prime of M
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above v. It follows that weak approximation fails for R1
KM/MGm by isomorphism (4.2.4)

of Proposition 4.2.14. See [60] for some other examples of varieties over number fields that
satisfy weak approximation over the base field but not over a quadratic extension.

Proposition 4.2.17. Let L/k be a Galois extension such that G = Gal(L/k) is nilpotent.
For every prime p, let Gp be a Sylow p-subgroup of G. Let kp and Lp be the fixed fields of
the subgroups Gp and

∏
q 6=p

Gq, respectively. The following assertions are equivalent:

(i) Weak approximation holds for R1
L/kGm.

(ii) Weak approximation holds for each R1
Lp/k

Gm.

(iii) Weak approximation holds for each R1
L/kp

Gm.

Proof. (i) =⇒ (ii): Follows from Corollary 4.2.10.

(ii) =⇒ (iii): Follows from Lemma 4.2.15.

(iii) =⇒ (i): We prove A(R1
L/kGm)(p) = 0 for every prime p. Let v be a place of k and

let w be a place of kp above v. The various restriction maps give a commutative diagram

H3(G,Z)(p)
Res1 //

Res4
��

H3(Dv,Z)(p)

Res2
��

H3(Gp,Z)
Res3 // H3(Dw,Z)

As weak approximation holds for R1
L/kp

Gm, isomorphism (4.2.4) of Proposition 4.2.14 yields
Im Res3 = 0. Furthermore, Lemma 1.1.4 shows that Res2 is injective. It follows that
Im Res1 = 0 and, since v was arbitrary, we conclude that A(R1

L/kGm)(p) = 0 by (4.2.4).

Remark 4.2.18. We note that the implication (iii) =⇒ (i) in Proposition 4.2.17 does not
require the hypothesis that G is nilpotent. This is analogous to the corresponding result
for the HNP – see Gurak’s remarks preceding [42, Theorem 2].

4.3 The first obstruction to the Hasse norm principle

In this section, we give some background concerning the first obstruction to the Hasse
norm principle and then go on to prove Theorems 4.1.2 and 4.1.4 and Corollary 4.1.3. We
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remark that several results presented below will later be generalized in Section 8.1 for the
multinorm principle.

We again fix a tower of number fields L/K/k such that L/k is Galois and let X and
X0 be smooth compactifications of the tori R1

K/kGm and R1
L/kGm, respectively. Applying

Lemma 4.2.3 to the norm map NL/K : R1
L/kGm → R1

K/kGm gives a commutative diagram
with exact rows as follows, where the vertical arrows are induced by NL/K :

0 // A(R1
L/kGm) //

��

H1(k,PicX0)∼ //

fL/K
��

X(R1
L/kGm)

gL/K

��

// 0

0 // A(R1
K/kGm) // H1(k,PicX)∼ //X(R1

K/kGm) // 0.

(4.3.1)

Definition 4.3.1. In the notation of diagram (4.3.1), we define

1. F(L/K/k) := Coker(gL/K) = (k∗ ∩NK/k(A∗K))/NK/k(K
∗)(k∗ ∩NL/k(A∗L)), called the

first obstruction to the HNP for K/k corresponding to the tower L/K/k, see [27,
Definition 1];

2. Fnr(L/K/k) := Coker(fL/K), called the unramified cover of F(L/K/k).

Clearly the knot group K(K/k) (which is sometimes called the total obstruction to the
HNP) surjects onto F(L/K/k) and F(L/K/k) equals K(K/k) if the HNP holds for L/k. In
[27], Drakokhrust and Platonov give another very useful sufficient criterion for this equality
to hold, as follows:

Theorem 4.3.2. [27, Theorem 3] Set G = Gal(L/k), H = Gal(L/K). Let G1, . . . , Gr be
subgroups of G and let H1, . . . , Hr be subgroups of H such that Hi ⊂ H ∩ Gi for each i.
Let Ki = LHi and ki = LGi. Suppose that the HNP holds for the extensions Ki/ki and that
the map

r⊕
i=1

CorGGi :
r⊕
i=1

Ĥ
−3

(Gi,Z)→ Ĥ
−3

(G,Z)

is surjective. Then F(L/K/k) = K(K/k).

In order to compute F(L/K/k), Drakokhrust and Platonov give some explicit results
relating this object to the local and global Galois groups of the tower L/K/k. We present
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their results here in a slightly more general setting. Let G be a finite group, let H ≤ G,
and let S be a set of subgroups of G. Consider the following commutative diagram:

H/[H,H]
ψ1 // G/[G,G]

⊕
D∈S

( ⊕
HxiD∈H\G/D

Hi/[Hi, Hi]

)
ψ2 //

ϕ1

OO

⊕
D∈S

D/[D,D]

ϕ2

OO
(4.3.2)

where the xi’s are a set of representatives of the H–D double cosets of G, the sum over
D is a sum over all subgroups in S, and Hi := H ∩ xiDx−1

i . The maps ψ1, ϕ1 and ϕ2 are
induced by the natural inclusions H ↪→ G, Hi ↪→ H and D ↪→ G, respectively. If h ∈ Hi,
then

ψ2(h[Hi, Hi]) = x−1
i hxi[D,D] ∈ D/[D,D].

Given a subgroup D ∈ S, we denote by ψD2 the restriction of the map ψ2 in diagram (4.3.2)
to the subgroup

⊕
HxiD∈H\G/D

Hi/[Hi, Hi].

Lemma 4.3.3. In diagram (4.3.2), ϕ1(KerψD2 ) ⊂ ϕ1(KerψD
′

2 ) whenever D ⊂ D′.

Proof. The proof proceeds in the same manner as the proof of [27, Lemma 2].

Lemma 4.3.4. ([27, Lemma 1] or [72, I, §9]) Set G = Gal(L/k) and H = Gal(L/K).
Given a place v of k, the set of places w of K above v is in one-to-one correspondence with

the set of double cosets in the decomposition G =
rv⋃
i=1

HxiDv. If w corresponds to HxiDv,

then the decomposition group Hw of the extension L/K at w equals H ∩ xiDvx
−1
i .

Set G = Gal(L/k), H = Gal(L/K) and S = {Dv | v ∈ Ωk}. Lemma 4.3.4 shows that,
with these choices, diagram (4.3.2) takes the form

H/[H,H]
ψ1 // G/[G,G]

⊕
v∈Ωk

(⊕
w|v
Hw/[Hw, Hw]

)
ψ2 //

ϕ1

OO

⊕
v∈Ωk

Dv/[Dv, Dv]

ϕ2

OO
(4.3.3)

where the sum over w | v is a sum over all places w of K above v and Hw is the decompo-
sition group of L/K at w.
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Theorem 4.3.5. [27, Theorem 1] With the notation of diagram (4.3.3), there is a canonical
isomorphism

F(L/K/k) = Kerψ1/ϕ1(Kerψ2).

We write ψnr2 for the restriction of the map ψ2 to the subgroup⊕
v unramified in L/k

(⊕
w|v

Hw/[Hw, Hw]
)

and define ψr2 similarly using the ramified places.

Lemma 4.3.6. Set G = Gal(L/k) and H = Gal(L/K). Let C be the set of all cyclic
subgroups of G and let ϕC1 and ψC2 denote the relevant maps in diagram (4.3.2) with S = C.
Then

ϕ1(Kerψnr2 ) = ϕC1 (KerψC2 )

where the maps in the expression on the left are the ones in diagram (4.3.3).

Proof. This follows from the Chebotarev density theorem and Lemma 4.3.3.

Definition 4.3.7. Let H be a subgroup of a finite group G. The focal subgroup of H in
G is

ΦG(H) = 〈h−1
1 h2 | h1, h2 ∈ H and h2 is G-conjugate to h1〉

= 〈[h, x] | h ∈ H ∩ xHx−1, x ∈ G〉 E H.

Theorem 4.3.8. [27, Theorem 2] In the notation of diagram (4.3.3), we have

ϕ1(Kerψnr2 ) = ΦG(H)/[H,H].

Theorem 4.3.8 is very useful – quite often one can show that ΦG(H) = H ∩ [G,G] and
hence the first obstruction F(L/K/k) is trivial. In fact, since [NG(H), H] ⊂ ΦG(H), if one
can show that [NG(H), H] = H ∩ [G,G], then F(L/K/k) = 1. This criterion generalizes
[42, Theorem 3].

Remark 4.3.9. The group Kerψ1/ϕ1(Kerψ2) featured in Theorem 4.3.5 can be computed
in finite time. Indeed, Kerψ1 is given in terms of the relevant Galois groups, and by [27,
p. 307] we have

ϕ1(Kerψ2) = ϕ1(Kerψnr2 )ϕ1(Kerψr2). (4.3.4)
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Hence, Theorem 4.3.8 and the fact that only finitely many places of k ramify in L/k
show that ϕ1(Kerψ2) can be obtained by a finite computation. We combined these facts
to assemble a function 1obs(G,H,l) in GAP [33] that, given the groups G = Gal(L/k),
H = Gal(L/K) and the list l of decomposition groups Dv at the ramified places v, returns
the group Kerψ1/ϕ1(Kerψ2) isomorphic to the first obstruction F(L/K/k). This function
will be used in Chapter 5 and we present its code in Algorithm A4 of the Appendix 4.5
together with an example.

Our next task is to prove Theorem 4.1.2, which gives a purely group-theoretic descrip-
tion of Fnr(L/K/k). First, recall the definition of the group F(G,H):

Definition 4.3.10. Let G be a finite group and let H ≤ G. We define the group F(G,H)
as

F(G,H) = (H ∩ [G,G])/ΦG(H).

Returning to the situation of a tower of number fields L/K/k with L/k Galois, G =
Gal(L/k) and H = Gal(L/K) and letting ψ1, ϕ

C
1 and ψC2 denote the relevant maps in

diagram (4.3.2) with S = C, the set of all cyclic subgroups of G, we have

F(G,H) = Kerψ1/ϕ
C
1 (KerψC2 ). (4.3.5)

We now prove the following strengthening of Theorem 4.1.2:

Theorem 4.3.11. There is a canonical isomorphism Fnr(L/K/k) = F(G,H) under which
the natural surjection Fnr(L/K/k) � F(L/K/k) coincides with the natural surjection
F(G,H)� F(L/K/k) induced by Theorem 4.3.5.

Proof. The norm map NL/K induces a commutative diagram of k-tori with exact lines:

1 R1
L/kGm RL/kGm Gm 1

1 R1
K/kGm RK/kGm Gm 1

NL/K NL/K = (4.3.6)

Taking character groups in (4.3.6) and then taking G-cohomology gives the following com-
mutative diagram of abelian groups with exact lines:

H2(G,Z) H2(G,Z[G/H]) H2(G, T̂ ) H3(G,Z)

H2(G,Z) H2(G,Z[G]) = 0 H2(G, T̂0) H3(G,Z)

θ1

=

θ2 θ3

f∗
L/K = (4.3.7)
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By Theorem 1.5.12 and Lemma 1.2.3, the unramified cover

Fnr(L/K/k) = Coker
(
fL/K : H1(k,PicX0)∼ → H1(k,PicX)∼

)
is dual to

Ker
(
f ∗L/K |X2

ω(G,T̂ ) : X2
ω(G, T̂ )→X2

ω(G, T̂0)
)
.

As the first line of diagram (4.3.7) is exact, we have

Ker
(
f ∗L/K |X2

ω(G,T̂ )

)
= Im θ2 ∩X2

ω(G, T̂ ).

Furthermore, by Lemma 1.6.6, taking character groups in the second line of (4.3.6) and
then taking both G-cohomology and 〈g〉-cohomology, we obtain the following commutative
diagram with exact lines

H2(G,Z) H2(G,Z[G/H]) H2(G, T̂ )

∏
g∈G

H2(〈g〉,Z)
∏
g∈G

H2(〈g〉,Z[G/H])
∏
g∈G

H2(〈g〉, T̂ )

θ1 θ2

θ4

θ5

(4.3.8)

(where the vertical arrows are products of restriction maps) and a straightforward diagram
chase shows that θ2 induces an isomorphism

θ−1
4 (Im θ5)/ Im θ1

∼= Im θ2 ∩X2
ω(G, T̂ ).

In [75, Theorem 6.12] and pages leading to it, the authors show that the first square
in diagram (4.3.8) is dual to diagram (4.3.2) with S = C = {cyclic subgroups of G},
reproduced below:

H/[H,H]
ψ1 // G/[G,G]

⊕
g∈G

( ⊕
Hxi〈g〉∈H\G/〈g〉

〈xigx−1
i 〉 ∩H

) ψC2 //

ϕC1

OO

⊕
g∈G
〈g〉

OO
(4.3.9)

In particular, θ−1
4 (Im θ5)/ Im θ1 is dual to Kerψ1/ϕ

C
1 (KerψC2 ) and the existence of a canoni-

cal isomorphism Fnr(L/K/k) = F(G,H) follows from (4.3.5). Theorem 4.3.5 can be proved
in an analogous way by considering a version of diagram (4.3.8) with all decomposition
groups in place of all cyclic subgroups of G and recalling from Theorem 1.5.13 that X(T )

is dual to X2(G, T̂ ). Proposition 1.5.14 now yields the desired compatibility.
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Proof of Corollary 4.1.3. This is a direct consequence of diagram (4.3.1) and Theorems 1.5.12,
1.6.8 and 4.3.11.

Corollary 4.3.12. If H is a Hall subgroup of G, then Fnr(L/K/k) = F(L/K/k) = 1.

Proof. The focal subgroup theorem [44] asserts that for a Hall subgroup H of G, we
have F(G,H) = 1. The result therefore follows from Theorem 4.1.2 and the surjection
Fnr(L/K/k)� F(L/K/k).

We end this chapter by giving a proof of Theorem 4.1.4 and presenting a lemma to be
used alongside this theorem in Chapter 5.

Proof of Theorem 4.1.4. For any v ∈ Ωk, define

Sv =

{
λ−1(Dv) if v is ramified in L/k;
a cyclic subgroup of λ−1(Dv) with λ(Sv) = Dv otherwise.

Consider the version of diagram (4.3.2) with respect to the groups G, H and S = {Sv |
v ∈ Ωk}. In this setting, Drakokhrust shows in [26, Theorem 2] that

H1(k,PicX)∼ = Kerψ1/ϕ1(Kerψnr2 ),

where ψnr2 denotes the restriction of ψ2 to the subgroup

⊕
v unramified in L/k

( rv⊕
i=1

H ∩ xiSvx−1
i

)

and the xi’s are a set of representatives for the double coset decomposition G =
rv⋃
i=1

HxiSv.

By the Chebotarev density theorem we can choose the subgroups Sv for v unramified
in such a way that every cyclic subgroup of G is in S. For this choice, we obtain

Kerψ1/ϕ1(Kerψnr2 ) = F(G,H).

Indeed, we clearly have Kerψ1 = (H ∩ [G,G])/[H,H] and the equality ϕ1(Kerψnr2 ) =

ΦG(H)/[H,H] follows from Lemma 4.3.6 and an argument similar to the proof of [27,
Theorem 2].
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Lemma 4.3.13. We have F(G,H) ∼= F(G,H) if and only if Kerλ ∩ [G,G] ⊂ ΦG(H),
where the notation is as in Theorem 4.1.4.

Proof. Let Λ : F(G,H)→ F(G,H) be the homomorphism induced by the projection map
λ. It is clear that Λ is surjective. We prove that Λ is injective if and only if Kerλ∩ [G,G] ⊂
ΦG(H).

If Kerλ ∩ [G,G] 6⊂ ΦG(H), then taking any element k ∈ Kerλ ∩ [G,G] that is not in
ΦG(H) would produce a non-trivial element in Ker Λ. Conversely, suppose that Kerλ ∩
[G,G] ⊂ ΦG(H) and let x ∈ Ker Λ so that λ(x) ∈ ΦG(H). For simplicity we assume that
λ(x) is a commutator (the general case follows along the same line), i.e. λ(x) = [h, g] =
h−1g−1hg for some g ∈ G, h ∈ H such that g−1hg ∈ H. Let h ∈ H and g ∈ G be such that
λ(h) = h and λ(g) = g. Then λ(g−1hg) = g−1hg ∈ H and hence [h, g] ∈ ΦG(H). Since
λ([h, g]) = λ(x), we have x = [h, g]k for some k ∈ Kerλ. As both x and [h, g] are in [G,G],
we see that k ∈ Kerλ∩ [G,G]. Since Kerλ∩ [G,G] ⊂ ΦG(H), we deduce that k (and thus
also x) is in ΦG(H) so that Λ is injective.

4.4 Computational methods

In this section we present some computational methods to compute the groups X(T ) and
H1(k,PicX), where X is a smooth compactification of the norm one torus T = R1

K/kGm

of an extension of number fields K/k.

We begin by outlining the computational method in GAP developed by Hoshi and
Yamasaki (already used in Section 3.3) to compute the birational invariant H1(k,PicX)
by means of the identification H1(k,PicX) = H1(G,FG/H) of Theorem 1.5.12, where FG/H
is a flasque module in a flasque resolution of T̂ ∼= JG/H . This algorithm starts by computing
the Chevalley module JG/H via the function Norm1TorusJ (Algorithm N1T in [47, Section
8]) with inputs d and m, giving the action of G on JG/H , where G is the transitive subgroup
of Sd with GAP index number m (cf. [17] and [33]) and H is the stabilizer of one of the
letters in G. It then computes (via the function FlabbyResolution, Algorithm F1 in
[47, Section 5.1]) all the relevant group modules (namely, the flasque and the permutation
module) involved in a flasque resolution of JG/H , as defined in Section 1.5. For instance,
using this function one can access the flasque module in a flasque resolution of JG/H by
invoking the command FlabbyResolution(Norm1TorusJ(d,m)).actionF. Finally, Hoshi
and Yamasaki’s method outputs the desired group H1(G,FG/H) by using the algorithm H1
(Algorithm F0 in [47, Section 5.0]).
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Example 4.4.1. Since A4 is the fourth transitive subgroup of S4 in the GAP library
TransitiveGroups, the command

gap> Product(H1(FlabbyResolution(Norm1TorusJ(4,4)).actionF));
2

computes the order of the group H1(G,FG/H) for G = A4 and H = A3, i.e. the size of the
invariant H1(k,PicX) for an A4-quartic, confirming Kunyavskĭı’s result in [57] that this
group is isomorphic to Z/2.

As noted above, Hoshi and Yamasaki’s algorithm Norm1TorusJ requires one to embed
the Galois group G as a transitive subgroup of Sn, whereupon one quickly reaches the
limit of the databases of such groups stored in computational algebra systems such as
GAP. This would be a problem if one were to use this function to compute the invariant
H1(k,PicX) for some of the groups we will analyze later on (namely, in Propositions 5.1.7
and 5.1.9). To overcome this issue, we have employed a small modification of Hoshi and
Yamasaki’s function Norm1TorusJ that does not require one to view the Galois group G
as a transitive subgroup of Sd. Instead, our function simply takes as input a pair of finite
groups (G,H) where H is a subgroup of G and computes the G-module JG/H . Analogously
to the Norm1TorusJ algorithm, our routine will output the module JG/H as a MG-module,
defined as follows:

Definition 4.4.2. [47, Definition 1.26] Let n be a positive integer and let G be a finite
subgroup of GLn(Z). The G-lattice MG of rank n is defined to be the G-module with

Z-basis {u1, . . . , un} equipped with the right action of G given by ui.g =
n∑
j=1

ai,juj for any

g = [ai,j] ∈ G.

We now detail our method. Set d = |G/H| and fix a set of right coset representatives

{Hg1, . . . , Hgd} of H in G. In this way, we have Z[G/H] =
d∑
i=1

HgiZ and NG/H(1) =

d∑
i=1

Hgi ∈ Z[G/H]. Let B = {Hg1 + NG/H(1)Z, . . . , Hgd−1 + NG/H(1)Z} be a Z-basis of

JG/H . As the submodule NG/H(1)Z is fixed by the action of any element of G, we will omit
it when working with elements of B.

Given g ∈ G, we build a matrix Rg ∈ GLd−1(Z) as follows. For any Hgi ∈ B, we have
(Hgi).g = Hgσ(i) for some 1 ≤ σ(i) ≤ d. There are two cases:

1. If σ(i) < d, then the k-th entry of the i-th row of Rg is set to be equal to 1 if k = σ(i)
and 0 otherwise.
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2. If σ(i) = d, i.e. (Hgi).g = Hgd = −
d−1∑
i=1

Hgi inside JG/H , then the k-th entry of the

i-th row of Rg is set to be equal to −1 for every k.

Let RG be the group 〈Rg | g ∈ G〉 ≤ GLd−1(Z). It is then clear that the Chevalley
module JG/H is isomorphic to the G-module MRG , which is the output of our function.
The code for this function is presented in Algorithm A1 in the Appendix 4.5 and it consists
of two routines:

• row(s,d) (an auxiliary routine to action), constructing the i-th row of the matrix
Rg as explained above;

• action(G,H), assembling the matrices Rg for g ∈ G and returning the group RG.

These GAP functions can then be combined with Hoshi and Yamasaki’s algorithms
FlabbyResolution and H1 to compute H1(G,FG/H) as described above and we present an
example of such a computation in the Appendix 4.5.

For some of our future computational applications, we do not employ the algorithms
of Hoshi and Yamasaki and instead use the formula of Theorem 4.1.4 which expresses
H1(k,PicX) in terms of generalized representation groups of G. We also implemented this
formula, along with the simplification afforded by Corollary 4.2.6, as an algorithm in GAP
(see Algorithm A2 in the Appendix 4.5, where we also include an example).

Remark 4.4.3. It is noteworthy to compare the method of computing H1(k,PicX) via
Theorem 4.1.4 with Hoshi and Yamasaki’s algorithm. The approach based on Theo-
rem 4.1.4 involves the computation of the focal subgroup ΦG(H), which is generally fast for
small subgroups H but impractical for large ones. On the contrary, Hoshi and Yamasaki’s
method using flasque resolutions deals only with the G-module JG/H , whose Z-rank |G||H|−1

decreases as |H| grows. Therefore this technique (or the modified version presented as
Algorithm A1 in the Appendix 4.5) is usually preferable when H is large. In general, a
combination of the two algorithms is the most convenient way to compute H1(k,PicX) for
all subgroups of a fixed group G.

The knot group of any Galois extension L/k can also be computed in a computer
algebra system by combining the isomorphism (1.6.5) of Theorem 1.6.9 and Lemma 1.3.9.
We used these two results to implement an algorithm (presented as Algorithm A3 in the
Appendix 4.5 together with an example) in GAP that, given the group Gal(L/k) and the
list l of decomposition groups Dv at the ramified places, returns the knot group K(L/k).

50



4.5 Appendix: Algorithms for the Hasse norm principle

In the following algorithms, we add a few comments in gray (marked with a #, which
is also the GAP command for a comment and treated as white space by this program)
explaining the goal of several selected lines of code.

4.5.1 A1: computing the Chevalley module JG/H

row:=function(s,d)
local r,k;

r:=[]; # i-th row of Rg

if s = d then # Case (2) of p. 50
r:=List([1..d-1],x->-1);

else # Case (1) of p. 49
for k in [1..d-1] do

if k = s then
r:=Concatenation(r,[1]);

else
r:=Concatenation(r,[0]);

fi;
od;

fi;

return r;
end;

action:=function(G,H)
local d,gens,RT,LT,S,j,Rg,i,s;

d:=Order(G)/Order(H);
gens:=GeneratorsOfGroup(G);
RT:=RightTransversal(G,H);
LT:=List(RT,i->CanonicalRightCosetElement(H,i)); # List of right coset
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representatives of H in G
S:=[]; # List of matrices Rg for g ∈ gens

for j in [1..Size(gens)] do
Rg:=List([1..d-1],x->0); # Creating a matrix with d− 1 lines
for i in [1..d-1] do

s:=PositionCanonical(RT,LT[i]*gens[j]);
# Obtaining the index s = σ(i) of the right coset (H.L[i]).gens[j] in RT

Rg[i]:=row(s,d); # Producing the i-th row of Rgens[j]

od;
S:=Concatenation(S,[Rg]); # Appending the matrix Rgens[j] to S

od;

return GroupByGenerators(S); # Returning the group RG

end;

H1Flasque:=function(G,H)
local J,FR,FM;

J:=action(G,H); # Matrix group RG

FR:=FlabbyResolution(J); # Flasque resolution of RG

FM:=FR.actionF; # Flasque module in FR

return Product(H1(FM)); # Returning the cohomology group H1(G, FM)
end;

Example: Computation of H1(k,PicX) for the extension K/k of Remark 4.2.16, a
degree 9 extension with C3 × S3 normal closure:

G:=SmallGroup(18,3);
StructureDescription(G);
» "C3 x S3"
H:=SylowSubgroup(G,2);
StructureDescription(H);
» "C2"
H1Flasque(G,H);
» 1

52



4.5.2 A2: computing H1(k,PicX) via Theorem 4.1.4

Fquot:=function(G,H)
# Function that computes the group H∩[G,G]

ΦG(H)

local l,h1,h2,U,V;

l:=[];

for h1 in H do
for h2 in H do

if IsConjugate(G,h1,h2) then Append(l,[Inverse(h1)*h2]);fi; # Note that
ΦG(H) = 〈h−1

1 h2 | h1, h2 ∈ H are G-conjugate〉, see Definition 4.3.7
od;
od;

U:=Intersection(H,DerivedSubgroup(G));
V:=Subgroup(U,l);
return U/V;

end;

H1:=function(G,H)
local GG,lambda,M,HH,res,p,FHp;

GG:=SchurCover(G);
lambda:=EpimorphismSchurCover(G); # Projection map λ : G → G, where G

is a Schur covering group of G
M:=Kernel(lambda);
HH:=PreImagesSet(lambda,H); # HH = λ−1(H)

res:=Subgroup(HH,[]);

if Size(HH)=1 then return res;
else # We compute the p-part F(G,H)(p) for all primes p | |H| and then take

their direct product below
for p in Set(Factors(Size(HH))) do

FHp:=Fquot(GG,SylowSubgroup(HH,p)); # Here we use the fact that
F(G,H)(p) = F(G,Hp)(p) as follows from Theorem 4.1.4 and Corollary 4.2.6
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res:=DirectProduct(res,SylowSubgroup(FHp,p));
od;

return res;
fi;

end;

Example: Computation of H1(k,PicX) for an extension K/k with degree 1260 and
A7-normal closure (note that |A7| = 2520 = 2× 1260):

G:=AlternatingGroup(7);
H:=Subgroup(G,[(1,2)(3,4)]);
StructureDescription(H);
» "C2"
Size(H1(G,H));
» 6

4.5.3 A3: computing K(L/k) via Theorem 1.6.9

Sha:=function(G,l)
local lambda,M,ImDecGps,D,ImGen,i;

lambda:=EpimorphismSchurCover(G); # Projection map λ : G → G, where G
is a Schur covering group of G

M:=Kernel(lambda);

if Size(l)=0 then return M;
else

ImDecGps:=List(l,D->Intersection(M,DerivedSubgroup(PreImagesSet(lambda,D))));
# Collecting all the groups CorGDv(Ĥ

−3
(Dv,Z)) ∼= M∩[λ−1(Dv), λ

−1(Dv)] by Lemma 1.3.9
ImGen:=[];
for i in ImDecGps do

Append(ImGen,GeneratorsOfGroup(i));
od;
return M/Subgroup(M,ImGen); # Returning the group X(T ), which is isomorphic

to Coker
(∏

v∈Ωk
Ĥ
−3

(Dv,Z)
Cor−−→ Ĥ

−3
(G,Z)

)
by Theorem 1.6.9

fi;
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end;

Example: Computation of K(L/k) for an octic D4-extension L/k with decomposition
group V4 at all ramified places and for an octic D4-extension with cyclic decomposition
group C2 at all ramified places:

G:=SmallGroup(8,3);
StructureDescription(G);
» "D8"
l1:=Filtered(AllSubgroups(G),x->StructureDescription(x)="C2 x C2");
l2:=Filtered(AllSubgroups(G),x->StructureDescription(x)="C2");
Size(Sha(G,l1));
» 1
Size(Sha(G,l2));
» 2

4.5.4 A4: computing F(L/K/k) via Theorem 4.3.5

directprod:=function(l)
# Auxiliary function computing the direct product of a list of lists as the
following example illustrates: directprod([[1,2],[3],[4,5]]) outputs the list
[[1,3,4],[1,3,5],[2,3,4],[2,3,5]]

local res,i,j,t,T,s;

res:=[];;

# Base cases |l| = 1 or 2
if Size(l)=1 then return List(l[1],x->[x]); fi;
if Size(l)=2 then

for i in l[1] do
for j in l[2] do

res:=Concatenation(res,[[i,j]]);;
od;

od;
return res;

55



else
t:=List([2..Size(l)],x->l[x]);;
T:=directprod(t);; # Recursive step

for i in l[1] do
s:=[];;
for j in T do

s:=Concatenation([i],j);;
res:=Concatenation(res,[s]);;

od;
od;

fi;
return res;

end;

obsv:=function(G,H,Gv)
# Function that computes the group ϕ1(Kerψv2) in the notation of Diagram (4.3.3)

local K,S,l,Hv,w,Li,Sx,res,i,t,j,f,im;

K:=Intersection(H,DerivedSubgroup(G));;
S:=DoubleCosetRepsAndSizes(G,H,Gv);;
l:=List(S,x->x[1]);;
Hv:=[];;

for w in l do # Constructing the groups Hw of Diagram 4.3.3
if Size(Intersection(H,ConjugateGroup(Gv,Inverse(w)))) <> 1 then

Hv:=Concatenation(Hv,[[Intersection(H,ConjugateGroup(Gv,Inverse(w))),w]]);;
fi;

od;

Li:=List(Hv,x->(Elements(x[1])));;
if Size(Li)=0 then return Subgroup(K/DerivedSubgroup(H),[]);
else

Sx:=directprod(Li);; # Accessing all the elements of the group
⊕
w|v
Hw in

Diagram 4.3.3
res:=[];;
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for i in Sx do # Looping over all elements of
⊕
w|v
Hw:

t:=1;;
for j in [1..Size(i)] do

t:=t*Inverse(Hv[j][2])*i[j]*Hv[j][2];;
od;

# Verifying and registering all elements of
⊕
w|v
Hw that are in Kerψv2:

if t in DerivedSubgroup(Gv) then res:=Concatenation(res,[i]);fi;
od;

f:=NaturalHomomorphismByNormalSubgroup(K,DerivedSubgroup(H));;
im:=List(res,x->Image(f,Product(x)));; # Computing the image via ϕ1 of

every element in Kerψv2

return Subgroup(K/DerivedSubgroup(H),im); # Returning the group ϕ1(Kerψv2)
fi;

end;

obsram:=function(G,H,l)
# Function that computes the group ϕ1(Kerψr2) (in the notation of p. 44) by using
the previous function obsv

local K,li,x;

K:=Intersection(H,DerivedSubgroup(G));;
li:=[];;
for x in l do

Append(li,Elements(obsv(G,H,x)));; # Collecting all the elements of the
groups Kerψv2 for v ramified

od;

return Subgroup(K/DerivedSubgroup(H),li); # Outputting the group∏
v ramified ϕ1(Kerψv2) = ϕ1(Kerψr2)

end;
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obsunr:=function(G,H)
local K,l,h1,h2,f,im;

# Function that computes the group ϕ1(Kerψnr2 ) (in the notation of p. 44), which
equals ΦG(H)/[H,H] by Theorem 4.3.8

K:=Intersection(H,DerivedSubgroup(G));;
l:=[];;
for h1 in H do
for h2 in H do

if IsConjugate(G,h1,h2) then Append(l,[Inverse(h1)*h2]);fi; # Again recall
that ΦG(H) = 〈h−1

1 h2 | h1, h2 ∈ H are G-conjugate〉 (Definition 4.3.7)
od;
od;

f:=NaturalHomomorphismByNormalSubgroup(K,DerivedSubgroup(H));;
im:=List(l,x->Image(f,x));;

return Subgroup(K/DerivedSubgroup(H),im); # Outputting ϕ1(Kerψnr2 )
end;

1obs:=function(G,H,l)
# Function that computes the group F(L/K/k) = Kerψ1/ϕ1(Kerψ2) (Theorem 4.3.5)
by invoking all the previous functions

local K,Elts,J;

K:=Intersection(H,DerivedSubgroup(G)); # Note that H ∩ [G,G] = Kerψ1

Elts:=Concatenation(Elements(obsunr(G,H)),Elements(obsram(G,H,l)));
# Concatenation of the elements in ϕ1(Kerψnr2 ) and ϕ1(Kerψr2)

J:=Subgroup(K/DerivedSubgroup(H),Elts); # Computing the group ϕ1(Kerψ2) =
ϕ1(Kerψnr2 )ϕ1(Kerψr2)

return K/J; # Outputting the group Kerψ1/ϕ1(Kerψ2)
end;

Example: Computation of F(L/K/k) for a degree 20 extension K/k with A6-normal
closure and decomposition group D4 at all ramified places:
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G:=AlternatingGroup(6);
H:=Filtered(AllSubgroups(G),x->Size(x)=18)[1];
StructureDescription(H);
» "(C3 x C3) : C2"
Size(G)/Size(H);
» 20
D:=Subgroup(G,[(1,2,3,4)(5,6),(1,3)(5,6)]);
StructureDescription(D);
» "D8"
Size(1obs(G,H,[D]));
» 1
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Chapter 5

Applications to An and Sn-extensions

5.1 Main results

Let K/k be an extension of number fields. In this chapter we apply the techniques devel-
oped in Chapter 4 to analyze the obstruction to the Hasse norm principle for K/k and the
defect of weak approximation for R1

K/kGm when the normal closure of K/k has alternating
An or symmetric Sn Galois group.

The set-up throughout this chapter is as follows: L/K/k is a tower of number fields
such that L/k is Galois and G = Gal(L/k) is isomorphic to An or Sn with n ≥ 4. We set
H = Gal(L/K), T = R1

K/kGm and we let X denote a smooth compactification of T .

Our first theorem gives explicit and computable formulas for the knot group and the
birational invariant H1(k,PicX):

Theorem 5.1.1. Suppose that G is isomorphic to An or Sn for some n ≥ 4 and G 6∼=
A6, A7. Then

K(K/k) =

{
F(L/K/k), if |H| is even;
F(L/K/k)× K(L/k), if |H| is odd,

and

H1(k,PicX)∼ =

{
Fnr(L/K/k), if |H| is even;
Fnr(L/K/k)× Z/2, if |H| is odd.

Remark 5.1.2. The defect of weak approximation A(T ) can also be obtained from The-
orem 5.1.1 and the fact that the surjection H1(k,PicX)�X(T ) in Voskresenskĭı’s exact
sequence (Theorem 1.5.8) coincides with the natural surjection Fnr(L/K/k)� F(L/K/k).
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Recall that Theorem 1.6.9, due to Tate, shows that the knot group of the Galois exten-
sion L/k is dual to Ker(H3(G,Z) →

∏
v H3(Dv,Z)), where Dv denotes the decomposition

group at a place v of k. Note that this kernel only depends on the decomposition groups at
the ramified places, since if v is unramified then Dv is cyclic and hence H3(Dv,Z) = 0. In
the setting of Theorem 5.1.1 we are therefore able to obtain an algorithm (enabled by the
earlier algorithms described in Section 4.4) that takes as inputs G, H and the decomposi-
tion groups at the ramified places of L/k and gives as its outputs the knot group K(K/k),
the invariant H1(k,PicX), and the defect of weak approximation A(T ) for T = R1

K/kGm.

Using Theorem 5.1.1 we also characterize the possible isomorphism classes of the group
H1(k,PicX):

Theorem 5.1.3. (i) For G ∼= Sn the invariant H1(k,PicX) is an elementary abelian
2-group. Moreover, every possibility for H1(k,PicX) is realised: given an elementary
abelian 2-group A, there exists n ∈ N and an extension of number fields K/k whose
normal closure has Galois group Sn such that H1(k,PicX) ∼= A, where X is a smooth
compactification of R1

K/kGm.

(ii) For G ∼= An the invariant H1(k,PicX) is either isomorphic to C3, C6 or an elemen-
tary abelian 2-group. Again, every possibility for H1(k,PicX) is realised.

Remark 5.1.4. The statement of Theorem 5.1.3 also holds if one replaces H1(k,PicX)
by K(K/k) or A(T ), see Proposition 6.2.1.

Theorems 5.1.1 and 5.1.3 can be combined to obtain more precise information, as
demonstrated in Corollary 5.1.5 and Example 5.1.6 below.

Corollary 5.1.5. Retain the assumptions of Theorem 5.1.1 and, for p prime, let Hp denote
a Sylow p-subgroup of H. Then H1(k,PicX)(p) = 0 for all primes p > 3, H1(k,PicX)(3) = 0
if G ∼= Sn,

H1(k,PicX)∼(2) =

{
F(G,H)[2] ∼= F(G,H2) if |H| is even;
Z/2 if |H| is odd,

and if G ∼= An then
H1(k,PicX)∼(3) = F(G,H)[3] ∼= F(G,H3).

In particular, if 3 - |H| then H1(k,PicX) is 2-torsion.

Example 5.1.6. Suppose that G ∼= Sn and |H| is odd. Then H1(k,PicX) = Z/2 and
K(K/k) = K(L/k). The same conclusion holds for G ∼= An under the stronger assumption
that |H| is coprime to 6.
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As a further application of Theorem 5.1.1, one can obtain conditions on the decompo-
sition groups determining whether the HNP and weak approximation hold in An and Sn
extensions. In Propositions 5.1.7 and 5.1.8, we exhibit such a characterization for n = 4
or 5, when these local conditions are particularly simple.

Proposition 5.1.7. Suppose that G is isomorphic to A4, A5, S4 or S5. Then K(K/k) ↪→ C2

and

(i) if |H| is odd, then K(K/k) = 1 ⇐⇒ ∃ v such that V4 ↪→ Dv;

(ii) if ∃ C ≤ H generated by a double transposition with [H : C] odd, then K(K/k) =
1 ⇐⇒ ∃ v such that Dv contains a copy of V4 generated by two double transpositions;

(iii) in all other cases, K(K/k) = 1.

Proposition 5.1.8. Retain the assumptions of Proposition 5.1.7. Then

H1(k,PicX) =

{
Z/2 in cases (i) and (ii) of Proposition 5.1.7;

0 otherwise.

Therefore, in cases (i) and (ii) of Proposition 5.1.7, weak approximation holds for R1
K/kGm

if and only if the HNP fails for K/k. In all other cases, weak approximation holds for
R1
K/kGm.

For the sake of completeness, we also provide criteria for the validity of the HNP when
G ∼= A6 or A7 (the two groups not addressed by Theorem 5.1.1), see Propositions 5.1.9
below. The proof uses the first obstruction to the HNP, along with various tricks involving
moving between subextensions as detailed in Section 4.2.

Proposition 5.1.9. Suppose that G is isomorphic to A6 or A7. Then K(K/k) ↪→ C6 and

• K(K/k)(2) = 1 ⇐⇒


V4 ↪→ H; or
C4 ↪→ H and ∃ v such that D4 ↪→ Dv; or
4 - |H| and ∃ v such that V4 ↪→ Dv.

• K(K/k)(3) = 1 ⇐⇒

{
C3 ↪→ H; or
∃ v such that C3 × C3 ↪→ Dv.
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Proposition 5.1.10 below addresses weak approximation in the A6 and A7 cases. The
local conditions controlling weak approximation are given in detail in Proposition 5.3.6;
they are a direct consequence of Propositions 5.1.9 and 5.1.10 and Voskresenskĭı’s exact
sequence (1.5.1) of Theorem 1.5.8.

Proposition 5.1.10. Retain the assumptions of Proposition 5.1.9. Then H1(k,PicX) ↪→
Z/6 and

• H1(k,PicX)(2) = 0 if and only if V4 ↪→ H;

• H1(k,PicX)(3) = 0 if and only if C3 ↪→ H.

Remark 5.1.11. Proposition 5.1.10 and Voskresenskĭı’s exact sequence in Theorem 1.5.8
immediately give the validity of the HNP and weak approximation for the norm one torus
of a degree 6 (respectively, degree 7) extension K/k with normal closure having Galois
group A6 (respectively, A7). Moreover, one can use Theorems 4.1.2 and 5.1.1 to prove
that both the HNP and weak approximation for the norm one torus hold for a degree n
extension with An-normal closure, if n ≥ 5 and n 6= 6, 7. We thus obtain a new proof of the
main theorem of Chapter 3. Similarly, our techniques can be used to reprove Voskresenskĭı
and Kunyavskĭı’s Theorem 2.0.6 and Bartels results in Theorems 2.0.4 and 2.0.5.

5.2 Proof of the main theorems

In this section we prove the main theorems of this chapter, namely Theorems 5.1.1 and
5.1.3. We also show Corollary 5.1.5. For any subgroup G′ of G, we denote by FG/G′ a
flasque module in a flasque resolution of the Chevalley module JG/G′ , see Section 1.5. We
use the isomorphism (1.5.2) in Theorem 1.5.12 to identify H1(k,PicX) with H1(G,FG/H)
to make clear that this group only depends on the pair (G,H).

First, we complete the proof of Theorem 5.1.1. For G ∼= An or Sn, we have H3(G,Z) ∼=
Z/2, unless G ∼= A6 or A7 in which case H3(G,Z) ∼= Z/6. Therefore, in our proof of
Theorem 5.1.1, we can apply Corollary 4.1.3 to deal with the odd order torsion. It remains
to analyze the 2-primary parts of K(K/k) and H1(G,FG/H).We start with the simpler case
where |H| is odd.

Proposition 5.2.1. If |H| is odd, then

(i) H1(G,FG/H)(2) = Z/2, and
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(ii) K(K/k)(2) = K(L/k)(2) and K(K/k)(2) has size at most 2.

Proof. (i) This follows from Corollary 4.2.7(i).

(ii) This is a consequence of Theorem 4.1.1 and isomorphism (1.6.5) of Theorem 1.6.9.

Proof of Theorem 5.1.1 for |H| odd. We analyze the p-primary parts of the groups in The-
orem 5.1.1 for each prime p. For p odd, apply Corollary 4.1.3 and use the fact that
K(L/k)∼ ↪→ H3(G,Z) = Z/2 (Theorem 1.6.9). For p = 2, use Proposition 5.2.1. By Theo-
rem 4.1.2, Fnr(L/K/k) = F(G,H) is a subquotient of H∩[G,G], whereby Fnr(L/K/k)(2) =
1, since |H| is odd. As Fnr(L/K/k) surjects onto F(L/K/k), we also have F(L/K/k)(2) =
1.

We now solve the case where |H| is even. For this, we will use the generalized repre-
sentation group G of G, the projection map λ and the base normal subgroup M = 〈z〉
presented in Proposition 5.2.2 below.

Proposition 5.2.2. Let n ≥ 4 and let U be the group with generators z, t1, . . . , tn−1 and
relations

(i) z2 = 1;

(ii) zti = tiz, for 1 ≤ i ≤ n− 1;

(iii) ti
2

= z, for 1 ≤ i ≤ n− 1;

(iv) (ti.ti+1)3 = z, for 1 ≤ i ≤ n− 2;

(v) ti.tj = ztj.ti, for |i− j| ≥ 2 and 1 ≤ i, j ≤ n− 1.

Then U is a Schur covering group of Sn with base normal subgroup M = 〈z〉. Moreover,
if ti denotes the transposition (i i+ 1) in Sn, then the map

λ : U −→ Sn

z 7−→ 1

ti 7−→ ti

is surjective and has kernel M . Additionally, if n 6= 6, 7, then a generalized representation
group of An is given by V = λ−1(An) = 〈z, t1.t2, t1.t3, . . . , t1.tn−1〉 ≤ U .
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Proof. See Schur’s original paper [84] or [45, Chapter 2] for a proof that U has the desired
properties. The final assertion concerning An was dealt with in Lemma 3.2.4.

Lemma 5.2.3. Suppose that G is not isomorphic to A6 or A7 and that |H| is even. Let
h ∈ H be any element of order 2. Then there exists a copy A of V4 inside G such that

• h ∈ A;

• z ∈ [λ−1(A), λ−1(A)].

Proof. Case 1) h comprises a single transposition. Relabeling if necessary, we can
assume that h = (1 2). Take A = 〈(1 2), (3 4)〉 and note that [λ−1 ((1 2)) , λ−1 ((3 4))] =
[t1, t3] in the notation of Proposition 5.2.2. Using the relations satisfied by the elements
ti ∈ G given in Proposition 5.2.2, it is clear that this commutator is equal to z, as desired.

Case 2) h comprises more than one transposition. Relabeling if necessary, we
can assume that h = (1 2)(3 4) · · · (n− 1 n) for some even n ≥ 4. Take A = 〈h, x〉, where
x = (1 3)(2 4) and let us prove by induction that z = [λ−1(h), λ−1(x)]. Note that, in the
notation of Proposition 5.2.2, we have h = t1.t3. · · · .tn−1 and x = t2.t1.t2.t3.t2.t3.

Base case n = 4: A straightforward (but long) computation using the relations satis-
fied by the elements ti given in Proposition 5.2.2 shows that

[λ−1(h), λ−1(x)] = [t1.t3, t2.t1.t2.t3.t2.t3] = z.

Alternatively, this can be verified using the following instructions in GAP [33]:

G:=SymmetricGroup(4);

lambda:=EpimorphismSchurCover(G);
M:=Kernel(lambda);

z:=Elements(M)[2];
p1:=(1,2);
p2:=(2,3);
p3:=(3,4);

t1:=PreImagesRepresentative(lambda,p1);
t2:=PreImagesRepresentative(lambda,p2);
t3:=PreImagesRepresentative(lambda,p3);
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x:=t1∗t3;
y:=t2∗t1∗t2∗t3∗t2∗t3;

Print(Inverse(x)∗Inverse(y)∗x∗y=z);

This last line of code outputs true, as desired.

Inductive step: Suppose that h = (1 2)(3 4) · · · (n− 1 n)(n+ 1 n+ 2). Denoting the
permutation (1 2)(3 4) · · · (n− 1 n) by h̃, write h = h̃.tn+1. Now

[λ−1(h), λ−1(x)] = [λ−1(h̃)tn+1, λ
−1(x)] = [λ−1(h̃), λ−1(x)]tn+1 [tn+1, λ

−1(x)].

By the inductive hypothesis and the relations of Proposition 5.2.2, [λ−1(h̃), λ−1(x)]tn+1 =
ztn+1 = z and [tn+1, λ

−1(x)] = [tn+1, t2.t1.t2.t3.t2.t3] = 1, as desired.

The next proposition completes the proof of Theorem 5.1.1.

Proposition 5.2.4. Suppose that G is not isomorphic to A6 or A7 and that |H| is even.
Then

(i) H1(G,FG/H)∼ = Fnr(L/K/k);

(ii) K(K/k) = F(L/K/k).

Proof. (i) By Theorems 4.1.2, 4.1.4 and isomorphism (1.5.2) of Theorem 1.5.12, if we
can show that F(G,H) ∼= F(G,H) then it will follow that the natural surjection
H1(G,FG/H)∼ � Fnr(L/K/k) is an isomorphism. By Lemma 4.3.13, it suffices to
check that Kerλ ⊂ ΦG(H), i.e. that z ∈ ΦG(H). Let A = 〈h, x〉 be the copy of
V4 constructed in the proof of Lemma 5.2.3. Then h ∈ H ∩ xHx−1 and therefore
z = [λ−1(h), λ−1(x)] ∈ ΦG(H), as desired.

(ii) By the isomorphism (1.5.2) of Theorem 1.5.12, the statement in (i) implies that the
map fL/K in diagram (4.3.1) is trivial. As this diagram is commutative, it follows
that gL/K is also trivial and thus K(K/k) = X(T ) = Coker(gL/K) = F(L/K/k).

Now that we have proved Theorem 5.1.1, we have reduced the study of the HNP and
weak approximation for norm one tori of An and Sn extensions to a purely computational
problem (except in the cases of A6 and A7). The groups F(L/K/k) and K(L/k) can
be computed using the GAP algorithms described in Remark 4.3.9 and Section 4.4. The
calculations of the knot group and of H1(k,PicX) in the remaining cases where G ∼= A6, A7

are done in Section 5.3.
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Remark 5.2.5. The method employed in this section to provide explicit and computable
formulas for the knot group and the invariant H1(k,PicX) in An and Sn extensions
works for other families of extensions. For example, let G′ be any finite group such that
H3(G′,Z) = Z/2. Embed G′ into Sn for some n and suppose that G′ contains a copy of
V4 conjugate to 〈(1, 2)(3, 4), (1, 3)(2, 4)〉. For such a group G′, analogues of Lemma 5.2.3
and Propositions 5.2.1 and 5.2.4 yield a systematic approach to the study of the HNP and
weak approximation for G′-extensions.

We proceed by investigating the possible isomorphism classes of the finite abelian group
F(G,H) (and thus, by Theorems 4.1.2, 5.1.1 and isomorphism (1.5.2), of the invariant
H1(G,FG/H) as well).

Proposition 5.2.6. The group F(Sn, H) is an elementary abelian 2-group. Moreover,
every elementary abelian 2-group occurs as F(Sn, H) for some n and some H ≤ Sn.

Proof. It suffices to prove that for every element h ∈ H ∩ [Sn, Sn], we have h2 ∈ ΦSn(H).
This is clear from the definition of ΦSn(H) because h is conjugate to its inverse in Sn.
The statement on the occurrence of every elementary abelian 2-group is shown in Propo-
sition 5.2.8 below.

Proposition 5.2.7. The group F(An, H) is either isomorphic to C3 or an elementary
abelian 2-group. Moreover, every such possibility is realised for some choice of n and H.

Proof. First, we claim that any element of even order in F(An, H) is 2-torsion. Let h ∈ H
have even order. By [37], h is An-conjugate to h−1. Therefore h2 ∈ ΦAn(H), which proves
the claim.

Next, we claim that any element of odd order in F(An, H) is 3-torsion. Let h ∈ H
be such that its image in F(An, H) has odd order. Replacing h by a suitable power,
we may assume that h itself has odd order, whereby h is Sn-conjugate to h2. By the
pigeonhole principle, at least two of the three Sn-conjugate elements h, h−1, h2 are An-
conjugate. Therefore, at least one of h−2, h, h3 is in ΦAn(H). Since h has odd order, we
conclude that in all cases h3 ∈ ΦAn(H), whence the claim.

Next, we show that F(An, H)(3) is cyclic. Suppose for contradiction that the images
in F(An, H) of h1, h2 ∈ H generate a copy of C3 × C3. Replacing h1 and h2 by suitable
powers if necessary, we may assume that the lengths of the cycles making up h1 and h2 are
powers of 3, say 3r1 ≤ 3r2 ≤ · · · ≤ 3rk for h1 and 3s1 ≤ 3s2 ≤ · · · ≤ 3sl for h2, where k, l ≥ 1
and ri, sj ∈ Z≥0. Note that h1 and h−1

1 cannot be An-conjugate, or else we would have
h2

1 ∈ ΦAn(H), and similarly for h2. The criterion [37] for an element of An to be conjugate
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to its inverse yields 3ri 6= 3rj and 3si 6= 3sj for i 6= j. Since n =
k∑
i=1

3ri =
l∑

i=1

3si , the

uniqueness of the representation of n in base 3 implies that k = l and ri = si for every i.
Thus the cycle structures of h1 and h2 are identical and hence h1, h2 and h2

2 are conjugate
in Sn. Therefore, at least two of these elements are An-conjugate, whereby at least one of
h−1

1 h2, h
−1
1 h2

2, h2 is in ΦAn(H). This contradicts the assumption that the images of h1 and
h2 generate a non-cyclic subgroup of F(An, H). One can compute that F(A12, H) ∼= C3

for H = 〈(1, 2, 3)(4, 5, 6, 7, 8, 9, 10, 11, 12)〉 using GAP, for example. The statement on the
occurrence of every elementary abelian 2-group is shown in Proposition 5.2.8 below.

Proposition 5.2.8. For every k ≥ 0, there exist n and a subgroup H of An such that

F(An, H)(2)
∼= F(Sn, H)(2)

∼= Ck
2 .

Proof. The case k = 0 is realised by letting H = 1. From now on, assume that k ≥
1. Let H be generated by k commuting and even permutations of order 2 such that,
for any x, y ∈ H with x 6= y, the permutations x and y have distinct cycle structures.
We define such a group recursively as H = Hk, starting from H1 = 〈(1, 2)(3, 4)〉, H2 =
〈(1, 2)(3, 4), (5, 6)(7, 8)(9, 10)(11, 12)〉 and adding, at step i, a new generator hi such that:

• hi is an even permutation of order 2;

• hi is disjoint to the previous generators h1, . . . , hi−1;

• hi moves enough points so that its product with any element of Hi−1 has cycle
structure different from that of any element of Hi−1.

Let n be large enough so that H ⊂ An. It is straightforward to check that one then has
ΦAn(H) = ΦSn(H) = 1. Therefore, F(An, H) = H ∩ [An, An] = H ∼= Ck

2 and similarly for
F(Sn, H).

As a consequence of the work done so far, we can now establish Theorem 5.1.3 and
Corollary 5.1.5.

Proof of Theorem 5.1.3. For G 6∼= A6 or A7 the results follow from Theorems 4.1.2 and 5.1.1
and Propositions 5.2.6 and 5.2.7. For the A6 and A7 cases, we describe how to compute
H1(k,PicX) in Section 5.3 – the results of these computations are in Tables 5 and 6 of the
Appendix 5.4 and the C3 and C6 cases occur therein.
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Proof of Corollary 5.1.5. Theorem 5.1.3 shows that H1(k,PicX)(p) = 0 for a prime p > 3
and that H1(k,PicX)(3) = 0 if G ∼= Sn. Theorem 4.1.2 gives Fnr(L/K/k) = F(G,H).
By Theorem 5.1.3, H1(k,PicX)∼(3) is 3-torsion, so Theorem 5.1.1 gives H1(k,PicX)∼(3) =

F(G,H)[3]. Let K3 = LH3 and let X3 be a smooth compactification of R1
K3/k

Gm. Now
Corollary 4.2.6 and Theorem 5.1.1 give H1(k,PicX)∼(3)

∼= H1(k,PicX3)∼(3) = F(G,H3). If
|H| is odd then F(G,H)(2) is trivial and hence H1(k,PicX)∼(2) = Z/2 by Theorem 5.1.1.
The result for H1(k,PicX)∼(2) when |H| is even is obtained in a similar way to the result
for the 3-primary part.

The following corollary of Theorem 5.1.3 and Corollary 4.2.6 gives a useful shortcut
when analyzing the HNP and weak approximation for Sn extensions, enabling one to
reduce to the case where H is a 2-group.

Corollary 5.2.9. Suppose that G ∼= Sn, let H2 be a Sylow 2-subgroup of H and let K2

denote its fixed field. Let X2 be a smooth compactification of T2 = R1
K2/k

Gm. Then we
obtain a commutative diagram with exact rows as follows, where the vertical isomorphisms
are induced by the natural inclusion T ↪→ T2:

0 // A(T ) //

∼=
��

H1(k,PicX)∼ //

∼=
��

X(T )

∼=
��

// 0

0 // A(T2) // H1(k,PicX2)∼ //X(T2) // 0.

Alternatively, the norm map NK2/K : T2 � T can be used to obtain a similar commutative
diagram with the direction of the vertical isomorphisms reversed.

Remark 5.2.10. Corollary 5.2.9 also holds in the case G ∼= An provided n 6= 6, 7 and
F(G,H)(3) = 1. In Proposition 5.2.12 we show that for most n we have F(An, H)(3) = 1
for all subgroups H.

The next lemma will aid our characterization of the existence of elements of order 3 in
F(An, H).

Lemma 5.2.11. Let n = 3l for some l ≥ 0 and let ρ = (a1 · · · a3l) be a 3l-cycle in Sn.
Let j ∈ Z with j ≡ −1 (mod 3). Then ρj is An-conjugate to ρ if and only if l is even.

Proof. Observe that ρj(ai) = ai+j, where the subscripts are considered modulo 3l. There-
fore, the permutation x ∈ Sn defined by x(ai) = a1+(i−1)j satisfies xρx−1 = ρj. Let C be
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the An-conjugacy class of ρ. Since the Sn-conjugacy class of ρ splits as a disjoint union
C t gCg−1 for any g ∈ Sn \ An, it is enough to show that x ∈ An if and only if l is even.
We study the cycle structure of x by analyzing the fixed points of its powers. Observe that
xt(ai) = a1+(i−1)jt for every t ≥ 0 and so

xt(ai) = ai ⇔ 1 + (i− 1)jt ≡ i (mod 3l)⇔ (i− 1)(jt − 1) ≡ 0 (mod 3l).

Therefore, the number of fixed points of xt is gcd(3l, jt − 1). Using this fact, we note two
useful properties of the cycles occurring in a disjoint cycle decomposition of x:

(i) The only cycle of x with odd length corresponds to the fixed point a1:
It suffices to show that, for odd t ≥ 1, the only fixed point of xt is a1. As j ≡ −1
(mod 3), it is easy to see that jt−1 6≡ 0 (mod 3) for odd t and thus gcd(3l, jt−1) = 1.

(ii) x does not contain a cycle with length divisible by 4: It is enough to prove
that, for any m ≥ 1, the number of fixed points of x4m and x2m coincide, i.e. that
gcd(3l, j4m − 1) = gcd(3l, j2m − 1). This is clear since j4m − 1 = (j2m − 1)(j2m + 1)
and j2m + 1 6≡ 0 (mod 3).

Let c1 · . . . · ck be a disjoint cycle decomposition of x where the cycle ci has length |ci|. By
(i) and (ii), we may assume that |c1| = 1 and |ci| ≡ 2 (mod 4) for all i ≥ 2. Note that
x ∈ An if and only if k is odd. Now 3l =

∑
i |ci| ≡ 1 +

∑
i≥2

2 (mod 4). Thus, x ∈ An if and

only if 3l ≡ 1 (mod 4).

Proposition 5.2.12. There exists H ≤ An such that F(An, H)(3)
∼= C3 if and only if n ≥ 5

and n =
k∑
i=1

3ri with 0 ≤ r1 < · · · < rk and |{i | ri is odd}| is odd.

Proof. Suppose that F(An, H)(3)
∼= C3. It is easy to check that F(A4, H)(3) = 1 for all

H ≤ A4 so n ≥ 5. Let h be an element of H such that its image in F(An, H) generates
F(An, H)(3). Replacing h by a suitable power if necessary, we may assume that the lengths
of the cycles making up h are powers of 3, say 3r1 ≤ 3r2 ≤ · · · ≤ 3rk with ri ∈ Z≥0. If h
were An-conjugate to h−1 then we would obtain h ∈ ΦAn(H), a contradiction. Therefore,

by criterion [37] we have 3ri 6= 3rj for i 6= j and
k∑
i=1

3ri−1
2

is odd, i.e. the number of odd ri

is odd.
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Conversely, assume that n ≥ 5 is equal to
k∑
i=1

3ri with r1 < r2 < · · · < rk and |{i |

ri is odd}| odd and let H be the cyclic group of order 3rk generated by h, where

h = (1 · · · 3r1)︸ ︷︷ ︸
c1

(3r1 + 1 · · · 3r1 + 3r2)︸ ︷︷ ︸
c2

. . . (
k−1∑
i=1

3ri + 1 · · · n)︸ ︷︷ ︸
ck

.

We will prove that F(An, H)(3)
∼= C3. By Proposition 5.2.7, it is enough to show that

h /∈ ΦAn(H). Observe that ΦAn(H) is generated by elements of the form hs−t where hs is
An-conjugate to ht. We complete the proof by showing that ΦAn(H) ⊂ 〈h3〉. Suppose that
hs is An-conjugate to ht. We claim that s ≡ t (mod 3). Since conjugate elements have the
same order, 3 | s if and only if 3 | t. Now assume that 3 - s. Then hs generates H and has
the same cycle type as h so, relabelling if necessary, we may assume that s = 1. Suppose for
contradiction that t ≡ −1 (mod 3). For every 1 ≤ i ≤ k, let xi ∈ Sn be such that xi only
moves points appearing in ci and xicix−1

i = cti. Then x = x1 · . . . · xk satisfies xhx−1 = ht.
Lemma 5.2.11 shows that xi ∈ An if and only if ri is even. Since |{i | ri is odd}| is odd,
x ∈ Sn \ An. This gives the desired contradiction as the Sn-conjugacy class of h splits as
a disjoint union C t xCx−1 where C denotes the An-conjugacy class of h.

5.3 Explicit results for small values of n

In this section we prove all the results presented in Section 5.1 on the obstructions to the
HNP and weak approximation for norm one tori of An and Sn-extensions for small values
of n.

We start by establishing Propositions 5.1.7 and 5.1.8. Using Hoshi and Yamasaki’s
method (Algorithm A1, Appendix 4.5) and Drakokhrust’s formula (Algorithm A2, Ap-
pendix 4.5), we can compute the groups H1(k,PicX) where X is a smooth compactifi-
cation of the norm one torus R1

K/kGm and K/k is contained in a Galois extension L/k

with Gal(L/k) = G ∼= S4, S5, A4, A5, A6, A7. We remark that our calculations were further
simplified thanks to the formulas in Theorem 5.1.1. The outcome of our computations
appears in Tables 1 – 6 of the Appendix 5.4 and Proposition 5.1.8 follows immediately.

We now prove Proposition 5.1.7. We use Theorem 5.1.1 to reduce our task to the
calculation of the first obstruction F(L/K/k) and the knot group K(L/k) for the Galois
extension L/k. The former is achieved using the algorithm described in Remark 4.3.9 and
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presented as Algorithm A4 in the Appendix 4.5. The computation of K(L/k) follows from
a simple application of isomorphism (1.6.5) of Theorem 1.6.9 together with Lemma 1.1.4
and Lemma 5.3.1 below. Note that if G = A4, S4, A5 or S5 then H3(G,Z) ∼= Z/2.

Lemma 5.3.1. Let G = A4, S4, A5, S5, A6 or A7 and let A be a copy of V4 inside G. Then

ResGA : H3(G,Z)(2) → H3(A,Z)

is an isomorphism.

Proof. Let G2 be a Sylow 2-subgroup of G containing A. First, we claim that the restric-
tion map ResGG2

: H3(G,Z)(2) → H3(G2,Z) is an isomorphism. To see this, recall that
CorGG2

◦ResGG2
is multiplication by [G : G2] by Lemma 1.1.3. Moreover, as G2

∼= V4 or
G2
∼= D4, we have H3(G,Z)(2)

∼= H3(G2,Z) ∼= Z/2. Hence, multiplication by the odd inte-
ger [G : G2] is an isomorphism and thus so is ResGG2

. If G2 = A, we are done. The other
possibility is G2

∼= D4. In this case, an easy exercise using dimension shifting and the
Hochschild–Serre spectral sequence Ei,j

2 = Hi(G2/A,H
j(A,Q/Z)) =⇒ Hi+j(G2,Q/Z)

shows that ResG2
A : H3(G2,Z) → H3(A,Z) is injective and hence an isomorphism as

H3(G2,Z) ∼= Z/2 ∼= H3(A,Z).

We now move on to the proving Propositions 5.1.9 and 5.1.10 as well as giving a
complete characterization of weak approximation for the norm one tori associated with A6

and A7 extensions, see Proposition 5.3.6 below. Various subgroups of A6 and A7 are given
by semidirect products of smaller subgroups. For brevity, we omit the precise construction
of these semidirect products from the main text and refer the reader to Tables 5 and 6 of
the Appendix 5.4 containing the generators of these subgroups. We start by settling the
Galois case of Proposition 5.1.9.

Proposition 5.3.2. If L/k is Galois with Galois group A6 or A7, then K(L/k) ↪→ C6 and

• K(L/k)(2) = 1 if and only if there exists a place v of k such that V4 ↪→ Dv;

• K(L/k)(3) = 1 if and only if there exists a place v of k such that C3 × C3 ↪→ Dv.

Proof. This follows from isomorphism (1.6.5) of Theorem 1.6.9 and Lemmas 1.1.4 and 5.3.1.
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We now solve the non-Galois case. Once again, we compute the invariant H1(k,PicX) =
H1(G,FG/H) for every possibility of H = Gal(L/K) by using the methods detailed in
Section 4.4. The result of this computation is given in Tables 5 and 6 of the Appendix 5.4
and proves Proposition 5.1.10. Building upon the outcome of this computation, we establish
multiple results on the knot group K(K/k). Looking at Tables 5 and 6, we immediately see
that the invariant H1(G,FG/H) is trivial ifH is isomorphic to A4, C2×C6, D6, (C6×C2)oC2,
S4, A4×C3, A5, (A4×C3)oC2, S5, PSL(3, 2) or A6. Thus, by Theorems 1.5.8 and 1.5.12,
both groups A(T ) and K(K/k) are trivial in all these cases.

Next, we investigate the cases where the first obstruction to the HNP for the tower
L/K/k coincides with the total obstruction (the knot group).

Proposition 5.3.3. If 6 divides |H|, then K(K/k) = F(L/K/k).

Proof. Let G1 be a copy of V4 inside G such that H∩G1 6= 1 and G2 a copy of C3×C3 inside
G such that H ∩G2 6= 1. Set Hi = H ∩Gi for i = 1, 2 and notice that the HNP holds for
the extensions LHi/LGi as they are of degree at most 3. Using Lemmas 1.1.4, 5.3.1 and the
duality Lemmas 1.2.3 and 1.2.6, we find that the maps CorGG1

: Ĥ
−3

(G1,Z)→ Ĥ
−3

(G,Z)(2)

and CorGG2
: Ĥ
−3

(G2,Z)→ Ĥ
−3

(G,Z)(3) are surjective. Hence

CorGG1
⊕CorGG2

: Ĥ
−3

(G1,Z)⊕ Ĥ
−3

(G2,Z)→ Ĥ
−3

(G,Z)

is surjective (recall that Ĥ
−3

(G,Z) ∼= Z/6) and therefore F(L/K/k) = K(K/k) by Theo-
rem 4.3.2.

As a consequence of this result, one can use the GAP function 1obs described in Remark
4.3.9 to computationally solve the cases where 6 | |H| and H1(G,FG/H) 6= 0. The remaining
possibilities for H are dealt with in the two following results.

Proposition 5.3.4. (i) If H ∼= V4 or D4, then K(K/k) ∼= K(L/k)(3);

(ii) If H ∼= C5 or C7, then K(K/k) ∼= K(L/k);

(iii) If H ∼= C3, C3 × C3 or C7 o C3, then K(K/k) ∼= K(L/k)(2).

Proof. We prove only (i) ((ii) and (iii) follow analogously). In this case H1(G,FG/H) = Z/3
(see Tables 5 and 6 of the Appendix 5.4) and thus Z/3 � K(K/k) by Theorem 1.5.8 and
isomorphism (1.5.2). The result now follows by Theorem 4.1.1, noting that d = [L : K] = 4
or 8 is coprime to 3.
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Proposition 5.3.5. (i) If H ∼= C2 or D5, then K(K/k) ∼= K(L/k);

(ii) If H ∼= C4 or C5 o C4, then

K(K/k) ∼= K(L/k)(3) × K(M/k) ∼= K(L/k)(3) × F(L/M/k),

where M is the fixed field of a copy of (C3×C3)oC4 inside G containing H2
∼= C4.

Proof. First, note that in all cases K(K/k)(3)
∼= K(L/k)(3), by Theorem 4.1.1. By Propo-

sition 5.1.10 and Theorem 1.5.8, it only remains to compute K(K/k)(2). For case (i),
let A be a copy of S3 inside G such that A ∩ H = H2

∼= C2 and let F = LA and
K2 = LH2 . Now Theorem 4.1.1 shows that K(K/k)(2)

∼= K(K2/k)(2)
∼= K(F/k)(2). Com-

puting K(F/k)(2) using Proposition 5.3.3 and the GAP function 1obs described in Re-
mark 4.3.9 gives K(F/k)(2)

∼= K(L/k)(2), as required. For case (ii), again let K2 = LH2 .
Then K(K/k)(2)

∼= K(K2/k)(2)
∼= K(M/k)(2), by Theorem 4.1.1. Now Proposition 5.3.3

gives K(M/k) ∼= F(L/M/k). Furthermore, Theorem 1.5.8 and isomorphism (1.5.2) com-
bined with the results for (C3×C3)oC4 in Tables 5 and 6 of the Appendix 5.4 show that
K(M/k) is 2-torsion.

We have thus completely proved the characterization of the HNP for an A6 or A7 exten-
sion given in Proposition 5.1.9. Using Proposition 5.1.10, we can also give a full description
of weak approximation. The local conditions controlling the validity of this principle are
given in detail in the next result; they are a direct consequence of Propositions 5.1.9 and
5.1.10 and Voskresenskĭı’s exact sequence (1.5.1) of Theorem 1.5.8.

Proposition 5.3.6. Let K/k be an extension of number fields contained in a Galois ex-
tension L/k such that G = Gal(L/k) ∼= A6 or A7. Let H = Gal(L/K) and T = R1

K/kGm.

• If V4 ↪→ H and C3 ↪→ H, then weak approximation holds for T .

• If H ∼= 1, C2, C5, C7 or D5, then weak approximation holds for T if and only if
V4 6↪→ Dv and C3 × C3 6↪→ Dv for every place v of k.

• If H ∼= C4 or C5 oC4, then weak approximation holds for T if and only if D4 6↪→ Dv

and C3 × C3 6↪→ Dv for every place v of k.

• In all other cases, weak approximation holds for T if and only if the HNP fails for
K/k.
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5.4 Appendix: Computation of H1(k,PicX) for small val-
ues of n

We present the results of the computer calculations outlined in Section 5.3. In the following
tables, we distinguish non-conjugate but isomorphic groups with a letter in front of the
isomorphism class.

Table 1

G = A4

[K : k] H H1(G,FG/H)
12 1 Z/2
6 C2 = 〈(1, 2)(3, 4)〉 Z/2
4 C3 = 〈(1, 2, 3)〉 Z/2
3 V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0

Table 2

G = S4

[K : k] H H1(G,FG/H)
24 1 Z/2
12 C2a = 〈(1, 2)〉 0
12 C2b = 〈(1, 2)(3, 4)〉 Z/2
8 C3 = 〈(1, 2, 3)〉 Z/2
6 C4 = 〈(1, 2, 3, 4)〉 0
6 V4 = 〈(1, 2), (3, 4)〉 0
6 V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0
4 S3 = 〈(1, 2, 3), (1, 2)〉 0
3 D4 = 〈(1, 2, 3, 4), (1, 3)〉 0
2 A4 = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
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Table 3

G = A5

[K : k] H H1(G,FG/H)
60 1 Z/2
30 C2 = 〈(1, 2)(3, 4)〉 Z/2
20 C3 = 〈(1, 2, 3)〉 Z/2
15 V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0
12 C5 = 〈(1, 2, 3, 4, 5)〉 Z/2
10 S3 = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
6 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/2
5 A4 = 〈(1, 2)(3, 4), (1, 2, 3)〉 0

Table 4

G = S5

[K : k] H H1(G,FG/H)
120 1 Z/2
60 C2a = 〈(1, 2)〉 0
60 C2b = 〈(1, 2)(3, 4)〉 Z/2
40 C3 = 〈(1, 2, 3)〉 Z/2
30 C4 = 〈(1, 2, 3, 4)〉 0
30 V4a = 〈(1, 2), (3, 4)〉 0
30 V4b = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0
24 C5 = 〈(1, 2, 3, 4, 5)〉 Z/2
20 C6 = 〈(1, 2, 3), (4, 5)〉 0
20 S3a = 〈(1, 2, 3), (1, 2)〉 0
20 S3b = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
15 D4 = 〈(1, 2, 3, 4), (1, 3)〉 0
12 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/2
10 A4 = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
10 S3 × C2 = 〈(1, 2, 3), (1, 2), (4, 5)〉 0
6 C5 o C4 = 〈(1, 2, 3, 4, 5), (2, 3, 5, 4)〉 0
5 S4 = 〈(1, 2, 3, 4), (1, 2)〉 0
2 A5 = 〈(1, 2, 3, 4, 5), (1, 2, 3)〉 0
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Table 5

G = A6

[K : k] H H1(G,FG/H)
360 1 Z/6
180 C2 = 〈(1, 2)(3, 4)〉 Z/6
120 C3 = 〈(1, 2, 3)〉 Z/2
120 C3 = 〈(1, 2, 3)(4, 5, 6)〉 Z/2
90 C4 = 〈(1, 2, 3, 4)(5, 6)〉 Z/6
90 V4a = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 Z/3
90 V4b = 〈(1, 2)(5, 6), (1, 2)(3, 4)〉 Z/3
72 C5 = 〈(1, 2, 3, 4, 5)〉 Z/6
60 S3a = 〈(1, 2, 3)(4, 5, 6), (1, 2)(4, 5)〉 Z/2
60 S3b = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
45 D4 = 〈(1, 2, 3, 4)(5, 6), (1, 3)(5, 6)〉 Z/3
40 C3 × C3 = 〈(1, 2, 3), (4, 5, 6)〉 Z/2
36 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/6
30 A4a = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
30 A4b = 〈(1, 2, 3)(4, 5, 6), (1, 4)(2, 5)〉 0
20 (C3 × C3) o C2 = 〈(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)〉 Z/2
15 S4a = 〈(1, 2, 3, 4)(5, 6), (1, 2)(5, 6)〉 0
15 S4b = 〈(1, 3, 5)(2, 4, 6), (1, 6)(2, 5)〉 0
10 (C3 × C3) o C4 = 〈(1, 2, 3), (4, 5, 6), (1, 4)(2, 5, 3, 6)〉 Z/2
6 A5a = 〈(1, 2, 3, 4, 5), (1, 2, 3)〉 0
6 A5b = 〈(1, 2, 3, 4, 5), (1, 4)(5, 6)〉 0

77



Table 6
G = A7

[K : k] H H1(G,FG/H)
2520 1 Z/6
1260 C2 = 〈(1, 2)(3, 4)〉 Z/6
840 C3a = 〈(1, 2, 3)〉 Z/2
840 C3b = 〈(1, 2, 3)(4, 5, 6)〉 Z/2
630 C4 = 〈(1, 2, 3, 4)(5, 6)〉 Z/6
630 V4a = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 Z/3
630 V4b = 〈(1, 2)(5, 6), (1, 2)(3, 4)〉 Z/3
504 C5 = 〈(1, 2, 3, 4, 5)〉 Z/6
420 C6 = 〈(1, 2)(3, 4)(5, 6, 7)〉 Z/2
420 S3a = 〈(1, 2, 3)(4, 5, 6), (1, 2)(4, 5)〉 Z/2
420 S3b = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
360 C7 = 〈(1, 2, 3, 4, 5, 6, 7)〉 Z/6
315 D4 = 〈(1, 2, 3, 4)(5, 6), (1, 3)(5, 6)〉 Z/3
280 C3 × C3 = 〈(1, 2, 3), (4, 5, 6)〉 Z/2
252 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/6
210 A4a = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
210 A4b = 〈(1, 2, 3)(4, 5, 6), (1, 4)(2, 5)〉 0
210 A4c = 〈(1, 5, 3)(4, 7, 6), (2, 6)(4, 7)〉 0
210 A4d = 〈(1, 2, 5)(4, 6, 7), (3, 4)(6, 7)〉 0
210 C2 × C6 = 〈(1, 2)(3, 5)(4, 6, 7), (1, 3)(2, 5)〉 0
210 D6 = 〈(1, 2)(3, 5)(4, 6, 7), (1, 2)(6, 7)〉 0
210 C3 o C4 = 〈(2, 3, 6), (1, 4, 7, 5)(3, 6)〉 Z/2
140 (C3 × C3) o C2 = 〈(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)〉 Z/2
126 C5 o C4 = 〈(1, 2)(4, 5, 7, 6), (3, 6, 7, 4, 5)〉 Z/6
120 C7 o C3 = 〈(1, 7, 4, 2, 6, 5, 3), (2, 3, 5)(4, 6, 7)〉 Z/2
105 (C6 × C2) o C2 = 〈(1, 2)(3, 5)(4, 6, 7), (1, 3)(2, 5), (1, 2)(6, 7)〉 0
105 S4a = 〈(1, 2, 3, 4)(5, 6), (1, 2)(5, 6)〉 0
105 S4b = 〈(1, 3, 5)(2, 4, 6), (1, 6)(2, 5)〉 0
105 S4c = 〈(1, 2, 3)(5, 6, 7), (2, 3)(4, 5, 6, 7)〉 0
105 S4d = 〈(1, 3, 2)(5, 6, 7), (2, 3)(4, 5, 6, 7)〉 0
70 A4 × C3 = 〈(1, 3, 5)(4, 6, 7), (1, 2, 3)〉 0
70 (C3 × C3) o C4 = 〈(1, 2, 3), (4, 5, 6), (1, 4)(2, 5, 3, 6)〉 Z/2
42 A5a = 〈(1, 2, 3, 4, 5), (1, 2, 3)〉 0
42 A5b = 〈(1, 2, 3, 4, 5), (1, 4)(5, 6)〉 0
35 (A4 × C3) o C2 = 〈(2, 3)(5, 7), (1, 2)(4, 5, 6, 7), (2, 3)(5, 6)〉 0
21 S5 = 〈(1, 2)(3, 7), (2, 6, 5, 4)(3, 7)〉 0
15 PSL(3, 2)a = 〈(1, 4)(2, 3), (2, 4, 6)(3, 5, 7)〉 0
15 PSL(3, 2)b = 〈(1, 3)(2, 7), (1, 5, 7)(3, 4, 6)〉 0
7 A6 = 〈(1, 2, 3, 4, 5), (4, 5, 6)〉 0
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Chapter 6

Examples

6.1 (G,H)-extensions

This section concerns the existence of number fields with prescribed Galois group for which
the HNP holds, and the existence of those for which it fails. The main result is Theo-
rem 6.1.3 below, which generalizes [41, Corollary 3.3] to non-normal extensions. To prove
it, we will use the notion of k-adequate extensions, as introduced by Schacher in [82].

Definition 6.1.1. An extension K/k of number fields is said to be k-adequate if K is a
maximal subfield of a finite dimensional k-central division algebra.

A conjecture of Bartels (see [3, p. 198]) predicted that the HNP would hold for any
k-adequate extension. This was proved by Gurak (see [41, Theorem 3.1]) for Galois ex-
tensions, but disproved in general by Drakokhrust and Platonov (see [27, §9, §11]). Given
a Galois extension L/k, a result of Schacher (see [82, Proposition 2.6]) shows that L is
k-adequate if and only if for every prime p | [L : k] there are at least two places v1 and
v2 of k such that Dvi = Gal(Lvi/kvi) contains a Sylow p-subgroup of Gal(L/k). This led
Schacher to establish the following result:

Theorem 6.1.2. [82, Theorem 9.1] For any finite group G there exists a number field k
and a k-adequate Galois extension L/k with Gal(L/k) ∼= G.

Let G be a finite group and H a subgroup of G. We define a (G,H)-extension of
a number field k to be an extension K/k for which there exists a Galois extension L/k
containing K/k such that Gal(L/k) ∼= G and Gal(L/K) ∼= H. We write FG/H for a flasque
module in a flasque resolution of the Chevalley module JG/H .
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Theorem 6.1.3. Let G be a finite group and H a subgroup of G. Then

(i) there exist a number field k and a (G,H)-extension of k satisfying the HNP and,
furthermore, if H1(G,FG/H) 6= 0 then weak approximation fails for the norm one
torus associated with this extension;

(ii) there exist a number field k and a (G,H)-extension of k whose norm one torus
satisfies weak approximation and, furthermore, if H1(G,FG/H) 6= 0 then this extension
fails the HNP.

Proof. (i) Let L/k be a k-adequate Galois extension with Galois group G as given in
Theorem 6.1.2. Let K = LH and T = R1

K/kGm. Recall that, by Theorem 1.5.13,

X(T )∼ = Ker

(
H2(G, JG/H)

Res−−→
∏
v∈Ωk

H2(Dv, JG/H)

)
.

Let p be a prime dividing |G| and let Dv be a decomposition group containing a
Sylow p-subgroup of G. Then Lemmas 1.1.2 and 1.1.4 show that the map

H2(G, JG/H)(p)
Res−−→

∏
v∈Ωk

H2(Dv, JG/H)

is injective. It follows that X(T ) = 0 and so K(K/k) is trivial. The statement
regarding weak approximation follows from Theorem 1.5.8 and isomorphism (1.5.2)
of Theorem 1.5.12.

(ii) By [32] there exists a Galois extension L/k of number fields with Gal(L/k) ∼= G
such that every decomposition group is cyclic. Let K = LH , T = R1

K/kGm and
let X be a smooth compactification of T . By [91, §3, Theorem 6 and Corollary
2], we have A(T ) = 0 and X(T ) ∼= H1(k,PicX)∼. The result now follows from
isomorphism (1.5.2) of Theorem 1.5.12 and the fact that K(K/k) = X(T ).

The condition H1(G,FG/H) 6= 0 in Theorem 6.1.3 is necessary because for a (G,H)-
extension K/k with X a smooth compactification of R1

K/kGm, one has H1(k,PicX) =

H1(G,FG/H) (see Theorem 1.5.12).

Remark 6.1.4. It is interesting to compare Theorem 6.1.3 with [30, Theorem 1.3], where
the authors prove existence of Galois extensions failing the HNP with prescribed solvable
Galois group G and base field k. Here we avoid the restriction on G but lose control of the
base field which, in both cases of Theorem 6.1.3, may be of quite large degree over Q.
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6.2 Successes and failures for An and Sn-extensions

As a consequence of Theorem 6.1.3, we can also obtain a version of Theorem 5.1.3 for the
knot group and the defect of weak approximation. In what follows, let L/K/k be a tower
of number fields where L/k is Galois with Galois group G and let T = R1

K/kGm.

Proposition 6.2.1. (i) For G ∼= Sn the groups K(K/k) and A(T ) are elementary abelian
2-groups. Moreover, every possibility for K(K/k) is realised: given an elementary
abelian 2-group A, there exists n ∈ N and an extension of number fields K/k whose
normal closure has Galois group Sn such that K(K/k) ∼= A. Likewise, every possibil-
ity for A(T ) is realised.

(ii) For G ∼= An the groups K(K/k) and A(T ) are elementary abelian 2-groups or iso-
morphic to C3 or C6. Again, every possibility for K(K/k) is realised, and likewise for
A(T ).

Proof. This follows from Theorems 1.5.8, 5.1.3 and the proof of Theorem 6.1.3.

We now provide examples of number fields over Q illustrating that in every case ad-
dressed by Propositions 5.1.7 and 5.1.9, there exists an extension of the desired type satis-
fying the HNP. Furthermore, in the cases where failure of the HNP is theoretically possible,
we construct examples showing that failures actually occur (over at most a quadratic exten-
sion of Q). When looking for such examples, [88, Lemmas 18 and 20] give useful practical
conditions to test the local properties of Proposition 5.1.7. Some of these extensions were
found using the LMFBD database [61] and all assertions below concerning Galois groups
and ramification properties were verified using the computer algebra system magma [14].

6.2.1 Successes

• First consider G = A4 or S4. Let L/Q be the splitting field of the polynomial f(x)
defined as

f(x) =

{
x4 − 2x3 + 2x2 + 2 if G = A4,
x4 − 2x3 − 4x2 − 6x− 2 if G = S4.

In both cases L/Q is a Galois extension with Galois group G such that the decomposition
group at the prime 2 is the full Galois group. Applying Proposition 5.1.7 we thus conclude
that the HNP holds for L/Q as well as for any subextension K/Q contained in L/Q.
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• For G = A5, let K = Q(α), where α is a root of the polynomial x5 − x4 + 2x2 − 2x+ 2,
and let L/Q be the normal closure of K/Q. We have Gal(L/Q) ∼= A5 and there exists
a prime p of K above 2 with ramification index 4, so it follows that 4 | |D2|. Since
any subgroup of A5 with order divisible by 4 contains a copy of V4 generated by two
double transpositions, Proposition 5.1.7 shows that the HNP holds for any subextension
of L/Q.

• For G = S5, take K = Q(α), where α is a root of the polynomial x10 − 4x9 − 24x8 +
80x7 + 174x6 − 416x5 − 372x4 + 400x3 + 370x2 + 32x− 16, and let L/Q be the normal
closure of K/Q. One can verify that Gal(L/Q) ∼= S5 and that there is a prime p of K
above 2 with ramification index 8. By the same reasoning as in the A5 case, D2 contains
a copy of V4 generated by two double transpositions, and thus the HNP holds for any
subextension of L/Q by Proposition 5.1.7.

• For G = A6, let K = Q(α), where α is a root of the polynomial x15 − 3x13 − 2x12 +
12x10 + 50x9− 54x7 + 68x6− 162x5 + 30x4− 67x3 + 15x+ 4, and let L/Q be the normal
closure of K/Q. We have Gal(L/Q) ∼= A6 and there are primes p and q of K above 2 and
3, respectively, such that [Kp : Q2] = 8 and [Kq : Q3] = 9. Since every subgroup of A6

with order divisible by 8 contains a copy of D4, it follows that D4 ↪→ D2. Analogously,
we have C3 × C3 ↪→ D3. Proposition 5.1.9 then shows that the HNP holds for any
subextension of L/Q.

• For G = A7, let L/Q be the splitting field of the polynomial x7 − 3x6 − 3x5 − x4 +
12x3 + 24x2 + 16x + 24. We have Gal(L/Q) ∼= A7 and the primes 2 and 3 ramify in
L/Q. LetM be the fixed field of the subgroup 〈(2, 3)(5, 7), (1, 2)(4, 5, 6, 7), (2, 3)(5, 6)〉 ∼=
(A4×C3)oC2 of A7, a degree 35 extension of Q. Given a prime p, let e = e(p) denote its
ramification index and f = f(p) its inertial degree in L. Note that if the decomposition
OM/pOM ∼=

⊕
i

Fpfi [ti]/(t
ei
i ) holds for some ei, fi ∈ Z≥0, then lcm(ei) | e, lcm(fi) | f and

hence lcm(ei) · lcm(fi) | ef = |Dp|. Factoring the prime p = 2 in OM gives lcm(ei) = 12
and lcm(fi) = 2, so 24 | |D2|. Since any subgroup of A7 with order divisible by 24
contains a copy of D4, we conclude that D4 ↪→ D2. Using the same reasoning with the
prime p = 3, we find 18 | |D3| and consequently D3 contains a copy of C3 × C3. By
Proposition 5.1.9, it follows that the HNP holds for any subextension of L/Q.

Remark 6.2.2. An alternative approach to finding examples of number fields satisfying
the HNP and with Galois groups as in Propositions 5.1.7 and 5.1.9 is to use Q-adequate ex-
tensions. Indeed, examining the local conditions of Propositions 5.1.7 and 5.1.9, it is clear
that the HNP holds for any subextension of a Q-adequate Galois extension with Galois
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group G = A4, S4, A5, S5, A6, A7. The existence of Q-adequate extensions with prescribed
Galois group G has been studied by Schacher and others. For G = A4, S4, A5, S5, A6, A7,
there exist Q-adequate Galois extensions L/Q with Gal(L/Q) ∼= G. We give some refer-
ences for the interested reader. For G = A4, A5 see [35], [36], respectively. In fact, for these
two groups stronger results hold. For G = A4 there exist k-adequate Galois extensions
with Galois group A4 for any global field k of characteristic not equal to 2 or 3 (see [35,
Corollary 2.2]). For G = A5, [36, Theorem 1] constructs k-adequate Galois extensions
with Galois group A5 for any number field k such that

√
−1 6∈ k. For G = S4, S5 see [82,

Theorem 7.1]. The cases G = A6, A7 are treated in [29]. We chose not to pursue this
approach because the polynomials defining the field extensions were rather cumbersome,
particularly for A6 and A7.

6.2.2 Failures

• We start with the cases where G is A4 or S4. Let L/Q be the splitting field of f(x),
where

f(x) =

{
x4 + 3x2 − 7x+ 4 if G = A4,
x4 − x3 − 4x2 + x+ 2 if G = S4.

In both cases L/Q is a Galois extension with Galois group G such that every decom-
position group is cyclic. Therefore, Proposition 5.1.7 shows that the HNP fails for any
subextension of L/k falling under case (i) or (ii) of Proposition 5.1.7, i.e. an extension
where the HNP can theoretically fail.

• We now find examples for the A5 and S5 cases using work of Uchida [90]. Examples for
the A6 and A7 cases can be obtained in a manner analogous to the construction for A5.
Let F/Q be the splitting field of f(x) = x5 − x+ 1 and set D = Disc(f) = 19 · 151. By
[90, Corollary and Theorem 2], F/Q(

√
D) is an unramified Galois extension with Galois

group A5, while F (
√

2)/Q(
√

2D) is an unramified Galois extension with Galois group S5.
If G = A5 then set L = F, k = Q(

√
D). If G = S5 then set L = F (

√
2), k = Q(

√
2D).

Let K/k be a subextension of L/k falling under case (i) or (ii) of Proposition 5.1.7. Since
L/k is unramified, all its decomposition groups are cyclic, whereby the HNP fails for
K/k by the criterion of Proposition 5.1.7.

A similar construction allows us to provide examples of unramified Galois A6 and A7

extensions. By Proposition 5.1.9, these extensions have knot groups isomorphic to C6

and therefore the HNP fails for them. It is also possible to construct failures with knot
group C2 or C3. Indeed, if G = A6 or A7, one can set S = C3 × C3 in [27, Lemma 6] in
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order to get a Galois extension of number fields with decomposition group Dv = C3×C3

for every ramified place v. Since the remaining places have cyclic decomposition groups,
it follows from Proposition 5.1.9 that the knot group of this extension is C2. An analogous
construction choosing S = D4 gives a Galois extension of number fields with knot group
equal to C3.
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Part II

The multinorm principle
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Chapter 7

Introduction

Let K = (K1, . . . , Kn) be an n-tuple (n ≥ 1) of finite extensions of a number field k. In
this part of the thesis, we study the so-called multinorm principle for K, which is said to
hold if, for any c ∈ k∗, the affine k-variety

Tc :
n∏
i=1

NKi/k(Ξi) = c (7.0.1)

(where Ξi is a variable) satisfies the Hasse principle. In other words, K satisfies the
multinorm principle if, for all c ∈ k∗, the existence of points on Tc over every completion
of k implies the existence of a k-point.

From a geometric viewpoint, Tc defines a principal homogenous space under the multi-
norm one torus T , defined by the exact sequence of k-algebraic groups

1→ T →
n∏
i=1

RKi/kGm

∏
iNKi/k−−−−−→ Gm → 1.

In this way, the Tate–Shafarevich group X(T ) of T is naturally identified with the ob-
struction to the multinorm principle for K

K(K, k) = k∗ ∩
n∏
i=1

NKi/k(A
∗
Ki

)/
n∏
i=1

NKi/k(K
∗
i ),

and the multinorm principle holds if and only if K(K, k) = 1.
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Setting n = 1 one recovers the Hasse norm principle (HNP), studied in Part I of this
thesis. Recall that if K/k is Galois, then Tate’s theorem 1.6.9 gives an explicit description
of the obstruction to the HNP in terms of the group cohomology of its local and global
Galois groups. Later work of Drakokhrust allows one to obtain a more general description
of this obstruction for an arbitrary extension K/k in terms of generalized representation
groups, see [26, Theorem 2].

It is natural to look for a similar description when n > 1. This is the main objective
of this part of the thesis and we provide explicit formulas for the obstructions to the
multinorm principle and weak approximation for the multinorm one torus of n arbitrary
extensions. In order to achieve this, we generalize the concept (due to Drakokhrust and
Platonov in [27] and described in detail in Section 4.3) of the first obstruction to the Hasse
norm principle (see Section 8.1). By then adapting work of Drakokhrust ([26]), we obtain
our main result (Theorem 8.2.6), describing the obstructions to the multinorm principle
and weak approximation in terms of generalized representation groups of the relevant local
and global Galois groups. The formulas given in Theorem 8.2.6 are effectively computable
and we also provide algorithms in GAP [33] for this effect (see Remark 8.2.7).

Multiple other questions on the multinorm principle have been analyzed in the litera-
ture. For example, if n = 2 it is known that the multinorm principle holds if

1. K1 or K2 is a cyclic extension of k ([50, Proposition 3.3]);

2. K1/k is abelian, satisfies the HNP and K2 is linearly disjoint from K1 ([78, Proposi-
tion 4.2]);

3. the Galois closures of K1/k and K2/k are linearly disjoint over k ([77]).

Subsequent work of Demarche and Wei provided a generalization of the result in (3) to
n extensions ([25, Theorems 1 and 6]), while also addressing weak approximation for the
associated multinorm one torus. In [76], Pollio computed the obstruction to the multinorm
principle for a pair of abelian extensions and, in [5], Bayer-Fluckiger, Lee and Parimala
provided an explicit combinatorial description of K(K, k) as well as necessary and sufficient
conditions for the variety Tc to have a k-rational point, assuming that one of the extensions
Ki/k is cyclic.

We will also apply our techniques to describe the validity of the local-global principles
in three concrete examples (see Chapter 9) motivated by the aforementioned results of
Demarche–Wei, Pollio and Bayer-Fluckiger–Lee–Parimala. To obtain these results, we use
comparison maps between the obstructions to the local-global principles in the multinorm
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and the Hasse norm principle setting. We start by proving a result inspired by [25, Theorem
6] that compares the birational invariants H1(k,PicX) and H1(k,PicY ), where X is a
smooth compactification of the multinorm one torus T and Y is a smooth compactification

of the norm one torus S = R1
F/kGm of the extension F =

n⋂
i=1

Ki. In particular, we show

(Theorem 9.2.1) that under certain conditions there is an isomorphism

H1(k,PicX)
'−→ H1(k,PicY ).

This result further allows us to compare the defect of weak approximation for T with the
defect of weak approximation for S (Corollary 9.2.3).

Under the same assumptions, we also show (Theorem 9.3.1) the existence of isomor-
phisms

K(K, k) ∼= K(F/k) and A(T ) ∼= A(S)

when all the extensions Ki/k are abelian. This theorem generalizes Pollio’s main result in
[76] on the obstruction to the multinorm principle for a pair of abelian extensions.

In Section 9.4 we complement [5, Theorem 8.3] by providing a characterization (Theo-
rem 9.4.1) of weak approximation for the multinorm one torus of n non-isomorphic cyclic
extensions of prime degree p. More precisely, we show that both the multinorm principle
and weak approximation for T hold if [K1 . . . Kn : k] > p2. Otherwise, weak approximation
holds if and only if the multinorm principle fails (a property that can be detected by precise
local conditions, see Remark 9.4.3).

In recent (and independent) work, Lee [59] extends results of [5, §8] to provide a de-
scription of the multinorm principle and weak approximation for the multinorm one torus
of n non-isomorphic cyclic extensions (and, in this way, obtains a result more general than
Theorem 9.4.1). Similarly, Bayer-Fluckiger and Parimala [6] have recently extended arith-
metical results of [5] to determine the unramified Brauer groups of torsors over some norm
one tori and have also proved Theorem 9.4.1 (see [6, Corollary 9.10]).
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Chapter 8

Explicit methods for the multinorm
principle

In this chapter we define the concept of the first obstruction to the multinorm principle and
present several of its properties. We fix a number field k, an n-tuple K = (K1, . . . , Kn) of
finite extensions of k and a finite Galois extension L/k containing all the fields K1, . . . , Kn.
We denote G = Gal(L/k), Hi = Gal(L/Ki) for i = 1, . . . , n and H = 〈H1, . . . , Hn〉, the
subgroup of G generated by all the Hi. Note that H = Gal(L/F ), where F =

n⋂
i=1

Ki.

8.1 The first obstruction to the multinorm principle

Definition 8.1.1. We define the first obstruction to the multinorm principle for K corre-
sponding to (L,K, k) as

F(L,K, k) = k∗ ∩
n∏
i=1

NKi/k(A
∗
Ki

)/
n∏
i=1

NKi/k(K
∗
i )(k∗ ∩NL/k(A∗L)).

Remark 8.1.2. This notion generalizes the concept (introduced by Drakokhrust and
Platonov in [27]) of the first obstruction to the Hasse norm principle for K/k corresponding
to a tower of fields L/K/k, defined in Section 4.3.

The first obstruction to the multinorm principle has various useful properties – for
example, it is clear from the definition that the total obstruction to the multinorm principle
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K(K, k) surjects onto F(L,K, k) with equality if the Hasse norm principle holds for L/k.
Moreover, this equality also happens if the first obstruction to the Hasse norm principle
for some extension Ki/k corresponding to the tower L/Ki/k coincides with the knot group
K(Ki/k) = k∗ ∩NKi/k(A∗Ki)/NKi/k(K

∗
i ):

Lemma 8.1.3. If K(Ki/k) = F(L/Ki/k) for some i = 1, . . . , n, then K(K, k) = F(L,K, k).

Proof. The assumption translates into k∗ ∩NL/k(A∗L) ⊂ NKi/k(K
∗
i ). This implies that

n∏
i=1

NKi/k(K
∗
i )(k∗ ∩NL/k(A∗L)) =

n∏
i=1

NKi/k(K
∗
i ) and hence K(K, k) = F(L,K, k).

Corollary 8.1.4. If [Ki : k] is square-free for some i = 1, . . . , n, then K(K, k) = F(L,K, k).

Proof. By [27, Corollary 1], if [Ki : k] is square-free, then K(Ki/k) = F(L/Ki/k). Now
apply Lemma 8.1.3.

More generally, one has the following criterion (extending [27, Theorem 3]) for the
equality K(K, k) = F(L,K, k).

Proposition 8.1.5. Let 1 ≤ t ≤ n and n1, . . . , nt be positive integers. For each i = 1, . . . , t,
choose a collection of ni subgroups Gi,1, . . . , Gi,ni of G and ni subgroups Hi,1, . . . , Hi,ni such
that Hi,j ⊂ Hi ∩ Gi,j for any j = 1, . . . , ni. Set Ki,j = LHi,j and ki,j = LGi,j for all i, j.
Suppose that the Hasse norm principle holds for all the extensions Ki,j/ki,j and that the
map

t⊕
i=1

ni⊕
j=1

CorGGi,j :
t⊕
i=1

ni⊕
j=1

Ĥ
−3

(Gi,j,Z)→ Ĥ
−3

(G,Z)

is surjective. Then K(K, k) = F(L,K, k).

Proof. By Tate’s theorem on class formations (see [18, p. 197]), the following diagram
commutes for any subgroup G′ of G

Ĥ
−3

(G′,Z) Ĥ
−1

(G′, CL)

Ĥ
−3

(G,Z) Ĥ
−1

(G,CL)

'

CorG
G′ CorG

G′

'

(8.1.1)
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where CL denotes the idèle class group of L/k and the horizontal isomorphisms are given by
cup product with the canonical generator of Ĥ

2
(G,CL). The hypothesis is thus equivalent

to the map
t⊕
i=1

ni⊕
j=1

CorGGi,j :
t⊕
i=1

ni⊕
j=1

Ĥ
−1

(Gi,j, CL)→ Ĥ
−1

(G,CL) (8.1.2)

being surjective. Using the definition of the Tate cohomology group Ĥ
−1
, (8.1.2) is equiv-

alent to the surjectivity of the map induced by the natural embeddings

t⊕
i=1

ni⊕
j=1

N−1
L/ki,j

(k∗i,j)/IGi,jA∗L · L∗ → N−1
L/k(k

∗)/IGA∗L · L∗ (8.1.3)

Here N−1
L/k(k

∗) = {a ∈ A∗L | NL/k(a) ∈ k∗}, IGA∗L = 〈σ(a)a−1 | σ ∈ G, a ∈ A∗L〉 and the
corresponding notions for ki,j and Gi,j are defined similarly.

We now prove that K(K, k) = F(L,K, k). It suffices to show that k∗ ∩ NL/k(A∗L) ⊂
t∏
i=1

NKi/k(K
∗
i ). Let α = NL/k(a) ∈ k∗ ∩ NL/k(A∗L) for some a ∈ A∗L. From the surjectivity

of (8.1.3) it follows that there exist ai,j ∈ N−1
L/ki,j

(k∗i,j) ⊂ A∗L such that a =
t∏
i=1

ni∏
j=1

ai,j, and

thus α =
t∏
i=1

ni∏
j=1

NL/k(ai,j). Since by hypothesis the Hasse norm principle holds for Ki,j/ki,j,

there exist γi,j ∈ K∗i,j such that NL/ki,j(ai,j) = NKi,j/ki,j(γi,j). Moreover, as Ki ⊂ Ki,j for
any i = 1, . . . , t and j = 1, . . . , ni, we have

α =
t∏
i=1

ni∏
j=1

NL/k(ai,j) =
t∏
i=1

ni∏
j=1

Nki,j/k(NL/ki,j(ai,j)) =
t∏
i=1

ni∏
j=1

Nki,j/k(NKi,j/ki,j(γi,j)) =

=
t∏
i=1

ni∏
j=1

NKi,j/k(γi,j) =
t∏
i=1

NKi/k(

ni∏
j=1

NKi,j/Ki(γi,j)) ∈
t∏
i=1

NKi/k(K
∗
i ).

A further trait of the first obstruction to the multinorm principle F(L,K, k) is that it
can be expressed in terms of the local and global Galois groups of the towers L/Ki/k (in
similar fashion to the first obstruction to the Hasse norm principle). In order to prove this,
we will make use of Lemma 4.3.4, which for convenience we restate below:
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Lemma 8.1.6. (Lemma 4.3.4) Let L/K/k be a tower of number fields with L/k Galois.
Set G = Gal(L/k) and H = Gal(L/K). Then, given a place v of k, the set of places w of

K above v is in bijection with the set of double cosets in the decomposition G =
rv⋃
i=1

HxiDv.

If w corresponds to HxiDv, then the decomposition group Hw of the extension L/k at w
equals H ∩ xiDvx

−1
i .

In our situation, for any v ∈ Ωk and i = 1, . . . , n, let G =
rv,i⋃
t=1

Hixi,tDv be a double coset

decomposition. By the above lemma, Hi,w := Hi∩xi,tDvx
−1
i,t is the decomposition group of

L/Ki at a place w of Ki above v corresponding to the double coset Hixi,tDv. Now consider
the commutative diagram:

n⊕
i=1

Hab
i

ψ1 // Gab

n⊕
i=1

(
⊕
v∈Ωk

(
⊕
w|v
Hab
i,w))

ψ2 //

ϕ1

OO

⊕
v∈Ωk

Dab
v

ϕ2

OO (8.1.4)

Here the superscript ab above a group denotes its abelianization and the inside sum over
w|v runs over all the places w of Ki above v. Additionally, the maps ϕ1, ψ1 and ϕ2 are
induced by the inclusions Hi,w ↪→ Hi, Hi ↪→ G and Dv ↪→ G, respectively, while ψ2 is
obtained from the product of all conjugation maps Hab

i,w → Dab
v sending hi,t[Hi,w, Hi,w] to

x−1
i,t hi,txi,t[Dv, Dv]. We denote by ψv2 (respectively, ψnr2 ) the restriction of the map ψ2 to

the subgroup
n⊕
i=1

(
⊕
w|v
Hab
i,w) (respectively,

n⊕
i=1

(
⊕
v∈Ωk

v unramified

(
⊕
w|v
Hab
i,w))). With this notation set,

we can now establish the main result of this section (generalizing Theorem 4.3.5):

Theorem 8.1.7. In the notation of diagram (8.1.4), we have

F(L,K, k) ∼= Kerψ1/ϕ1(Kerψ2).
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Proof. Diagram (8.1.4) can be written as

n⊕
i=1

Ĥ
−2

(Hi,Z)
ψ1 // Ĥ

−2
(G,Z)

n⊕
i=1

(
⊕
v∈Ωk

(
⊕
w|v

Ĥ
−2

(Hi,w,Z)))
ψ2 //

ϕ1

OO

⊕
v∈Ωk

Ĥ
−2

(Dv,Z)

ϕ2

OO
(8.1.5)

By the local (respectively, global) Artin isomorphism, we have Ĥ
−2

(Hi,w,Z) ∼= Ĥ
0
(Hi,w, L

∗
w)

and Ĥ
−2

(Dv,Z) ∼= Ĥ
0
(Dv, L

∗
v) (respectively, Ĥ

−2
(Hi,Z) ∼= Ĥ

0
(Hi, CL) and Ĥ

−2
(G,Z) ∼=

Ĥ
0
(G,CL), where CL is the idèle class group of L/k). Additionally, by [18, Proposition

7.3(b)] there are identifications
⊕
v∈Ωk

(
⊕
w|v

Ĥ
0
(Hi,w, L

∗
w)) ∼= Ĥ

0
(Hi,A∗L) and

⊕
v∈Ωk

Ĥ
0
(Dv, L

∗
v)
∼=

Ĥ
0
(G,A∗L). Since all these isomorphisms are compatible with the maps in diagram (8.1.5),

this diagram induces the commutative diagram
n⊕
i=1

Ĥ
0
(Hi, CL)

ψ1 // Ĥ
0
(G,CL)

n⊕
i=1

Ĥ
0
(Hi,A∗L)

ψ2 //

ϕ1

OO

Ĥ
0
(G,A∗L)

ϕ2

OO
(8.1.6)

where ϕ1, ϕ2 are the natural projections and ψ1, ψ2 are induced by the product of the norm
maps NKi/k. Using the definition of the cohomology group Ĥ

0
, this diagram is equal to

n⊕
i=1

A∗Ki
K∗i NL/Ki (A

∗
L)

ψ1 // A∗k
k∗NL/k(A∗L)

n⊕
i=1

A∗Ki
NL/Ki (A

∗
L)

ψ2 //

ϕ1

OO

A∗k
NL/k(A∗L)

ϕ2

OO
(8.1.7)

From diagram (8.1.7), it is clear that

Kerψ1 = {(xiK∗iNL/Ki(A
∗
L))ni=1 |

n∏
i=1

NKi/k(xi) ∈ k∗NL/k(A∗L)}
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and

ϕ1(Kerψ2) = {(xiK∗iNL/Ki(A
∗
L))ni=1 |

n∏
i=1

NKi/k(xi) ∈ NL/k(A∗L)}.

Now define

f : Kerψ1/ϕ1(Kerψ2) −→ F(L,K, k)

(xiK
∗
iNL/Ki(A

∗
L))ni=1 7−→ x

n∏
i=1

NKi/k(Ki
∗)(k∗ ∩NL/k(A∗L))

where x is any element of k∗ ∩
n∏
i=1

NKi/k(A∗Ki) such that
n∏
i=1

NKi/k(xi) ∈ xNL/k(A∗L). It is

straightforward to check that f is well defined and an isomorphism.

Remark 8.1.8. Given the knowledge of the local and global Galois groups of the towers
L/Ki/k, the first obstruction to the multinorm principle can be computed in finite time
by employing Theorem 8.1.7. First, it is clear that the computation of the groups Kerψ1

and ϕ1(Kerψv2) for the ramified places v of L/k is finite. Moreover, from the definition of
the maps in diagram (8.1.4), it is clear that if v1, v2 ∈ Ωk are such that Dv1 = Dv2 , then
ϕ1(Kerψv12 ) = ϕ1(Kerψv22 ). This shows that the computation of ϕ1(Kerψnr2 ) is also finite.
On this account, we designed a function in GAP [33] (whose code is available in [63]) that
takes as input the Galois groups G,Hi and the decomposition groups Dv at the ramified
places of L/k and outputs the group F(L,K, k).

8.2 The total obstruction to the multinorm principle

In this section we prove that the total obstruction to the multinorm principle K(K, k) can
always be expressed in terms of the arithmetic of the extensions Ki/k by using generalized
representation groups (as defined in Section 1.3) of G = Gal(L/k). The link between this
group-theoretic tool and our goal of computing the arithmetic obstruction K(K, k) comes
from the following result:

Proposition 8.2.1. There exists a Galois extension P/k containing L and such that

F(P,K, k) = K(K, k).

Furthermore, this extension has the property that G = Gal(P/k) is a generalized repre-
sentation group of G with base normal subgroup M = Gal(P/L) and if λ : G → G is the
associated projection map, we have Gal(P/Ki) = λ

−1
(Hi).

94



Proof. In [74, Satz 3], Opolka established that, given any Galois extension L/k, there exists
a Galois extension P/k containing L and such that

NP/k(A∗P ) ∩ k∗ ⊂ NL/k(L
∗). (8.2.1)

From (8.2.1) it follows that the first obstruction to the Hasse norm principle F(P/Ki/k)
coincides with the knot group K(Ki/k) for any Ki and thus F(P,K, k) = K(K, k) by
Lemma 8.1.3. Furthermore, setting M := Gal(P/L) and G := Gal(P/k), Opolka observed
in the proof of [74, Satz 3] that M ⊂ Z(G) and that the deflation map (see [58, §1])
def : Ĥ

−3
(G,Z) → Ĥ

−3
(G,Z) is trivial. From the long sequence of cohomology of the

extension
1→M → G→ G→ 1

we obtain the exact sequence

Ĥ
−3

(G,Z)
def−→ Ĥ

−3
(G,Z)→M → G/[G,G],

from which it follows that M ∩ [G,G] ∼= Ĥ
−3

(G,Z) and thus G is a generalized represen-
tation group of G.

As remarked in [26], the extension P/k is not uniquely determined and the computation
of its arithmetic is not always easy. Nonetheless, one can still compute F(P,K, k) by
commencing with an arbitrary generalized representation group of G.

Let G̃ be any generalized representation group of G with projection map λ̃ and base
normal subgroup M̃ . For any subgroup B of G, define B̃ = λ̃−1(B) and B = λ

−1
(B). We

will use of Lemma 1.3.8 of Section 1.3, which for convenience we restate below:

Lemma 8.2.2 (Lemma 1.3.8). There exists an isomorphism

τ : [G̃, G̃]
'−→ [G,G]

with the following properties:

(i) λ(τ(a)) = λ̃(a) for every a ∈ [G̃, G̃];

(ii) τ([g̃1, g̃2]) = [g1, g2] for all g̃1, g̃2 ∈ G̃ and g1, g2 ∈ G such that λ̃(g̃i) = λ(gi).

For any subgroup B of G, τ further identifies
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• [B̃, B̃] ∼= [B,B] and

• M̃ ∩ [B̃, B̃] ∼= M ∩ [B,B].

Let R be the set of ramified places of L/k. For any v ∈ Ωk, set

S̃v =

{
D̃v, if v ∈ R,
a cyclic subgroup of D̃v such that λ̃(S̃v) = Dv, otherwise.

Furthermore, by the Chebotarev density theorem we can (and do) choose the subgroups
S̃v for v 6∈ R in such a way that all the cyclic subgroups of D̃v such that λ̃(S̃v) = Dv occur.

Remark 8.2.3. As pointed out in [26, p. 31], a double coset decompositionG =
rv,i⋃
t=1

Hixi,tDv

corresponds to a double coset decomposition G̃ =
rv,i⋃
t=1

H̃ix̃i,tS̃v, where x̃i,t is any element of

G̃ such that λ̃(x̃i,t) = λ(xi,t).

Consider the following diagram analogous to (8.1.4):

n⊕
i=1

H̃i

ab ψ̃1 // G̃ab

n⊕
i=1

(
⊕
v∈Ωk

(
⊕
w|v
H̃ab
i,w))

ψ̃2 //

ϕ̃1

OO

⊕
v∈Ωk

S̃ab
v

ϕ̃2

OO (8.2.2)

where H̃i,w = H̃i ∩ x̃i,tS̃vx̃−1
i,t and all the maps are defined as in diagram (8.1.4).

We now prove the main result of this section, namely that the object Ker ψ̃1/ϕ̃1(Ker ψ̃2)
does not depend on the choice of generalized representation group (and thus, by Theorem
8.1.7 and Proposition 8.2.1, it always coincides with K(K, k)). Before we show this, we
need a lemma. To ease the notation, we often omit the cosets H̃i

′
and Hi

′ when working
with elements of Ker ψ̃1 or Kerψ1.

Lemma 8.2.4. For any indices 1 ≤ i1 < i2 ≤ n and any m ∈ H̃i1 ∩ H̃i2, we have

h = (1, . . . , m︸︷︷︸
i1-th entry

, 1, . . . , 1, m−1︸︷︷︸
i2-th entry

, 1, . . . , 1) ∈ ϕ̃1(Ker ψ̃nr2 ).
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Proof. We construct a vector α ∈
n⊕
i=1

(
⊕
v∈Ωk

v unramified

(
⊕
w|v
H̃ab
i,w)) such that ψ̃2(α) = 1 and ϕ̃1(α) =

h. Let v be an unramified place of k such that S̃v = 〈m〉. By definition, if G̃ =
rv,i⋃
t=1

H̃ix̃i,tS̃v

is a double coset decomposition of G̃, then H̃i,w = H̃i ∩ x̃i,tS̃vx̃−1
i,t . Let us suppose, without

loss of generality, that x̃i1,n1 = 1 = x̃i2,n2 for some index 1 ≤ n1 ≤ rv,i1 (respectively,
1 ≤ n2 ≤ rv,i2) corresponding to a place w1 ∈ ΩKi1

(respectively, w2 ∈ ΩKi2
) via Lemma

8.1.6. In this way, we have m ∈ H̃i1,w1 and m−1 ∈ H̃i2,w2 . Setting the (i1, v, w1)-th
(respectively, (i2, v, w2)-th) entry of α to be equal to m (respectively, m−1) and all other
entries equal to 1, we obtain ψ̃2(α) = 1 and ϕ̃1(α) = h.

Theorem 8.2.5. In the notation of diagram (8.2.2), we have

K(K, k) ∼= Ker ψ̃1/ϕ̃1(Ker ψ̃2).

Proof. By Theorem 8.1.7 and Proposition 8.2.1, we have K(K, k) ∼= Kerψ1/ϕ1(Kerψ2),
where the notation is as in diagram (8.2.2) with respect to the groups of Proposition
8.2.1. Therefore, it suffices to prove that

Ker ψ̃1/ϕ̃1(Ker ψ̃2) ∼= Kerψ1/ϕ1(Kerψ2).

Define

f : Ker ψ̃1/ϕ̃1(Ker ψ̃2) −→ Kerψ1/ϕ1(Kerψ2)

(h̃1, . . . , h̃n) 7−→ (h1, . . . , hn)

where, for each i = 1, . . . , n, the element hi ∈ Hi is selected as follows: take hi ∈ Hi such
that λ(hi) = λ̃(h̃i) (note that hi is only defined modulo M = Kerλ). In this way, we have
λ(h1 . . . hn) = λ̃(h̃1 . . . h̃n). Additionally, by Lemma 8.2.2(i), λ(τ(h̃1 . . . h̃n)) = λ̃(h̃1 . . . h̃n)
and thus

τ(h̃1 . . . h̃n) = h1 . . . hnm (8.2.3)

for somem ∈M . Changing hn if necessary, we assume thatm = 1 so that h1 . . . hn ∈ [G,G]
and therefore (h1, . . . , hn) ∈ Kerψ1.

Claim 1: f is well defined, i.e. it does not depend on the choice of the elements hi and
f(ϕ̃1(Ker ψ̃2)) ⊂ ϕ1(Kerψ2).
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Proof: We first prove that f does not depend on the choice of hi. Suppose that, for
each i = 1, . . . , n, we choose elements hi ∈ Hi satisfying λ̃(h̃i) = λ(hi) and τ(h̃1 . . . h̃n) =
h1 . . . hn. We show that (h1, . . . , hn) = (h1, . . . , hn) in Kerψ1/ϕ1(Kerψ2). Writing hi =
himi for some mi ∈ M , it suffices to prove that (m1, . . . ,mn) ∈ ϕ1(Kerψ2). Since
h1 . . . hn = τ(h̃1 . . . h̃n) = h1 . . . hn and the elements mi are in M ⊂ Z(G), we ob-

tain m1 . . .mn = 1. As M ⊂
n⋂
i=1

Hi, multiplying (m1, . . . ,mn) by (m2,m
−1
2 , 1, . . . , 1)

(which lies in ϕ1(Kerψ2) by Lemma 8.2.4), we have (m1, . . . ,mn) ≡ (m1m2, 1,m3, . . . ,mn)
(mod ϕ1(Kerψ2)). Repeating this procedure, we obtain (m1, . . . ,mn) ≡ (m1 . . .mn, . . . , 1) =
(1, . . . , 1) (mod ϕ1(Kerψ2)) and therefore (m1, . . . ,mn) is in ϕ1(Kerψ2), as desired.

We now show that f(ϕ̃1(Ker ψ̃2)) ⊂ ϕ1(Kerψ2). It suffices to check that f(ϕ̃1(Ker ψ̃v2)) ⊂

ϕ1(Kerψ
v

2) for any v ∈ Ωk. For i = 1, . . . , n, let G̃ =
rv,i⋃
t=1

H̃ix̃i,tS̃v be a double coset decom-

position of G̃ and recall that, by definition, the group H̃i,w equals H̃i∩ x̃i,tS̃vx̃−1
i,t if w ∈ ΩKi

corresponds to the double coset H̃ix̃i,tS̃v. Let α =
n⊕
i=1

rv,i⊕
t=1

h̃i,t ∈ Ker ψ̃v2 , where h̃i,t ∈ H̃i,w

for all possible i, t. We thus have

ψ̃2(α) =
n∏
i=1

rv,i∏
t=1

x̃−1
i,t h̃i,tx̃i,t ∈ [S̃v, S̃v]. (8.2.4)

For any i = 1, . . . , n define h̃i =
rv,i∏
t=1

h̃i,t. We need to show that f(h̃1, . . . , h̃n) is in

ϕ1(Kerψ
v

2).

Set xi,t := λ̃(x̃i,t) ∈ G and hi,t := λ̃(h̃i,t) ∈ Hi ∩ xi,tDvx
−1
i,t for all possible i, t. We have

n∏
i=1

rv,i∏
t=1

x−1
i,t hi,txi,t ∈ [Dv, Dv]. Let xi,t ∈ G be such that λ(xi,t) = xi,t and hi,t ∈ H i∩xi,tDvx

−1
i,t

satisfying λ(hi,t) = hi,t. Multiplying one of the h1,t by an element of M if necessary, we
can assure that

n∏
i=1

rv,i∏
t=1

x−1
i,t hi,txi,t ∈ [Dv, Dv]. (8.2.5)

In particular, α′ :=
n⊕
i=1

rv,i⊕
t=1

hi,t is in Kerψ
v

2. Defining hi :=
rv,i∏
t=1

hi,t for i = 1, . . . , n, we get

ϕ1(α′) = (h1, . . . , hn). We have λ̃(h̃i) = λ(hi) by construction and therefore

τ(h̃1 . . . h̃n) = h1 . . . hnm
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for some m ∈ M . We prove that m is also in [Dv, Dv] so that, by multiplying one of the
elements h1,t by m−1 ∈ M ∩ [Dv, Dv] if necessary (note that doing so does not change
condition (8.2.5)), we obtain f(h̃1, . . . , h̃n) = (h1, . . . , hn). As (h1, . . . , hn) is in ϕ1(Kerψ

v

2),
this proves the claim.

Note that
n∏
i=1

rv,i∏
t=1

h̃i,t = (
n∏
i=1

rv,i∏
t=1

h̃i,t)(
1∏
i=n

1∏
t=rv,i

x̃−1
i,t h̃

−1
i,t x̃i,t)ψ̃2(α).

Denote (
n∏
i=1

rv,i∏
t=1

h̃i,t)(
1∏
i=n

1∏
t=rv,i

x̃−1
i,t h̃

−1
i,t x̃i,t) by β. Then β ∈ [G̃, G̃] and using an explicit de-

scription of β as a product of commutators and Lemma 8.2.2(ii), we deduce that τ(β) = β′,

where β′ = (
n∏
i=1

rv,i∏
t=1

hi,t)(
1∏
i=n

1∏
t=rv,i

x−1
i,t h

−1

i,t xi,t). Therefore, we have

n∏
i=1

hi =
n∏
i=1

rv,i∏
t=1

hi,t ≡ β′ = τ(β) ≡ τ(
n∏
i=1

h̃i) (mod [Dv, Dv]),

and thus m ∈ [Dv, Dv], as desired.

Claim 2: f is a homomorphism.

Proof: Let h = (h̃1, . . . , h̃n), h′ = (h̃′1, . . . , h̃
′
n) ∈ Ker ψ̃1 and write f(h) = (h1, . . . , hn)

and f(h′) = (h
′
1, . . . , h

′
n) for some elements hi, h

′
i ∈ Hi. We have f(h)f(h′) = (h1h

′
1, . . . , hnh

′
n).

On the other hand, hh′ = (h̃1h̃
′
1, . . . , h̃nh̃

′
n) and

τ(h̃1h̃
′
1 . . . h̃nh̃

′
n) ≡ τ((h̃1 . . . h̃n)(h̃′1 . . . h̃

′
n)) = (h1 . . . hn)(h

′
1 . . . h

′
n) ≡ h1h

′
1 . . . hnh

′
n (mod [G,G]).

Since λ̃(h̃ih̃
′
i) = λ(hih

′
i) for all i = 1, . . . , n and (h1 . . . hn)(h

′
1 . . . h

′
n) ∈ [G,G], by the

definition of f it follows that f(hh′) = (h1h
′
1, . . . , hnh

′
n) = f(h)f(h′).

Claim 3: f is surjective.

Proof: For i = 1, . . . , n, let hi ∈ Hi be such that h1 . . . hn ∈ [G,G]. Take any elements
h̃i ∈ H̃i satisfying λ̃(h̃i) = λ(hi). As above, by Lemma 8.2.2(i) this implies that there
exists m ∈M such that

τ(h̃1 . . . h̃n) = h1 . . . hnm ∈ [G,G].
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Since h1 . . . hn ∈ [G,G], we have m ∈ M ∩ [G,G]. But M ∩ [G,G] = τ(M̃ ∩ [G̃, G̃]) by
Lemma 8.2.2. Therefore m = τ(m′) for some m′ ∈ M̃ ∩ [G̃, G̃] and thus (h1, . . . , hn) =

f(h̃1, . . . , h̃nm
′−1).

Claim 4: f is an isomorphism.

Proof: We have seen that f is surjective. Now we can analogously define a surjec-
tive map from Kerψ1/ϕ1(Kerψ2) to Ker ψ̃1/ϕ̃1(Ker ψ̃2). It follows that the finite groups
Ker ψ̃1/ϕ̃1(Ker ψ̃2) and Kerψ1/ϕ1(Kerψ2) have the same size and so f is an isomor-
phism.

Using this theorem, one can also obtain descriptions of the birational invariant H1(k,PicX)
and the defect of weak approximation A(T ) for the multinorm one torus T :

Theorem 8.2.6. Let T be the multinorm one torus associated with K and let X be a
smooth compactification of T . In the notation of diagram (8.2.2), we have

X(T ) ∼= Ker ψ̃1/ϕ̃1(Ker ψ̃2),

H1(k,PicX)∼ ∼= Ker ψ̃1/ϕ̃1(Ker ψ̃nr2 ),

A(T ) ∼= ϕ̃1(Ker ψ̃2)/ϕ̃1(Ker ψ̃nr2 ).

Proof. The first isomorphism is the statement of Theorem 8.2.5 (recall that X(T ) is iso-
morphic to K(K, k)). In order to show the second isomorphism, let L′/k′ be an unram-
ified Galois extension with Galois group G (such an extension always exists by [32]), let
K ′i = L′Hi for i = 1, . . . , n and let K ′ = (K ′1, . . . , K

′
n). Let T ′ be the multinorm one

torus over k′ associated with K ′ and let X ′ be a smooth compactification of T ′. Note that
H1(k,PicX) ∼= H1(k′,PicX ′) since T̂ ∼= T̂ ′ as G-modules. As L′/k′ is unramified, by [91,
Corollary 2] we have A(T ′) = 0 and thus Voskresenskĭı’s exact sequence of Theorem 1.5.8
gives H1(k′,PicX ′)∼ ∼= X(T ′). The result follows since X(T ′) ∼= Ker ψ̃1/ϕ̃1(Ker ψ̃nr2 ) by
the first isomorphism. Finally, in order to obtain the third isomorphism apply again Voskre-
senskĭı’s Theorem 1.5.8 and note that the surjection H1(k,PicX)∼ �X(T ) given in this
theorem corresponds to the natural surjection Ker ψ̃1/ϕ̃1(Ker ψ̃nr2 ) � Ker ψ̃1/ϕ̃1(Ker ψ̃2)
(this fact follows from an argument analogous to the one given in the Hasse norm principle
case, see Theorem 4.3.11).

Remark 8.2.7. As explained in Remark 8.1.8, all the groups Ker ψ̃1, ϕ̃1(Ker ψ̃2) and
ϕ̃1(Ker ψ̃nr2 ) in Theorem 8.2.6 can be computed in finite time. To this extent, we as-
sembled a function in GAP [33] (whose code is available in [63]) that, given the relevant
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local and global Galois groups, outputs the obstructions to the multinorm principle and
weak approximation for the multinorm one torus of a finite number of extensions by means
of Theorem 8.2.6.

We end this section by generalizing Corollary 8.1.4 and proving a result (Proposi-
tion 8.2.9 below) showing that, in many situations, one can actually circumvent the use
of generalized representation groups when computing the obstructions to the local-global
principles.

For a moment, let G be any finite group and let H be a subgroup of G. Recall that the
focal subgroup of H in G is defined as ΦG(H) = 〈[h, x] | h ∈ H ∩ xHx−1, x ∈ G〉. In [27,
Theorem 2] (Theorem 4.3.8 of Chapter 4), we saw that

ϕ1(Kerψnr2 ) = ΦG(H)/[H,H]

in the setting of the first obstruction to the Hasse norm principle (case n = 1). Returning
to the multinorm context, this fact promptly implies that, in the notation of diagram
(8.2.2), we have

(1, . . . ,ΦG̃(H̃i)︸ ︷︷ ︸
i-th entry

, 1, . . . , 1) ⊂ ϕ̃1(Ker ψ̃nr2 ). (8.2.6)

for every i = 1, . . . , n.

Lemma 8.2.8. Let G be a finite group and let Gp be a Sylow p-subgroup of G. Then
Gp ∩ [G,G] ∩ Z(G) ⊂ [Gp, Gp].

Proof. To prove this lemma we will use the transfer homomorphism v : G→ Gp/[Gp, Gp].
This map has the property (see [51, Lemma 5.5]) that

v(g) =
r∏
i=1

t−1
i gniti[Gp, Gp], (8.2.7)

for all g ∈ G, where ti are elements of G such that t−1
i gniti ∈ Gp for all i and ni are integers

such that
r∑
i=1

ni = [G : Gp].

Let x ∈ Gp ∩ [G,G] ∩ Z(G). Since Im(v) ≤ Gp/[Gp, Gp] is abelian, we have [G,G] ≤
Ker(v) and thus x ∈ Ker(v), i.e. v(x) ∈ [Gp, Gp]. Since x ∈ Z(G), by (8.2.7) we have
v(x) = x

∑
i ni = x[G:Gp] ∈ [Gp, Gp]. Finally, as the order of x is a power of p, we conclude

that x ∈ [Gp, Gp].
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Proposition 8.2.9. Suppose that there exists j ∈ {1, . . . , n} such that, for every prime p
dividing |Ĥ

−3
(G,Z)|, p2 does not divide [Kj : k]. Then, in the notation of diagram (8.1.4),

we have
X(T ) ∼= Kerψ1/ϕ1(Kerψ2),

H1(k,PicX)∼ ∼= Kerψ1/ϕ1(Kerψnr2 ),

A(T ) ∼= ϕ1(Kerψ2)/ϕ1(Kerψnr2 ).

Proof. We prove only that H1(k,PicX)∼ ∼= Kerψ1/ϕ1(Kerψnr2 ) (the other two isomor-
phisms can be obtained by a similar argument). Assume, without loss of generality,
that j = 1 and G̃ is a Schur covering group of G so that M̃ is contained in [G̃, G̃] and
M̃ ∼= Ĥ

−3
(G,Z). We show that the map

ρ : Ker ψ̃1/ϕ̃1(Ker ψ̃nr2 ) −→ Kerψ1/ϕ1(Kerψnr2 )

h = (h̃1, . . . , h̃n) 7−→ (λ̃(h̃1), . . . , λ̃(h̃n))

is an isomorphism, which proves the desired statement by Theorem 8.2.6.

We first verify that ρ is well defined. It is enough to check that ρ(ϕ̃1(Ker ψ̃v2)) ⊂

ϕ1(Kerψv2) for an unramified place v of L/k. Note that if G̃ =
rv,i⋃
t=1

H̃ix̃i,tS̃v is a double coset

decomposition of G̃, then G =
rv,i⋃
t=1

Hixi,tDv is a double coset decomposition of G, where

xi,t = λ̃(x̃i,t). From this observation, it is straightforward to verify that ρ(ϕ̃1(Ker ψ̃v2)) ⊂
ϕ1(Kerψv2).

We now prove that ρ is surjective. Suppose that we are given, for i = 1, . . . , n, elements
hi ∈ Hi such that h1 . . . hn ∈ [G,G]. Since M̃ ⊂ [G̃, G̃], any choice of elements h̃i ∈ H̃i

such that λ̃(h̃i) = hi will satisfy h̃1 . . . h̃n ∈ [G̃, G̃] and thus (h1, . . . , hn) = ρ(h̃1, . . . , h̃n).

We finally show that ρ is injective. Suppose that (h1, . . . , hn) = ρ(h) ∈ ϕ1(Kerψv2)

for some unramified place v of L/k. Write hi = ϕ1(
rv,i⊕
t=1

hi,t) for some elements hi,t ∈ Hi ∩

xi,tDvx
−1
i,t . As (h1, . . . , hn) ∈ ϕ1(Kerψv2), we have

n∏
i=1

rv,i∏
t=1

x−1
i,t hi,txi,t = 1. Picking elements

h̃i,t ∈ λ̃−1(hi,t) and x̃i,t ∈ λ̃−1(xi,t) for all possible i, t, we obtain
n∏
i=1

rv,i∏
t=1

x̃−1
i,t h̃i,tx̃i,t = m for

some m ∈ M̃ = Ker λ̃. As m ∈ Z(G̃)∩
n⋂
i=1

H̃i, we have (h̃1m
−1, h̃2, , . . . , h̃n) ∈ ϕ̃1(Ker ψ̃nr2 ).
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Therefore, in order to prove that h ∈ ϕ̃1(Ker ψ̃nr2 ) it suffices to show that (m−1, 1, . . . , 1) ∈
ϕ̃1(Ker ψ̃nr2 ). We prove that m ∈ ΦG̃(H̃1), which completes the proof by (8.2.6).

Claim: If p2 does not divide [K1 : k] for every prime p dividing |M̃ |, then M̃ ⊂ ΦG̃(H̃1).

Proof: We show that M̃(p) ⊂ ΦG̃(H̃1). We have [K1 : k] = [G : H1] and therefore [Gp :

(H1)p] = [G̃p : (H̃1)p] = 1 or p. In any case, (H̃1)p E G̃p and we can write G̃p = 〈xp〉.(H̃1)p
for some xp ∈ G̃p. Since M̃(p) ⊂ G̃p ∩ [G̃, G̃] ∩ Z(G̃) and G̃p ∩ [G̃, G̃] ∩ Z(G̃) ⊂ [G̃p, G̃p] by
Lemma 8.2.8, we have M̃(p) ⊂ [G̃p, G̃p] and so it suffices to prove that [G̃p, G̃p] ⊂ ΦG̃(H̃1).
Let z = [xaph1, x

b
ph
′
1] for some a, b ∈ Z and h1, h

′
1 ∈ (H̃1)p. Using the commutator properties,

we have z = [xap, h
′
1]h1 [h1, h

′
1][h1, x

b
p]
h′1 . As (H̃1)p E G̃p and ΦG̃(H̃1) E H̃1, it follows that

each one of the commutators above is in ΦG̃(H̃1).

As a consequence we obtain the following result, which can be thought of as an analog
of [27, Corollary 1] for the birational invariant H1(k,PicX).

Corollary 8.2.10. Let K/k be an extension of number fields and suppose that [K : k] is
square-free. Let X be a smooth compactification of the norm one torus R1

K/kGm. Then

H1(k,PicX)∼ ∼=
H ∩ [G,G]

ΦG(H)
.

Proof. The conditions of Proposition 8.2.9 are satisfied and therefore H1(k,PicX)∼ ∼=
Kerψ1/ϕ1(Kerψnr2 ). The result then follows from the fact that Kerψ1 = (H ∩ [G,G])/[H,H]
and ϕ1(Kerψnr2 ) = ΦG(H)/[H,H] (Theorem 4.3.8 of Chapter 4).
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Chapter 9

Applications

In this chapter we illustrate the scope of the techniques developed in Chapter 8 by in-
vestigating the multinorm principle and weak approximation for the multinorm one torus
in three different situations. Namely, we extend results of Demarche–Wei [25], Pollio [76]
and Bayer-Fluckiger–Lee–Parimala [5]. The notation used throughout this section is as in
Chapter 8, except we now assume L/k to be the minimal Galois extension containing all
the fields K1, . . . , Kn. Additionally, we will make use of the norm one torus S = R1

F/kGm

of the extension F =
n⋂
i=1

Ki and we let Y denote a smooth compactification of S. We start

by establishing two auxiliary lemmas to be used in later sections.

9.1 Two useful lemmas

Lemma 9.1.1. In the notation of diagram (8.2.2), we have

ϕ̃1(Ker ψ̃nr2 ) ⊆ {(h1H̃1

′
, . . . , hnH̃n

′
) ∈ Ker ψ̃1 | h1 . . . hn ∈ ΦG̃(H̃)}.

A proof of this lemma can be obtained by following the same strategy as in the proof
of the analogous result for the Hasse norm principle (case n = 1) in [27, Theorem 2].
Nonetheless, as the details are slightly intricate, we include a proof here for the benefit of
the reader.
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Proof. Since ϕ̃1(Ker ψ̃nr2 ) =
∏
v∈Ωk

v unramified

ϕ̃1(Ker ψ̃v2), it suffices to prove that

ϕ̃1(Ker ψ̃v2) ⊆ {(h1H̃1

′
, . . . , hnH̃n

′
) | h1 . . . hn ∈ ΦG̃(H̃)}

for any unramified place v of L/k. Let α ∈ Ker ψ̃v2 and fix a double coset decomposition

G̃ =
rv,i⋃
t=1

H̃ix̃i,tS̃v. Write S̃v = 〈g〉 and α =
n⊕
i=1

rv,i⊕
t=1

h̃i,t for some g ∈ G̃, h̃i,t = x̃i,tg
ei,tx̃−1

i,t ∈

H̃i ∩ x̃i,t〈g〉x̃−1
i,t and some ei,t ∈ Z. By hypothesis, we have 1 = ψ̃2(α) = g

∑
i,t ei,t and

therefore ∑
i,t

ei,t ≡ 0 (mod m),

where m is the order of g. Since gm = 1, by changing some of the ei,t if necessary, we can
(and do) assume that ∑

i,t

ei,t = 0. (9.1.1)

Letting hi =
rv,i∏
t=1

h̃i,t for any 1 ≤ i ≤ n, we have ϕ̃1(α) = (h1H̃1, . . . , hnH̃n) ∈ Ker ψ̃1.

We prove that
n∏
i=1

hi =
n∏
i=1

(

rv,i∏
t=1

h̃i,t) =
n∏
i=1

(

rv,i∏
t=1

x̃i,tg
ei,tx̃−1

i,t ) ∈ ΦG̃(H̃)

by induction on s :=
n∑
i=1

rv,i. The case s = 1 is trivial and the case s = 2 is solved

as in the analogous result for the Hasse norm principle setting, see [27, p. 308]. Now
let s > 2 and set d = gcd(ei,t | 1 ≤ i ≤ n, 1 ≤ t ≤ rv,i) and fi,t =

ei,t
d
. It follows

that gcd(fi,t | 1 ≤ i ≤ n, 1 ≤ t ≤ rv,i) = 1 and, since
∑
i,t

fi,t = 0 by (9.1.1), we have

gcd(fi,t | 1 ≤ i ≤ n, 1 ≤ t ≤ rv,i and (i, t) 6= (n, rv,n)) = 1. Hence there exist ai,t ∈ Z such
that

∑
i,t

(i,t)6=(n,rv,n)

fi,tai,t = 1. Consider the element

β =
( ⊕

i,t
(i,t)6=(n,rv,n)

x̃i,tg
ei,tfn,rv,nai,tx̃−1

i,t

)
⊕ x̃n,rv,ng−en,rv,n x̃−1

n,rv,n ∈
n⊕
i=1

( rv,i⊕
t=1

H̃i,w

)
.
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Since ei,tfn,rv,n = en,rv,nfi,t, we have

ψ̃2(β) = g

( ∑
i,t

(i,t) 6=(n,rv,n)

ei,tfn,rv,nai,t

)
−en,rv,n

= g

( ∑
i,t

(i,t)6=(n,rv,n)

en,rv,nfi,tai,t

)
−en,rv,n

= 1

and so β ∈ Ker ψ̃v2 .

Additionally, if ϕ̃1(β) = (h̃1, . . . , h̃n), we have

n∏
i=1

h̃i =

 ∏
i,t

(i,t)6=(n,rv,n)

x̃i,tg
ei,tfn,rv,nai,tx̃−1

i,t

 x̃n,rv,ng
−en,rv,n x̃−1

n,rv,n =

=

 ∏
i,t

(i,t)6=(n,rv,n)

x̃i,tg
ei,tfn,rv,nai,tx̃−1

i,t

 x̃n,rv,ng

−en,rv,n
∑
i,t

(i,t)6=(n,rv,n)

fi,tai,t

x̃−1
n,rv,n ≡

≡

 ∏
i,t

(i,t)6=(n,rv,n)

x̃i,tg
ei,tfn,rv,nai,tx̃−1

i,t x̃n,rv,ng
−ei,tfn,rv,nai,tx̃−1

n,rv,n

 (mod [H̃, H̃])

(9.1.2)

since the elements x̃i,tgei,tx̃−1
i,t (for all possible i, t) are in H̃.

We claim that
n∏
i=1

h̃i ∈ ΦG̃(H̃). To show this note that the elements x̃i,tgei,tfn,rv,nai,tx̃−1
i,t

and x̃n,rv,ng−ei,tfn,rv,nai,tx̃−1
n,rv,n are in H̃ and so x̃i,tgei,tfn,rv,nai,tx̃−1

i,t ∈ H̃∩(x̃i,tx̃
−1
n,rv,n)H̃(x̃n,rv,nx̃

−1
i,t ).

We thus see that x̃i,tgei,tfn,rv,nai,tx̃−1
i,t x̃n,rv,ng

−ei,tfn,rv,nai,tx̃−1
n,rv,n = [x̃i,tg

−ei,tfn,rv,nai,tx̃−1
i,t , x̃i,tx̃

−1
n,rv,n ]

is in ΦG̃(H̃) for all i, t such that (i, t) 6= (n, rv,n) and from (9.1.2) we deduce that
n∏
i=1

h̃i ∈

ΦG̃(H̃).

Finally, we prove that h1 . . . hn ∈ ΦG̃(H̃) as well. Consider the element

α′ = αβ =
⊕
i,t

(i,t)6=(n,rv,n)

x̃i,tg
ei,t(1+fn,rv,nai,t)x̃−1

i,t ∈
n⊕
i=1

( rv,i⊕
t=1

H̃i,w

)
.
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It is clear that α′, being the product of two elements in Ker ψ̃v2 , is also in this set. By the
induction hypothesis, if ϕ̃1(α′) = (ĥ1, . . . , ĥn) we have ĥ1 . . . ĥn ∈ ΦG̃(H̃). Since ĥi ≡ hih̃i
(mod [H̃, H̃]) for all i = 1, . . . , n, we conclude that h1 . . . hn ∈ ΦG̃(H̃).

Lemma 9.1.2. (i) There exists a surjection f : H1(k,PicX)∼ −→ H1(k,PicY )∼. If in
addition

ϕ̃1(Ker ψ̃nr2 ) ⊇ {(h1H̃1

′
, . . . , hnH̃n

′
) | h1 . . . hn ∈ ΦG̃(H̃)}

(in the notation of diagram (8.2.2)), then f is an isomorphism.

(ii) If F/k is Galois, f induces a surjection X(T )�X(S).

Proof. Consider the analog of diagram (8.2.2) for the extension F/k (note that this is the
fixed field of the group H inside L/k):

H̃ab ψ̂1 // G̃ab

⊕
v∈Ωk

(
⊕
w|v
H̃ab
w )

ψ̂2 //

ϕ̂1

OO

⊕
v∈Ωk

S̃ab
v

ϕ̂2

OO (9.1.3)

Here all the maps with the ̂ notation are defined as in diagram (8.2.2) with respect to the
extension F/k. Now define

f : Ker ψ̃1/ϕ̃1(Ker ψ̃nr2 ) −→ Ker ψ̂1/ϕ̂1(Ker ψ̂nr2 )

(h̃1H̃1

′
, . . . , h̃nH̃n

′
)ϕ̃1(Ker ψ̃nr2 ) 7−→ (h̃1 . . . h̃n[H̃, H̃])ϕ̂1(Ker ψ̂nr2 )

Since ϕ̂1(Ker ψ̂nr2 ) = ΦG̃(H̃)/[H̃, H̃] (see [27, Theorem 2] or Theorem 4.3.8), the map f
is well defined by Lemma 9.1.1. Additionally, as the target group is abelian, it is easy to
check that f is a homomorphism and surjective. By Theorem 8.2.6 we have H1(k,PicX)∼ ∼=
Ker ψ̃1/ϕ̃1(Ker ψ̃nr2 ) and H1(k,PicY )∼ ∼= Ker ψ̂1/ϕ̂1(Ker ψ̂nr2 ). The statement in the first
sentence follows. Finally, if we assume ϕ̃1(Ker ψ̃nr2 ) ⊇ {(h1H̃1

′
, . . . , hnH̃n

′
) | h1 . . . hn ∈

ΦG̃(H̃)}, then it is clear that f is injective.

We now prove (ii). By Theorem 8.2.6, it is enough to show that f(ϕ̃1(Ker ψ̃2)) ⊂
ϕ̂1(Ker ψ̂2). Since ϕ̃1(Ker ψ̃2) =

∏
v∈Ωk

ϕ̃1(Ker ψ̃v2), it suffices to verify f(ϕ̃1(Ker ψ̃v2)) ⊂

ϕ̂1(Ker ψ̂2) for all v ∈ Ωk. Let α ∈ Ker ψ̃v2 and write α =
n⊕
i=1

rv,i⊕
t=1

h̃i,t for some h̃i,t ∈

107



H̃i ∩ x̃i,tS̃vx̃−1
i,t . Hence, we obtain ϕ̃1(α) = (h̃1, . . . , h̃n), where h̃i =

rv,i∏
t=1

h̃i,t, and we wish to

show that
n∏
i=1

h̃i ∈ ϕ̂1(Ker ψ̂2). Since F/k is Galois, H̃ is a normal subgroup of G̃ and thus

ΦG̃(H̃) = [H̃, G̃]. In this way, we have

n∏
i=1

h̃i =
n∏
i=1

rv,i∏
t=1

h̃i,t ≡
n∏
i=1

rv,i∏
t=1

x̃−1
i,t h̃i,tx̃i,t = ψ̃2(α) (mod ΦG̃(H̃)).

As ΦG̃(H̃)/[H̃, H̃] = ϕ̂1(Ker ψ̂nr2 ), it suffices to prove that ψ̃2(α) ∈ ϕ̂1(Ker ψ̂v2). For this, let

G̃ =
r⋃
j=1

H̃ỹjS̃v be a double coset decomposition and suppose, without loss of generality,

that ỹj0 = 1 for some index 1 ≤ j0 ≤ r corresponding to a place w0 of F via Lemma 8.1.6.

Therefore, we obtain ψ̃2(α) =
n∏
i=1

rv,i∏
t=1

x̃−1
i,t h̃i,tx̃i,t ∈ H̃ ∩ S̃v = H̃w0 since x̃−1

i,t h̃i,tx̃i,t ∈ H̃ for all

possible i, t. In this way, if β ∈
⊕
v∈Ωk

(
⊕
w|v
H̃ab
w ) is the vector with the (v, w0)-th entry equal

to ψ̃2(α) and all other entries equal to 1, we have ψ̂2(β) = ψ̃2(α) ∈ [S̃v, S̃v] (as α ∈ Ker ψ̃v2)
and so ψ̃2(α) = ϕ̂1(β) ∈ ϕ̂1(Ker ψ̂v2).

9.2 Linearly disjoint extensions

In this section we prove a theorem similar to the main result of [25], but with a slightly
different hypothesis (and in some cases more general, see Remark 9.2.2 below).

Theorem 9.2.1. For any non-empty subset I ⊂ {1, . . . , n}, let KI ⊆ L be the compositum
of the fields Ki (i ∈ I) and let EI be the Galois closure of KI/k. Suppose that there exist
indices i0, j0 ∈ {1, . . . , n} such that, for every 1 ≤ i ≤ n, there is a partition Ii t Ji =
{1, . . . , n} with i0 ∈ Ii, j0 ∈ Ji and EIi ∩ EJi ⊆ Ki. Then

H1(k,PicX) ∼= H1(k,PicY ).

Proof. If n = 1 there is nothing to show, so assume n ≥ 2. By Lemma 9.1.2(i) it suffices
to prove that

ϕ̃1(Ker ψ̃nr2 ) ⊇ {(h1H̃1

′
, . . . , hnH̃n

′
) | h1 . . . hn ∈ ΦG̃(H̃)}.

108



Let α = (h1H̃1

′
, . . . , hnH̃n

′
) be such that h1 . . . hn ∈ ΦG̃(H̃). Renaming the fields Ki

if necessary, we assume that i0 = 1 and j0 = 2. Denoting BIi = Gal(L/EIi), BJi =
Gal(L/EJi) for all 1 ≤ i ≤ n, the hypothesis EIi ∩ EJi ⊆ Ki is equivalent to BIiBJi ⊇ Hi

and thus
H̃i ⊆ B̃IiB̃Ji (9.2.1)

with 1 ∈ Ii, 2 ∈ Ji and i ∈ Ii or Ji. If n ≥ 3, this implies that for any 3 ≤ i ≤ n we can
decompose hi = h1,ih2,i for some h1,i ∈ H̃1 ∩ H̃i and h2,i ∈ H̃2 ∩ H̃i. Using Lemma 8.2.4 as
done in Claim 1 of the proof of Theorem 8.2.5, we obtain

α ≡ ((
∏

3≤i≤n

h1,i)h1, (
∏

3≤i≤n

h2,i)h2, 1, . . . , 1)

modulo ϕ̃1(Ker ψ̃nr2 ). We can thus assume α to be of the form (h′1, h
′
2, 1, . . . , 1) for some

h′1 ∈ H̃1, h
′
2 ∈ H̃2 such that h′1h′2 ∈ ΦG̃(H̃). Note that (9.2.1) implies that H̃ = 〈H̃i〉 ⊂

B̃1B̃2, where B1 = Gal(L/E{1}) and B2 = Gal(L/E{2}). It thus follows that ΦG̃(H̃) ⊂
ΦG̃(B̃1B̃2) = ΦG̃(B̃1)ΦG̃(B̃2) and so h′1h′2 ∈ ΦG̃(B̃1)ΦG̃(B̃2). Since ΦG̃(B̃i) ⊂ ΦG̃(H̃i) and
recalling that

(1, . . . ,ΦG̃(H̃i)︸ ︷︷ ︸
i-th entry

, 1, . . . , 1) ⊂ ϕ̃1(Ker ψ̃nr2 )

(see (8.2.6) in Section 8.2), we can multiply h′1 and h′2 by elements of ϕ̃1(Ker ψ̃nr2 ) to attain
α ≡ (h′′1, h

′′
2, 1, . . . , 1) (mod ϕ̃1(Ker ψ̃nr2 )) for some h′′1 ∈ H̃1, h

′′
2 ∈ H̃2 such that h′′1h′′2 = 1.

Thus h′′2 = h′′−1
1 and α = (h′′1, h

′′−1
1 , 1, . . . , 1), which by Lemma 8.2.4 is in ϕ̃1(Ker ψ̃nr2 ), as

desired.

Remark 9.2.2. It is easy to see that if there exists a partition I t J = {1, . . . , n} such
that EI ∩ EJ = F (the assumption in [25, Theorem 6] when Fi = EI and Fj = EJ
for every i ∈ I, j ∈ J), the conditions of Theorem 9.2.1 are satisfied. Therefore, our
theorem applies to all the cases described in [25, Examples 9(i), (ii) and (iii)]. Moreover,
our hypothesis applies for n-tuples of fields for which the assumptions in [25, Theorem 6]
might fail. For example, let K = (Q(

√
2,
√

3),Q(
√

2,
√

5),Q(
√

3,
√

5)). It is easy to see
that the assumptions of Theorem 9.2.1 are satisfied, but [25, Theorem 6] does not apply to
this tuple of fields. Indeed, Demarche and Wei’s hypothesis imply that there is a partition
I t J = {1, . . . , n} such that KI ∩KJ = F , which does not exist in the example above.

As consequence of Theorem 9.2.1 and Lemma 9.1.2(ii) we also obtain versions of [25,
Corollaries 7 and 8]:
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Corollary 9.2.3. Let c ∈ k∗. Assume the hypothesis of Theorem 9.2.1 and that F/k is
Galois. Suppose that the k-variety NF/k(Ξ) = c satisfies weak approximation. Then the

k-variety
n∏
i=1

NKi/k(Ξi) = c satisfies weak approximation if and only if it has a k-point.

Corollary 9.2.4. Assume the hypothesis of Theorem 9.2.1 and suppose that the Hasse prin-
ciple and weak approximation hold for all norm equations NF/k(Ξ) = c, c ∈ k∗. Then the

Hasse principle and weak approximation hold for all multinorm equations
n∏
i=1

NKi/k(Ξi) = c.

9.3 Abelian extensions

In this subsection we generalize the main theorem of [76] to n abelian extensions under the
conditions of Theorem 9.2.1.

Theorem 9.3.1. Let K = (K1, . . . , Kn) be an n-tuple of abelian extensions of k and
suppose that the conditions of Theorem 9.2.1 are satisfied for K. Then

X(T ) ∼= X(S) and A(T ) ∼= A(S).

Proof. Note that if A(T ) ∼= A(S), then by Theorem 9.2.1 and Voskresenskĭı’s exact se-
quence of Theorem 1.5.8 we deduce that |X(T )| = |X(S)|. Since X(T ) surjects onto
X(S) by Lemma 9.1.2(ii), we conclude that X(T ) ∼= X(S). Therefore, it is enough to
prove that A(T ) ∼= A(S).

Let us again consider the analog of diagram (8.2.2) for the extension F/k:

H̃ab ψ̂1 // G̃ab

⊕
v∈Ωk

(
⊕
w|v
H̃ab
w )

ψ̂2 //

ϕ̂1

OO

⊕
v∈Ωk

S̃ab
v

ϕ̂2

OO (9.3.1)

As before, in this diagram all the maps with the ̂ superscript are defined as in diagram
(8.2.2) with respect to F/k. By Theorem 8.2.6, we have A(T ) ∼= ϕ̃1(Ker ψ̃2)/ϕ̃1(Ker ψ̃nr2 )

(in the notation of diagram (8.2.2)) and A(S) ∼= ϕ̂1(Ker ψ̂2)/ϕ̂1(Ker ψ̂nr2 ) (in the notation of
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diagram (9.3.1)). Therefore it suffices to show that ϕ̃1(Ker ψ̃2)/ϕ̃1(Ker ψ̃nr2 ) is isomorphic
to ϕ̂1(Ker ψ̂2)/ϕ̂1(Ker ψ̂nr2 ). For this, we again consider the natural map

f : ϕ̃1(Ker ψ̃2)/ϕ̃1(Ker ψ̃nr2 ) −→ ϕ̂1(Ker ψ̂2)/ϕ̂1(Ker ψ̂nr2 )

(h̃1H̃1

′
, . . . , h̃nH̃n

′
)ϕ̃1(Ker ψ̃nr2 ) 7−→ (h̃1 . . . h̃n[H̃, H̃])ϕ̂1(Ker ψ̂nr2 )

In the proof of Lemma 9.1.2(ii) it was shown that f(ϕ̃1(Ker ψ̃2)) ⊂ ϕ̂1(Ker ψ̂2). Addition-
ally, recalling that ϕ̂1(Ker ψ̂nr2 ) = ΦG̃(H̃)/[H̃, H̃] by Theorem 4.3.8 of Chapter 4, we have
f(ϕ̃1(Ker ψ̃nr2 )) = ϕ̂1(Ker ψ̂nr2 ) by Lemma 9.1.1 and the proof of Theorem 9.2.1. This shows
that f is well defined and injective.

Finally, let us check that f is surjective. Fix a place v of k and a double coset decom-

position G̃ =
r⋃
j=1

H̃ỹjD̃v and let α ∈ ϕ̂1(Ker ψ̂v2). We can write α = ϕ̂1(
r⊕
j=1

h̃j) =
r∏
j=1

h̃j

for some h̃j ∈ H̃ ∩ ỹjS̃vỹ−1
j such that β := ψ̂2(

r⊕
j=1

h̃j) =
r∏
j=1

ỹ−1
j h̃j ỹj is in [S̃v, S̃v]. Note

that as G is abelian, we have [G̃, G̃] ⊂ Ker λ̃ = M̃ and therefore [S̃v, S̃v] ⊂ M̃ ⊂ H̃i for
every 1 ≤ i ≤ n. In particular, we have β ∈ H̃1 ∩ S̃v and from this one readily checks
that the n-tuple (β, 1, . . . , 1) is in ϕ̃1(Ker ψ̃v2). Since H̃ E G̃, we have ΦG̃(H̃) = [H̃, G̃]

and thus f(β, 1, . . . , 1) = β =
∏
j

ỹ−1
j h̃j ỹj ≡

∏
j

h̃j = α (mod ΦG̃(H̃)). As ΦG̃(H̃)/[H̃, H̃] =

ϕ̂1(Ker ψ̂nr2 ), we obtain α = f(β, 1, . . . , 1) inside ϕ̂1(Ker ψ̂2)/ϕ̂1(Ker ψ̂nr2 ).

Remark 9.3.2. Note that the conditions of Theorem 9.2.1 are always satisfied if n = 2,
so that Theorem 9.3.1 generalizes the main theorem of [76].

9.4 Products of cyclic extensions of prime degree

In this subsection we extend the result in [5, Theorem 8.3] to include the weak approxi-
mation property for the multinorm one torus of n cyclic extensions of prime degree p.

Theorem 9.4.1. Let K1, . . . , Kn be non-isomorphic cyclic extensions of k with prime
degree p. Then, we have

H1(k,PicX) =

{
(Z/p)n−2, if [K1 . . . Kn : k] = p2;
0, otherwise.
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Proof. The case n = 1 was proved in [21, Proposition 9.1] and for n = 2 the result follows
from Theorem 9.2.1, so assume n ≥ 3.

Suppose first that [K1 . . . Kn : k] > p2. Reordering the fields K3, . . . , Kn if necessary,
we can (and do) assume that each one of the fields K1, . . . , Ks−1 is contained in K1K2 (for
some 3 ≤ s ≤ n), while none of Ks, . . . , Kn is contained in K1K2. We prove two auxiliary
claims:

Claim 1: H̃i ⊂ (H̃1 ∩ H̃i).H̃s for any i = 1, . . . , s− 1.

Proof: Observe that K1Ki ∩Ks = k as otherwise we would have Ks ⊂ K1Ki ⊂ K1K2,
contradicting the assumption on s. Therefore Ki ⊃ k = K1Ki ∩ Ks and passing to
subgroups this implies that Hi ⊂ (H1 ∩Hi).Hs, from which the claim follows.

Claim 2: H̃i ⊂ (H̃1 ∩ H̃i).H̃2 for any i = s, . . . , n.

Proof: Observe that K2 6⊂ K1Ki as otherwise we would have Ki ⊂ K1Ki = K1K2,
contradicting the assumption on Ki. Therefore Ki ⊃ k = K1Ki ∩ K2 and passing to
subgroups this implies that Hi ⊂ (H1 ∩Hi).H2, from which the claim follows.

Let us now prove that H1(k,PicX) = 0. Since
⋂
i

Ki = k, by Lemma 9.1.2(i) it suffices

to show that

ϕ̃1(Ker ψ̃nr2 ) ⊇ {(h1H̃1

′
, . . . , hnH̃n

′
) | h1 . . . hn ∈ ΦG̃(H̃)}.

Let α = (h1H̃1

′
, . . . , hnH̃n

′
) be such that h1 . . . hn ∈ ΦG̃(H̃). By Claim 1 above, for

i = 3, . . . , s−1 we can write hi = h1,ihs,i, where h1,i ∈ H̃1∩H̃i and hs,i ∈ H̃s∩H̃i. Using this
decomposition, we can apply Lemma 8.2.4 as done in the proof of Theorem 9.2.1 in order to
simplify α modulo ϕ̃1(Ker ψ̃nr2 ) and assume it has the form (h′1, h2, 1, . . . , 1, h

′
s, hs+1 . . . , hn)

for some h′1 ∈ H̃1, h
′
s ∈ H̃s. Using Claim 2 and Lemma 8.2.4 in the same way, we further

reduce αmodulo ϕ̃1(Ker ψ̃nr2 ) to a vector of the form (h′′1, h
′
2, 1, . . . , 1) for some h′′1 ∈ H̃1, h

′
2 ∈

H̃2 such that h′′1h′2 ∈ ΦG̃(H̃). Finally, since K1 ∩ K2 = k, we have H̃ = H̃1H̃2 and thus
ΦG̃(H̃) ⊂ ΦG̃(H̃1)ΦG̃(H̃2). The result follows by an argument similar to the one given at
the end of the proof of Theorem 9.2.1.

Now assume that [K1 . . . Kn : k] = p2 (note that this is only possible if n ≤ p + 1 as
a bicyclic field has p + 1 subfields of degree p) and therefore G = Cp × Cp is abelian. By
Proposition 8.2.9 it suffices to prove that Kerψ1/ϕ1(Kerψnr2 ) ∼= (Z/p)n−2. We first show
that ϕ1(Kerψnr2 ) = 1. Let α ∈ Kerψv2 for some unramified place v of L/k. Write Dv = 〈g〉

112



and α =
n⊕
i=1

rv,i⊕
t=1

hi,t for some g ∈ G and hi,t ∈ Hi ∩ xi,t〈g〉x−1
i,t = Hi ∩ 〈g〉. If g 6∈ Hi for all

i = 1, . . . , n, then α is the trivial vector and ϕ1(α) = (1, . . . , 1). Otherwise, if g ∈ Hi0
∼= Cp

for some index i0, then g 6∈ Hi for all i 6= i0 and thus hi,t = 1 for i 6= i0. In this way, it

follows that 1 = ψ2(α) =
n∏
i=1

rv,i∏
t=1

x−1
i,t hi,txi,t =

rv,i0∏
t=1

hi0,k. Therefore, if ϕ1(α) = (h1, . . . , hn),

we have hi = 1 if i 6= i0 and hi0 =
rv,i0∏
t=1

hi0,k = 1. In conclusion, ϕ1(α) = (1, . . . , 1).

On the other hand, we have Kerψ1 = {(h1, . . . , hn) | hi ∈ Hi,
n∏
i=1

hi = 1}. This group is

the kernel of the surjective group homomorphism

f : H1 × · · · ×Hn −→ G

(h1, . . . , hn) 7−→ h1 . . . hn

and thus Kerψ1 = Ker f ∼= (Z/p)n−2, as desired.

Corollary 9.4.2. Let K = (K1, . . . , Kn) be a tuple of n ≥ 3 non-isomorphic cyclic exten-
sions of k with prime degree p.

1. If [K1 . . . Kn : k] = p2, then weak approximation for the multinorm one torus T holds
if and only if the multinorm principle for K fails.

2. Otherwise, both the multinorm principle for K and weak approximation for T hold.

Proof. Follows from Voskresenskĭı’s exact sequence of Theorem 1.5.8, Theorem 9.4.1 and
[5, Theorem 8.3].

Remark 9.4.3. In [5, Proposition 8.5] it is shown that, in the case (1) above, the multi-
norm principle for K fails if and only if all decomposition groups of the bicyclic extension
K1 . . . Kn are cyclic. We thus have a simple criterion to test the validity of weak approxi-
mation for the associated multinorm one torus.
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Part III

Statistics of local-global principles
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Chapter 10

Introduction

A considerable motivation for providing qualitative studies of local-global principles (such
as the Hasse norm principle or weak approximation) as done in Parts I and II of this thesis
is to enable a statistical analysis of these principles in families of algebraic varieties. Such
quantitative studies of local-global principles have attracted significant interest in the area
of Arithmetic Geometry in the past decade, see [16] for a survey of recent developments
around this topic. In this last part of the thesis, our goal is to prove several quantitative
results on the Hasse norm principle and weak approximation for norm one tori and, in
this way, contribute to the ongoing rapid progress in the area of statistics of local-global
principles.

In Chapter 11 we start by establishing a result (Theorem 11.0.1) showing that, in a
precise sense, the HNP holds for almost all degree n extensions of a fixed number field
k. This result is conditional on the weak Malle conjecture on the distribution of number
fields with prescribed Galois group (see (11.0.1) below), a conjecture that has also received
significant attention lately and where progress is rapidly being made (see [99] for recent
results on this conjecture). We then present two unconditional results (Theorems 11.0.3
and 11.0.6) for degrees n = 4 and n = 6 and base field k = Q by exploiting a few cases
where Malle’s conjecture is known to be true.

If one wishes to obtain more precise results, it is natural to not only fix the degree
and the base field of our extensions, but to also specify their Galois group. For instance,
using Tate’s description of the knot group for Galois extensions in (2.0.1), one can often
characterize the validity of the Hasse norm principle in the family of Galois extensions of
k with fixed Galois group G (henceforth denominated G-extensions), see [39, 40, 46] for
some examples. It is also possible to use this description to show that, if G is a finite
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solvable group, then there exists a G-extension of k failing the Hasse norm principle if and
only if H3(G,Z) 6= 0 (see [30, Theorem 1.2]). In light of this result it is natural to try to
understand how frequently counter-examples to the Hasse norm principle arise in families
of G-extensions.

In [52], Jehne provided a result in this direction, showing the existence of infinitely
many extensions with prescribed Galois group G, knot-group ν and base field k, when
G is a finite abelian p-group, ν a quotient group of H3(G,Z) and k a number field not
containing p-th roots of unity. Recently, Frei–Loughran–Newton have also analyzed this
type of question and did a comprehensive study of the distribution of abelian extensions
failing the Hasse norm principle, when fields are ordered by discriminant (see [30, Theorems
1.1 and 1.4]) or by conductor (see [31, Corollary 1.10]). For example, their work implies
that, when G is the Klein four-group V4, 100% (but not all) of G-extensions of k satisfy the
Hasse norm principle. This result was shortly after refined by Rome [80] to an asymptotic
formula for the number of biquadratic extensions of k = Q failing the Hasse norm principle,
when fields are ordered by discriminant.

In the last chapter of this thesis, Chapter 12, we obtain the first density result on the
HNP for a family of non-abelian extensions. Namely, we investigate this principle for octic
extensions of Q with Galois group D4 and show (Theorem 12.0.1) that the HNP holds for
100% of such extensions, when fields are ordered by discriminant or by an Artin conductor.

116



Chapter 11

Statistics of local-global principles for
degree n extensions

In this chapter we present some results on the density of degree n extensions of a fixed num-
ber field that fail the Hasse norm principle, when extensions are ordered by discriminant.
Although counting degree n > 4 extensions of number fields with bounded discriminant is
an intricate problem and precise asymptotics may be out of reach at present, there are very
precise conjectures for the number of such extensions. Namely, the weak Malle conjecture
on the distribution of number fields (see [69]) predicts that the number N(k,G,X) of de-
gree n extensions K of a number field k with Galois group G and |Nk/Q(DiscK/k)| ≤ X
satisfies

X
1

α(G) � N(k,G,X)� X
1

α(G)
+ε, (11.0.1)

where α(G) = min
g∈G\{1}

{ind(g)} and ind(g) equals n minus the number of orbits of g on

{1, . . . , n}. Using the computational method developed by Hoshi and Yamasaki to de-
termine H1(k,PicX) outlined in Section 4.4, we obtain the following consequence of this
conjecture:

Theorem 11.0.1. Fix a number field k and an integer n ≤ 15 with n 6= 8, 12. Suppose
that Conjecture (11.0.1) holds for every transitive subgroup G ≤ Sn. Then

(i) the HNP holds for 100% of degree n extensions over k, when ordered by discriminant;

(ii) weak approximation holds for 100% of norm one tori of degree n extensions over k,
when ordered by discriminant of the associated extension.

117



Proof. Note that an extension K/k of degree n is a (G,H)-extension (as defined in Sec-
tion 6.1), where G is a transitive subgroup of Sn and H is an index n subgroup of G.
Since there are a finite number of possibilities for G and H, one can compute all possi-
bilities for H1(G,FG/H) using the aforementioned algorithms of Hoshi and Yamasaki. If
H1(G,FG/H) = 0, then both the HNP for K/k and weak approximation for R1

K/kGm hold
by Theorem 1.5.8 and the isomorphism (1.5.2) of Theorem 1.5.12. If H1(G,FG/H) 6= 0, one
can compute the integer α(G) of Malle’s conjecture and for every such case one verifies
that α(G) > 1. Thus, if the conjecture holds, then the number of degree n extensions
with discriminant bounded by X and for which the HNP or weak approximation fails is
o(X). The result then follows by observing that Malle’s conjecture also implies that the
number of degree n extensions of k with discriminant bounded by X is asymptotically at
least c(k, n)X for some positive constant c(k, n).

Remark 11.0.2. We list a few observations about Theorem 11.0.1 and its proof.

(i) The reason for excluding degrees n = 8 and 12 is that in these cases there are pairs
(G,H), where G ≤ Sn is a transitive subgroup and H is an index n subgroup of
G, such that H1(G,FG/H) is non-trivial and α(G) = 1. A more detailed analysis of
the proportion of these (G,H)-extensions for which the local-global principles fail is
needed in these cases. In the next chapter we give a first result in this direction by
investigating the frequency of the HNP for D4-octics.

(ii) Computing the values of α(G) for all transitive subgroupsG of Sn with H1(G,FG/H) 6=
0 and [G : H] = n yields an upper bound (conditional on Malle’s conjecture) on the
number of degree n extensions for which the HNP (or weak approximation for the
norm one torus) fails. For example, the number of degree 14 extensions of k for
which the HNP (or weak approximation for the norm one torus) fails is �k,ε x

1
6

+ε,
when ordered by discriminant.

(iii) In the statement of Theorem 11.0.1 it suffices to assume Malle’s conjecture only for
the few transitive subgroups G ≤ Sn containing an index n subgroup H such that
H1(G,FG/H) is not trivial. Indeed, the assumption for all G ≤ Sn was used solely
to show that the number of degree n extensions of k with discriminant bounded by
X is �k,n X. For n ≤ 15 composite, one can use an argument similar to that of
[28, pp. 723–724] for n even and the results of Datskovsky and Wright [24] for cubics
and of Bhargava, Shankar and Wang [12] for quintics to prove the aforementioned
result. Finally, for n prime we do not need any assumptions as the HNP for K/k
and weak approximation for R1

K/kGm always hold for extensions of prime degree (see
[21, Proposition 9.1 and Remark 9.3]).
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(iv) To simplify the statement we only presented results for degree n ≤ 15 but one can
obtain results for higher degrees in a similar way. However, Hoshi and Yamasaki’s
algorithms require one to embed the Galois group G as a transitive subgroup of Sn,
whereupon one quickly reaches the limit of the databases of such groups stored in
computational algebra systems such as GAP. To overcome this problem, one may
use the modification of Hoshi and Yamasaki’s algorithms presented as Algorithm A1
in the Appendix 4.5.

An analysis of the invariant H1(k,PicX) for extensions K/k of degree n ≤ 15 has also
recently been carried out independently by Hoshi, Kanai and Yamasaki in [48] and [49].
In these works, the computation of H1(k,PicX) for such extensions (which here happened
behind the scenes of the above proof) is made explicit and, additionally, necessary and
sufficient conditions for the vanishing of K(K/k) are given.

We end this chapter by using results on the distribution of number fields with prescribed
Galois group to prove two unconditional theorems on the density of the HNP. The first
one concerns the family of quartic extensions of Q:

Theorem 11.0.3. The HNP holds for 100% of quartic extensions of Q, when ordered by
discriminant.

Proof. Since the HNP holds for all C4, D4 and S4-quartics (see Theorems 2.0.2, 2.0.5 and
2.0.6, respectively), the only quartic extensions of number fields for which HNP can fail
are those with associated Galois groups V4 or A4. By work of Baily [2] and Wong [97], it
is known that 0% of quartic extensions of Q have Galois group V4 or A4, when ordered by
discriminant. The result follows.

Similarly to the case of quartics, we also obtain an unconditional density result for the
family of sextic extensions of Q, Theorem 11.0.6 below. To prove this result, we will use
the following two lemmas:

Lemma 11.0.4. Let K/Q be a sextic extension. If K/Q fails the HNP, then Gal(N/Q) ∼=
A4 or A5, where N is the normal closure of K/Q.

Proof. See [27, Lemma 12].

Lemma 11.0.5. Let K/Q be a degree n extension, let p be a prime that is tamely ramified
in K/Q and let N denote the normal closure of K/Q. Then the exact exponent of p dividing
Disc(K/Q) equals ind(g), where g is any element of the transitive subgroup Gal(N/Q) ≤ Sn
that generates the inertia group of N/Q at p.
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Proof. See, for example, [94, §2.2].

Theorem 11.0.6. The HNP holds for 100% of sextic extensions of Q, when ordered by
discriminant.

Proof. Since the total number of sextic extensions of Q with absolute discriminant < X
is � X (see Remark 11.0.2(iii) above), by Lemma 11.0.4 it suffices to show that the
number of A4-sextics (respectively, A5-sextics) over Q is o(X). We present the argument
for A5-sextics – the case of A4-sextics is analogous.

Let L5(X) (respectively, L6(X)) be the set of isomorphism classes of A5-quintics (re-
spectively, A5-sextics) over Q with absolute discriminant < X. LetK6 be a sextic extension
of Q with A5-normal closure. Denote the quintic sibling field1 of K6 by K5. We will show
that taking the quintic sibling of an A5-sextic defines an injection

L6(X) ↪→ L5(cX)

for some positive constant c and deduce the desired result by invoking the fact that
|L5(cX)| = o(X) as follows from the work of Bhargava in [11].

We start by comparing the exact power of p dividing Disc(K6/Q) and Disc(K5/Q) for
a tamely ramified prime p. Let G1 be the copy of A5 in its regular representation inside
S5 and let G2 be a copy of the transitive subgroup of S6 that is isomorphic to A5 (unique
up to conjugacy). A quick computation in GAP [33] shows that ind(g) ≤ ind(g′) for any
g ∈ G1, g

′ ∈ G2 such that g and g′ have the same order. Therefore by Lemma 11.0.5 we
deduce that pk || Disc(K5/Q) implies pk | Disc(K6/Q).

For a potentially wildly ramified prime p = 2, 3 or 5 of K5/Q, the exact power of p
dividing the discriminant is bounded by a constant independent of the field K5 (see [72, III,
§2, Theorem 2.6]). From this fact and the conclusion of the previous paragraph, we deduce
that there exists some positive constant c > 0 such that Disc(K5/Q) < cDisc(K6/Q) for
all A5-siblings K5 and K6. Therefore, if K6 ∈ L6(X), its quintic sibling field K5 is in
L5(cX). As there is one and only one isomorphism class of a sibling A5-quintic field for
each A5-sextic, this association is injective and the result follows.

1Two finite extensions K1,K2 of Q are called siblings if they are not isomorphic, but have isomorphic
normal closures.
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Chapter 12

Statistics of local-global principles for
D4-octics

In this chapter we provide the first density result in the simplest non-abelian setting where
failures of the Hasse norm principle are possible, namely for the family of D4-octics. Note
that, since H3(D4,Z) = Z/2, failures of this principle (over any number field k) always
exist by [30, Theorem 1.2]. Nonetheless, our main result shows that such failures are rare:

Theorem 12.0.1. When ordered by discriminant or by conductor1, 100% of D4-octics over
Q satisfy the Hasse norm principle.

Remark 12.0.2. We remark that the density result on D4-octics ordered by discriminant
in Theorem 12.0.1 is conditional on the work in progress [85] of Shankar–Varma, outlined
below in Section 12.1.2.

While for an abelian group G there are precise asymptotics for the number of G-
extensions of bounded discriminant (see [67], [100]), conductor (see [68]) and even more
general counting functions (see [98]), the problem of enumerating non-abelian fields is much
more complicated and results in this setting are still quite limited (see [99] for a survey of
recent developments in this area).

In spite of this, Altuğ–Shankar–Varma–Wilson [1] have recently combined arithmetic
invariant theory with techniques from geometry of numbers and the algebraic structure of
D4 in order to determine the asymptotic number of quartic D4-fields over Q ordered by
conductor. Furthermore, in their upcoming work [85], Shankar and Varma also compute

1See Section 12.1.2 for the definition of the conductor of a D4-octic over Q.
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the asymptotic number of octic D4-fields over Q ordered by discriminant, verifying the
strong form of Malle’s conjecture (see (12.1.5) below) for this family of extensions.

In the aforementioned works of Altuğ–Shankar–Varma–Wilson and Shankar–Varma the
constants of proportionality in the main term of the asymptotics are shown to satisfy the
so-called Malle–Bhargava principle. Specifically, this principle predicts that such constants
will be given by an Euler product of local masses, obtained from the expectation that the
(weighted) number of D4-extensions ordered by a counting function (like the discriminant
or an Artin conductor) equals the product over all places v ∈ ΩQ of the (weighted) number
of D4-compatible extensions of Qv consistent with that counting function (see [99, Section
10] for a detailed explanation of the Malle-Bhargava principle). This fact is key in the
application of the present chapter as it allows us to count D4-fields with certain local
conditions at a finite number of primes that ensure successes of the Hasse norm principle
and, in this way, deduce Theorem 12.0.1.

Remark 12.0.3. If G is a group of order 8, then G is either abelian, isomorphic to the
quaternion group Q8 or isomorphic to D4. In the first case, work of Frei–Loughran–Newton
shows that 100% of G-extensions of Q satisfy the Hasse norm principle, when ordered by
conductor. If G = Q8, then H3(G,Z) = 0 and the Hasse norm principle always holds.
Therefore, Theorem 12.0.1 completes the picture on the density of octic G-extensions of Q
satisfying the Hasse norm principle.

Remark 12.0.4. Theorem 12.0.1 and the link between the Hasse principle and weak
approximation for algebraic tori also allows us to obtain density results for the number of
norm one tori of D4-octics over Q that satisfy weak approximation, see Section 12.1.1.

12.1 Preliminaries

Throughout this chapter we fix a presentation of the group of symmetries of a square,
D4 = 〈r, s | r4 = s2 = (rs)2 = 1〉. We say that an extension M/k of fields is a D4-octic if
it is Galois with Galois group isomorphic to D4. A quartic extension of fields L/k is said
to be a D4-quartic if its normal closure is a D4-octic. If the ground field k of a D4-octic or
D4-quartic is not specified, it is taken to be Q.
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12.1.1 Local-global principles for norms of D4-fields

Hasse norm principle

In [39], Gerth provided an explicit characterization of the Hasse norm principle for Galois
extensions with metacyclic Galois group. In particular, Gerth’s work gives us the following
description of this principle for D4-octics:

Proposition 12.1.1. Let M/k be a D4-octic. Then the Hasse norm principle holds for
M/k if and only if there exists a place v of k such that the decomposition group Dv =
Gal(Mv/kv) contains a copy of the Klein four-group V4.

Proof. Follows from [39, Corollary 2].

Remark 12.1.2. Note that a place v satisfying the conditions of Proposition 12.1.1 must
ramify. Therefore, one can decide in finite time if a given D4-octic satisfies the Hasse norm
principle.

Weak approximation

Proposition 12.1.3. Let M/k be a D4-octic. Then weak approximation holds for R1
M/kGm

if and only if the Hasse norm principle fails for M/k.

Proof. By Theorem 1.5.8 there exists an exact sequence

0→ A(T )→ H1(k,PicX)∼ →X(T )→ 0, (12.1.1)

where A(T ) is the defect of weak approximation for T , X(T ) is the Tate–Shafarevich group
of T and X is a smooth compactification of T . For the norm one torus T = R1

M/kGm, one
has a canonical isomorphism

X(T ) ∼= K(M/k) (12.1.2)

by Proposition 1.6.7 and thus (12.1.1) relates weak approximation for T with the Hasse
norm principle for M/k. Moreover, as M/k is Galois with Galois group G ∼= D4, The-
orems 1.5.12 and 1.6.8 and the fact that Ĥ

−3
(G,Z) = Z/2 (see [54, Theorem 3.3.6(iii)])

show that
H1(k,PicX)∼ ∼= Ĥ

−3
(G,Z) = Z/2. (12.1.3)

The result follows from (12.1.1), (12.1.2) and (12.1.3).
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Remark 12.1.4. Ordering norm one tori of D4-octics over Q by the conductor or dis-
criminant of the associated extension, one gets a one-to-one correspondence between (iso-
morphism classes of) tori and field extensions (see [30, Proposition 6.3]). Therefore, it
follows from Theorem 12.0.1 and Proposition 12.1.3 that 0% of norm one tori of D4-octics
over Q satisfy weak approximation, when ordered by conductor or by discriminant of the
associated field extension.

12.1.2 Counting D4-fields with local specifications

In this section we recall results of Altuğ–Shankar–Varma–Wilson [1] and describe work
in progress of Shankar–Varma [85] on the number of D4-fields over Q satisfying local
conditions at finitely many places. Throughout the section, L and M will always denote a
D4-quartic and a D4-octic over Q, respectively. By an étale algebra over a field k we mean
a k-algebra which is isomorphic to a finite product of finite separable field extensions of k.

Counting by conductor

Following [1], we define the conductor f(M) of M as the Artin conductor of the (unique
up to conjugacy) irreducible 2-dimensional Galois representation

ρM : Gal(Q/Q)→ GL2(C)

that factors through Gal(M/Q) ∼= D4. Similarly, the conductor f(L) of L is defined to be
the conductor of its normal closure. In [1], the authors determined the asymptotic number
of D4-quartics ordered by conductor with prescribed local specifications, defined as follows:

Definition 12.1.5. • For each place v of Q, a quartic local specification is a set Σv con-
sisting of pairs (Lv, Kv), where Lv is (an isomorphism class of) a quartic étale algebra
over Qv and Kv is (an isomorphism class of) a quadratic subalgebra of Lv.

• A collection of quartic local specifications Σ = (Σv)v is said to be acceptable if, for all but
finitely many primes p, the set Σp contains all pairs (Lp, Kp) with conductor not divisible
by p2, where the conductor of (Lp, Kp) is defined as C(Lp, Kp) = Disc(Lp)/Disc(Kp).

We now recall the main result of [1]. Let X be a positive real number and Σ an
acceptable collection of quartic local specifications. Denote by L(Σ) the set of D4-quartics
L such that (L ⊗ Qv, K ⊗ Qv) ∈ Σv for all places v (where K is the quadratic subfield of
L) and by N4(Σ, |f| < X) the number of isomorphism classes of field extensions in L(Σ)
whose conductor is bounded by X.
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Theorem 12.1.6. [1, Theorem 3] If Σ = (Σv)v is an acceptable collection of quartic local
specifications such that Σ2 contains every pair (L2, K2), consisting of a quartic étale algebra
L2 over Q2 containing a quadratic subalgebra K2, then

N4(Σ, |f| < X) ∼ 1

2
·
( ∑

(L,K)∈Σ∞

1

# Aut(L,K)

)
·
∏
p

( ∑
(Lp,Kp)∈Σp

1

# Aut(Lp,Kp)

1

Cp(Lp,Kp)

)(
1−1

p

)2

·X logX,

(12.1.4)

where for all places v, Aut(Lv, Kv) consists of the automorphisms of Lv which send Kv to
itself and Cp(Lp, Kp) := p-part of C(Lp, Kp).

In Table 1 of the Appendix we record the values of the invariants Cp(Lp, Kp) and
Aut(Lv, Kv) for the different isomorphism classes of pairs (Lp, Kp). As a consequence of the
data therein (which is given in terms of the splitting types of Lp andKp, see Definition 12.2.1
and the paragraphs preceding Table 1), we obtain the asymptotic number N4(D4, |f| < X)
of D4-quartics with conductor bounded by X:

Corollary 12.1.7. N4(D4, |f| < X) ∼ 3
8
·
∏
p

(
1 + 2

p
+ 2

p2

)(
1− 1

p

)2 ·X logX.

Counting by discriminant

The strong form of Malle’s conjecture [70] predicts that the number N(k,G,X) of degree
n extensions K of a number field k with Galois group G and |Nk/Q(DiscK/k)| ≤ X satisfies

N(k,G,X) ∼ c(k,G)X
1

α(G) (logX)β(k,G)−1, (12.1.5)

where α(G) and β(k,G) are explicit positive constants and c(k,G) > 0. This prediction
has been verified in plenty of cases, for example when G is an abelian group by work of
Wright ([100]), for G = Sn when n = 3 by Datskovsky–Wright ([24]) and n = 4, 5 by
Bhargava ([8], [11]), for G = S3 ⊂ S6 by Bhargava–Wood ([10]) and for G = D4 ⊂ S4 by
Cohen–Diaz y Diaz–Olivier ([19]). However, this conjecture is not always true in the form
given in (12.1.5), as Klüners ([56]) found the counter-example G = C3 o C2 ⊂ S6 for which
the constant β(k,G) is too small. The number α(G) in (12.1.5) is nonetheless still widely
believed to be correct and corrections for the constant β(k,G) have also been proposed,
see [89].

In [9], Bhargava observed that the constant c(k,G) in the predicted estimate (12.1.5)
satisfies a certain local-global compatibility for degree n ≤ 5 Sn-extensions. More pre-
cisely, in this case the constant c(k,G) can be realized as an Euler product of local p-adic
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masses, derived from the heuristic assumption that local behaviors of a random extension
at different places of k are independent. In the same paper, Bhargava also conjectures that
such a local-global compatibility holds when n > 5 and further speculates that a similar
phenomenon might hold for any Galois group G and any base field k. Such a compatibility
is now called the Malle–Bhargava principle and it has only been analyzed in a few cases.
For instance, it is also known to hold when G is an abelian group of prime exponent by
the work of Mäki [68] and Wright [100] (see also [98]) as well as for sextic S3-extensions by
the work of Bhargava–Wood [10].

Nonetheless, the Malle–Bhargava principle may fail. In [1, Section 3.3], Altuğ–Shankar–
Varma–Wilson use the work of Cohen–Diaz y Diaz–Olivier [19] in order to verify that the
family of D4-quartics over Q does not satisfy the Malle–Bhargava principle. Furthermore,
in work in progress [85], Shankar and Varma not only establish the strong Malle’s conjecture
for D4-octics over Q, but also prove that the Malle–Bhargava principle does hold in this
family. We now outline their main result.

Definition 12.1.8. • For any place v of Q, a D4-type at v is a D4-conjugacy class of con-
tinuous group homomorphisms ρv : Gal(Qv/Qv) → D4. An octic étale algebra Mv over
Qv is ofD4-type if there exists a continuous group homomorphism ρv : Gal(Qv/Qv)→ D4

such that Mv
∼= IndD4

Im ρv
QKer ρv
v , i.e. Mv is isomorphic to # Coker(ρv) copies of the fixed

field of Ker(ρv) in Qv. In this case, we further say that Mv is of D4-type [ρv].

• For a finite place p of Q, an octic local specification is a set Σp consisting of pairs
(Mp, [ρp]), where Mp is an isomorphism class of an octic étale algebra of Qp of D4-type
[ρp]. For the infinite place∞ of Q, an octic local specification Σ∞ is a subset of {R8,C4}.

• A collection of octic local specifications Σ = (Σv)v is said to be finite if, for all but finitely
many primes p, Σp contains all pairs (Mp, [ρp]), where Mp is an octic étale algebra of Qp

of D4-type [ρp].

Let X be a positive real number and Σ a finite collection of octic local specifications.
Denoting by F(Σ) the set of D4-octics M such that (M ⊗Qv, [ρM,v]) ∈ Σv for all places v
of Q and by N8(Σ, |∆| < X) the number of isomorphism classes of D4-octics in F(Σ) with
discriminant ∆ bounded by X, we have:

Theorem 12.1.9. [85, Theorem 2, in preparation] If Σ = (Σv)v is a finite collection of
octic local specifications such that Σ2 contains all D4-types, then

N8(Σ, |∆| < X) ∼ 1

4
·
( ∑

(M,ρ)∈Σ∞

1

# AutD4
(ρ∞)

)
·
∏
p

( ∑
(Mp,ρp)∈Σp

1

# AutD4
(ρp)

1

|∆(Mp)|
1
4

)(
1−1

p

)3

·X 1
4 log2(X

1
4 ),
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where for all places v, AutD4(ρv) denotes the centralizer of the subgroup Im ρv of D4.

Using the tabulated values of ∆(Mp) and AutD4(ρp) in Table 1, we obtain the follow-
ing asymptotic formula for the number N8(D4, |∆| < X) of D4-octics with discriminant
bounded by X:

Corollary 12.1.10. N8(D4, |∆| < X) ∼ 1
4
· 3

4
· 1

8
(56+3

√
2

16
)·
∏
p

(1+ 3
p
+ 1

p
3
2

)(1− 1
p
)3·X 1

4 log2(X
1
4 ).

12.2 Proof of the main theorem

In this section we show how to deduce Theorem 12.0.1 from the results of Sections 12.1.1
and 12.1.2. We require the following definition:

Definition 12.2.1. Let p be a prime andMp an étale algebra over Qp. ThenMp =
g⊕
i=1

Kp,i,

where Kp,i are finite field extensions of Qp, and we define the splitting type ς(Mp) of Mp

at p as the symbol (f e11 f
e2
2 . . . f

eg
g ), where ei (respectively, fi) is the ramification index

(respectively, residue degree) of Kp,i. Given a number field M , we define the splitting type
ςp(M) of M at p as the splitting type of M ⊗Qp.

12.2.1 Proof of the conductor result of Theorem 12.0.1

For each n ≥ 1, we define a collection of quartic local specifications Σ4
n = ((Σ4

n)v)v as
follows. Let Pn be the set of the first n odd primes. For a prime p ∈ Pn, we require
that (Σ4

n)p contains all pairs (Lp, Kp) of a quartic étale algebra Lp/Qp and a quadratic
subalgebra Kp such that the pair of splitting types (ς(Lp), ς(Kp)) is not ((22), (12)) nor
((122), (11)) (highlighted in bold in Table 1). For a place v of Q not in Pn, we let (Σ4

n)v
contain all pairs (Lv, Kv) of a quartic étale algebra Lv/Qv with quadratic subalgebra Kv.
It is clear that the collection Σ4

n constructed in this way is acceptable.

Note that if a D4-quartic L with normal closure M is not in L(Σ4
n) for some n ≥ 1,

then there exists p ∈ Pn such that the pair of splitting types (ςp(L), ςp(K)) (where K is
the quadratic subfield of L) is ((22), (12)) or ((122), (11)). In either case, one can see from
Table 1 that this implies that the decomposition group Dp of M/Q at p is isomorphic to
V4 and so the HNP holds for M/Q by Proposition 12.1.1. Therefore the set Lfail of all
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D4-quartics whose normal closure fails the Hasse norm principle is contained in L(Σ4
n) for

all n. Since, up to isomorphism, each D4-octic has two distinct quartic subfields which are
D4-quartics, we have

#{M |M is a D4-octic failing the HNP and f(M) < X}
#{M |M is a D4-octic and f(M) < X}

=
1
2
#Lfail(|f| < X)

1
2
N4(D4, |f| < X)

≤ N4(Σ4
n, |f| < X)

N4(D4, |f| < X)

for all n and so to prove Theorem 12.0.1 it suffices to show that lim
n→∞

lim
X→∞

N4(Σ4
n,|f|<X)

N4(D4,|f|<X)
= 0.

This follows from the next lemma and a standard criterion for the divergence of an infinite
product.

Lemma 12.2.2.

lim
X→∞

N4(Σ4
n, |f| < X)

N4(D4, |f| < X)
=
∏
p∈Pn

(
1− p

p2 + 2p+ 2

)

Proof. Using the data in Table 1, it is easy to compute the Euler factor in (12.1.4) for any
quartic local specification Σ4

p at an odd prime p ∈ Pn and one obtains∑
all pairs (Lp,Kp)

1

# Aut(Lp, Kp)

1

Cp(Lp, Kp)
= 1 +

2

p
+

2

p2

and ∑
(Lp,Kp)∈(Σ4

n)p

1

# Aut(Lp, Kp)

1

Cp(Lp, Kp)
= 1 +

1

p
+

2

p2
.

The result follows from an application of Theorem 12.1.6.

12.2.2 Proof of the discriminant result of Theorem 12.0.1

We proceed similarly as in Section 12.2.1: let n ≥ 1 and let Pn be the set of the first
n odd primes. We define a finite collection of octic local specifications Σ8

n = ((Σ8
n)v)v

analogously to Section 12.2.1. Namely, for p ∈ Pn, let (Σ8
n)p be the set of all octic local

specifications (Mp, [ρp]) such that the pair of splitting types (ς(Lp), ς(Kp)) is not ((22), (12))

nor ((122), (11)), where Lp = M
〈s〉
p and Kp = M

〈s,r2〉
p . For v 6∈ Pn, we let (Σ8

n)v contain all
octic local specifications at v.
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As in Section 12.2.1, we see that if M is an octic D4-field failing the Hasse norm
principle, then M ⊗Qv ∈ (Σ8

n)v for all v and all n and therefore

#{M |M is a D4-octic failing the HNP, |Disc(M)| < X}
N8(D4, |∆| < X)

≤ N8(Σ8
n, |∆| < X))

N8(D4, |∆| < X)

for every n. Theorem 12.0.1 then follows from the fact that lim
n→∞

lim
X→∞

N(Σ8
n,|∆|<X))

N8(D4,|∆|<X)
= 0,

which can be deduced from a standard criterion on the divergence of infinite products and
the following lemma.

Lemma 12.2.3.

lim
X→∞

N8(Σ8
n, |∆| < X))

N8(D4, |∆| < X)
=
∏
p∈Pn

(
1− p

p2 + 3p+ p
1
2

)

Proof. Analogously to the proof of Lemma 12.2.2, this equality follows from an application
of Theorem 12.1.9 and the data in Table 1.

12.3 Appendix: Local data for D4-extensions

Let p be a prime and let Mp be (an isomorphism class of) an octic étale algebra of Qp of
D4-type [ρp] as in Definition 12.1.8. Let Lp be a quartic étale algebra over Qp contained in
Mp and letKp be a quadratic subalgebra of Lp. Using a database of local fields (such as [53]
or [61]), it is easy to check that the automorphism groups appearing in Theorems 12.1.6
and 12.1.9 coincide2, i.e. we have

Aut(Lp, Kp) = AutD4(ρp).

One can additionally verify that these automorphism groups as well as the invariants
Cp(Lp, Kp),∆(Mp) and the decomposition group Dp = Im ρp are completely determined
by the splitting type of the algebras Mp, Lp and Kp.

In the following table we record all possible splitting types ς (defined in 12.2.1) at an
odd prime p of an étale algebra Mp over Qp of D4-type and of the relevant subalgebras,
the number of isomorphism classes of such objects as well as the associated decomposition
groups Dp and invariants Cp and ∆ appearing in Theorems 12.1.6 and 12.1.9, respectively.

2A non-computational proof of this fact will also appear in a future version of [85].
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Table 1

Dp ς(Mp) (ς(Lp), ς(Kp)) #(Lp,Kp) Aut(Lp,Kp) Cp(Lp,Kp) ∆(Mp)

{1} (11111111) ((1111),(11)) 1 D4 1 1
〈r2〉 (2222) ((22), (11)) 1 D4 1 1
〈rs〉 (2222) ((22), (2)) 1 V4 1 1
〈s〉 (2222) ((112), (11)) 1 V4 1 1
〈r〉 (44) ((4), (2)) 1 C4 1 1
{s} (12121212) ((1211), (11)) 2 V4 p p4

〈s, r2〉 (2222) ((122), (11)) 2 V4 p p4

〈rs〉 (12121212) ((1212), (12)) 2 V4 p p4

〈rs, r2〉 (2222) ((22), (12)) 2 V4 p p4

〈r2〉 (12121212) ((1212), (11)) 2 D4 p2 p4

〈r2, s〉 (2222) ((1212), (11)) 1 V4 p2 p4

〈rs, r2〉 (2222) ((22), (2)) 1 V4 p2 p4

〈r〉 (2222) ((22), (2)) 1 C4 p2 p4

〈r〉 (1414) ((14), (12)) (4, 0) C4 p2 p6

D4 (24) ((14), (12)) (0, 2) C2 p2 p6

In the column of Table 1 containing the number of pairs #(Lp, Kp), the number (a, b)
equals a if p ≡ 1 (mod 4), or b if p ≡ 3 (mod 4). We also present the analogous table for
the prime p = 2 obtained using databases of local fields [53] and [61]:

Table 2

D2 ς(M2) (ς(L2), ς(K2)) #(L2, K2) AutD4(ρ2) C2(L2, K2) ∆(M2)
{1} (11111111) ((1111),(11)) 1 D4 1 1
〈r2〉 (2222) ((22),(11)) 1 D4 1 1
〈rs〉 (2222) ((22),(2)) 1 V4 1 1
〈s〉 (2222) ((112),(11)) 1 V4 1 1
〈r〉 (44) ((4),(2)) 1 C4 1 1
{s} (12121212) ((1211), (11)) 2 V4 22 28

{s} (12121212) ((1211), (11)) 4 V4 23 212

〈s, r2〉 (2222) ((122), (11)) 2 V4 22 28

〈s, r2〉 (2222) ((122), (11)) 4 V4 23 212

〈rs〉 (12121212) ((1212), (12)) 2 V4 22 28

〈rs〉 (12121212) ((1212), (12)) 4 V4 23 212

〈rs, r2〉 (2222) ((22), (12)) 2 V4 22 28

〈rs, r2〉 (2222) ((22), (12)) 4 V4 23 212

〈r2〉 (12121212) ((1212), (11)) 2 D4 24 28
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〈r2〉 (12121212) ((1212), (11)) 4 D4 26 212

〈r2, s〉 (2222) ((1212), (11)) 1 V4 24 28

〈r2, s〉 (2222) ((1212), (11)) 2 V4 26 212

〈r2, s〉 (1414) ((1212), (11)) 4 V4 26 216

〈r2, s〉 (1414) ((1212), (11)) 8 V4 25 216

〈rs, r2〉 (2222) ((22), (2)) 1 V4 24 28

〈r〉 (2222) ((22), (2)) 1 C4 24 28

D4 (24) ((22), (2)) 2 C2 24 28

〈rs, r2〉 (2222) ((22), (2)) 2 V4 26 212

〈r〉 (2222) ((22), (2)) 2 C4 26 212

D4 (24) ((22), (2)) 2 C2 26 212

〈rs, r2〉 (1414) ((14), (12)) 4 V4 26 216

〈rs, r2〉 (1414) ((14), (12)) 8 V4 25 216

〈r〉 (1414) ((14), (12)) 8 C4 28 222

D4 (24) ((14), (12)) 2 C2 24 212

D4 (24) ((14), (12)) 2 C2 26 216

D4 (18) ((14), (12)) 16 C2 27 222

D4 (24) ((14), (12)) 4 C2 28 222

D4 (18) ((14), (12)) 8 C2 28 224
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[91] V. E. Voskresenskĭı, Birational properties of linear algebraic groups. Izv. Akad. Nauk
SSSR Ser. Mat. 34 (1970) 3–19. English translation: Math. USSR-Izv. Vol. 4 (1970),
1–17.
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