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Abstract 

Starting from the classical Saltzman 2D convection equations, we derive via a severe spectral truncation a minimal 10 

ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical 

system which includes a decoupled, generalized Lorenz system. The consideration of this process breaks an important 

symmetry, couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties 

of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different 

from zero, an additional time scale of O(Ec-1) is introduced in the system, as shown with standard multiscale analysis 

and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables 

feature long term memory with 1/f 3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the 

strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke 

attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes 

some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex 

systems dynamics, such as the interaction between slow and fast variables, the presence of long term memory and the 

associated extreme value statistics. This analysis shows how, neglecting the coupling of slow and fast variables only on 

the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical 
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properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale 

processes.  

 

1. Introduction 

The Lorenz system [1] has a central role in modern science as it has provided the first example of 

low-dimensional chaos [2], and has literally paved the way for new scientific paradigms. The 

Lorenz system can be derived with a minimal truncation of the Fourier-modes projection of the 2D 

Boussinesq convection equations introduced by Saltzman [3], where a specific selection of the 

spatial symmetry of the fields is considered. Extensions of the Lorenz system taking into account 

higher-order spectral truncations in the 2D case have been presented, see e.g. [4,5,6], whereas in [7] 

the standard procedure has been extended to the 3D case. 

The mathematical properties of the Lorenz system have been the subject of an intense 

analysis, which has addressed the bifurcations as well as the characteristics of the strange attractors 

realized within certain parametric ranges. In particular, we wish to mention the investigation of 

Feigenbaum sequences of bifurcations [8] and the study of the properties of its attractor via the 

analysis of unstable periodic orbits [9]. For several classic results, see [10]. Recently, at more 

theoretical level, the investigation of Lorenz-like systems has stimulated the introduction of the 

family of singular hyperbolic systems as extension of the family of hyperbolic systems [11]. 

Moreover, moving from the theory developed for non-equilibrium systems [12] starting from the 

Ruelle response theory [13,14], in a recent paper a careful verification on the Lorenz system of the 

Kramers-Kronig dispersion relations and sum rules has been performed [15].  

In spite of its immense value, the Lorenz system does not provide an efficient representation 

of several crucial phenomena typically associated to complex, chaotic systems. When looking at 

finite time predictability properties, the Lorenz system features an unrealistic return-of-skill in the 

forecast, i.e. there are regions in the attractor within which all infinitesimal uncertainties decrease 

with time [16]. Additionally, the Lorenz system does not feature an interplay between fast and slow 

variables, so that it cannot mimic the coupling between systems with different internal time scales. 
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Palmer [17] introduced artificially ad hoc components to the Lorenz system in order to derive a toy-

model able to generate low-frequency variability. Moreover, as discussed in [18], the Lorenz system 

does not allow for a closed-form computation of the  entropy production.  

Some pathologies emerge also when looking at the relationship between the Lorenz system 

and higher order spectral truncation of the Saltzman equations. Recently, Chen and Price showed 

that the Lorenz system is a specific member of an class of equivalence of systems whose dynamics 

is invariant with respect to a symmetry transformation [19]. 

In this work, we wish to propose a minimal dynamical system, possibly with some 

paradigmatic value, able to overcome some of the limitation of the Lorenz system, and endowed 

with a much richer dynamics. Starting from the 2D convection equations, we derive with a 

truncation à la Lorenz a minimal 10 d.o.f. ODEs system which includes the description of the 

thermal effect of viscous dissipation. We discuss how, while neglecting this process lead us to a 

dynamical system which includes a decoupled (generalized) Lorenz system, its consideration breaks 

an important symmetry of the systems, couples the dynamics of fast and slow variable, with the 

ensuing modifications to the structural properties of the attractor and in the spectral features of the 

system. Numerical results are provided for a specific selection of parameters’ values based upon the 

classical Lorenz choice. 

 

2. Rayleigh-Benard Convective System 

We consider a thermodynamic fluid having kinematic viscosity ν , thermal conductivity k, thermal 

capacity at constant volume , and linearized equation of state vC ( T )αρρ −= 10 . The 2D ( )zx,  

Rayleigh–Benard top-heavy convective system confined within [ ]Hz ,0∈  can be completely 

described, when adopting the Boussinesq approximation, by the following system of PDEs:  
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where g is the gravity acceleration, ( ) ( )ψψ xzwuv ∂∂−== ,,r , θ+∆−= HTzTT 0 , with H  

uniform depth of the fluid and T∆  imposed temperature difference. The suitable boundary 

conditions in the case of free-slip system are ( ) ( ) 0,0, ==== Hzxzx θθ  and 

( ) ( ) ( ) ( ) 0,0,,0, 22 ==∇==∇==== HzxzxHzxzx ψψψψ  for all values of x. These PDEs can 

be non-dimensionalized by applying the linear transformations ,x̂Hx =  ,ẑHz = ,ˆ2 tkHt =  

,ψ̂ψ k= and ( )θανθ ˆ3Hgk= : 
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,    (2a-2b) 

 

where kνσ =  is the Prandl number, ( )να kTHgR ∆= 3  is the Rayleigh number, and 

( )22 THCkEc v∆=  is the Eckert number, and the suitable boundary conditions are 

 and ( ) ( ) 01ˆ,ˆˆ0ˆ,ˆˆ ==== zxzx θθ ( ) ( ) ( ) ( ) 01ˆ,ˆˆˆ0ˆ,ˆˆˆ1ˆ,ˆˆ0ˆ,ˆˆ 22 ==∇==∇==== zxzxzxzx ψψψψ . The 

Eckert number in Eq. 2b quantifies the impact of viscous dissipation on the thermal balance of the 

system. As this number is usually rather small in actual fluids, the corresponding term in the 

2previous set of PDEs is typically discarded. Following the strategy envisioned by Saltzman [3] and 

Lorenz [1], we perform a truncated Fourier expansion of ψ̂  and , assuming that they are periodic 

along the  and  with periodicity of 

θ̂

x̂ ẑ a2  and , respectively. When boundary conditions are 

considered, we then derive a set of ODEs describing the temporal evolution of the corresponding 

(complex valued) modes  and , which are associated to the wavevector 

2

nm,Ψ nm,Θ ( )manK ππ ,=
r

. 
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See [3] for a detailed derivation in the case 0=Ec , considering that the sign of the term 

proportional to R  is wrong in both Eqs. 34 and 35.  In the case 0=Ec , the seminal Lorenz system 

can be derived by severely truncating the system, considering the evolution equation for the real 

part of  and for the imaginary parts of 1,1Ψ 1,1Θ  and 2,0Θ , and performing suitable rescaling (see 

below). While  has no real part because of the boundary conditions [3], neglecting the 

imaginary (real) part of 

2,0Θ

1,1Ψ  ( ) amounts to an arbitrary  selection of the phase of the waves in 

the system. An entire hierarchy of generalized Lorenz models, all obeying to this constraint, can be 

derived with lengthy but straightforward calculations. See, e.g., [4-6] for detailed discussion of 

these models. 

1,1Θ

 

3. Symmetries of the extended Lorenz system 

In this work we include the modes , 1,1Ψ 2,2Ψ , 1,1Θ , 2,2Θ  in our truncation, and retain both the real 

and the imaginary parts, whereas the considered horizontally symmetric modes  and  2,0Θ 4,0Θ  are, 

as mentioned above, imaginary. Finally, we assume, in general, a non vanishing value for . If we 

define 

Ec

( )211,1 iXX +=Ψ α , ( )211,1 iYY +=Θ β , ( )212,2 iAA +=Ψ α , ( )212,2 iBB +=Θ β , 12,0 Ziγ=Θ , 

and 24,0 Ziγ=Θ , with ( ) ( )aa 2212 +=α , ( ) ( )2323 221 aa += πβ , ( ) ( )2323 21 aa += πγ , set 

21=a  [1], we derive the following system of real ODEs: 
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   (3a-3l) 

 

where the dot indicates the derivative with respect to ( ) tta 222 231 ππτ =+= ,  

( )427 4πRRRr c ==  is the relative Rayleigh number, and   is a geometric factor. Note that if 

we exclude the faster varying modes  and 

b

2,2Ψ 2,2Θ  in our truncation (as in the Lorenz case) the 

Eckert number is immaterial in the equations of motion, the basic reason being that viscous 

dissipation acts on small spatial scales. Therefore, the ODEs (3a-3l) provide the minimal system 

which includes the feedback due to the thermal effect of viscosity. 

If we retain all the variables in the system (3a-3l) and  is set to 0, the following 

symmetry is obeyed. Let 

Ec

( ) ( ) ( ) ( ) ( )( )TtZtBtAtYtXStS ,,,,),( 0 =  - with ( ) ( ) (( )ttt 21 ,••= )•  - be a 

solution of the system with initial conditions ( ) ( ) ( ) ( ) ( )( )TZBAYXS 0,0,0,0,00 = . We then have that:  

 

( ) ( )( ) ( 00
1 ,,,, StSSTtST =− φωφω )

)

       (4) 

 

for all , where ( ) 2, ℜ∈φω ( φω,T  is a real, linear, orthogonal ( ( ) ( )φωφω ,,1 TTT =− )  

transformation: 
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( )
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⎟
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⎜
⎜
⎜
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⎟
⎟
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⎜
⎜
⎜
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⎛
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,
φ

φ

ω

ω

φω ,     (5) 

 

with I being the 2X2 identity matrix and  being the 2X2 rotation matrix of angle ξR ξ . The 

( )φω,T -matrix shifts the phases of both the 1,1Ψ  and 1,1Θ  waves by of the same angle ω  and, 

independently,  the phases of both the  and 2,2Ψ 2,2Θ  waves by the same angle φ . The symmetry (4-

5) gives a solid framework to and generalizes the results by Chen and Price [19].  

 

4. Statistical properties of the system – symmetric case 

In the  case, we expect the presence of degeneracies in the dynamics, leading to non-

ergodicity of the system. Since, from (4), we have that 

0=Ec

( )( ) ( ) ( )00 ,,,, StSTSTtS φωφω = , we readily 

obtain that the statistical properties of the flow depend on the initial conditions, and that by suitably 

choosing the matrix ( )φω,T , we can, e.g., exchange the statistical properties of   and   with 

those of  and  by setting 

1X 1Y

2X 2Y 2πω =  (and similarly for the A and B variables by setting 

2πφ = ). Whereas, in actual integration, numerical noise coupled with sensitive dependence on 

initial conditions (see below) breaks the instantaneous identity ( )( ) ( ) ( 00 ,,,, StSTSTtS )φωφω =  after 

sufficiently long time, the statistical properties of the observables transform according to the 

symmetry defined in Eq. (5).  

The dynamics of the variables ( )12121 ,,,, ZYYXX  defines an extended Lorenz system [19]. 

The classical three-component system results from a specific selection of the phase of the waves of 

the system, which is obtained by setting vanishing initial conditions for  and . With such as 

choice, we have that 

2X 1Y

012 == YX  at all times, whereas the x and y variables of the Lorenz system 

are  and , respectively. As a consequence of the symmetry given in Eqs. (4-5), the statistical 1X 2Y
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properties of  do not depend on the initial conditions, and agree with those of the z variable of the 

classical Lorenz system. Moreover, the statistical properties of the quadratic quantities 

, , and 

1Z

2
2

2
1

2 XXX +≡ 2
2

2
1

2 YYY +≡ 1221 YXYXXY −≡  do not depend on the initial conditions 

(whereas those of each term in the previous sums do!), and agree (for all values of r , σ , !) with 

those of  and , and 

b

2x 2y xy  of the classical Lorenz system, respectively. Analogously, since the 

symmetry defined in Eq. (5) is obeyed, the statistical properties of  depend on the 

initial conditions, whereas the statistical properties of the quadratic quantities  

, , and of  are well defined. The symmetry (4-5) implies that the 

attractor of the system (3a-3l) can be expressed as a Cartesian product of a 2-torus times a 

“fundamental” attractor. The initial conditions will define where on the torus the system is located. 

2121 ,,, BBAA

2
2

2
1

2 AAA +≡

2
2

2
1

2 BBB +≡ 1221 BABAAB −≡ 2Z

From a physical point of view, the symmetry (4-5) is related to the fact that the system does 

not preferentially select streamfunction and temperature waves of a specific phase, and, does not 

mix phases. Therefore, in a statistical sense, the relative strength of waves with the same periodicity 

but different phase can be arbitrarily chosen by suitably selecting the initial conditions. Instead, the 

statistical properties of the space-averaged convective heat transport, which is determined by a 

linear combination of  and , as well as those of the total kinetic energy (determined by a linear 

combination of 

1Z 2Z

2X  and )  and available potential energy (determined by a linear combination of 2A

2Y  and 2B ) of the fluid [3] must not depend on the initial conditions  - but only on the system’s 

parameters - as they are robust (thermo-)dynamical properties of the flow.  

In general, since the dynamics of the variables ( )12121 ,,,, ZYYXX  is entirely decoupled from 

that of the variables ( , the attractor of the system (3a-3l) will be strange at least 

for the same values of the parameters 

)22121 ,,,, ZBBAA

r , σ ,  providing the classical Lorenz system with a chaotic 

dynamics. See [20, 21] for a detailed analysis of the chaotic parameter region of the classical 

Lorenz system. Additionally, strange attractors could result from choices of the values of 

b

r , σ ,  b
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determining a chaotic dynamics for the ( )22121 ,,,, ZBBAA  variables and a trivial or periodic 

behavior for the  variables. ( )12121 ,,,, ZYYXX

With the “classical” Lorenz parameter values 28=r , 10=σ , 38=b , the variables 

 obviously have an erratic behavior, whereas the variables , 

which describe the faster spatially varying wave components, do not feature any time variability 

when asymptotic dynamics is considered, as they converge to fixed values 

( 12121 ,,,, ZYYXX ) ( )22121 ,,,, ZBBAA

( )∞∞∞∞∞
22121 ,,,, ZBBAA . 

As discussed above, the values of ( )∞∞∞∞
2121 ,,, BBAA  depend on the initial conditions, whereas, after 

some algebraic manipulations on Eqs (3e-3h, 3l), we obtain ( ) ( )8282 −=
∞ rbA , 

( ) ( )8282 −=
∞ rbB , 822 −=∞ rZ , and ( ) ( )82 −=∞ rbAB . 

In general, since the fundamental properties of the system do not depend on where in the 2-

torus the system converges, despite the fact that ergodicity is not obeyed, it makes sense to compute 

the Lyapunov exponents [2,22] of the system (3a-3l). In fact, if we compute the Lyapunov 

exponents ( )10,...,
1

λλ  using the algorithm by Benettin et al. [23] with the classical Lorenz 

parameter values, we obtain the same results independently of the initial conditions. The sum of the 

Lyapunov exponents is given by the trace of the jacobian J of the system (3a-3l) and yelds 

. In particular, we obtain one positive exponent 

(

( ) ( ) 333.123225 −≈++−== ∑ bJTr j σλ

905.0
1
≈λ ), which gives the metric entropy ∑

>

=
0j

jh
λ

λ  of the system [2] and matches exactly the 

same value as the positive Lyapunov exponent in the classical Lorenz system, and three vanishing 

exponents 0432 === λλλ . The non-hyperbolicity of the system, as described by the presence of 

two additional vanishing exponents, is related to the existence of two neutral directions due to the 

symmetry property (4-5). Moreover, we have 6 negative Lyapunov exponents, one of which agrees 

with the negative exponent of the Lorenz system ( 572.148 −≈λ ). Given the very structure (and 
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derivation) of the model discussed above, the fact that we recover the classical results of the 3-

component Lorenz system is quite reinsuring. The Kaplan-Yorke dimension [24] of the system is: 

 

183.4
1

1 ≈+=
+

=
∑

k

k

j
j

KY kd
λ

λ
       (6) 

 

where k is such that the sum of the first k (4, in our case) Lyapunov exponents is positive and the 

sum of the first k+1 Lyapunov exponents is negative. 

 

5. Symmetry-break and phase mixing 

Considering a non-vanishing value for  amounts to including an additional coupling between the 

temperature and the streamfunction waves. Such a coupling breaks the symmetry (4-5), so that a 

dramatic impact on the attractor properties is expected. Using standard multiscale procedure, we 

can emphasize the emergence of the additional time scale . We introduce a slow time variable 

Ec

1−Ec

tετ =  with Ec=ε . Then we take the expansion ( ) ( ) ( ) ( ) ...,..,, 10 ++++= τετετ tVtVtVtV j
n

njjj  

where  is a generic variable of the ODEs system considered, we redefine the time 

derivative 

10,...,1, =jV j

dtd  as τε ∂∂+∂∂≡ tdtd , we plug these new definitions in Eqs. (3a-3l), and group 

together terms with the same power of ε .  At zero order – the τ  variable is frozen -  we  obtain that 

the variables  obey the Eqs. (3a-3l) with jV0 0=Ec . Therefore, for time scales shorter than ( )1−εO , 

the symmetries (4-5) described in the previous section are approximately obeyed, which confirms 

that our multiscale expansion is well-defined.  

We hereby consider the specific case where we select the classical values for the other 3 

parameters of the system, so that , 28=r 10=σ , 38=b . When large values of  are considered 

( ), the system loses its chaotic nature as no positive Lyapunov exponents are detected 

(not shown), whereas periodic motion is realized. The analysis of this transition and of this regime 

Ec

045.0>Ec
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is beyond the scopes of this paper, as we confine ourselves to studying the properties of the system 

when chaotic motion is realized, thus focusing on the  limit. We consider . 0→Ec [ ]02.0,0∈Ec

In physical terms, the coupling allows for a mixing of the phases of the thermal and 

streamfunction waves: after a ( )1−εO  time the system “realizes” that the symmetry (4-5) is broken, 

so that  the previously described degeneracies are destroyed and ergodicity is established in the 

system. Note that, since also in the case of  the convection does not preferentially act on 

waves of a specific phase, we have that, pairwise, the statistical properties of  and , and of  

and  are identical and do not depend on the initial conditions. The same applies for the  and 

0>Ec

1X 2X 1Y

2Y− A

B  pairs of variables, respectively. If, in particular, we consider the long term averages of the 

observables 2X , 2Y , XY , 2A , 2B , and AB , we obtain that in all cases the two 

addends give the same contribution, e.g. 22
2

2
1 21 XXX == . In this case, long is considered 

with respect to : these results can be obtained by first and second order11−ε −= Ec ε -terms in the 

multiscale expansion envisioned above. As an example, the 22
2

2
1 21 XXX ==  identity is 

obtained by taking the long term average of the first orderε -term of Eq. (3g).  

Whereas having  is crucial for mixing the phases of waves, the impact of the 

symmetry break on the long term averages of the physically sensitive observables 

0>Ec

=O 2X , 2Y , 

, 2A 2B , , and  is relatively weak in the considered -values range, as we experimentally 

find that 

1Z 2Z Ec

( ) EcO ≈∆ log  (not shown). In particular, we obtain that with increasing values of  

thermal waves (

Ec

22 , BY ) are enhanced, faster spatially varying streamfunction waves ( 2A ) 

become stronger at the expense of slower spatially varying waves ( 2X ), and finally, the 

contribution to the convective heat transport due to the faster spatially varying mode ( 2Z ) 

increases at the expense of the slower mode ( 1Z ). Further investigation on this is surely required. 
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6. Symmetry- break and hyperbolicity 

We hereby want to take a different point of view on the process of symmetry break of the 

dynamical system and on its sensitivity with respect to , by analyzing the -dependence of the 

spectrum of the Lyapunov exponents. Again, the classical values for 

Ec Ec

r , σ ,  are considered. The 

first, crucial result system is that the system is  hyperbolic for any finite positive value of : two 

of the vanishing Lyapunov exponents branch off from 0 with a distinct linear dependence on , so 

that 

b

Ec

Ec

Ec1.52 ≈λ  and  Ec0.64 −≈λ  for 008.0<Ec , whereas 03 =λ  corresponds to the direction of 

the flow. The largest Lyapunov exponent also decreases linearly as Ec0.9905.01 −≈λ . Time scale 

separations emerges again, as the two globally unstable directions define two characteristic times 

11 λ  and 21 λ , which are  and ( )1O ( )1−EcO , respectively. All the other Lyapunov exponents 

feature a negligible dependence on , except Ec Ec0.10572.148 +−≈λ , which ensures that the sum 

of Lyapunov exponents is independent of . Therefore, we derive that  the metric 

entropy decreases with  as 

Ec 008.0<Ec

Ec ( ) EcEch 0.4905.021 −≈+= λλ , whereas the Kaplan-Yorke 

dimension can be approximately written as ( ) ( ) EcEcd KY 01.2183.44 54321 −≈++++= λλλλλ . 

For larger values of , linearity is not obeyed (except forEc 2λ  and 4λ ), whereas a faster, monotonic 

decrease of both the metric entropy and the Kaplan-Yorke dimensions are found. See Figs. 1a)-1c) 

for results for values of  up to 0.02. We then conclude that, in spite of introducing a second 

unstable direction, which is responsible for mixing the phases of the waves, the inclusion of the 

impact of the viscous dissipation on the thermal energy balance acts with continuity on the 

dynamical indicators, by reducing the overall instability, increasing the predictability of the system, 

and by confining the asymptotic dynamics to a more limited (in terms of dimensionality)  set.  

Ec

 

7. Symmetry-break and low-frequency variability  

We now focus on spectral properties of the system. We first observe that the variables , , , 

,  feature mostly ultra-low frequency variability. In order to provide some qualitative 

1A 2A 1B

2B 2Z
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highlights on these variables, in Fig. 2 we show, from top to bottom, the projection on  of three 

typical trajectories for , , and , respectively. Going from the top via 

the middle to the bottom panel, the time scale increases by a factor of 10 and 100, respectively. The 

striking geometric similarity underlines that the time scales of the dominating variability for the 

slow variables can be estimated as 

1A

310−=Ec 410−=Ec 510−=Ec

( )1−EcO , in agreement with the multiscale expansion we have 

proposed.  As we take the  limit, such a time scale goes to infinity, which agrees with the 

fact that for  these variables converge asymptotically to fixed values. Moreover, as 

0→Ec

0=Ec

( ) 28282
2

2
1

2 =−≈+= rbAAA  when -long time averages are considered, Fig. 1 suggests 

that the system switches (on short time scales) back and forth between - and -dominated 

dynamics. The same observation are made for the  and  pair of variables. 

1−Ec

1A 2A

1B 2B

On the other hand, the dynamics of , , , ,  is basically controlled by the 1X 2X 1Y 2Y 1Z ( )1O  

time scale 21 11 λλ << , so that a clear-cut separation between fast and slow variables can be 

figured out and quantitatively justified. In Fig. 3 we depict, from the top to bottom panel, some 

trajectories of the fast variable  for , , and , respectively. Similarly 

to Fig. 2, the time scale of the x-axis is scaled according to . Since  is a fast variable, the 

dominating high-frequency variability component is only barely affected by changing , because 

1X 310−=Ec 410−=Ec 510−=Ec

1−Ec 1X

Ec

1λ  has a weak dependence on , as discussed in the previous section (see also Fig. 1a). 

Nevertheless, in Fig. 3 we observe an amplitude modulation occurring on a much slower 

Ec

( )1−EcO  

time scale of the order of 21 λ . Note, as in Fig. 2, that such a slow dynamics of the “coarse 

grained”  variable for various values of  is statistically similar when the time is scaled 

according to . As in the previous case, the slow amplitude modulation determines the 

changeovers between extended periods of – and –dominated dynamics, thus ensuring the 

phase mixing and ergodicity of the system. In the  limit, as discussed above, the relative 

strength of the two phase components of the (1,1) waves is determined by the initial conditions, as 

1X Ec

1−Ec

1X 2X

0→Ec
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mixing requires  time units. The same considerations apply for the  and  pair of 

variables.  

1−≈ Ec 1Y 2Y

Further insight can be obtained by looking at the spectral properties of the fast and slow 

variables; some relevant examples of power spectra for , , and  are 

depicted in Fig. 4, where we have considered the low frequency range by concentrating on time 

scales larger than 

310−=Ec 410−=Ec 510−=Ec

110 λ . The white noise nature of the fast variable  is apparent and so is the 

overall lack of sensitivity of its spectral properties with respect to . Note that any signature of the 

amplitude modulation, which is responsible for phase mixing observed in Fig. 3, is virtually absent. 

This shows how crucial physical processes are masked, due to their weakness, when using a 

specific metric, like that provided by the power spectrum. Instead, the slow variable  has a 

distinct red power spectrum, which features a dominating 

1X

Ec

1A

23−f  scaling in the low frequency range 

(black line) between the time scales ≈ 0.5  and ≈ 10 . Such a scaling regime dominates the 

ultra-low frequency variability described in Fig. 2 and is responsible for the long-term memory of 

the signal. For higher frequencies, the spectral density

1−Ec 1−Ec

( )Pρ  decreases  -  see the sharp corner in the 

for   - as , and then a classical red noise spectrum  is realized for very low 

values of the spectral density. Note also that, in agreement with our visual perception of Fig. 2, the 

spectral density 

Ecf 5.0≈ 4−f 2−∝ f

( )Pρ  scales according to  in a large range of energy-containing time scales. 1−Ec

  

8. Summary and Conclusions 

In this work we have derived and thoroughly analyzed a 10-variable system of Lorenz-like ODEs 

obtained by a severe spectral truncation of the 2D x-z convective equations for the streamfunction 

ψ  and temperature θ  in Boussinesq approximation and subsequent nondimensionalization. In the 

truncation we retain the terms corresponding to the real and imaginary part of the modes nm,Ψ  

(streamfunction)  and nm,Θ  (temperature) associated to the x-z wavevector ( πmπan,=K )
r

 with 
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( ) (1,1=nm, ) and ( ) ( )2,2=nm, , and the imaginary part of the x-symmetric modes 0,2Θ  and 0,4Θ . As 

modes characterized by a faster varying spatial structure and different parity are added to the 

Lorenz spectral truncation, which describes the dynamics of the real part of 1,1Ψ  and of the 

imaginary part of 1,1Θ  and 0,2Θ only, the system we consider in this work represents the thermal 

impact of viscous dissipation, controlled by the Eckert number Ec. The presence of a forth 

parameter - together with the usual Lorenz parameters r (relative Rayleigh number), σ (Prandl 

number), and b (geometric factor) – marks a crucial difference between this ODEs system and other 

extensions of the Lorenz system proposed in the literature  - see, e.g., [4-6]. Moreover, as can be 

deduced following the argumentations of Nicolis [18], this system specifically allows for the 

closed-form computation of the entropy production, as the Eckert number enters into its evaluation. 

Up to our knowledge, this is the first ODE system obtained as a truncation of the convective 

equations presented in the scientific literature featuring all these additional properties. 

The following results are worth mentioning: 

1. When the Eckert number is set to 0, as common in most applications, the dynamical system 

is invariant with respect to the action of a specific symmetry group, which basically shifts 

the phases of the streamfunction and thermal waves with 0>m . At a physical level this 

implies that the initial conditions set the relative strength of waves with the same spatial 

structure but π/2 –shifted phases. These results extend the findings presented in [19], where 

a 5-variable system was considered. In particular, it is found that the Lorenz system is 

included in the ODEs system analyzed here when specific initial conditions, which  set the 

parity of the slower spatially varying modes, are selected. The absence of phase-mixing 

implies a lack of ergodicity, and the degeneracy of the dynamics is reflected also in the non-

hyperbolicity of the system. When the classical parameters’ values 28=r , 10=σ , 3/8=b  

are selected, three of the Lyapunov exponents vanish, one corresponding to the direction of 

the flow, the other two accounting for the toroidal symmetry. The value of the only positive 
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exponent coincides with that of the Lorenz system, and the value of one of the six negative 

exponents agrees with that of the negative Lyapunov exponent of the Lorenz system. 

Therefore, the Lorenz system contains already all the interesting unstable dynamics 

described by this extended ODEs system, and features exactly the same value for the metric 

entropy.  Correspondingly, while the five variables (fast) describing the modes 1,1Ψ , 1,1Θ , 

and 0,2Θ  have an erratic behavior, the other five variables (slow) converge to fixed values. 

2. When 0≠Ec , the symmetry of the system is broken, and coupling occurs between the fast 

and slow variable over a time scale ( )1EcO − . This is clarified by adopting standard 

multiscale formalism. If we select, as in the original Lorenz system, 28=r , 10=σ , 

3/8=b , the system is chaotic for 0.0450 ≤Ec< , whereas for higher values of Ec  a quasi-

periodic regime is realized. In the chaotic regime, the symmetry-break is accompanied by 

the establishment of a hyperbolic dynamics: two Lyapunov exponents branch off from zero 

(one positive, one negative) linearly with Ec . Therefore, a second unstable direction with a 

second ( )1EcO −  time scale 12 /1>>/1 λλ  is established. Overall, the impact of  the thermal-

viscous feedback is stabilizing, as indicated by the metric entropy and the Kaplan-Yorke 

attractor dimension monotonically decreasing with increasing Ec , with a marked linear 

behavior for 0.008≤Ec .  

The coupling establishes dynamics on time scales of the order of 1Ec−   responsible for the 

changeovers between extended periods of dominance of waves of specific phase, both for the slow 

and for the fast variables. Such dynamical processes, which result from small terms in the evolution 

equations, correspond to the mixing of  phases of the waves and ensures the ergodicity of the 

system. In particular, the slow variables have a non-trivial time-evolution and are characterized by a 

dominating 2/3−f  scaling in the low frequency range for time scales between  0.5 1Ec−  and  10 

1Ec− . Instead, in the case of fast variables, the phase mixing appears as a slow amplitude 
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modulation occurring on time scales of 1Ec−  which superimposes on the fast dynamics controlled 

by the ( )1O  time scale 1/1 λ . 

The system introduced in this paper features very rich dynamics and, therefore, may have 

prototypical value for phenomena generic to complex systems, such as the interaction between slow 

and fast variables and the presence of long term memory. Moreover, analysis shows how, 

neglecting the coupling of slow and fast variables only on the basis of scale analysis – as usually 

done when discarding the Eckert number - can be catastrophic. In fact, this leads to spurious 

invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the 

model losing its ability to describe intrinsically multiscale processes. We have shown that a 

standard multiscale approach allows for understanding the role of the small parameter controlling 

the coupling. This may suggest that a careful re-examination of the scaling procedures commonly 

adopted for defining simplified models, especially in the climate science community, may be 

fruitful in the development of more efficient modeling strategies. Note that in a recent study [25] we 

have tested that re-feeding the kinetic energy lost to dissipation as positive thermal forcing to the 

fluid  (which corresponds to considering 0>Ec ) brings the long-term global energy budget of the 

system closer to zero by an order of magnitude.  

Whereas the numerical values presented in this paper refer to a specific choice for the 

parameters r , σ , b , analogous properties  – like the symmetry break and the ensuing emergence of 

ergodicity and multiscale processes, the linearity of the Lyapunov exponents with respect to 1Ec− , 

the low frequency variability are expected for any triplet of r , σ ,  leading to a chaotic dynamics 

in the considered system. 

b

We can point at several possible future lines of research:  

1. extensive analysis of the properties of the proposed system for different values of  the 

parameters r , σ , b , along the lines of the detailed investigation of the phase diagram of the 

classical Lorenz system presented in [20,21]; 
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2. extension of the present analysis to higher order truncation ODEs systems, with detailed 

investigation of the 0=Ec  invariance properties, of the impact on these symmetries 

resulting from setting 0>Ec , and the ensuing multiscale analysis. This is especially 

relevant in the context of the results presented by Franceschini and Tebaldi [26] and 

Franceschini et al. [27], who emphasized that spectral truncation and modes selections 

procedures have to be critically addressed.  

3. definition, following [7], of the minimal truncated 3D model of convection able to represent 

the thermal impact of viscous dissipation; 

analysis of the long-term memory of the slow variables and of the related statistical properties 

of  extreme events in terms of the Ec-dependence of  GEV parameters [28,29]; 

4. investigation of how predictability properties of the system depend on Ec: is there a range of 

values of Ec without exhibiting the unrealistic return of forecast accuracy as shown in 

several low dimensional systems, see e.g. [16];  

5. evaluation of the entropy production of the system, along the lines of Nicolis [18]. 
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(a)  

(b)  

(c)  
Figure 1: Four largest Lyapunov exponents (a), metric entropy h (b) and Kaplan-Yorke dKY dimension (c) as a 

function of Ec. Note the continuity for Ec = 0 of all parameters and the distinct linear behavior - see specifically 

the dashed lines in (b)  and (c) - for Ec < 0.008.  The linear behavior of the second and fourth Lyapunov 

exponents branching off zero in (a) extends throughout Ec ≈ 0.018.  Details in the text. 
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Figure 2: Impact of the viscous-thermal feedback on the time scales of the system. From top to bottom: typical 

evolution of the variable A1 for different values of the Eckert number (Ec = 10-3, Ec = 10-4, Ec = 10-5, 

respectively).  Note that the time scale is magnified by a factor of 1, 10 and 100 from top to bottom. Details in the 

text.   
 
 

 
Figure 3: Impact of the viscous-thermal feedback on the time scales of the system. From top to bottom: typical 

evolution of the variable X1 for different values of the Eckert number (Ec = 10-3, Ec = 10-4, Ec = 10-5, 

respectively).  Note that the time scale is magnified by a factor of 1, 10 and 100 from top to bottom. Details in the 

text.  
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Figure 4: Power spectrum of A1 and X1 (multiplied times 10-8) for Ec = 10-3, Ec = 10-4, and Ec = 10-5 in units of 

power per unit frequency. The black straight lines correspond to f--3/2 scalings. Details in the text. 
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